Small x Asymptotics of the Quark Helicity Distribution

Yuri Kovchegov

The Ohio State University
work with Dan Pitonyak and Matt Sievert, arXiv:1610.06188 [hep-ph] arXiv:1703.05809 [hep-ph]

Outline

- Goal: understanding the proton spin coming from small x
- Small-x helicity evolution:
- Observables: quark helicity TMD \& PDF at small-x, g_{1} structure function
- Small-x evolution for the "polarized dipole": large- N_{C} limit
- Numerical solution of the large- N_{C} evolution equations:
- small-x asymptotics of the g_{1} structure function, quark hPDFs and helicity TMDs
- impact on proton spin
- Analytic solution of the large- N_{C} evolution equations:
- Pure joy

Our Goal: Proton Spin at Small x

Proton Spin Pie Chart

- The proton spin carried by the quarks is estimated to be (for $0.001<x<1$)

$$
S_{q}\left(Q^{2}=10 \mathrm{GeV}^{2}\right) \approx 0.15 \div 0.20
$$

- The proton spin carried by the gluons is (for $0.05<x<1$)

$$
S_{G}\left(Q^{2}=10 \mathrm{GeV}^{2}\right) \approx 0.13 \div 0.26
$$

- Unfortunately the uncertainties are large. Note also that the x-ranges are limited, with more spin (positive or negative) possible at small x .

How much spin is at small x ?

- E. Aschenaur et al, arXiv:1509.06489 [hep-ph]
- Uncertainties are very large at small x!

Spin at small x

- The goal of this project is to provide theoretical understanding of helicity PDF's at very small x.
- Our work would provide guidance for future hPDF's parametrizations of the existing and new data (e.g., the data to be collected at EIC).
- Strictly-speaking we only talk about quark helicity, but most likely our analysis applies to gluon hPDF's as well.

Helicity Evolution Equations at Small x flavor-singlet case

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph]
Yu.K., D. Pitonyak, M. Sievert, arXiv:1511.06737 [hep-ph], arXiv:1610.06197 [hep-ph]

Quark Helicity Observables at Small x

- One can show that the g_{1} structure function and quark helicity PDF ($\Delta \mathrm{q}$) and TMD at small-x can be expressed in terms of the polarized dipole amplitude (flavor singlet case):

$$
\begin{aligned}
& g_{1}^{S}\left(x, Q^{2}\right)=\frac{N_{c} N_{f}}{2 \pi^{2} \alpha_{E M}} \int_{z_{i}}^{1} \frac{d z}{z^{2}(1-z)} \int d x_{01}^{2}\left[\frac{1}{2} \sum_{\lambda \sigma \sigma^{\prime}}\left|\psi_{\lambda \sigma \sigma^{\prime}}^{T}\right|\left(x_{0}^{2}, z\right), ~ \sum_{\sigma \sigma^{\prime}}^{2}\left|\psi_{\sigma \sigma^{\prime}}^{L}\right|\left(x_{0,1}^{2}, z\right)\right] G\left(x_{01}^{2}, z\right), \\
& \Delta q^{S}\left(x, Q^{2}\right)=\frac{N_{c} N_{f}}{2 \pi^{3}} \int_{z i}^{1} \frac{d z}{z} \int_{\frac{1}{z i}}^{\frac{1}{z^{2}}} \frac{d x x_{01}^{2}}{x_{01}^{2}} G\left(x_{01}^{2}, z\right), \\
& g_{1 L}^{S}\left(x, k_{T}^{2}\right)=\frac{8 N_{c} N_{f}}{(2 \pi)^{6}} \int_{z_{i}}^{1} \frac{d z}{z} \int d^{2} x_{01} d^{2} x_{\sigma^{\prime} 1} e^{-i k_{1} \cdot\left(x_{01}-x_{o_{1}}\right)} \frac{x_{01} \cdot \underline{x_{0^{\prime}}}}{x_{01}^{2} x_{0_{1}}^{2}} G\left(x_{01}^{2}, z\right)
\end{aligned}
$$

- Here s is cms energy squared, $\mathrm{z}_{\mathrm{i}}=\Lambda^{2} / \mathrm{s}, G\left(x_{01}^{2}, z\right) \equiv \int d^{2} b G_{10}(z)$

