Towards higher-order accuracy in LCPT

Risto Paatelainen
University of Jyväskylä

BNL saturation workshop - April 28. 2017
In collaboration with
Tuomas Lappi (University of Jyväskylä)

Work in progress
see also T. Lappi, RP Annals of Physics (2017) 379, 34-66 arXiv:1611.00497

Motivation

Hamiltonian perturbation theory in the light-cone form (LCPT)

- A standard tool for calculations of small-x dilute-dense scattering processes in the CGC picture
- LCPT calculations in CGC slowly approaching the NLO level
- the inclusive DIS cross sections (G. Beuf arXiv:1606.00777)
- small-x evolution equations (I. Balitsky, G. Chirilli arXiv:0710.4330)

Problem:

- Perturbative computation of wavefunctions is quite tedious (hard to automatize)

Solution:
We introduce a new helicity formulation for LCPT

- Perturbative (NLO) computation of wavefunctions is easy and can be fully automatized

LCPT in a nutshell

QCD Hamiltonian: $T_{\mathrm{QCD}}^{\mu \nu}$, LC gauge $A_{a}^{+}=0 \& \mathrm{EOMs}$

$$
\begin{aligned}
\mathcal{H}_{\mathrm{QCD}} & =\frac{1}{2} \int \mathrm{~d} x^{-} \mathrm{d}^{2} \mathbf{x}\left(\tilde{\tilde{\Psi}}^{+} \frac{m^{2}+\left(i \nabla_{\perp}\right)^{2}}{i \partial^{+}} \tilde{\Psi}+\tilde{A}_{a}^{\mu}\left(i \nabla_{\perp}\right)^{2} \tilde{A}_{\mu}^{a}\right) \\
& +g \int \mathrm{~d} x^{-} \mathrm{d}^{2} \mathbf{x} \tilde{J}_{a}^{\mu} \tilde{A}_{\mu}^{a} \\
& +\frac{g^{2}}{2} \int \mathrm{~d} x^{-} \mathrm{d}^{2} \mathbf{x}\left(\tilde{J}_{a}^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} \tilde{J}^{+a}+\tilde{\tilde{\Psi}} \gamma_{\mu} \tilde{A}_{a}^{\mu} t^{a} \frac{\gamma^{+}}{i \partial^{+}} \gamma_{\nu} \tilde{A}_{b}^{\nu} t^{t} \tilde{\Psi}\right) \\
& +\frac{g^{2}}{4} \int \mathrm{~d} x^{-} \mathrm{d}^{2} \mathbf{x} \tilde{B}_{a}^{\mu \nu} \tilde{B}_{\mu \nu}^{a}=\mathcal{H}_{0}+\mathcal{H}_{\mathrm{I}} \\
\text { - } \tilde{J}_{a}^{\mu}= & \overline{\tilde{\Psi}} \gamma^{\mu} t_{a} \tilde{\Psi}+f^{a b c} \partial^{\mu} \tilde{A}_{b}^{\nu} \tilde{A}_{\nu c} \& \tilde{B}_{a}^{\mu \nu}=f^{a b c} \tilde{A}_{b}^{\mu} \tilde{A}_{c}^{\nu}
\end{aligned}
$$

Note: in the $A_{a}^{+}=0$ gauge

- positive: gluons have only two physical transverse degrees of freedom
- negative: breaking of manifest rotational invariance

Quantizing the $\mathcal{H}_{\mathrm{QCD}}$ by expanding field at $x^{+}=0$

$$
\begin{array}{rlr}
\tilde{A}_{c}^{\mu}\left(x^{-}, \mathbf{x}\right)=\sum_{\lambda= \pm 1} \int \widetilde{\mathrm{~d} k}\left[a_{\lambda}^{c} \varepsilon_{\lambda}^{\mu} e^{-i k \cdot x}+\text { h.c. }\right], & \lambda \text { gluon polarizat } \\
\tilde{\Psi}\left(x^{-}, \mathbf{x}\right)=\sum_{h= \pm \frac{1}{2}} \int \widetilde{\mathrm{~d} k}\left[b_{h} u_{h} e^{-i k \cdot x}+\text { h.c. }\right], & h \text { quark helicity }
\end{array}
$$

