Low x Physics and Saturation: From HERA to Future DIS and the LHeC

Mandalaz

RIKEN BNL Research Center Workshop April 26-28, 2017 at Brookhaven National Laboratory

Low x Physics at HERA: the "Pathological" Gluon

Figure 5: The position of the critical line in the (x, Q^2) -plane. The narrow hatched area corresponds to the acceptance region of HERA. The wide hatched region indicates the range for a future 1 TeV ep-collider. The boundaries are lines of constant y.

1998: Low x HERA data are well fitted in (dipole) models that include saturation effects - x dependent "saturation scale", $Q_s^2(x)$

Saturation and DGLAP PDF fits

e.g. NNPDF: NLO DGLAP description deteriorates when adding data in lines $Q^2 > Ax^{-0.3}$ parallel to 'saturation' curve in x/Q^2 .

Final HERA-2 Combined PDF Paper: "some tension in fit between low & medium Q² data... not attributable to particular x region" (though kinematic correlation)

... something happens, but interpretation?

Low x Saturation in Diffractive Data?

- Elastic J/ Ψ in γp ...
- No evidence for change in shape at high W (i.e. low x),

even at LHC (t dependence yet to be exploited)

- Rather flat diffractive/inclusive ratio and failure of diffractive PDF fits to data below $Q^2 \sim 5 \text{ GeV}^2$ best described by dipole models incorporating saturation ...

BOTTOM LINE ... HERA not conclusive on location or dynamics of onset and LHC has not given greater clarity

Problem of Inclusive Data in 1 Dimension

Accessing saturation region at large Q^2

2-pronged approach: EIC and LHeC

Enhance target `blackness' by: ep 1) Probing lower x at fixed Q^2 in ep eA [evolution of a single source] DILUTE REGION 2) Increasing target matter in eA [overlapping many sources at fixed kinematics ... Density ~ $A^{1/3}$ ~ 6 for Pb ... worth 2 orders of magnitude in x]

... e.g. LHeC reaches saturated region in both ep & eA inclusive data according to models

In A

[fixed Q]

DENSE REGION

n 1/x

Baseline Design (Electron "Linac")

- Design constraint: power consumption < 100 MW \rightarrow E_e = 60 GeV

- Colliding with $E_p = 7$ TeV from LHC (or even 50 TeV from FCC) and equivalent ion beams

- Two 10 GeV linacs,
- 3 returns, 20 MV/m
- Energy recovery in same structures
 [Energy recovery Linac prototype planned
 @ Orsay]

- ep lumi → 10³⁴ cm⁻² s⁻¹
- \rightarrow ~100 fb⁻¹ per year \rightarrow ~1 ab⁻¹ total
- eD and eA collisions have always been integral to programme
- e-nucleon Lumi estimates ~ 10³¹ (10³²) cm⁻² s⁻¹ for eD (ePb)

LHeC Physics at 10³⁴ cm⁻²s⁻¹

е

 $\gamma^*(\mathbf{Q}^2)$

q

ĝ

Elastic J/\Psi Kinematics

• At fixed \sqrt{s} , decay muon direction is determined by W = $\sqrt{s_{\gamma p}}$

• To access highest W, acceptance in outgoing electron beam direction crucial

LHeC Detector Design Overview

- Present size 13m x 9m (c.f. CMS 21m x 15m, ATLAS 45m x 25m)
- Forward / backward asymmetry reflecting beam energies 12
- Demanding tracking \rightarrow high fraction of pixels, wide acceptance

Detector Details

 Long tracking region (pixels + strips) → 1° electron hits
 2 tracker planes

Dipoles Hadronic Calorimeter HAC Lar / Tile calorimeter Forward Backward leaning heavily on LHC HCAL CST BST HCAL • FEC BEC EMC Electromagnetic Calorimeter experience Solenoid Electron Beamline insrumentation 420 z (m) 100 -120 Tagger Zero Degree Proton -62 Photon considered from outset. Spectrometer Calorimeter Tagger