Polarized Dipole

- All flavor singlet small-x helicity observables depend on one object, "polarized dipole amplitude":

- Double brackets denote an object with energy suppression scaled out:

$$
\langle\langle\mathcal{O}\rangle\rangle(z) \equiv z s\langle\mathcal{O}\rangle(z)
$$

Evolution for Polarized Quark Dipole

One can construct an evolution equation for the polarized dipole:

polarized particle \quad particle
similar to
unpolarized
BK evolution

$$
+
$$

Resummation Parameter

- For helicity evolution the resummation parameter is different from BFKL, BK or JIMWLK, which resum powers of leading logarithms (LLA)

$$
\alpha_{s} \ln (1 / x)
$$

- Helicity evolution resummation parameter is double-logarithmic (DLA):

$$
\alpha_{s} \ln ^{2} \frac{1}{x}
$$

- The second logarithm of x arises due to transverse momentum integration being logarithmic both in UV and IR.
- This was known before: Kirschner and Lipatov '83; Kirschner '84; Bartels, Ermolaev, Ryskin '95, ‘96; Griffiths and Ross '99; Itakura et al '03; Bartels and Lublinsky '03.

Evolution for Polarized Quark Dipole

$$
\begin{aligned}
& \rho^{\prime 2}=\frac{1}{z^{\prime} s} \\
& \frac{1}{N_{c}}\left\langle\left\langle\operatorname{tr}\left[V_{0}^{u n p} V_{1}^{p o l} \dagger\right]\right\rangle\right\rangle(z)=\frac{1}{N_{c}}\left\langle\left\langle\operatorname{tr}\left[V_{0}^{u n p} V_{1}^{p o l \dagger}\right]\right\rangle\right\rangle_{0}(z)+\frac{\alpha_{s}}{2 \pi^{2}} \int_{z_{i}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\rho^{\prime 2}} \frac{d^{2} x_{2}}{x_{21}^{2}} \\
& \times\left\{\theta\left(x_{10}-x_{21}\right) \frac{2}{N_{c}}\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{0}^{u n p} t^{a} V_{1}^{u n p \dagger}\right] U_{2}^{p o l b a}\right\rangle\right\rangle\left(z^{\prime}\right)\right. \\
& \text { Equation does not close! } \\
& +\theta\left(x_{10}^{2} z-x_{21}^{2} z^{\prime}\right) \frac{1}{N_{c}}\left\langle\left\langle\operatorname{tr}\left[t^{b} V_{0}^{u n p} t^{a} V_{2}^{p o l \dagger}\right] U_{1}^{u n p b a}\right\rangle\right\rangle\left(z^{\prime}\right) \\
& \left.+\theta\left(x_{10}-x_{21}\right) \frac{1}{N_{c}}\left[\left\langle\left\langle\operatorname{tr}\left[V_{0}^{u n p} V_{2}^{u n p \dagger}\right] \operatorname{tr}\left[V_{2}^{u n p} V_{1}^{p o l} \dagger\right]\right\rangle\right\rangle\left(z^{\prime}\right)-N_{c}\left\langle\left\langle\operatorname{tr}\left[V_{0}^{u n p} V_{1}^{p o l \dagger}\right]\right\rangle\right\rangle\left(z^{\prime}\right)\right]\right\}
\end{aligned}
$$

Polarized Dipole Evolution in the Large- N_{c} Limit

In the large $-\mathrm{N}_{\mathrm{c}}$ limit the equations close, leading to a system of 2 equations:

You friendly "neighborhood" dipole

- There is a new object in the evolution equation - the neighbor dipole.
- This is specific for the DLA evolution. Gluon emission may happen in one dipole, but, due to transverse distance ordering, may 'know' about another dipole:

$$
x_{21}^{2} z^{\prime} \gg x_{32}^{2} z^{\prime \prime}
$$

- We denote the evolution in the neighbor dipole 02 by $\Gamma_{02,21}\left(z^{\prime}\right)$