- operators $\left(b_{h}\right), a_{\lambda}^{c} \ldots$ satisfy the standard (anti)commutation relations
- the integral measure in the LC coordinates is

$$
\int \widetilde{\mathrm{d} k}=\int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}(2 \pi) \delta\left(k^{2}-m^{2}\right)=\int \frac{\mathrm{d} k^{+} \mathrm{d}^{2} \mathbf{k}}{(2 \pi)^{3} 2 k^{+}}, \quad k^{+}>0
$$

- In the LC gauge $\varepsilon^{+}=0$ and $k \cdot \varepsilon_{\lambda}(k)=0$
$\varepsilon_{\lambda}^{\mu}(k)=\left(0, \frac{\mathbf{k} \cdot \epsilon_{\lambda}}{k^{+}}, \epsilon_{\lambda}\right), \quad$ physical 2d transverse pol. $\quad \epsilon_{\lambda}=\frac{1}{\sqrt{2}}(1, \pm i)$

The x^{+}-ordered LCPT theory $=$familiar perturbative expansion in QM

- Express the full physical incoming particle state $|\Psi\rangle_{\text {int }}$ as a perturbative Fock state decomposition (in momentum space)
$|\Psi\rangle_{\text {int }}=|\Psi\rangle+\sum_{n_{1}} \frac{\left|n_{1}\right\rangle\left\langle n_{1}\right| \mathcal{H}_{\mathrm{I}}|\Psi\rangle}{\Delta_{1 \Psi}^{-}}+\sum_{n_{1}, n_{2}} \frac{\left|n_{2}\right\rangle\left\langle n_{2}\right| H_{\mathrm{I}}\left|n_{1}\right\rangle\left\langle n_{1}\right| \mathcal{H}_{\mathrm{I}}|\Psi\rangle}{\Delta_{2 \Psi}^{-} \Delta_{1 \Psi}^{-}}+\ldots$
- LC energy denominators

$$
\Delta_{n \Psi}^{-}=\sum_{\Psi} p_{\Psi}^{-}-\sum_{n} p_{n}^{-}+i 0_{+}
$$

- Note: only $\vec{p}=\left(p^{+}, \mathbf{p}\right)$ is conserved!

Consider now the DIS process $\gamma^{*} \rightarrow q \bar{q}$ (talk by G. Beuf)

$$
\begin{aligned}
\left|\gamma^{*}(\vec{q})\right\rangle_{\mathrm{int}}=\sqrt{Z_{\gamma^{*}}\left(q^{+}\right)}[& \left|\gamma^{*}(\vec{q})\right\rangle+\int \widetilde{\mathrm{d} p^{\prime} \mathrm{d} q}(2 \pi)^{3} \delta^{(3)}\left(\vec{q}-\vec{p}-\vec{p}^{\prime}\right) \\
& \left.\times \psi^{\gamma_{\mathrm{T} / \mathrm{L}}^{*} \rightarrow q \bar{q}}\left|q(\vec{p}) \bar{q}\left(\vec{p}^{\prime}\right)\right\rangle+\ldots\right]
\end{aligned}
$$

This expression defines the LC wavefunctions

$$
\psi^{\gamma_{\mathrm{T} / \mathrm{L}}^{*} \rightarrow q \bar{q}}, \quad \psi^{\gamma_{\mathrm{T} / \mathrm{L}}^{*} \rightarrow q \bar{q} g}, \ldots
$$

e.g. in NLO: $\mathcal{O}\left(g^{2}\right)$ QCD virtual corrections

Leading-order $\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}$ wavefunction (for transverse γ^{*})

- The WF (without overall momentum conservation $\vec{q}=\vec{p}+\vec{p}^{\prime}$)

$$
\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}=\left(-e e_{f}\right) \delta_{i j} \frac{\bar{u}_{h}(p) \not \oint_{\lambda}(q) v_{h^{\prime}}\left(p^{\prime}\right)}{\Delta_{01}^{-}}
$$