Intact Proton Selection Methods beyond HERA

- Allows t measurement, but limited by stats, p- tagging systs

2) Select Large Rapidity Gaps

-Limited by control over proton dissociation contribution

- Methods have very different systematics \rightarrow complementary
- In practice, method 2 yielded lasting HERA results, because of statistical and kinematic range limitations of Roman pots
- Roman pots mainly contsrained t distributions
- LHeC & EIC different \rightarrow higher lumi + pot design from outset

- Proton spectrometer uses outcomes of FP420 project (proposal for low ξ Roman pots at ATLAS / CMS - not yet adopted)
- Approaching beam to 12σ (~250 μ m) tags elastically scattered protons with high acceptance over a wide x_{IP} , t range

-These detectors came of age at LHC (TOTEM, AFP) ...

- We should build full acceptance forward detector systems with them

(NEW) DGLAP PDF Fits to LHeC Pseudo-Data

-Simulated NC, CC `pseudo-data' with reasonable assumptions on systematics (typically 2x better than H1 and ZEUS at HERA).

- NEW: Luminosity increased since CDR \rightarrow up to 1ab⁻¹
- NEW: Fitting framework \rightarrow as for HERAPDF 2.0 at NLO

source of uncertainty	error on the source or cross section
scattered electron energy scale $\Delta E_e^\prime/E_e^\prime$	0.1 %
scattered electron polar angle	0.1 mrad
hadronic energy scale $\Delta E_h/E_h$	0.5 %
calorimeter noise (only $y < 0.01$)	1-3%
radiative corrections	0.3%
photoproduction background (only $y > 0.5$)	1 %
global efficiency error	0.7 %

- NLO DGLAP fit using HERAPDF2.0, including:
 - LHeC NC and CC e⁺p and e⁻p cross sections
 - NEW: HERA-1 and HERA-2 final combined H1+ZEUS data
 - Fixed target BCDMS data with W>15 GeV
 - NEW: HERA jet and various Tevatron / LHC data

Low x Gluon with LHC, with and without LHeC

Standard LHC channels do not help much:

- ATLAS and CMS constraints as currently included in PDF fits (jets, top) don't extend below $x \sim 10^{-3}$.
- Other channels may help if theoretical issues can be overcome (LHCb c,b, maybe even exclusive J/Ψ)
- Current knowledge basically comes from HERA: stops at x~5.10⁻⁴
- LHeC gives constraints to $x \sim 10^{-6}$ from scaling violations and F_L

Low x Sea with LHC, with and without LHeC

LHC channels help, but not on same level as LHeC:

- ATLAS and CMS low mass Drell-Yan data have an impact
- Also potentially LHCb Drell-Yan
- Other channels may help (see eg ALICE direct photon / FOCAL)
- LHeC goes to $x \sim 10^{-6}$, directly from F_2

... this is what DIS does best ...

FCC-eh Data have also been included

$\begin{array}{c cccccc} NC & 60 & (60) & 50 & (7) & -0.8 & -1 & 1000 \\ CC & 60 & (60) & 50 & (7) & -0.8 & -1 & 1000 \\ \hline NC & 60 & (60) & 50 & (7) & +0.8 & -1 & 300 \\ CC & 60 & (60) & 50 & (7) & +0.8 & -1 & 300 \\ \hline NC & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ CC & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ \hline NC & 20 & (60) & 50 & (7) & 0 & -1 & 100 \\ CC & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ \hline NC & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ \hline \end{array}$	$\rm NC/CC$	$E_e [GeV]$	$E_p [TeV]$	P(e)	charge	lumi. $[fb^{-1}]$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NC	60(60)	50(7)	-0.8	-1	1000	o nod nol
$ \begin{array}{c ccccc} NC & 60 & (60) & 50 & (7) & +0.8 & -1 & 300 \\ CC & 60 & (60) & 50 & (7) & +0.8 & -1 & 300 \\ NC & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ CC & 60 & (60) & 50 & (7) & 0 & +1 & 100 \\ NC & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ CC & 20 & (60) & 7 & (1) & 0 & -1 & 100 \\ \end{array} \right e^{+}, unpol. $	$\mathbf{C}\mathbf{C}$	60(60)	50(7)	-0.8	-1	1000	e-, neg. por.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NC	60(60)	50(7)	+0.8	-1	300	e- not nol
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{C}\mathbf{C}$	60(60)	50(7)	+0.8	-1	300	e-, pos. poi.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NC	60(60)	50(7)	0	+1	100	et unnol
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathbf{C}\mathbf{C}$	60(60)	50(7)	0	+1	100	e, anpoi.
CC 20 (60) 7 (1) 0 -1 100 low energy	NC	20(60)	7(1)	0	-1	100	low opendy
	$\mathbf{C}\mathbf{C}$	20(60)	7(1)	0	-1	100	tow effergy