Large- N_{c} Evolution: Strict DLA Limit

- In the strict DLA limit we neglect the LLA evolution (put $\mathrm{S}=1$) and get:

$$
\begin{gathered}
G\left(x_{10}^{2}, z\right)=G^{(0)}\left(x_{10}^{2}, z\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{\frac{1}{z}}^{z} \frac{d z^{\prime}}{x_{10}^{2} s} \int_{\frac{z^{\prime}}{x_{10}^{2}}}^{\frac{z^{\prime}}{z_{s}}} \frac{d x_{21}^{2}}{x_{21}^{2}}\left[\Gamma\left(x_{10}^{2}, x_{21}^{2}, z^{\prime}\right)+3 G\left(x_{21}^{2}, z^{\prime}\right)\right] \\
\Gamma\left(x_{10}^{2}, x_{21}^{2}, z^{\prime}\right)=\Gamma^{(0)}\left(x_{10}^{2}, x_{21}^{2}, z^{\prime}\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{\frac{1}{z^{\prime}}}^{\frac{z_{1}^{\prime}}{x_{10}^{2} s}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\frac{1}{z^{\prime \prime}}}^{\min \left\{x_{10}^{2}, x_{21}^{2}, \frac{z}{z} z^{\prime}\right\}} \frac{d x_{32}^{2}}{x_{32}^{2}}\left[\Gamma\left(x_{10}^{2}, x_{32}^{2}, z^{\prime \prime}\right)+3 G\left(x_{32}^{2}, z^{\prime \prime}\right)\right]
\end{gathered}
$$

- The initial conditions are given by Born-level graphs, for which

$$
\Gamma^{(0)}\left(x_{10}^{2}, x_{21}^{2}, z\right)=G^{(0)}\left(x_{10}^{2}, z\right)
$$

Initial Conditions

- Initial conditions for all our evolution equations should be given by Bornlevel interactions ("dressed" by multiple rescatterings in the saturation case):

$$
G^{(0)}\left(x_{10}^{2}, z\right)=\frac{\alpha_{s}^{2} C_{F}}{N_{c}} \pi\left[C_{F} \ln \frac{z s}{\Lambda^{2}}-2 \ln \left(z s x_{10}^{2}\right)\right]
$$

Large- N_{c} Equations:
 Numerical Solution

Yu.K., D. Pitonyak, M. Sievert, arXiv:1610.06188 [hep-ph]

Prior Results

- Small-x DLA evolution for the g_{1} structure function was first considered by Bartels, Ermolaev and Ryskin (BER) in '96.
- Including the mixing of quark and gluon ladders, they obtained

$$
\Delta \Sigma \sim g_{1} \sim\left(\frac{1}{x}\right)^{z_{s} \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}}
$$

with $z_{s}=3.45$ for 4 quark flavors and $z_{s}=3.66$ for pure glue.

$$
S_{q}\left(Q^{2}\right)=\frac{1}{2} \int_{0}^{1} d x \Delta \Sigma\left(x, Q^{2}\right)
$$

- The power is large: it becomes larger than 1 for the realistic strong coupling of the order of $\alpha_{s}=0.2-0.3$, resulting in polarized PDFs which actually grow with decreasing x fast enough for the integral of the PDFs over the low-x region to be (potentially) large (infinite).

Large- N_{C} Equations

- We want to find the numerical solution of the large- N_{c} DLA evolution equations (linearized, without saturation corrections):

$$
\begin{aligned}
G_{01}(z) & =G_{01}^{(0)}(z)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{z_{i}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\rho^{\prime 2}}^{x_{10}^{2}} \frac{d x_{21}^{2}}{x_{21}^{2}}\left[\Gamma_{02,21}\left(z^{\prime}\right)+3 G_{21}\left(z^{\prime}\right)\right], \\
\Gamma_{02,21}\left(z^{\prime}\right) & =\Gamma_{02,21}^{(0)}\left(z^{\prime}\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{z_{i}}^{z^{\prime}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\rho^{\prime \prime 2}}^{\min \left\{x_{02}^{2}, x_{21}^{2} z^{\prime} / z^{\prime \prime}\right\}} \frac{d x_{32}^{2}}{x_{32}^{2}}\left[\Gamma_{03,32}\left(z^{\prime \prime}\right)+3 G_{23}\left(z^{\prime \prime}\right)\right]
\end{aligned}
$$

- First we define new variables:

$$
\eta=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{z s}{\Lambda^{2}} \quad s_{10}=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{1}{x_{10}^{2} \Lambda^{2}}
$$