- The LO LC energy denominator (frame $\mathbf{q}=\mathbf{0}$)

$$
\begin{aligned}
\Delta_{01}^{-} & =q^{-}-\left(p^{-}+p^{\prime-}\right)=\frac{\mathbf{q}^{2}-Q^{2}}{2 q^{+}}-\left(\frac{\mathbf{p}^{2}}{2 p^{+}}+\frac{(\mathbf{q}-\mathbf{p})^{2}}{2 p^{\prime+}}\right) \\
& =\frac{-q^{+}}{2 p^{+} p^{\prime+}}\left(\mathbf{p}^{2}+\bar{Q}^{2}\right), \quad \text { where } \quad \bar{Q}^{2}=\frac{p^{+} p^{\prime+}}{\left(q^{+}\right)^{2}} Q^{2}>0
\end{aligned}
$$

One-loop $\mathcal{O}\left(g^{2}\right)$ QCD corrections to the $\psi^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}$

(d)

+ instantaneous diagrams (goes to zero in dim.reg)

One-loop quark self-energy correction (a) (for γ_{T}^{*})

- The WF

$$
\psi_{(a)}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}=-e e_{f} g^{2} C_{\mathrm{F}} \delta^{i j} \int_{0}^{q^{+}} \frac{\mathrm{d} k^{+}}{2 k^{+}} \int \frac{\mathrm{d}^{2} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{4 p^{+} k^{\prime+}} \frac{\text { num }\left.\right|_{a}}{\Delta_{01}^{-} \Delta_{02}^{-} \Delta_{03}^{-}}
$$

- The LC energy denominators

$$
\begin{aligned}
& \Delta_{01}^{-}=\Delta_{03}^{-}=\frac{-q^{+}}{2 p^{+} p^{\prime+}}\left(\mathbf{p}^{2}+\bar{Q}^{2}\right) \\
& \Delta_{02}^{-}=-\frac{p^{+}}{2 k^{+} k^{\prime+}}\left[\left(\mathbf{k}-\frac{k^{+}}{p^{+}} \mathbf{p}\right)^{2}+\frac{k^{+} k^{\prime+} q^{+}}{\left(p^{+}\right)^{2} p^{\prime+}}\left(\mathbf{p}^{2}+\bar{Q}^{2}\right)\right]
\end{aligned}
$$

- and the numerator

$$
\left.\operatorname{num}\right|_{a}=\sum_{\sigma} \varepsilon_{\sigma}^{\mu}(k) \varepsilon_{\sigma}^{* \nu}(k)\left[\bar{u}_{h}(p) \gamma_{\mu} \not k^{\prime \prime} \gamma_{\nu} \not \phi^{\prime} \lambda(q) v_{h^{\prime}}\left(p^{\prime}\right)\right]
$$

To evaluate the (UV \& col. IR divergent) transverse integrals and numerators we need some regularization framework

- Conventional Dim. Reg. (CDR) scheme: both observed and unobserved particles and momenta are continued to d dimension
- Four Dimensional Helicity (FDH) scheme: momenta of unobserved particles is continued to $d>4$ and observed particles are kept in 4d
- all unobserved internal states are treated as $d_{s}>d$ dim. and should be distinct from the dim. d
- once the spin and Lorentz algebra is done the limit $d_{s} \rightarrow 4$ can be taken

$$
\int \frac{\mathrm{d}^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{k^{i} k^{j}}{k^{2}+M} \xrightarrow[\mathrm{FDH}]{\mathrm{CDR}} \stackrel{\delta_{(d)}^{i j}}{d} \int \frac{\mathrm{~d}^{d-2} \mathbf{k}}{(2 \pi)^{d-2}} \frac{\mathbf{k}^{2}}{\mathbf{k}^{2}+M}
$$

The longitudinal k^{+}(soft IR divergent) integrals are regulated with the momentum cut-off

$$
k^{+}>\alpha q^{+}, \quad \text { where } \quad \alpha>0
$$

CDR scheme result for (a) (G. Beuf Phys. Rev. D 94 (2016) 054016)

$$
\begin{aligned}
\left.\psi_{(a)}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}\right|_{\mathrm{CDR}}=\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}(\mathbf{p}, z)\left(\frac{g_{\mathrm{R}}^{2} C_{\mathrm{F}}}{8 \pi^{2}}\right)\{ & \left\{\left[\frac{3}{2}+2 \log \left(\frac{\alpha}{z}\right)\right] C_{a}-\log ^{2}\left(\frac{\alpha}{z}\right)\right. \\
& \left.-\frac{\pi^{2}}{3}+3+\frac{1}{2}\right\}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

where $z=p^{+} / q^{+}$with $0<z<1$ and

$$
C_{a}=\frac{1}{\varepsilon_{\overline{\mathrm{MS}}}}+\log \left(\frac{\mu^{2}}{\bar{Q}^{2}}\right)-\log \left(\frac{\mathbf{p}^{2}+\bar{Q}^{2}}{\bar{Q}^{2}}\right)+\log (1-z)
$$