* second and third columns show FCC-eh (LHeC)

error assumptions: elec. scale: 0.1%; hadr. scale 0.5% radcor: 0.3%; γp at high y: 1% uncorrelated extra eff. 0.5%

(M.Klein)

Some improvement in precision

Main impact is direct coverage with data down to $x=10^{-7}$.

Why this is already dangerous at the LHC - Use of PDFs based purely on DGLAP Q² evolution at low(ish) x, high Q² at the LHC will give incorrect results if there are saturation effects in the low x, low Q2 data ...

- Convergent solutions after DGLAP evolution can already be misleading at the LHC ... worse at lower $x \rightarrow$ LHeC, FCC-eh $\stackrel{20}{...}$

LHeC Sensitivity to Different Saturation Models

With 1 fb⁻¹ (1 month at 10^{33} cm⁻² s⁻¹), F₂ stat. < 0.1%, syst, 1-3% F_L measurement to 8% with 1 year of varying E_e or E_D

F_2 and F_L pseudodata at $Q^2 = 10 \text{ GeV}^2$

• LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics

... but can satⁿ effects hide in standard fit parameterisations?

Can Parton Saturation be Established in ep @ LHeC?

Simulated LHeC F_2 and F_L data based on an (old) dipole model containing low x saturation (FS04-sat)... Try to fit in NLO DGLAP ... NNPDF (also HERA framework) DGLAP QCD fits work OK if only F_2 is fitted, but cannot accommodate saturation effects if F_2 and F_1 both fitted

• Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 v F_L$ in ep or F_2 in ep v eA

Exclusive / Diffractive Channels and Saturation

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - \rightarrow Large t (small b) probes densest packed part of proton?

Advantage of Diffractive DIS: Dipole Language

Inclusive Cross Section

$$\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}(\alpha,\mathbf{r})|^2 \hat{\sigma}(x,r^2)$$

Diffractive DIS

$$\frac{d\sigma_{T,L}^D}{dt}\Big|_{t=0} = \frac{1}{16\pi} \int d^2 \mathbf{r} \int_0^1 d\alpha \, |\Psi_{T,L}\left(\alpha,\mathbf{r}\right)|^2 \hat{\sigma}^2\left(x,r^2\right)$$

3) Extra factor of dipole cross section weights DDIS cross section towards larger dipole sizes \rightarrow enhanced sensitivity to saturation effects.

Test Case: Elastic J/\Psi Photoproduction

- `Cleanly' interpreted as hard 2g exchange coupling to qqbar dipole
- c and c-bar share energy equally, simplifying VM wavefunction relative to ρ

• Clean experimental signature (just 2 leptons)

• Scale $\overline{Q^2} \sim (Q^2 + M_V^2) / 4 > \sim 3 \text{ GeV}^2$ ideally suited to reaching Lowest possible x whilst remaining in perturbative regime

... eg LHeC reach extends to: $x_g \sim (Q^2 + M_V^2) / (Q^2 + W^2) \sim 5.10^{-6}$

• Simulations (DIFFVM) of elastic $J/\Psi \rightarrow \mu\mu$ photoproduction \rightarrow scattered electron untagged, 1° acceptance for muons (similar method to H1 and ZEUS)

Existing Diffractive J/ Ψ Photoproduction Data

Comparison with Dipole model Predictions

- e.g. "b-Sat" Dipole model - "eikonalised": with impact-parameter dependent saturation
- "1 Pomeron": non-saturating

• Significant non-linear effects expected in LHeC kinematic range.

