Outline

- 10-Year Strategic Plan
- 10-Year Infrastructure Plan Summary
- Recompete Summary
- Q&A
Brookhaven National Laboratory – Next 10 Years

Vision
To be the leading U.S. DOE, multi-program laboratory with recognized impact on national science needs
- Leadership in nuclear physics, photon sciences and selected areas of energy science
- Accelerate DOE missions in HEP, BER and national security
- Leadership in data-driven computational science

Mission
Utilize our world-class facilities and expertise to:
- Advance energy and environment-related basic research and apply them to 21st Century problems of critical importance to the Nation
- Advance fundamental research in nuclear and particle physics to gain a deeper understanding of matter, energy, space, and time

Strategy
Position our major user facilities (NSLS-II, CFN and RHIC → eRHIC) for continued leadership roles
- Integrate our programs and facilities, including outreach to universities, industry, and other National Laboratories to enable us to solve complex problems of national importance

Enabled by renewed infrastructure and safe/efficient operations
Brookhaven National Laboratory at a Glance: FY 2013

- **Physical Assets**
 - 5,322 acres
 - 310 SC buildings

- **Human Capital**
 - 2,882 FTEs (2987 heads)
 - Direct/indirect: 0.59/0.41
 - 480 undergrad/grad students (paid by Lab)
 - 4,134 facility users
 - 1,377 visiting scientists

FY 2013 Total Lab Operating Costs (excluding Recovery Act): $629.9 million
FY 2013 Total DOE/NNSA Costs: $22.6 million
FY 2013 WFO (Non-DOE/Non-DHS) Costs: $52.5 million
FY 2013 WFO as % Total Lab Operating Costs: 8.3%
FY 2013 DHS Costs: $0.8 million

Recovery Act Costed from DOE Sources in FY 2013: $4.7 million
We are Focused on Operational Excellence

• Overall improvement
 - Injury severity (as measured by days away) remains substantially down
 - Slips / trips / falls is #1 injury type
 - Traffic safety continues as a concern
• Engagement and accountability are a focus and showing results
 - Meeting this week with Opinion Leaders
 - Where we’ve been, where we’re going
• Business environment is an emergent issue
• Investing in hazard identification, elimination, and mitigation
• Active governance by BSA via Board Committees and BSA peer reviews
• Project management oversight improvements
• New leadership in place

The motivation is to carry out the mission – inspiring staff to understand how their performance enables success
Notable Appointments

Bob Tribble
Deputy Director
Science & Technology

Jack Anderson
Deputy Director
Operations

Gail Mattson
ALD
ES&H

Martin Schoonen
ALD
EBNN
The Multi-Program Nature of BNL Enables Scientific Discoveries in Diverse Fields

- Following the discovery of nearly perfect fluidity in quark-gluon plasmas, similar behavior in high T_c superconductors was observed.
- Co-location of research groups promotes the sharing of ideas and approaches that lead to unexpected connections.
The Next Decade

Energy S&T
- Unprecedented capabilities of NSLS-II and CFN drive the science program
- BES, BER core program leadership
- Integrated Centers for Energy Science (ICES) starting w/ catalysis and grid/storage
- *In operando* experimentation
- Regionally focused grid research

Origins of Matter & Mass
- Complete RHIC NP mission
- Design, construct, and commission eRHIC
- Leadership roles within HEP priorities
- ATF--user facility supporting HEP stewardship mission
- Capabilities for related work e.g., BLIP, NSRL, hadron therapy

Computational Science
- Lab level initiative reporting to the DDST
- Partnerships: SBU, IBM, Intel, and Columbia

National Security
- NRC, DOS, RAP, NNSA, DoD
- Support for diplomacy, treaties, and IAEA Safeguards

National Security
- Radiation detector development
- Strong coupling to Northeast Region security and emergency response needs

12 Core Capabilities Underpin All of Our Work

Brookhaven Science Associates
The Next Decade

Energy S&T
- Unprecedented capabilities of NSLS-II and CFN drive the science program
- BES, BER core program leadership
- Integrated Centers for Energy Science (ICES) starting w/ catalysis and grid/storage
- *In operando* experimentation
- Regionally focused grid research

Origins of Matter & Mass
- Complete RHIC NP mission
- Design, construct, and commission eRHIC
- Leadership roles within HEP priorities
- ATF--user facility supporting HEP stewardship mission
- Capabilities for related work e.g., BLIP, NSRL, hadron therapy

Computational Science

Emerging Core Capability Essential for BNL Science
- Lab level initiative reporting to the DDST
- Partnerships: SBU, IBM, Intel, and Columbia
- Leveraging RACF, CSC, CFN to enable NSLS-II data management

National Security
- NRC, DOS, RAP, NNSA, DoD
- Support for diplomacy, treaties, and IAEA Safeguards
- Radiation detector development
- Strong coupling to Northeast Region security and emergency response needs