Large- N_{C} Equations

- In terms of the new variables the equations become

$$
\begin{aligned}
& G\left(s_{10}, \eta\right)=G^{(0)}\left(s_{10}, \eta\right)+\int_{s_{10}}^{\eta} d \eta^{\prime} \int_{s_{10}}^{\eta^{\prime}} d s_{21}\left[\Gamma\left(s_{10}, s_{21}, \eta^{\prime}\right)+3 G\left(s_{21}, \eta^{\prime}\right)\right] \\
& \Gamma\left(s_{10}, s_{21}, \eta^{\prime}\right)=\Gamma^{(0)}\left(s_{10}, s_{21}, \eta^{\prime}\right)+\int_{s_{10}}^{\eta^{\prime}} d \eta^{\prime \prime} \int_{\max \left\{s_{10}, s_{21}+\eta^{\prime \prime}-\eta^{\prime}\right\}}^{\eta^{\prime \prime}} d s_{32}\left[\Gamma\left(s_{10}, s_{32}, \eta^{\prime \prime}\right)+3 G\left(s_{32}, \eta^{\prime \prime}\right)\right] . \\
& \eta=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{z s}{\Lambda^{2}} \quad s_{10}=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{1}{x_{10}^{2} \Lambda^{2}}
\end{aligned}
$$

- The initial conditions are

$$
G^{(0)}\left(s_{10}, \eta\right)=\Gamma^{(0)}\left(s_{10}, s_{21}, \eta\right)=\alpha_{s}^{2} \pi \frac{C_{F}}{N_{c}}\left[C_{F} \eta-2\left(\eta-s_{10}\right)\right]
$$

Numerical Solution

- We discretize the equations

$$
\begin{aligned}
G_{i j} & =G_{i j}^{(0)}+\Delta \eta \Delta s \sum_{j^{\prime}=i}^{j-1} \sum_{i^{\prime}=i}^{j^{\prime}}\left[\Gamma_{i i^{\prime} j^{\prime}}+3 G_{i^{\prime} j^{\prime}}\right] \\
\Gamma_{i k j} & =\Gamma_{i k j}^{(0)}+\Delta \eta \Delta s \sum_{j^{\prime}=i}^{j-1} \sum_{i^{\prime}=\max \left\{i, k+j^{\prime}-j\right\}}^{j^{\prime}}\left[\Gamma_{i i^{\prime} j^{\prime}}+3 G_{i^{\prime} j^{\prime}}\right]
\end{aligned}
$$

and solve them by progressively populating each fixed- η row in s.

- The solution for G looks like this:
$\eta=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{z s}{\Lambda^{2}} \quad s_{10}=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{1}{x_{10}^{2} \Lambda^{2}}$

Extracting the intercept

- The solution for G grows exponentially with rapidity η :

- We read off the "intercept" (the slope of $\operatorname{In} G$ vs η) for different-size lattices and step sizes, and extrapolate the intercept to the continuum:

Solution of the large- N_{C} Equations

- The resulting small-x asymptotics is

$$
g_{1}^{S}\left(x, Q^{2}\right) \sim \Delta q^{S}\left(x, Q^{2}\right) \sim g_{1 L}^{S}\left(x, k_{T}^{2}\right) \sim\left(\frac{1}{x}\right)^{\alpha_{h}} \approx\left(\frac{1}{x}\right)^{2.31 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}}
$$

- Our result, 2.31, is about 35% smaller than BER's 3.66 any $-N_{C}$ pure glue.

Intercepts

Here we plot our (flavor-singlet) helicity intercept as a function of the coupling. We show BER result and LO BFKL (all twist and leading twist) for comparison.

Impact on proton spin

- We have attached a $\Delta \tilde{\Sigma}\left(x, Q^{2}\right)=N x^{-\alpha_{h}}$ curve to the existing hPDF's fits at some ad hoc small value of x labeled x_{0} :

"ballpark" phenomenology

Impact on proton spin

- Defining $\Delta \Sigma^{\left[x_{\text {min }}\right]}\left(Q^{2}\right) \equiv \int_{x_{\text {min }}}^{1} d x \Delta \Sigma\left(x, Q^{2}\right)$ we plot it for $\mathrm{x}_{0}=0.03,0.01$,
0.001:

- We observe a moderate to significant enhancement of quark spin.
- More detailed phenomenology is needed in the future.