Note: the factor $\frac{1}{2}$ is scheme dependent

Full $(=(\mathrm{a})+(\mathrm{b})+(\mathrm{c})+(\mathrm{d}))$ CDR scheme result (G. Beuf Phys. Rev. D 94 (2016) 054016)

$$
\begin{aligned}
\left.\psi_{(\text {full })}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}\right|_{\mathrm{CDR}}=\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}(\mathbf{p}, z) & \left(\frac{g_{\mathrm{R}}^{2} C_{\mathrm{F}}}{8 \pi^{2}}\right)\left\{\left[\frac{3}{2}+\log \left(\frac{\alpha}{z}\right)+\log \left(\frac{\alpha}{1-z}\right)\right] C_{\text {full }}\right. \\
& \left.+\frac{1}{2} \log ^{2}\left(\frac{z}{1-z}\right)-\frac{\pi^{2}}{3}+\frac{5}{2}+\frac{1}{2}\right\}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

where

$$
C_{\mathrm{full}}=\frac{1}{\varepsilon_{\overline{\mathrm{MS}}}}+\log \left(\frac{\mu^{2}}{\bar{Q}^{2}}\right)+\left(\frac{\bar{Q}^{2}-\mathbf{p}^{2}}{\mathbf{p}^{2}}\right) \log \left(\frac{\mathbf{p}^{2}+\bar{Q}^{2}}{\bar{Q}^{2}}\right)
$$

Notes:

- complicated "brute force" calculation
- in LCPT framework "covariant style" helicity algebra is difficult to automatize

New Helicity Approach (T. Lappi \& RP in preparation)
The QCD light-cone vertices can be very compactly expressed in the helicity basis (independent of spinor representation)

$$
\begin{aligned}
\vec{p}, h, i & \vec{p}^{\prime}, h, j, p^{+}=(1-z) p^{+} \\
-g t_{j i}^{a} \bar{u}_{h}\left(p^{\prime}\right) \not \ddagger_{\lambda}^{*}(k) u_{h}(p) & =\frac{-2 g t_{j i}^{a}}{z \sqrt{1-z}}\left[\left(1-\frac{z}{2}\right) \delta^{i j}+i h \frac{z}{2} \epsilon^{i j}\right] \mathbf{q}^{i} \epsilon_{\lambda}^{* j} \\
& =V_{\lambda, h}^{i, j, a}(\mathbf{q}, z)
\end{aligned}
$$

Note: Our FDH formulation in (arXiv:1611.00497) was incorrect

New Helicity Approach (T. Lappi \& RP in preparation)
The QCD light-cone vertices can be very compactly expressed in the helicity basis (independent of spinor representation)

$$
\begin{aligned}
-g t_{j i}^{a} \bar{u}_{h}\left(p^{\prime}\right) \not \not_{\lambda}^{*}(k) u_{h}(p) & =\frac{-2 g t_{j i}^{a}}{z \sqrt{1-z}}\left[\left(1-\frac{z}{2}\right) \delta^{i j}+i h \frac{z}{2} \epsilon^{i j}\right] \mathbf{q}^{i} \epsilon_{\lambda}^{* j} \\
& =V_{\lambda, h}^{i ; j, a}(\mathbf{q}, z)
\end{aligned}
$$