12 Core Capabilities Underpin All of Our Work
Integrated Energy Team from Discovery to Deployment

Focus our efforts, build on BNL strengths, align internally and with stakeholders, achieve real-world impact

<table>
<thead>
<tr>
<th>Discovery</th>
<th>Development</th>
<th>Deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Materials</td>
<td>SMES</td>
<td>Electric Grid</td>
</tr>
<tr>
<td>Catalysis</td>
<td>Superconducting Windmills</td>
<td>Energy Storage</td>
</tr>
<tr>
<td>Biology</td>
<td>Nano Catalyst Scale-up</td>
<td>Sustainable Fuels</td>
</tr>
<tr>
<td>Climate</td>
<td></td>
<td>Thermoelectric Applications</td>
</tr>
</tbody>
</table>

- Integration of facilities and expertise for greater value for DOE investment
- Core Capabilities + Computational Science underpin all work
- Communication & Interaction with stakeholders to accelerate translation

![Image of facilities and projects]

Brookhaven Science Associates
Ramp Up of NSLS-II User Science

- First Experiments Workshop took place Aug 12-13, 2013
 - More than a dozen user workshops in FY13
- 61 Proposals received for User Assisted Science Commissioning Experiments
 - Beamtime oversubscribed by a factor of 3
 - Working closely with user community
- Using LDRD to accelerate first experiment development

We will have key experiments ready for beam at beginning of beamline science commissioning
In Operando Science is a Differentiating Capability for BNL

Definition: The study of materials under real-world, operating conditions (pressure, temperature, chemical environment, voltage…)

Vision:
Develop a suite of *in operando* photon- and electron-based probes at **NSLS-II** and **CFN** to deliver solutions to pressing energy challenges

Integrated Centers for Energy Science (ICES)
- Modeled after the successful Synchrotron Catalysis Consortium
- Combines:
 - Core-program expertise
 - Access to world-leading facilities
 - State-of-the-art integrated tools
 - External experts

ICES examples:
- **Catalysis Science**, led by Jingguang Chen, will reveal atomic level structure and function in actual reaction environments
- **Energy Storage**, led by Esther Takeuchi, leverages many of the catalysis tools for use in energy storage problems
Electric Grid Technology and Commercialization

- Northeast Solar Energy Research Center (NSERC)
 - Test/evaluation facility to enable development and integration of reliable/resilient solar, storage and grid technologies in the NE
 - Partner with NYSSGC, utilities, and industry
 - Integrate PV and energy storage (plus load management) into electrical distribution system
 - Design/control micro-grid architectures
 - Test smart-grid technologies, e.g. inverters, sensors, control systems
 - Modeling
 - $1 M NYSESDC funding for NSERC build-out

- Use BNL micro-grid as a distribution lab (AEGIS)
 - Partner with NYSSGC/SBU; engaged OE
 - NYS support for grid projects – e.g. $5 M (BNL/SBU) SGRID³ award

- Acceleration of commercialization
 - Partner with Columbia, SBU, and Cornell on Proof-of-Concept Center—NYSERDA $5 M

First Experiments
- NYSERDA-funded study of smart-grid inverters ($2 M proposed)
- Collaboration with EPRI, NYS Utilities
- Engineering Studies - FY14
- First Field Tests at BNL - FY15

16
The Next Decade

Energy S&T
- Unprecedented capabilities of NSLS-II and CFN drive the science program
- BES, BER core program leadership
- Integrated Centers for Energy Science (ICES) starting w/ catalysis and grid/storage
- *In operando* experimentation
- Regionally focused grid research

Origins of Matter & Mass
- Complete RHIC NP mission
- Design, construct, and commission eRHIC
- Leadership roles within HEP priorities
- ATF--user facility supporting HEP stewardship mission
- Capabilities for related work e.g., BLIP, NSRL, hadron therapy

Computational Science
Emerging Core Capability Essential for BNL Science
- Lab level initiative reporting to the DDST
- Partnerships: SBU, IBM, Intel, and Columbia
- Leveraging RACF, CSC, CFN to enable NSLS-II data management

National Security
- NRC, DOS, RAP, NNSA, DoD
- Support for diplomacy, treaties, and IAEA Safeguards
- Radiation detector development
- Strong coupling to Northeast Region security and emergency response needs

12 Core Capabilities Underpin All of Our Work
RHIC is the Perfect Facility to Explore the Phases of Nuclear Matter

- QCD matter turns from a nucleon superfluid into a nucleon/hadron gas at approximately 100 billion degrees
- When heated to 2 trillion degrees at RHIC, nuclear matter suddenly turns into a liquid again
 - The most perfect liquid ever observed
- Only RHIC has the energy range to observe where the transition occurs
Completing the RHIC Mission