With detailed exploration of ep and eA, including t dependences, this becomes a powerful probe!...

t Dependence of Elastic J/ ψ Photoproduction

- Precise t measurement from decay μ tracks over wide W range extends to $|t| \sim 2 \ GeV^2 \ and \ enhances sensitivity to \ saturation effects$

• Measurements also possible in multiple Q² bins

- Level of precision from ep and eA unlikely to be matched in UPC

- Incoherent ep diffraction still needs to be studied

Exclusive Diffraction in eA

Experimentally clear signatures and theoretically cleanly calculable saturation effects in coherent diffraction case (eA \rightarrow eVA)

Experimental separation of incoherent diffraction based mainly on ZDC

- Low $\beta \rightarrow$ Novel low x DPDF effects /non-linear dynamics? • High Q² \rightarrow Lever-arm for gluon, Flavour separation via EW
 - Still to do: detailed DPDF sensitivity study

New Region of Large Diffractive Masses Large x_{IP} region highly correlated with large Mx

- `Proper' QCD (e.g. large E_T) with jets and charm accessible
- New diffractive channels ... beauty, W / Z bosons
- Unfold quantum numbers / precisely measure new 1⁻ states

The More Distant Future: ep at a CERN Future Circular Collider

FCC-eh kinematics sensitive to diffractive structure in larger (β,Q²) range than (x,Q²) range sampled for the proton @ HERA!

-Similarly for masses and transverse momenta of jets.

- W range for VMs \rightarrow multi-TeV

Current Status of Nuclear Parton Densities

• Significant uncertainties in the nuclear PDFs (nPDFs)

- Especially the small-x (here, $x \leq 10^{-2}$) behaviour of nPDFs at smallish Q^2 are largely unknown may become a bottleneck e.g. in
 - distinguishing effects of non-linear evolution
 - precision studies of phenomena in heavy-ion collisions
 - calculations of cosmic-ray interactions in the air

EPPS Input Data

- Exciting phenomenology not matched by DIS data
- EPPS16 also uses various Drell-Yan, semi-inclusive π^0 in PHENIX dAu, W,Z, dijets in ATLAS and CMS
- Direct γ, B, D mesons at LHC promising if theoretical understanding sufficient

DIS experiments.

Influence of 1fb⁻¹ A⁻¹ LHeC ePb data on EPPS16

Improvement in EPPS16 nPDFs

[Probably understates full impact - still some Parameterisation bias in EPPS16 without future eA]

Summary

 Future DIS facilities are vital to fully establish and characterise saturation and the dynamics of its onset → the energy frontier of QCD

• Needs ep and eA inclusive, diffractive, semi-inclusive over a range of energies

- Complementarity beween EIC and LHeC
- LHeC working towards next CERN Council European Strategy exercise (2020) with a view to running in later stages of LHC (post-LS4, from ~2031) ... lots to do!

LHC P2

LHeC

Back-Ups Follow

What can be done with LHC alone?

At Q2=1.9 GeV2

- LHC = current LHC W, Z and jet data
- Remarkable what can be achieved with LHC data alone
- Can we improve substantially? Often already systs limited

Some models of low x F₂ with LHeC Data With 1 fb⁻¹ (1 year at 10³³ cm⁻² s⁻¹), 1° detector: stat. precision < 0.1%, syst, 1-3%

[Forshaw, Klein, PN, Soyez]

Precise data in LHeC region, $x > \sim 10^{-6}$

 Extrapolated HERA dipole models ...
 FS04, CGC models including saturation suppressed at low x & Q² relative to non-sat FS04-Regge

... new effects may not be easy to see and will certainly need low Q² ($\theta \rightarrow 179^{\circ}$) region ...