- + and transverse momentum conservation implemented automatically

Note: Our FDH formulation in (arXiv:1611.00497) was incorrect

New Helicity Approach (T. Lappi \& RP in preparation)
The QCD light-cone vertices can be very compactly expressed in the helicity basis (independent of spinor representation)

$$
\begin{aligned}
-g t_{j i}^{a} \bar{u}_{h}\left(p^{\prime}\right) \not \not_{\lambda}^{*}(k) u_{h}(p) & =\frac{-2 g t_{j i}^{a}}{z \sqrt{1-z}}\left[\left(1-\frac{z}{2}\right) \delta^{i j}+i h \frac{z}{2} \epsilon^{i j}\right] \mathbf{q}^{i} \epsilon_{\lambda}^{* j} \\
& =V_{\lambda, h}^{i ; j, a}(\mathbf{q}, z)
\end{aligned}
$$

- + and transverse momentum conservation implemented automatically
- all particles have exactly two helicity states \Rightarrow FDH scheme

Note: Our FDH formulation in (arXiv:1611.00497) was incorrect

New Helicity Approach (T. Lappi \& RP in preparation)

The QCD light-cone vertices can be very compactly expressed in the helicity basis (independent of spinor representation)

$$
\begin{aligned}
-g t_{j i}^{a} \bar{u}_{h}\left(p^{\prime}\right) \not_{\lambda}^{*}(k) u_{h}(p) & =\frac{-2 g t_{j i}^{a}}{z \sqrt{1-z}}\left[\left(1-\frac{z}{2}\right) \delta^{i j}+i h \frac{z}{2} \epsilon^{i j}\right] \mathbf{q}^{i} \epsilon_{\lambda}^{* j} \\
& =V_{\lambda, h}^{i ; j, a}(\mathbf{q}, z)
\end{aligned}
$$

- + and transverse momentum conservation implemented automatically
- all particles have exactly two helicity states \Rightarrow FDH scheme
- enables a very efficient computation of NLO WFs (easy to automatize) Note: Our FDH formulation in (arXiv:1611.00497) was incorrect

$$
\begin{aligned}
& \vec{p}, h, i \quad \vec{p}^{\prime}, h, j \\
& \begin{array}{c}
\operatorname{Celeeee}_{\mathbf{q} \equiv \mathbf{k}}-z \mathbf{p} \\
\vec{k}, \lambda, a
\end{array} \\
& \text { - } \bar{V}_{\lambda, h}^{i ; j, a}(\mathbf{q}, z)= \\
& \frac{+2 g t_{j i}^{a}}{z \sqrt{1-z}}\left[\left(1-\frac{z}{2}\right) \delta^{i j}+i h \frac{z}{2} \epsilon^{i j}\right] \mathbf{q}^{i} \epsilon_{\lambda}^{* j} \\
& \begin{array}{l}
\vec{k}, h, i \\
\vec{p}, \lambda, a \\
\vec{p}^{\prime},-h, j
\end{array} \\
& \text { - } A_{\lambda, h}^{a ; j, i}(\mathbf{q}, z)= \\
& \frac{-2 g t_{i j}^{a}}{\sqrt{z(1-z)}}\left[\left(z-\frac{1}{2}\right) \delta^{i j}-i h \frac{1}{2} \epsilon^{i j}\right] \mathbf{q}^{i} \epsilon_{\lambda}^{j} \\
& \vec{p}, \lambda_{1}, a \quad \vec{p}^{\prime}, \lambda_{2}, b \\
& \begin{array}{c}
\text { eeceseeeeeeee } \\
\mathbf{q} \equiv \mathbf{k}-z \mathbf{p} \\
\vec{k}, \lambda_{3}, c
\end{array} \\
& \text { - } \Gamma_{\lambda_{1}, \lambda_{2}, \lambda_{3}}^{a ; b, c}(\mathbf{q}, z)= \\
& -2 i g f^{a b c}\left[\frac{\varepsilon_{\lambda_{2}}^{* j} \varepsilon_{\lambda_{3}}^{* k} \varepsilon_{\lambda_{1}}^{l}}{1-z}+\frac{\varepsilon_{\lambda_{3}}^{* j} \varepsilon_{\lambda_{2}}^{* k} \varepsilon_{\lambda_{1}}^{l}}{z}-\right. \\
& \left.\varepsilon_{\lambda_{1}}^{j} \varepsilon_{\lambda_{3}}^{* k} \varepsilon_{\lambda_{2}}^{* l}\right] \delta^{i j} \delta^{k l} \mathbf{q}^{i}
\end{aligned}
$$

+complex conjugates \& 4-gluon vertex \& instantaneous vertices!