Status:
• RHIC-II configuration is now complete
 - 3D stochastic cooling
 - Vertex detectors in STAR (HFT) and PHENIX
• RHIC Run 14 – Integrated Au+Au luminosity exceeds all previous Au+Au runs combined

Plan: Complete the RHIC Mission in 3 campaigns:
• **2014/15/16**: Understand the properties of the quark gluon plasma using heavy quark spectroscopy
• 2017: Install low energy e-cooling
• **2018/19**: High precision scan of the QCD phase diagram
• 2020: Install superPHENIX upgrade
• **2021/22**: What makes the QGP a perfect fluid: Elucidate the fluid correlations using jets
• 2023/2024: RHIC shutdown and transition to eRHIC

RHIC remains a unique discovery facility:
~3,000 citations/year, ~30 PhDs per year
EIC: QCD Laboratory of the Future

Gluon structure of the “cold” proton: How is the proton’s mass generated and what carries its spin?

How do confined hadrons emerge from isolated quarks? (“ARPES”)

High density phase of low energy gluon matter

A quark/gluon “sea”
eRHIC Design: Innovative and Cost-Effective

- World’s first Linac-ring collider
- Energy Recovery Linac (ERL) reduces power consumption from 1 GW to 20 MW
- Coherent electron cooling for record high beam brightness
- Fixed field alternating gradient (FFAG) recirculating arcs propagate beams with multiple energies

When complete, eRHIC will be the most advanced and energy-efficient accelerator in the world.
BNL's HEP Program is Well Aligned With the P5 Recommendations

<table>
<thead>
<tr>
<th>The P5 Recommendations</th>
<th>BNL's Leadership Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use Higgs boson as a new tool for discovery</td>
<td>• U.S. host lab for the ATLAS experiment at the LHC</td>
</tr>
<tr>
<td>• Pursue physics associated with neutrino mass</td>
<td>• Recognized expertise in neutrino physics and strong involvement in neutrino program</td>
</tr>
<tr>
<td>• Identify physics of dark matter, dark energy and inflation</td>
<td>• Significant contributions to LSST science and construction</td>
</tr>
<tr>
<td>• Explore the unknown: new particles, interactions, and physical principles</td>
<td>• Development of the theoretical framework that motivates these experiments</td>
</tr>
<tr>
<td>• Support enabling technologies in accelerators, detectors, and computing</td>
<td>• Essential research on AS&T, detectors and computing</td>
</tr>
</tbody>
</table>

Absence of Higgs boson decay into “invisible particles”: no evidence of physics beyond standard model, puts new limits on dark matter models

Observation of a full oscillation cycle

First measurement of mass splitting in electron channel Δm^2_{ee} agrees with muon channel $\Delta m^2_{\mu\mu}$ - important confirmation of neutrino oscillation picture

Brookhaven Science Associates

Brookhaven National Laboratory

22
Computational Science Initiative

Vision: Leader in the analysis and processing of large volume, heterogeneous data sets for high-impact science programs and facilities

To achieve this vision BNL will:

• Create a Lab-level computational science initiative reporting to DDST

• Build out from RACF, CFN, ISB, CSC/NYCCS, and NSLS-II to deploy a Laboratory-wide sustainable infrastructure for data-management, real-time analysis and complex analysis
 - Initial focus: NSLS-II (with IBM)

• Grow programs and enhance competencies in applied mathematics and computer science aligned with the missions of ASCR and other SC programs

• Establish and grow partnerships with SBU, the Core Universities, IBM, Intel, and other National Laboratories
Environmental and Climate Sciences: Contributions to ARM and ASR

• Expand contribution to DOE-Terrestrial Ecosystem Science through increased involvement in Next Generation Ecosystem Experiment (NGEE) – Arctic and proposed involvement in NGEE – Tropics

• Leverage NSLS-II (first light experiment) and TEM facilities at CFN

• Perform XRF imaging and XANES with sub-100nm spatial resolution spectroscopy on μm-sized aerosol particles at NSLS-II SRX beamline

Alistair Rogers in Alaska conducting NGEE-Arctic research

Fe(II)/(Fe(II)+Fe(III)) obtained using STXM/NEXAFS (LBNL-ALS)
Engaging Experts and Special Capabilities Across the Lab

<table>
<thead>
<tr>
<th>Partnerships</th>
<th>Resource Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSHL, SBU, Yale, U. Missouri, EMSL</td>
<td>Additional hires to build capability</td>
</tr>
<tr>
<td></td>
<td>Upgraded lab space</td>
</tr>
</tbody>
</table>

Plant Biochemistry
- Metabolic engineering

Quantitative Physiology
- Understand plant response to global change

Center for Quantitative Plant Science
- Multi-scale modeling of plant physiology and interactions with the environment
- Start with simple model organisms and move to more complex systems
- A unique resource for DOE enabling a path from plant bioscience to bioengineering and applications