10⁻²

Х

- Low $x_{IP} \rightarrow$ cleanly separate diffraction
- Low $\beta \rightarrow$ Novel low x DPDF effects /non-linear dynamics?
- High $Q^2 \rightarrow$ Lever-arm for gluon, Flavour separation via EW

F₂^D and Nuclear Shadowing

Nuclear shadowing can be described (Gribov-Glauber) as multiple interactions, starting from ep DPDFs

... starting point for extending precision LHeC studies into eA collisions

Azimuthal (de)correlations between Jets

• DIS and forward jet:

$$x_{j\,et} > 0.03$$
 $0.5 < rac{p_{t\,j\,et}^2}{Q^2} < 2$

x range (and sensitivity to novel QCD effects) strongly depend on θ cut

Similar conclusions for $\Delta \varphi$ decorrelations between jets

Also relevant to absorptive corrections, cosmic ray physics ...

Reminder : Dipole models

• Unified description of low x region, including region where Q^2 small and partons not appropriate degrees of freedom ...

- Simple unified picture of many inclusive and exclusive processes ... strong interaction physics in (universal) dipole cross section σ_{dipole} . Process dependence in wavefunction Ψ Factors
- qqbar-g dipoles also needed to describe inclusive diffraction

Current Low x Understanding in LHC Ion Data

η dependence of pPb charged
particle spectra best described
by shadowing-only models
(saturation models too steep?)
... progress with pPb, but
uncertainties still large, detailed
situation far from clear

Uncertainties in low-x nuclear PDFs preclude precision statements on medium produced in AA (e.g. extent of screening of c-cbar potential)

Minimum Bias pA data

Valence Quarks at LHeC

Disentangle sea and valence through CC, xF_3 etc

- Also, precision light quark axial / vector couplings, weak mixing angle, α_s and full flavour decomposition ...⁵⁰

Signals in t Dependences: e.g. J/ψ Photoproduction

t dependences measure Fourier transform of impact parameter distribution. \rightarrow Unusual features can arise from deviations from Gaussian matter distribution e.g. Characteristic dips in model by Rezaeian et al,

(just) within LHeC sensitive t range.

Leading Neutrons

- Crucial in eA, to determine whether nucleus remains intact e.g. to distinguish coherent from incoherent diffraction

- Crucial in ed, to distinguish scattering from p or n
- Forward $\boldsymbol{\gamma}$ and n cross sections relevant to cosmic ray physics

- Has previously been used in ep to study π structure function

Possible space at z ~ 100m (also possibly for proton calorimeter)

... to be further investigated

Low x / $M_x \rightarrow$ novel QCD / unitarity Medium x / $M_x \rightarrow$ precision H and EW High x / $M_x \rightarrow$ new particle mass frontier

Precision α_s

- Least constrained fundamental coupling by far (known to ~1%)
- Do coupling constants unify (with
- a little help from SUSY)?
- (Why) is DIS result historically low?

Simulated LHeC precision from fitting inclusive data
→ per-mille (experimental)
→ also requires improved theory