LO WF $\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}$ (Helicity approach)

$$
p^{+}=z q^{+}
$$

- The LO WF (frame $\mathbf{q}=\mathbf{0}$)

$$
\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}=\delta_{i j} \frac{A_{\lambda, h}^{\gamma_{\mathrm{T}}^{*}}(\mathbf{p}, z)}{\Delta_{01}^{-}}
$$

where (QCD \rightarrow QED vertex: $g t^{a} \rightarrow e e_{f}$)

$$
A_{\lambda, h}^{\gamma_{\mathrm{T}}^{*}}(\mathbf{p}, z)=\frac{-2 e e_{f}}{\sqrt{z(1-z)}}\left[\left(z-\frac{1}{2}\right) \delta^{i j}-i h \frac{1}{2} \epsilon^{i j}\right] \mathbf{p}^{i} \epsilon_{\lambda}^{j}
$$

- The LO LC energy denominator

$$
\Delta_{01}^{-}=\frac{1}{\left(-2 q^{+}\right) z(1-z)}\left(\mathbf{p}^{2}+\bar{Q}^{2}\right), \quad \text { where } \quad \bar{Q}^{2}=z(1-z) Q^{2}>0
$$

$$
\begin{aligned}
& k^{+}=z^{\prime} q^{+} \\
& p^{+}=z q^{+} \\
& p^{\prime+}=(1-z) q^{+}
\end{aligned}
$$

$$
\mathbf{m}=\mathbf{k}-\frac{z^{\prime}}{z} \mathbf{p}
$$

- The WF (without overall momentum conservation $\vec{q}=\vec{p}+\vec{p}^{\prime}$)

$$
\psi_{(a)}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}=\frac{1}{16 \pi\left(q^{+}\right)^{2}} \int_{0}^{z} \frac{\mathrm{~d} z^{\prime}}{z z^{\prime}\left(z-z^{\prime}\right)} \int \frac{\mathrm{d}^{d-2} \mathbf{m}}{(2 \pi)^{d-2}} \frac{\left.\mathrm{num}\right|_{a}}{\Delta_{01}^{-} \Delta_{02}^{-} \Delta_{03}^{-}}
$$

- The LC energy denominators

$$
\begin{aligned}
& \Delta_{01}^{-}=\Delta_{03}^{-}=\frac{1}{\left(-2 q^{+}\right) z(1-z)}\left(\mathbf{p}^{2}+\bar{Q}^{2}\right) \\
& \Delta_{02}^{-}=\frac{z}{\left(-2 q^{+}\right) z^{\prime}\left(z-z^{\prime}\right)}\left[\mathbf{m}^{2}+\frac{z^{\prime}\left(z-z^{\prime}\right)}{z^{2}(1-z)}\left(\mathbf{p}^{2}+\bar{Q}^{2}\right)\right]
\end{aligned}
$$

- and the numerator

$$
\left.\operatorname{num}\right|_{a}=\sum_{\sigma} A_{\lambda, h}^{\gamma_{\mathrm{T}}^{*}}(\mathbf{p}, z) V_{\sigma, h}^{j ; m, a}\left(\mathbf{m}, z^{\prime} / z\right) V_{\sigma, h}^{m, a ; i}\left(\mathbf{m}, z^{\prime} / z\right)
$$

now the algebra in the numerator is trivial

$$
\begin{aligned}
\left.\operatorname{num}\right|_{a}=A_{\lambda, h}^{\gamma_{\mathrm{T}}^{*}}(\mathbf{p}, z) & \frac{4 g_{\mathrm{R}}^{2} C_{\mathrm{F}} \delta^{i j}}{z^{2}(1-z)} \sum_{\sigma} \epsilon_{\sigma}^{* j} \epsilon_{\sigma}^{\ell}\left[\left(1-\frac{z^{\prime}}{2 z}\right) \delta_{\left(d_{s}\right)}^{i j}+i h \frac{z^{\prime}}{2 z} \epsilon_{\left(d_{s}\right)}^{i j}\right] \\
& \times\left[\left(1-\frac{z^{\prime}}{2 z}\right) \delta_{\left(d_{s}\right)}^{k \ell}-i h \frac{z^{\prime}}{2 z} \epsilon_{\left(d_{s}\right)}^{k \ell}\right] \mathbf{m}^{i} \mathbf{m}^{k}
\end{aligned}
$$

