Polarized p+A Physics at Forward Rapidity at STAR

Akio Ogawa for the STAR collaboration Brookhaven National Laboratory

> 2017 April 26 RBRC workshop @ BNL

Contents

- 1. Introduction Gluon saturation and RHIC pA
- 2. STAR Forward Calorimeter
- 3. Results Single Spin Asymmetry at pA
- 4. Status Di-hadron azimuthal correlation
- 5. Summary and outlook

Gluon Density at Low x

Rapid rise in gluon density described by linear DGLAP & BFKL pQCD evolution But saturation must set in at low-x when gluons start to overlap and when recombination becomes important

Gluon Saturation

- Non-linear pQCD evolution equations provide a natural way to tame this growth and lead to a saturation of gluons, characterized by the saturation
- RHIC Can region at forward rapidity
- p_T scan and rapidity/x scan may allow to cross saturation scale $Q_s^2(x)$

Polarized p+A @ RHIC

RHIC offers unique opportunities to study low-x gluon and gluon saturation signatures in transverse single spin asymmetries A_N

FMS

2.5 < **η** < 4.1

azimuthal

Full

- -1 < η < 1
- Full azimuthal coverage
- Uniform acceptance for all beam energies Excellent particle identification

BEMC

Magnet

TPC

Proton

TOF

BBC

STAR Forward Calorimetry: FMS

>1400 Pb glass towers with PMT readout

- Neutral pions / eta / EM-jet
- Direct photons with Pre-shower(2015)
- J/ψ and Drell-Yan with Post-shower(201, ,

Transverse Single Spin Asymmetry (SSA) A_N at p+p

8

Transverse Single Spin Asymmetry (SSA) A_N at p+A

 Hybrid Approach Yoshitaka Hattaa, et al, Phys. Rev. D 95, 014008 (2017)

 Initial state effect in p + k_T un-integrated gluon distribution in Au + Final

 State effect

 Odderon exchange
 Yuri V. Kovchegov, Matthew D. Sievert, PhysRevD.86.034028

A_N(p+A) / A_N(p+p) p+AI, L__ = 0.4 pb⁻¹, 1.4 pb⁻¹ 0.8 ~ 1/k+ 0.7 $k_T \varphi(x, k_T^2)$ 0.6 0.5 Q_sp=1.0 GeV 0.4 know how to Q_p=0.8 GeV do physics here 0.3 $\alpha_s \sim 1 \Lambda_{OCD}$ $\alpha_s \ll 1$ 0.2 0.1F $Q_{c}^{A} = A^{1/3} Q_{c}^{p}$ 0 -0.1낭 p_ (GeV/c)

Both models predict gluon saturation suppresses A_N by $\sim A^{\frac{1}{3}}$ Suppression of A_N in p[†]+A provides sensitivity to Q_s PhysRevD.84.034019, PhysRevD. 86.034028

First results from Polarized p+Au

Shaded bands represent systematic uncertainty, dominated by dependence of A_N on observed BBC multiplicity \rightarrow central vs. peripheral collisions

Small to no suppression is observed

Back-to-back Angular Correlations

pQCD 2→2 process = back-to-back di-jet (Works well for p+p)

Kharzeev, Levin, McLerran (NPA748, 627) 0.3 Azimuthal Correlations 0.275 W = 200 GeV $\eta_1 = 3.8, \eta_2 = 0$, central 0.25 1.5 GeV, $p_2 = 0.2 - 1.5$ GeV 0.225 Proton - Proton 0.2 Deuteron - Gold 0.175 0.15 0.125 0.1

CGC predicts suppression of back-to-back

Back-to-back Angular Correlations

Phys. Rev. Lett. 107, 172301 (2011)

STAR year 2015 data being analyzed for π^{0} - π^{0} and EM jet-EM jet correlations p+p, p+Al, p+Au (d+Au in 2016) p_{T}^{Trig} dependence from 1GeV ~ 3GeV $p_{T}^{Associated}$ dependence from 1GeV ~ 3GeV Centrality / N_{coll} dependence

We are still working on Gain uniformity and stability (This cancels out in A_N) STAR common Centrality / N_{coll}

Scanning in p_T and $X\!\!\pi^{_0}$ mass peaks in different p_T bins

Suppression in Forward Hadron Production

Leading and Higher Twist Shadowing Impact on nPDFs: -> mainly on gluon

STAR ideal experiment to separate leading twist \rightarrow nPDF ^{1.1} from higher twist shadowing \rightarrow CGC R_{pAt}^{γ} without the complication of fragmentation