Mesoscale Multi-Modal Imaging
- NSLS-II, CFN

KBase
- Data-centric HPC and HTC
National Security Is An Important Effort At BNL

- Support DOE/NNSA and State Department
 - Policy and technical analysis to support diplomacy and treaties
 - Training programs for growing a sustainable nuclear/chemical security
- Strengthen IAEA safeguards
 - Manage the International Safeguards Project Office
 - Train IAEA and member state officials
- Respond to potential domestic threats to prevent terrorists from using WMD in U.S. – Radiological Assistance Program
- Develop and deploy radiation detectors to support national and homeland security missions
- Aspiration: Develop regional capability to train
 - 1st responders on rad/nuclear response
 - Utilities on new FEMA requirements

Ralph James Named Materials Research Society Fellow
Ten-Year Campus Plan

BSA has a plan to deliver the next decade of science while transforming the Laboratory Campus with substantially reduced DOE-direct investment

- Focus limited DOE investment in critical core buildings to enable the scientific agenda
- Make research safe and cost effective by downsizing the campus and demolishing old buildings
- Ensure scientific reliability through targeted utility infrastructure investments
- Support the growing population of scientific users through an innovative concept of Discovery Park
Discovery Park: A Transformative Opportunity

- Conceptualized as a joint partnership with external public/private resources through a land transfer
- Discovery Park could enhance the DOE’s investment, assets, and needs and position the Laboratory as a valued and visible community partner
- Discovery Park has opportunity to bring valuable capability in several mission and support areas
 - Infrastructure Revitalization
 - Guest and User Services Portal
 - Research capabilities in Energy Science and Computing
 - Next Generation Workforce Development
 - Discovery to Deployment Partnerships
Recompete Summary
BSA Is Delighted to Manage BNL for the Next 5 Years (with Extensions up to 20)!

- BSA: Deep and experienced partners with a strong commitment to the Lab
 - Fiduciary: Stony Brook University and Battelle
 - Distinguished Core universities: Columbia, Cornell, Princeton, Harvard, Yale and MIT

- Impressive track record over 15 years: established excellent community relations, successful RHIC ops and the perfect fluid, successful NSLS ops: 2500 users per year, CFN, NSLS-II, significant improvements to safety record and infrastructure

- Exciting vision for the future that takes advantage of BNL’s strengths and will have recognizable impact on DOE’s mission

- Deep, proven and passionate management team, committed to the vision, to BNL and to each other
BSA’s Vision in 2025

• **Vision:** Brookhaven is among the world’s few pre-eminent science laboratories. BNL provides broad leadership in nuclear, photon, and energy sciences; conceives, builds and operates premier user facilities serving highly productive user communities; leads in the application of data sciences to enable discovery at those facilities; and accelerates DOE’s mission in high energy physics, applied energy sciences, environmental/biological sciences and nonproliferation through focused, distinctive programs. The Laboratory operates at the highest levels of safety and efficiency, on a fully modernized campus.

• **Culture of Excellence:** This vision is based on BSA’s core philosophy of simultaneous excellence in science, laboratory operations, and in community service.
BSA’s Vision: Building a World-leading, Preeminent DOE Science Lab for the Future

- Leadership in nuclear physics, photon sciences and energy sciences
- Premier user facilities
- Accelerated BER, HEP, nonproliferation and applied energy missions
- Leadership in big data
- Enabled by renewed campus and safe/efficient operations

Critical Outcomes

- Understanding the origins of matter and mass
- Transformational discovery through synchrotron science
- *In operando* and *in situ* energy science leadership
- Leadership in data-driven discovery
- Renewed research campus that enables BNL’s research mission
- Safe, efficient operations that ensure delivery of BNL’s research mission
The Laboratory Pillars

- Energy Sciences
 - NSLS-II
 - CFN
 - In Operando

- Nuclear and Particle Physics
 - RHIC
 - eRHIC

- Environment/Biology
- Nuclear Science
- Nonproliferation

Cross-cutting Computational Initiative

Mission Enabling

- Renewed Infrastructure
- Safe, efficient Operations
Our Organization Is Redesigned to Achieve Our Vision

- Integrated Energy Sciences Directorate (Feb. 1)
 - NSLS-II
 - CFN
 - Basic Energy Sciences
 - Applied Energy Sciences
- Environment, Biology, Nuclear Science and Nonproliferation (as this summer)
- Created Lab-level initiative in Computational Science: Big Data
- Consolidate Business Services and ITD
- Established three new staff offices
 - Campus Development
 - Strategic Partnerships
 - Planning, Performance and Quality Management

Benefits
- Clear leadership for each Critical Outcome
- Greater impact through consolidation
- New functionality without greater complexity
Questions