Impact on proton spin

- Here we compare our results with DSSV, now including the error band.
- We observe consistency of our lower two curves with DSSV.
- Our upper curve disagrees with DSSV, but agrees with NNPDF (Nocera, Santopinto, '16).
- Better phenomenology is needed. EIC would definitely play a role.

Large- N_{c} Equations: Analytic Solution

Yu.K., D. Pitonyak, M. Sievert, arXiv:1703.05809 [hep-ph]

Scaling

- Consider our numerical solution again
$\eta=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{z s}{\Lambda^{2}} \quad s_{10}=\sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \ln \frac{1}{x_{10}^{2} \Lambda^{2}}$
- It is well approximated by

$$
G\left(s_{10}, \eta\right) \propto e^{2.31\left(\eta-s_{10}\right)}
$$

- This motivated us to look for the solution in the following scaling form:

$$
\begin{aligned}
G\left(s_{10}, \eta\right) & =G\left(\eta-s_{10}\right) \\
\Gamma\left(s_{10}, s_{21}, \eta^{\prime}\right) & =\Gamma\left(\eta^{\prime}-s_{10}, \eta^{\prime}-s_{21}\right)
\end{aligned}
$$

Scaling Equations

- The large- N_{c} evolution equations can be rewritten in terms of the scaling variables (not a trivial property, does not work for the large $-\mathrm{N}_{\mathrm{c}} \& \mathrm{~N}_{\mathrm{f}}$ equations):

$$
\begin{aligned}
G(\zeta) & =1+\int_{0}^{\zeta} d \xi \int_{0}^{\xi} d \xi^{\prime}\left[\Gamma\left(\xi, \xi^{\prime}\right)+3 G\left(\xi^{\prime}\right)\right], \\
\Gamma\left(\zeta, \zeta^{\prime}\right) & =1+\int_{0}^{\zeta^{\prime}} d \xi \int_{0}^{\xi} d \xi^{\prime}\left[\Gamma\left(\xi, \xi^{\prime}\right)+3 G\left(\xi^{\prime}\right)\right] \\
& +\int_{\zeta^{\prime}}^{\zeta} d \xi \int_{0}^{\zeta^{\prime}} d \xi^{\prime}\left[\Gamma\left(\xi, \xi^{\prime}\right)+3 G\left(\xi^{\prime}\right)\right]
\end{aligned}
$$

- For simplicity, pick the following initial conditions:

$$
G(0)=1, \quad \Gamma\left(\zeta^{\prime}, \zeta^{\prime}\right)=G\left(\zeta^{\prime}\right)
$$

Analytic Solution

- These scaling equations can be solved exactly via Laplace transform + a few clever tricks, yielding

$$
\begin{aligned}
G(\zeta) & =\int \frac{d \omega}{2 \pi i} e^{\omega \zeta+\frac{\zeta}{\omega}} \frac{\omega^{2}-1}{\omega\left(\omega^{2}-3\right)}, \\
\Gamma\left(\zeta, \zeta^{\prime}\right) & =4 \int \frac{d \omega}{2 \pi i} e^{\omega \zeta^{\prime}+\frac{\zeta}{\omega}} \frac{\omega^{2}-1}{\omega\left(\omega^{2}-3\right)} \\
& -3 \int \frac{d \omega}{2 \pi i} e^{\omega \zeta^{\prime}+\frac{\zeta^{\prime}}{\omega}} \frac{\omega^{2}-1}{\omega\left(\omega^{2}-3\right)} .
\end{aligned}
$$

- As usual, the high-energy asymptotics is given by the rightmost pole in the complex ω-plane: the pole is at $\omega=+\sqrt{3}$.

Analytic Solution and Intercept

- The contribution of the pole at $\omega=+\sqrt{3}$ is

$$
\begin{aligned}
G(\zeta) & \approx \frac{1}{3} e^{\frac{4}{\sqrt{3}} \zeta} \\
\Gamma\left(\zeta, \zeta^{\prime}\right) & \approx \frac{1}{3} e^{\frac{4}{\sqrt{3}} \zeta^{\prime}}\left(4 e^{\frac{\zeta-\zeta^{\prime}}{\sqrt{3}}}-3\right) \\
& =G\left(\zeta^{\prime}\right)\left(4 e^{\frac{\zeta-\zeta^{\prime}}{\sqrt{3}}}-3\right)
\end{aligned}
$$

