Probing extreme QCD through ridge-like correlations in small systems: status and problems

Raju Venugopalan Brookhaven National Laboratory

RBRC Saturation Workshop, April 26-

The ridge in A+A collisions

Collimated, long range rapidity correlations: First seen by RHIC Au+Au experiments: STAR, PHOBOS, PHENIX

The ridge in A+A collisions

Alver, Roland, PRC81(2010) 054905 Alver, Gombeaud, Luzum, Ollitrault, PRC82 (2010) 03491

Structure of ridge-correlations can be understood as hydrodynamic flow driven by event-by-event fluctuations in nucleon positions

Some evidence of sensitivity of data to sub-nucleon scale fluctuations

What's the smallest sized QGP droplet?

IP-Glasma= initial state

MUSIC=event.by.event.hydro

Schenke, Venugopalan, PRL 113 (2014) 102301

Where does the hydro paradigm break down?

Higher cumulants of elliptic flow

m-particle flow cumulants C_{η}

$$c_n \{2m\} = \langle \langle e^{in(\phi_1 + \cdots + \phi_m - \phi_{m+1} - \cdots + \phi_{2m})} \rangle \rangle$$

Borghini, Dinh, Ollitrault, nucl-th/0105040

$$v_n\{2\}^2 \equiv c_n\{2\}; v_n\{4\}^2 \equiv -c_n\{4\}; v_n\{6\}^6 \equiv c_n\{6\}/4$$

Spatial eccentricities:
$$\epsilon_n = rac{1}{< r_{\perp}^n >} \int d^2 r_{\perp} \, e^{in\phi_r} \, r_{\perp}^n \, rac{dN}{dy d^2 r_{\perp}}$$

A number of simple models give $\ \epsilon_n\{2\} > \epsilon\{4\} = \epsilon\{6\} = \cdots$

Hydro linear response: $v_n\{m\} \approx c_n \varepsilon_n\{m\}$

Gardim,Grassi,Luzum,Ollitrault, PRC (2012)024908; Niemi,Denicol,Holopainen,Huovinen, PRC87 (2013)054901 Bzdak,Bozek,McLerran, arXiv:1311.7325, Bzdak, Skokov, arXiv: 1312.7349 Li, Ollitrault, arXiv:1312.6555, Basar,Teaney, arXiv:1312.6770

Collectivity across system size

Collectivity across wide energy scales

Collectivity across wide energy scales

Panta Rhei?

Heraclitus of Ephesus 535-475 BC

Issues with the hydrodynamic paradigm: I

Two frequently used measures: Reynolds # and Knudsen #

 $R^{-1} \propto (\Pi^{\mu\nu}\Pi_{\mu\nu})^{1/2} / (\epsilon^2 + 3P^2)^{1/2}$

$$\mathrm{Kn} = \frac{\tau_{\pi}}{L} \; ; \; \tau_{\pi} \propto \frac{\eta}{sT}$$

Issues with the hydrodynamic paradigm: II

No (mini-) jet quenching seen in the smaller systems

Issues with the hydrodynamic paradigm: III

Large anistropies at larger $p_{\rm T}$ and smaller $N_{\rm ch}$ than one might reconcile with a hydrodynamic description

Can we understand multiparticle correlations in an *ab initio* approach

Two-parton azimuthal correlations in the CGC

Dumitru, Gelis, McLerran, Venugopalan: 0804.3858

dense-dense systems (as in A+A)

Glasma graph approximation: power counting

RG evolution of Glasma graphs:

$$C(\mathbf{p}, \mathbf{q}) \propto rac{g^4}{\mathbf{p}_{\perp}^2 \mathbf{q}_{\perp}^2} \int \mathrm{d}^2 \mathbf{k}_{1\perp} \Phi_{A_1}^2(y_p, \mathbf{k}_{1\perp}) \Phi_{A_2}(y_p, \mathbf{p}_{\perp} - \mathbf{k}_{1\perp}) \Phi_{A_2}(y_q, \mathbf{q}_{\perp} - \mathbf{k}_{1\perp})$$

+ permutations

Dusling,RV, PRD 87, 051502 (R) (2013); PRD87 (2013) 094034 Dusling,Tribedy,RV,PRD93 (2016) 014034

RG evolution of the mini-jets:

$$C_{\mathrm{dijet}}(\mathbf{p},\mathbf{q})\propto\Phi_A\otimes\Phi_B\otimes G_{\mathrm{BFKL}}$$

Good agreement with data for $p_T > Q_S$

However no odd harmonics v_3 , v_5 in this approximation...