Context of Precision α_s

Snowmass13 report - arXiv:1310.5189

Method	Current relative precision	Future relative precision		
ata- out shapes	$expt \sim 1\%$ (LEP)		< 1% possible (ILC/TLEP)	
e e evi snapes	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. signif.) [27]		$\sim 1\%$ (control n.p. via $Q^2\text{-dep.})$	
atation interator	$expt \sim 2\%$ (LEP)		< 1% possible (ILC/TLEP)	
e e jet lates	thry $\sim 1\%$ (NNLO, n.p. moderate)	[28]	$\sim 0.5\%$ (NLL missing)	
precision EW	$expt \sim 3\% (R_Z, LEP)$		0.1% (TLEP [10]), 0.5% (ILC [11])	ner mille
	thry $\sim 0.5\%$ (N ³ LO, n.p. small)	[9, 29]	$\sim 0.3\%$ (N4LO feasible, ~ 10 yrs)	per mine
T doorve	expt $\sim 0.5\%$ (LEP, B-factories)		< 0.2% possible (ILC/TLEP)	
τ decays	thry $\sim 2\%$ (N ³ LO, n.p. small)	[8]	$\sim 1\%$ (N ⁴ LO feasible, ~ 10 yrs)	
ep colliders	$\sim 1-2\%$ (pdf fit dependent)	[30, 31],	0.1% (LHeC + HERA [23])	per mille
	(mostly theory, NNLO)	[32, 33]	$\sim 0.5\%$ (at least $\rm N^3LO$ required)	P er mine
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)		< 1% challenging	
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17]	7,21,34]	(NNLO jets imminent [22])	
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)		$\sim 0.3\%$	
	(limited by accuracy of pert. th.)	[35–37]	(~ 5 yrs [38])	

... tensions between lattice and DIS α_s results as a sensitive probe of new physics?...

Cross Sections and Rates for Heavy Flavours

e.g. Beauty Production

Precise c, b measurements from impact parameter distributions (modern Si trackers, LHeC F,^{bb} (RAPGAP MC, 7 TeV x 100 GeV, 10 fb⁻¹, ε_b=0.5) beam spot 15 * 35 μ m², F₂^{bb} X 10 100000 GeV².i=11 $O^2 = 10000 \text{ GeV}^2$, i=9 increased HF rates at $O^2 = 2000 \text{ Ge}$ $O^2 = 650 \text{ GeV}$ higher scales). 10 $O^2 = 200 \text{ GeV}$

(Assumes 10 fb⁻¹ and - 50% beauty, 10% charm efficiency - 1% uds \rightarrow c

mistag probability.

- 10% c \rightarrow b mistag)

Systematics at 10% level

e.g. Strange and Anti-strange Quarks

Evidence from LHC that strange density is larger than thought: SU(3) symmetric sea?...

anti-strange density [3^j]

Assuming 10% charm tagging efficiency, 1% light quark background

Transverse structure (I):

• Exclusive VM meson production/DVCS provides a transverse scan of the partonic structure of the hadron, may also be sensitive to dynamics:

N.Armesto, 06.04.2017 - Nuclear Physics in eA: 1.The colliding objects.

Transverse structure (II):

 Coherent versus incoherent diffraction may help to solve the issue of the existence/number of hot spots in p and A, relevant for fluctuations, azimuthal asymmetries, definition of MPIs,...

N.Armesto, 06.04.2017 - Nuclear Physics in eA: 1.The colliding objects.

The LHeC pseudodata

- Assume $\mathcal{L}_{ep} = 10 \, \text{fb}$, $\mathcal{L}_{ePb} = 1 \, \text{fb}$ (per nucleon)
- Considered energy configs: $\sqrt{s_{\rm p}} = 7 \,\mathrm{TeV}$, $\sqrt{s_{\rm Pb}} = 2.75 \,\mathrm{TeV}$ (per nucleon) on $E_e = 60 \,\mathrm{GeV}$ electrons.
- The pseudodata are here obtained from ratios of reduced cross sections σ_{ePb}^{i} , σ_{ep}^{i} and relative point-to-point ($\delta_{uncor.}^{i}$) and normalization ($\delta_{uncor.}^{i}$) uncertainties as

$$R_i = R_i (EPS09) \times \left[1 + \delta^i_{ ext{uncor.}} r^i + \delta_{ ext{norm.}} r^{ ext{norm.}}
ight]$$

where

$$R_i(EPS09) = rac{\sigma_{ ext{ePb}}^i(CTEQ6.6 + EPS09)}{\sigma_{ ext{ep}}^i(CTEQ6.6)},$$

and r^{i} and $r^{\text{norm.}}$ are Gaussian random numbers.

- In EPS09 $R_{u_V} \approx R_{d_V}$, $R_{\overline{u}} \approx R_{\overline{d}} \approx R_{\overline{s}}$ (free in EPPS16, but would not expect large deviations from this)
- EPS09 and CTEQ6.6 used only in generating the pseudodata.