- The corresponding helicity intercept is

$$
\alpha_{h}=\frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \approx 2.3094 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}
$$

- This is in complete agreement with the numerical solution!

$$
\alpha_{h} \approx 2.31 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}
$$

Conclusions

- We have constructed new DLA evolution equations for the polarized dipole operator, which allow us to find the small-x asymptotics of the quark helicity TMDs and PDFs and of the g_{1} structure function.
- Like the B-JIMWLK hierarchy, our equations do not close in general. They close in the large $-\mathrm{N}_{\mathrm{C}}$ and large- $\mathrm{N}_{\mathrm{C}} \& \mathrm{~N}_{\mathrm{f}}$ limits.
- Solution of the flavor singlet evolution equations at large- N_{C} gives

$$
g_{1}^{S}\left(x, Q^{2}\right) \sim \Delta q^{S}\left(x, Q^{2}\right) \sim g_{1 L}^{S}\left(x, k_{T}^{2}\right) \sim\left(\frac{1}{x}\right)^{\alpha_{h}}=\left(\frac{1}{x}\right)^{\frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}}
$$

which may potentially generate a solid amount of spin at small-x.

- Future work includes gluon helicity TMD at small x (coming soon) and may involve including running coupling and saturation corrections + solving the large- $\mathrm{N}_{\mathrm{C}} \& \mathrm{~N}_{\mathrm{f}}$ equations.

Backup Slides

Polarized "Wilson line"

- Our polarized "Wilson line" is defined as (for purely gluonic exchanges with the target)
where $\underline{A}_{\Sigma}\left(x^{-}, \underline{x}\right)=\frac{\Sigma}{2 p_{1}^{+}} \tilde{\tilde{A}}\left(x^{-}, \underline{x}\right)$ is the spin-dependent gluon field of the plus-direction moving target. (A^{+}is the unpolarized eikonal field.)
- In preparation...

Polarized Dipole Evolution in the Large- $\mathrm{N}_{\mathrm{c}} \& \mathrm{~N}_{\mathrm{f}}$ Limit

In the large $-\mathrm{N}_{\mathrm{c}} \& \mathrm{~N}_{\mathrm{f}}$ limit the equations close too, leading to a closed system of 5 equations:

Large $-\mathrm{N}_{\mathrm{c}} \& \mathrm{~N}_{\mathrm{f}}$ Evolution

- The evolution equations read (in the strict DLA limit, $S=1$):