using (remember $d_{s}>d$)

$$
\sum_{\sigma} \epsilon_{\sigma}^{* j} \epsilon_{\sigma}^{\ell}=\delta_{\left(d_{s}\right)}^{j \ell} \quad \text { and } \quad \mathbf{m}^{i} \mathbf{m}^{k}=\frac{\delta_{(d)}^{i k}}{d} \mathbf{m}^{2}
$$

and

$$
\epsilon_{\left(d_{s}\right)}^{j j}=0, \quad \epsilon_{\left(d_{s}\right)}^{i j} \epsilon_{\left(d_{s}\right)}^{k \ell}=\delta_{\left(d_{s}\right)}^{i k} \delta_{\left(d_{s}\right)}^{j \ell}-\delta_{\left(d_{s}\right)}^{i \ell} \delta_{\left(d_{s}\right)}^{j k}
$$

(Fierz identity)
we get (remember $h^{2}=1$)

$$
\left.\operatorname{num}\right|_{a}=A_{\lambda, h}^{\gamma_{\mathrm{T}}^{*}}(\mathbf{p}, z) \frac{4 g_{\mathrm{R}}^{2} C_{\mathrm{F}} \delta^{i j}}{z^{2}(1-z)}\left[\left(1-\frac{z^{\prime}}{2 z}\right)^{2}+\left(\frac{z^{\prime}}{2 z}\right)^{2}\left(d_{s}-1\right)\right] \mathbf{m}^{2}
$$

Taking limit $d_{s} \rightarrow 2$ \& integrating over \mathbf{m} and z^{\prime} we find for (a)

$$
\begin{aligned}
\left.\psi_{(a)}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}\right|_{\mathrm{FDH}}=\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}(\mathbf{p}, z)\left(\frac{g_{\mathrm{R}}^{2} C_{\mathrm{F}}}{8 \pi^{2}}\right)\{ & {\left[\frac{3}{2}+2 \log \left(\frac{\alpha}{z}\right)\right] C_{a}-\log ^{2}\left(\frac{\alpha}{z}\right) } \\
& \left.-\frac{\pi^{2}}{3}+3\right\}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

where $z=p^{+} / q^{+}$with $0<z<1$ and

$$
C_{a}=\frac{1}{\varepsilon_{\overline{\mathrm{MS}}}}+\log \left(\frac{\mu^{2}}{\bar{Q}^{2}}\right)-\log \left(\frac{\mathbf{p}^{2}+\bar{Q}^{2}}{\bar{Q}^{2}}\right)+\log (1-z)
$$

For comparison the CDR scheme result was

$$
\begin{aligned}
\left.\psi_{(a)}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}\right|_{\mathrm{CDR}}=\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}(\mathbf{p}, z)\left(\frac{g_{\mathrm{R}}^{2} C_{\mathrm{F}}}{8 \pi^{2}}\right)\{ & {\left[\frac{3}{2}+2 \log \left(\frac{\alpha}{z}\right)\right] C_{a}-\log ^{2}\left(\frac{\alpha}{z}\right) } \\
& \left.-\frac{\pi^{2}}{3}+3+\frac{1}{2}\right\}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

For the full correction $((a)+(b)+(c)+(d))$ we find

$$
\begin{aligned}
& \left.\psi_{(\text {full) })}^{\gamma_{\mathrm{F}}^{*} \rightarrow q \bar{q}}\right|_{\mathrm{FDH}}=\psi_{\mathrm{LO}}^{\gamma_{\mathrm{T}}^{*} \rightarrow q \bar{q}}(\mathbf{p}, z)\left(\frac{g_{\mathrm{R}}^{2} C_{\mathrm{F}}}{8 \pi^{2}}\right)\left\{\left[\frac{3}{2}+\log \left(\frac{\alpha}{z}\right)+\log \left(\frac{\alpha}{1-z}\right)\right] C_{\text {full }}\right. \\
& \left.+\frac{1}{2} \log ^{2}\left(\frac{z}{1-z}\right)-\frac{\pi^{2}}{3}+\frac{5}{2}-\log (z(1-z))\right\}+\left(\frac{g_{\mathrm{R}}^{2} C_{\mathrm{F}}}{8 \pi^{2}}\right) \times \Pi+\mathcal{O}(\varepsilon)
\end{aligned}
$$