(ロト (同) (注) (注) 一注:

500

EIC Forward Proton Spectrometer

- Beamline instrumentation intrinsic to design from outset
- Many possible access points:

4m , 18m, 38m at eRHIC 12m - 45m at JLEIC

Low-x Physics and Parton Saturation

Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity ...
 non-linear effects

 \rightarrow new high density, small coupling parton regime of non-linear parton evolution dynamics

- x dependent "saturation scale", $Q_{s}^{2}(x)$ and dynamics of onset not well known theoretically:

$$\frac{xG_A(x,Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \Longrightarrow Q_s^2 \propto A^{1/3} x^{\sim -0.3}$$

e.g. NNPDF study of low Q² NLO DGLAP

- Fit HERA data in limited regions above lines of Q² > Ax^{-0.3}
- \rightarrow backwards evolve to lower scales and compare χ^2
- Signed pulls show backward evolution consistently above data

... something happens, but not easily interpreted ...

А	$\chi^2_{\rm without \ cuts}/d.o.f.$	$\chi^2_{ m cut}/d.o.f$
0.5	19.68/25 = 0.79	106.22/25 = 4.25
1.0	54.41/44 = 1.24	138.24/44 ₆₇ 3.14
1.5	62.31/59 = 1 .06	860.65/59 = 14.6

Something appears to happen around $\tau = Q^2/Q_s^2 = 1$ (confirmed in many analyses) BUT ... Q^2 small for $\tau < 1$... not easily interpreted in QCD Lines of constant 'blackness' diagonal ... scattering cross section appears constant along them ... "Geometric

Parton Saturation after HERA?

e.g. Forshaw, Sandapen, Shaw hep-ph/0411337,0608161 ... used for illustrations here

Fit inclusive HERA data using dipole models with and without parton saturation effects

FS04 Regge (~FKS): 2 pomeron model, <u>no saturation</u> FS04 Satn: <u>Simple implementation of saturation</u> CGC: <u>Colour Glass Condensate version of saturation</u>

- All three models can describe data with $Q^2 > 1 GeV^2$, x < 0.01
- Only versions with saturation work for 0.045 < Q² < 1 GeV² ... any saturation at HERA not easily interpreted partonically

Rapidity Gap Selection

 $-\eta_{max} v \xi$ correlation entirely determined by proton beam energy

- Cut around $\eta_{max} \sim 3$ selects events with $x_{IP} < \sim 10^{-3}$ at LHeC (cf $x_{IP} < \sim 10^{-2}$ at HERA

Deeply Virtual Compton Scattering

• No vector meson wavefunction complications

• Cross sections suppressed by photon coupling

 \rightarrow limited precision at HERA

 \rightarrow would benefit most from high lumi of LHeC and EIC

 LHeC Simulations based on FFS model in MILOU generator
 → Double differential distributions in (x, Q²) with 1° and 10° cuts for scattered electron
 →Kinematic range determined largely by cut on p_T^γ (relies on ECAL performance / linearity at low energies)

EIC Forward Proton Spectrometer

Full Acceptance for Forward Physics!

Example: acceptance for p' in $e + p \rightarrow e' + p' + X$

These detectors came of age at LHC: we should be ambitious

LHeC / FCC-he Context

Main weakness: No polarised hadrons

Lepton-hadron scattering at the TeV scale ...

LHeC: 60 GeV electrons x LHC protons & ions → 10³⁴ cm⁻² s⁻¹ → Simultaneous running with ATLAS / CMS sometime in HL-LHC period

FCC-he: 60 GeV electrons x 50 TeV protons (and corresponding ions) from FCC ⁷⁰

Establishing Saturation in Inclusive Data (Lack of) quality of NNPDF fit to F_2 and F_L pseudodata with saturation effects included ...

• Unambiguous observation of saturation will be based on tension between different observables e.g. $F_2 v F_L$ in ep or F_2 in ep v eA