$$
\begin{aligned}
& Q_{01}(z)=Q_{01}^{(0)}(z)+\frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int_{z_{i}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\rho^{\prime 2}} \frac{d^{2} x_{2}}{x_{21}^{2}} \theta\left(x_{10}-x_{21}\right)\left[G_{12}\left(z^{\prime}\right)+\Gamma_{02,21}\left(z^{\prime}\right)+A_{21}\left(z^{\prime}\right)-\bar{\Gamma}_{01,21}\left(z^{\prime}\right)\right] \\
& +\frac{\alpha_{s} N_{c}}{4 \pi^{2}} \int_{z_{i}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\rho^{\prime 2}} \frac{d^{2} x_{2}}{x_{21}^{2}} \theta\left(x_{10}^{2} z-x_{21}^{2} z^{\prime}\right) A_{21}\left(z^{\prime}\right), \\
& G_{10}(z)=G_{10}^{(0)}(z)+\frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int_{z_{i}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\rho^{\prime 2}} \frac{d^{2} x_{2}}{x_{21}^{2}} \theta\left(x_{10}-x_{21}\right)\left[\Gamma_{02,21}\left(z^{\prime}\right)+3 G_{12}\left(z^{\prime}\right)\right] \\
& -\frac{\alpha_{s} N_{f}}{4 \pi^{2}} \int_{z_{i}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\rho^{\prime 2}} \frac{d^{2} x_{2}}{x_{21}^{2}} \theta\left(x_{10}^{2} z-x_{21}^{2} z^{\prime}\right) \bar{\Gamma}_{02,21}\left(z^{\prime}\right), \\
& A_{01}(z)=A_{01}^{(0)}(z)+\frac{\alpha_{s} N_{c}}{2 \pi^{2}} \int_{z_{i}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\rho^{\prime 2}} \frac{d^{2} x_{2}}{x_{21}^{2}} \theta\left(x_{10}-x_{21}\right)\left[G_{12}\left(z^{\prime}\right)+\Gamma_{02,21}\left(z^{\prime}\right)+A_{21}\left(z^{\prime}\right)-\bar{\Gamma}_{01,21}\left(z^{\prime}\right)\right] \\
& +\frac{\alpha_{s} N_{c}}{4 \pi^{2}} \int_{z_{i}}^{z} \frac{d z^{\prime}}{z^{\prime}} \int_{\rho^{\prime 2}} \frac{d^{2} x_{2}}{x_{21}^{2}} \theta\left(x_{10}^{2} z-x_{21}^{2} z^{\prime}\right) A_{12}\left(z^{\prime}\right) . \\
& \Gamma_{02,21}\left(z^{\prime}\right)=\Gamma_{02,21}^{(0)}\left(z^{\prime}\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{z_{i}}^{z^{\prime}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\rho^{\prime \prime 2}}^{\min \left\{x_{02}^{2}, x_{21}^{2} z^{\prime} / z^{\prime \prime}\right\}} \frac{d x_{32}^{2}}{x_{32}^{2}}\left[\Gamma_{03,32}\left(z^{\prime \prime}\right)+3 G_{23}\left(z^{\prime \prime}\right)\right] \\
& -\frac{\alpha_{s} N_{f}}{4 \pi} \int_{z_{i}}^{z^{\prime}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\rho^{\prime \prime 2}}^{x_{21}^{2} z^{\prime} / z^{\prime \prime}} \frac{d x_{32}^{2}}{x_{32}^{2}} \bar{\Gamma}_{03,32}\left(z^{\prime}\right), \\
& \bar{\Gamma}_{02,21}\left(z^{\prime}\right)=\bar{\Gamma}_{02,21}^{(0)}\left(z^{\prime}\right)+\frac{\alpha_{s} N_{c}}{2 \pi} \int_{z_{i}}^{z^{\prime}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\rho^{\prime \prime 2}}^{\min \left\{x_{02}^{2}, x_{21}^{2} z^{\prime} / z^{\prime \prime}\right\}} \frac{d x_{32}^{2}}{x_{32}^{2}}\left[\Gamma_{03,32}\left(z^{\prime \prime}\right)+G_{23}\left(z^{\prime \prime}\right)+A_{23}\left(z^{\prime \prime}\right)-\bar{\Gamma}_{02,32}\left(z^{\prime \prime}\right)\right] \\
& +\frac{\alpha_{s} N_{c}}{4 \pi} \int_{z_{i}}^{z^{\prime}} \frac{d z^{\prime \prime}}{z^{\prime \prime}} \int_{\rho^{\prime \prime 2}}^{x_{21}^{2} z^{\prime} / z^{\prime \prime}} \frac{d x_{32}^{2}}{x_{32}^{2}} A_{32}\left(z^{\prime}\right)
\end{aligned}
$$

Intercepts

- We can summarize some LO intercepts, including the ones we found, in the following table:

Observable	Evolution	Intercept	$Q^{2}=3 \mathrm{GeV}^{2}$ $\alpha_{s}=0.343$	$Q^{2}=10 \mathrm{GeV}^{2}$ $\alpha_{s}=0.249$	$Q^{2}=87 \mathrm{GeV}^{2}$ $\alpha_{s}=0.18$
Unpolarized flavor singlet structure function F_{2}	LO BFKL Pomeron	$1+\frac{\alpha_{s} N_{c}}{\pi} 4 \ln 2$	1.908	1.659	1.477
Unpolarized flavor non-singlet structure function F_{2}	Reggeon	$\sqrt{\frac{2 \alpha_{s} C_{F}}{\pi}}$	0.540	0.460	0.391
Flavor singlet	us (Pure Glue)	$2.31 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}$	0.936	0.797	0.678
structure function g_{1}^{S}	BER (Pure Glue)	$3.66 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}$	1.481	1.262	1.073
Flavor non-singlet structure function $g_{1}^{N S}$	BER $\left(N_{f}=4\right)$	$3.45 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}$	1.400	1.190	1.011

$$
\alpha_{h}^{B E R}=\sqrt{\frac{17+\sqrt{97}}{2}} \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}} \approx 3.66 \sqrt{\frac{\alpha_{s} N_{c}}{2 \pi}}
$$

Comparison with BER

A

n

G

B

E

H

C

F

I

To better understand BER work, we tried calculating one (real) step of DLA helicity evolution for the qq->qq scattering.