Azimuthal anistropy from Yang-Mills dynamics

Schenke, Schlichting, RV, PLB747(2015)76

See also, Lappi, Srednyak, RV, JHEP1001 (2010)066

Recent analytical work in dilute-dense approx: Kovchegov,Wertepny,NPA906 (2013)50 McLerran, Skokov arXiv:1611.09870 Kovner,Lublinsky,Skokov, arXiv:1612.07790

What about 4 and higher particle cumulants from YM dynamics?

Numerically very challenging to look at rare events – in progress

Schenke, Schlichting, Tribedy, RV

IP-Glasma+Lund fragmentation

Schenke, Schlichting, Tribedy, RV, PRL117 (2016) 162301

Pattern of mass splitting of $< p_T >$ and v_2 seen in high multiplicity events is reproduced

Tracing azimuthal initial state correlations

Multi-particle correlations from eikonal scattering of partons off color domains in a nuclear target

Kovner,Lublinsky,arXiv:1012.3398,1109.0347 Dumitru,Gianini, arXiv:1406.5781 Dumitru,Skokov,arXiv:1411.6630, Dumitru,McLerran,Skokov,arXiv:1410.4844

Explore in simple model:

$$\frac{d^2 N}{d^2 \mathbf{p}_1 d^2 \mathbf{p}_2} = \int d^2 \mathbf{b}_1 d^2 \mathbf{b}_2 \int \frac{d^2 \mathbf{k}_1}{(2\pi)^2} \frac{d^2 \mathbf{k}_2}{(2\pi)^2} W(\mathbf{b}_1, \mathbf{k}_1, \mathbf{b}_2, \mathbf{k}_2) \\ \times \int d^2 \mathbf{r}_1 d^2 \mathbf{r}_2 \, e^{i(\mathbf{p}_1 - \mathbf{k}_1)} \, e^{i(\mathbf{p}_2 - \mathbf{k}_2)} \langle D\left(\mathbf{b}_1 + \frac{\mathbf{r}_1}{2}, \mathbf{b}_1 - \frac{\mathbf{r}_1}{2}\right) D\left(\mathbf{b}_2 + \frac{\mathbf{r}_2}{2}, \mathbf{b}_2 - \frac{\mathbf{r}_2}{2}\right) \rangle$$

Dipole $D(\mathbf{x}, \mathbf{y}) = \frac{1}{N_c} \operatorname{Tr} \left(V(\mathbf{x}) V^{\dagger}(\mathbf{y}) \right) \quad V(\mathbf{x}) = P \exp \left(-ig \int dx^+ A^-(\mathbf{x}, x^+) \right)$

Ansatz: $W(\mathbf{b}_1, \mathbf{k}_1, \mathbf{b}_2, \mathbf{k}_2) = W(\mathbf{b}_1, \mathbf{k}_1) W(\mathbf{b}_2, \mathbf{k}_2)$

 $W(\mathbf{b}, \mathbf{k}) = \exp\left(-\mathbf{b}^2/B - \mathbf{k}^2B\right)$ B=transverse area of projectile

Tracing azimuthal initial state correlations

Summary-I

Hydrodynamic paradigm appears to describe multi-particle correlations even in the smallest systems

There are however puzzling features of the data, questions about the the validity of hydro, fine tuning of initial conditions (requiring implicitly strong initial state correlations),

 \cdots and explanation of anisotropies for $p_T > few GeV$

Initial state QCD frameworks now also able to explain many features of the data but systematic treatments are still in their infancy

Despite much progress no satisfactory explanation of the data -- the problem is still wide open

Summary-II

Event engineering across system sizes, energies, and varieties of probes, offers the exciting possibility of exploring dynamical evolution of strongly correlated quark-gluon matter from high occupancy, out of equilibrium, dynamics... to hydrodynamics

Figiures: S. Schlichting at Quark Matter 2015

Thanks for listening!

Higher cumulants from Glasma domains

Dumitru, McLerran, Skokov, 1410.4844

Simple model: express intrinsic higher point correlators as correlators of produced particles with a target field in a color domain, averaged over all orientations of the field.

$$c_{2}\{2\} = \frac{1}{N_{D}} \left(\mathcal{A}^{2} + \frac{1}{4(N_{c}^{2} - 1)} \right) + c_{2}\{4\} = -\frac{1}{N_{D}^{3}} \left(\mathcal{A}^{4} - \frac{1}{4(N_{c}^{2} - 1)^{3}} \right)$$

 $\operatorname{Re}\operatorname{Tr}\left(V^{\dagger}(0,0)V(x,y)\right)/N_{c}$

"A" term is the correlation induced between projectile particles due to color field orientation of target (more generically, non-Gaussian correlations)

The N_c term is the "connected Glasma graph" (Gaussian correlations)

N_D is # of color domains – few in p+A, several in A+A

Shape matters ?

Schenke, Schlichting, 1407.8458