FMS + FPS: R_{pA} for direct photons

Direct photon @ 2.8 < η < 4.0

RHIC Cold QCD Plan and STAR forward upgrade

Run2023+ Physics Opportunities

	Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade
	2017	p [†] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism	A_N for γ , W^* , Z^0 , DY	A _N ^{DY} : Postshower to FMS@STAR
Scheduled RHIC running				Transversity, Collins FF, linear pol Gluons, Gluon Sivers in Twist-3	$\begin{array}{l} A_{UT}^{\sin(\phi_{s}-2\phi_{h})} A_{UT}^{\sin(\phi_{s}-\phi_{h})} \text{ modula-}\\ \text{tions of } h^{s} \text{ in jets, } A_{UT}^{\sin(\phi_{s})} \text{ for jets} \end{array}$	None
				First look on GPD Eg	A_{UT} for J/ Ψ in UPC	None
	2023	p [†] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Yes Forward instrum.
				properties and nature of the diffractive exchange in p+p collisions.	A_N for diffractive events	None
	2023	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial state and hadronization in nuclear collisions	R_{ptu} direct photons and DY	R _{pdu} (DY):Yes Forward instrum.
				Nuclear dependence of TMDs and nFF	$A_{UT}^{\sin(\phi_3 - \phi_h)}$ modulations of h^* in jets, nuclear FF	None
				Clear signatures for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum
	2023	p ^T A1 @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R _{pAl} : direct photons and DY	R _{p.d} (DY): Yes Forward instrum.
				A-dependence of 1 MDs and nFF	Aur in interval and the second	None
				A-dependence for Saturation	Dihadrons, y-jet, h-jet, diffraction	Yes Forward instrum.
Potential fut running	202X	p [†] p@510	1.1 fb ⁻¹	I MDs at low and high x	A_{UT} for Collins observables, i.e.	Yes
			10 weeks		hadron in jet modulations at $\eta > 1$ and	Forward instrum.
				quantitative comparisons of the validity and the limits of factorization and universality in lepton-proton and proton- proton collisions	mid-rapidity	None
L L L	202X pp @ 510 1.		1.1 fb ⁻¹	$\Delta g(x)$ at small x	A _{LL} for jets, di-jets, h/γ-jets	Yes
			10 weeks		at $\eta > 1$	Forward instrum.

fragmentation functions in p+A/p+p at $|\eta| < 0.4$

10" = 6.0-7.1 GeV/t

C = 11.7 (3.8 Gen)

p² = 19/2-22.7 GeV/s

1.75

л.,

p+p FF π+

Critical to have π , K, p PID

	2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF, A-dependence of TMDs and
				A-dependence for Saturati
Pote	202X	p ^T p@ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high x
ntial fut running				quantitative comparisons of the validity factorization and universality in lepton-p proton collisions
ure	202X	p̃p @ 510	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x

Opportunities

	Observable	Required Upgrade
arough TMDs	A_N for γ , W^* , Z^0 , DY	A _N ^{DY} : Postshower to FMS@STAR
function alism		
iluons,	$A_{UT}^{\sin(\phi_3-2\phi_h)} A_{UT}^{\sin(\phi_3-\phi_h)} \text{ modula-}$ tions of h^s in jets, $A_{UT}^{\sin(\phi_3)}$ for jets	None
	A_{UT} for J/ Ψ in UPC	None
x_F and η	A_N for charged hadrons and flavor	Yes Forward instrum

First measurement of nuclear spin effects polarized FF \rightarrow nCollins

Summary and Outlook

- STAR @ RHIC can reach the saturation region at forward rapidity in p+A
- Polarized protons
- Scanning A → Au, Al, …
- p_T scan and rapidity/x scan may allow to cross saturation scale Q_s² (x)

STAR can study evolution of $Q_{s}^{2}(x)$ with A

- First results on Transverse Single Spin Asymmetry A_N
 - Small to no suppression in p+Au
- Results coming soon for
 - Di-hadron angular correlation
 - R_{pA} for π^0 and photons

- **RHIC 2015**
- $\vec{p} + p, L_{\text{int}} = 40 + 50 \text{ pb}^{-1}$
- $\vec{p} + Al, L_{int} = 1.0 \text{ pb}^{-1}$
- $\vec{p} + Au, L_{\text{int}} = 0.45 \text{ pb}^{-1}$

 Future forward upgrade at STAR is proposed, including saturation/pA physics at forward and
 STARIARE APRILYC offers unique opportunities to study low-x 19

Backup

Transverse Single Spin Asymmetry (SSA) : A_N

Transverse Momentum Dependent (TMD) or Twist-3 DF or FF required

Sensitive to correlations between **proton spin** & parton **transverse motion**

Not universal (sign change) between SIDIS & $pp = -\int d^2k_{\perp} \frac{|k_{\perp}^2|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{SIDIS} = T_{q,F}(x,x)$ Sensitive to quark transverse spin and **spindependent** fragmentation function

Universal between SIDIS & pp & e+e-

Or something else...

Transverse Single Spin Asymmetry (SSA) : A_N

p+p Initial State	Final State			
Nucleon Spin \rightarrow Parton k _T	Nucleon spin \rightarrow Parton Spin \rightarrow Hadron k _T			
Sivers TMD PDF	Transversity * Collins TMD Frag.Func.			
$\int -\int d^2k_{\perp} \frac{\left k_{\perp}^2\right }{M} f_{1T}^{\perp q}(x,k_{\perp}^2) _{SIDIS} = T_{q,F}(x,k_{\perp}^2)$	(x,x) Only one part			
Twist-3 PDF	Twist-3 Frag.Func = "Collins" + 3 Parton Corr.			
p+A Domin Yoshitaka Leonard (Dominant in p+p, and NOT suppressed at p+A Yoshitaka Hattaa,et al, Phys. Rev. D 95, 014008 (2017) Leonard Gamberg, Zhong-Bo Kang, Daniel Pitonyak, Alexei Prokudin arXiv:1701.09170v			
Hybrid Approach (Yoshitaka Hattaa, et al, arXiv:1611.04746v1) Twist-3 + k _T un-integrated gluon distribution Odderon exchange (Yuri V. Kovchegov, Matthew D. Sievert, arXiv:1201.5890v5)				
Both predict A _N suppression for p+A				