It appears that we have identified the $k_{2} \gg k_{1}$ (or $k_{1} \gg k_{2}$) regime in which diagrams A, B, C, D, E, I are DLA, which was not considered by BER for B, C, ... I.

Helicity Evolution at Small x flavor non-singlet case

Yu.K., D. Pitonyak, M. Sievert, arXiv:1610.06197 [hep-ph]

Flavor Non-Singlet Observables

- In the flavor non-singlet case, all helicity observables again depend on the polarized dipole amplitude:

$$
\begin{aligned}
& g_{1}^{N S}\left(x, Q^{2}\right)=\frac{N_{c}}{2 \pi^{2} \alpha_{E M}} \int_{z_{i}}^{1} \frac{d z}{z^{2}(1-z)} \int d x_{01}^{2}\left[\frac{1}{2} \sum_{\lambda \sigma \sigma^{\prime}}\left|\psi_{\lambda \sigma \sigma^{\prime}}^{T}\right|_{\left(x_{01}^{2}, z\right)}^{2}+\sum_{\sigma \sigma^{\prime}}\left|\psi_{\sigma \sigma^{\prime}}^{L}\right|_{\left(x_{01}^{2}, z\right)}^{2}\right] G^{N S}\left(x_{01}^{2}, z\right), \\
& \Delta q^{N S}\left(x, Q^{2}\right)=\frac{N_{c}}{2 \pi^{3}} \int_{z_{i}}^{1} \frac{d z}{z} \int_{\frac{1}{z s}}^{\frac{1}{z Q^{2}}} \frac{d x_{01}^{2}}{x_{01}^{2}} G^{N S}\left(x_{01}^{2}, z\right), \\
& g_{1 L}^{N S}\left(x, k_{T}^{2}\right)=\frac{8 N_{c}}{(2 \pi)^{6}} \int_{z_{i}}^{1} \frac{d z}{z} \int d^{2} x_{01} d^{2} x_{0^{\prime} 1} e^{-i \underline{k} \cdot\left(\underline{x}_{01}-\underline{x}_{0^{\prime} 1}\right)} \frac{\underline{x}_{01} \cdot \underline{x}_{0^{\prime} 1}}{x_{01}^{2} x_{0^{\prime} 1}^{2}} G^{N S}\left(x_{01}^{2}, z\right)
\end{aligned}
$$

- Polarized dipole amplitude is different (difference instead of sum):

$$
G_{10}^{N S}(z) \equiv \frac{1}{2 N_{c}}\left\langle\left\langle\operatorname{tr}\left[V_{\underline{0}} V_{\underline{1}}^{p o l} \dagger\right]-\operatorname{tr}\left[V_{\underline{1}}^{p o l} V_{\underline{0}}^{\dagger}\right]\right\rangle\right\rangle(z)
$$

- This is related to the definition

$$
\Delta q^{N S}\left(x, Q^{2}\right) \equiv \Delta q^{f}\left(x, Q^{2}\right)-\Delta \bar{q}^{f}\left(x, Q^{2}\right)
$$

Flavor Non-Singlet Evolution

- Evolution equations end up being much simpler in the non-singlet case:

$$
\begin{array}{cc}
\frac{\partial}{\partial \ln z} & G_{10}^{N S}(z)= \\
1 \longrightarrow
\end{array}
$$

- Analytical solution (in the DLA case, $\mathrm{S}=1$) leads to (in agreement with

$$
\begin{aligned}
& \text { Bartels et al, '95) } \\
& \qquad g_{1}^{N S}\left(x, Q^{2}\right) \sim \Delta q^{N S}\left(x, Q^{2}\right) \sim g_{1 L}^{N S}\left(x, k_{T}^{2}\right) \sim\left(\frac{1}{x}\right)^{\alpha_{h}^{N S}} \approx\left(\frac{1}{x}\right)^{\sqrt{\frac{\alpha_{s} N_{c}}{\pi}}}
\end{aligned}
$$

- The resulting intercept is smaller than the flavor-singlet intercept.