where

$$
\begin{aligned}
C_{\text {full }} & =\frac{1}{\varepsilon_{\overline{\mathrm{MS}}}}+\log \left(\frac{\mu^{2}}{\bar{Q}^{2}}\right)+\left(\frac{\bar{Q}^{2}-\mathbf{p}^{2}}{\mathbf{p}^{2}}\right) \log \left(\frac{\mathbf{p}^{2}+\bar{Q}^{2}}{\bar{Q}^{2}}\right) \\
\Pi & =\delta^{i j} \frac{2 e e_{f}}{\Delta_{03}^{-}} \frac{\left(z-\frac{1}{2}\right)}{\sqrt{z(1-z)}}\left(\mathbf{p} \cdot \epsilon_{\lambda}\right) \log (z(1-z))
\end{aligned}
$$

For comparison the full CDR scheme result was

$$
\begin{aligned}
\left.\psi_{\text {(full) }}^{\gamma_{\mathrm{F}}^{*} \rightarrow q \bar{q}}\right|_{\mathrm{CDR}}=\psi_{\mathrm{LO}}^{\gamma_{\mathrm{r}}^{*} \rightarrow q \bar{q}}(\mathbf{p}, z) & \left(\frac{g_{\mathrm{R}}^{2} C_{\mathrm{F}}}{8 \pi^{2}}\right)\left\{\left[\frac{3}{2}+\log \left(\frac{\alpha}{z}\right)+\log \left(\frac{\alpha}{1-z}\right)\right] C_{\text {full }}\right. \\
& \left.+\frac{1}{2} \log ^{2}\left(\frac{z}{1-z}\right)-\frac{\pi^{2}}{3}+\frac{5}{2}+\frac{1}{2}\right\}+\mathcal{O}(\varepsilon)
\end{aligned}
$$

Conclusion and Outlook

- Formulation of LCPT rules for massless QCD in helicity space independently of spinor representation
- replace the complicated γ-algebra and spin sums by simple metric tensor algebra (easy to automatize - FORM)
- full NLO corrections to WFs can be calculated by using the helicity approach
- To-Do List:
- include the mass corrections
- transition rules from FDH scheme to CDR scheme
- full NLO computations to DIS and other processes
- higher-order (NNLO) corrections (?)

BACKUP SLIDE:

T. Lappi, RP arXiv:1611.00497:

$$
-g t_{j i}^{a} \bar{u}_{h}\left(p^{\prime}\right) \not \ddagger_{\lambda}^{*}(k) u_{h}(p)=\frac{-2 g t_{j i}^{a}}{z \sqrt{1-z}}\left[\delta_{\lambda, h}+(1-z) \delta_{\lambda,-h}\right] \mathbf{q} \cdot \epsilon_{\lambda}^{*}
$$

Rewriting this as

$$
-g t_{j i}^{a} \bar{u}_{h}\left(p^{\prime}\right) \not 申_{\lambda}^{*}(k) u_{h}(p)=\frac{-2 g t_{j i}^{a}}{z \sqrt{1-z}}\left[\left(1-\frac{z}{2}\right)+\lambda h \frac{z}{2}\right] \mathbf{q}^{i} \epsilon_{\lambda}^{* i}
$$

and using $\lambda \varepsilon_{\lambda}^{*}=i \epsilon \times \varepsilon_{\lambda}^{*}$ where ϵ is rank-2 levi-civita tensor,

$$
-g t_{j i}^{a} \bar{u}_{h}\left(p^{\prime}\right) \not_{\lambda}^{*}(k) u_{h}(p)=\frac{-2 g t_{j i}^{a}}{z \sqrt{1-z}}\left[\left(1-\frac{z}{2}\right) \delta^{i j}+i h \frac{z}{2} \epsilon^{i j}\right] \mathbf{q}^{i} \epsilon_{\lambda}^{* j}
$$

