

Formal Method for Microgrids Stability and Control

BNL's Smart Grid Workshop

Yan Li, Peng Zhang Bing Wang, Peter B. Luh and Lingyu Ren Electrical &Computer Engineering Department University of Connecticut

Formal Methods for Microgrid

Technical Challenges

- MICROGRIDS (MGs) are active clusters of distributed generators (DGs), loads and energy storage, and other onsite electric components.
- Stability assessment and control in a networked system
- Issue of uncertainties
 - Weather conditions
 - Load & electrical vehicle
 - Control parameters
 - Interaction between networked microgrids

10/22/2015

Networked Microgrids

Formal Method

Analysis Methods	Pros	Cons
Numerical Simulation	 Easy to implement Provide satisfying results in specific scenarios 	 Inefficient in considering uncertainties with exponential complexity Stability margin unattainable through trajectories

Formal Method: Combining the advantages

Direct Me	ethods
-----------	--------

- Provide stability regions from which the system can return to the original point
- Quickly check if control actions are capable of stabilizing the system
- Lyapunov functions are not easy to obtain
- Cannot check if phase, voltage, or frequency constraints are met

Formal Method: Understanding the Theory

Single MG analysis

Formal Method: Understanding the Theory

Flowchart of the formal method

$$\Delta \dot{x} = \left(A_{1} - B_{1}B_{2}^{-1}A_{2}\right)\Delta x$$

$$+ \left(C_{1} - B_{1}B_{2}^{-1}C_{2}\right)\Delta u_{g} \qquad \text{Generation}$$

$$+ \left(D_{1} - B_{1}B_{2}^{-1}D_{2}\right)\Delta u_{l} \qquad \text{Load}$$

$$+ \left(E_{1} - B_{1}B_{2}^{-1}E_{2}\right)\Delta u_{p} \qquad \text{Control Parameter}$$

$$+ \left(F_{1} - B_{1}B_{2}^{-1}F_{2}\right)\Delta u_{e} \qquad \text{Power Exchange}$$

$$+ \sigma_{FG}$$

Linearization of nonlinear MG system

Formal Method: Understanding the Theory

Construction of three dimensional zonotope

Reachable Set Calculation Process

Formal Methods for Microgrid

Formal Analysis Results

Applications of Formal Method --Stability Margin Calculation and Analysis

- How far away is a microgrid from the stability margin?
- What formal method can offer
 - A criterion to estimate acceptable operation range
 - Quantitative measure of MG stability margin
 - Understanding of the impact of uncertainties
 - Transfer capability among MGs
 - Design and verification of MGs control

Formal Method Potential Application --Stability Margin Calculation and Analysis

Formal Method Potential Application --Stability Margin Calculation and Analysis

Acknowledgements

- NSF Grant CNS-1419076, Enabling Highly Resilient and Efficient Microgrids through Ultra-Fast Programmable Networks
- Eversource Energy Centre
- Pat Looney, Meng Yue and Stephanie Hamilton