SIX: A Looong Beamline at NSLS-II to Probe Electrons

Ignace Jarrige
Beamline SIX Group Leader
National Synchrotron Light Source II
Brookhaven National Laboratory
Tell me Google Map... Where is SIX?
What is a synchrotron?

An extremely powerful source of light:
- A synchrotron produces extremely bright light which is used in research.
- The light comes in different *wavelengths*, x-rays, ultraviolet, visible, infrared.

Providing many different ‘colors’:

<table>
<thead>
<tr>
<th>Radiation Type</th>
<th>Wavelength (m)</th>
<th>Approximate Scale of Wavelength</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>10^9</td>
<td>Buildings</td>
<td>10^4</td>
</tr>
<tr>
<td>Microwave</td>
<td>10^-2</td>
<td>Humans</td>
<td>10^8</td>
</tr>
<tr>
<td>Infrared</td>
<td>10^-5</td>
<td>Butterflies</td>
<td>10^12</td>
</tr>
<tr>
<td>Visible</td>
<td>0.5×10^{-6}</td>
<td>Needle Point</td>
<td>10^15</td>
</tr>
<tr>
<td>Ultraviolet</td>
<td>10^{-16}</td>
<td>Protozoans</td>
<td>10^16</td>
</tr>
<tr>
<td>X-ray</td>
<td>10^{-16}</td>
<td>Molecules</td>
<td>10^18</td>
</tr>
<tr>
<td>Gamma ray</td>
<td>10^{-12}</td>
<td>Atoms</td>
<td>10^20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atomic Nuclei</td>
<td></td>
</tr>
</tbody>
</table>
Particles called electrons are accelerated to extremely high speeds, injected in the synchrotron ring to move in a large circle.

As the electrons pass through magnets around the ring, they lose energy in the form of light, emitted as a narrow pencil directed forward.

This light is channeled out of the ring into beamlines, where it is tailored to accommodate specific needs of the research conducted.

All beamlines operate simultaneously.

Each beamline is designed for use for a specific type of research.

Experiments run throughout the day and night.
What is a synchrotron?

• One of 4 DOE-supported synchrotron facilities
• 2 electron storage rings that produce synchrotron light
• 59 beamlines operate simultaneously
• Operates 24/7, 10 months per year
• Running today
• 2,400 users every year
• Users typically stay 2-4 days in on-site housing
Light sources are used to explore pretty much any type of matter, so they have a wide range of applications:

For what research?

2003 and 2009 Nobel Prizes in Chemistry based on work performed at NSLS

All these lines are blurred! Lots of interdisciplinary research (biophysics, physical chemistry, geophysics...)

2003 and 2009 Nobel Prizes in Chemistry based on work performed at NSLS

Chemistry

Geology

Biology

Physics
• Will bring best scientists to do experiments not possible today
• World’s finest capabilities for x-ray imaging and high-resolution energy analysis
• X-rays 10,000 times brighter than current NSLS
• Under construction at Brookhaven Lab, about 90 percent complete
• $912-million project, early completion in September 2014, funded by U.S. Department of Energy
• Your tax dollars at work, thank you for your investment in science
SIX: Designed to look at what?

• **Electrons!**

• **What are they:** All matter is made of atoms, which are themselves like tiny solar systems [a billionth in size], with a nucleus and electrons rotating about the nucleus in orbits:

 - From the solar system...
 - ...to a lithium atom

 ![Diagram of electron and nucleus](image)

 ![Diagram of Sun and Planet](image)

• **What do they do:** Electrons have an electric charge and a magnetic moment, they confer the **electric** and **magnetic** properties of matter. Atoms, to bond with each other, share electrons:

 ![Diagram of H and Cl atoms](image)

• **The researcher’s tool box:**
 - Telescope for the solar system...
 - Microscope for atoms...
 - Beamline for electrons
Soft Inelastic X-ray scattering: What technique?

The goal of the SIX beamline is to let us play billiards with light and electrons!

- The setup:

 ![Diagram of a billiard setup](image)

 - The beamline
 - The detector
 - Electrons in the sample
 - The incoming light

- The process:

 Our sample is a set of balls. Imagine that we want to find out their number and color, but have no mean to look at them directly.

 We hit the cue ball (incoming light from beamline) which hits the set of balls and sends them around the table. We have disturbed, or excited our sample.

 Upon impact the cue ball is deflected and looses speed. By measuring the deflection angle and speed of the cue ball after impact, we can find out about the number and color of balls.
Why SIX needs to be bigger (and costlier) than a billiard table

• **The more accurate the measurement, the finer our understanding about matter.** Without a world-leading instrument, most often impossible to do world-leading research!

• **Ongoing world-wide race to improve the ‘color’ resolution of instruments. How?**
 • **First ingredient:** To split the colors, focus, deflect the beam of light, need **perfectly flat mirrors**... within the growth rate of a fingernail per 0.1 s! Polishing takes up to a year, only 1 or 2 companies in the world are able to do it.
 • **Second ingredient:** Looking through a finite aperture, the more the colors split up, the easier it gets to pick up one particular color. **Needs distance from the rainbow splitter!**

Scienta XES 350

Scienta XES 350 is a state-of-the-art soft X-ray emission spectrometer. It is a grazing incidence spectrometer covering a wide energy range, 50 - 1000 eV, at high resolution and sensitivity.*

The Scienta XES 350 is easily adapted to different excitation sources, since the instrument is flange-mounted and has an optical axis that is easily adjusted to the excitation source.

The Scienta XES 350 optical arrangement consists of a variable entrance slit, two moveable shutters for grating selection, three spherical gratings, and a 2-D detector that can be moved in a three-axis coordinate system. The Scienta XES 350 can be described as three spectrometers merged into one by having a common entrance slit and a detector that can be aligned to the focal curve (Rowland circle) of the selected grating.

X-ray emission spectroscopy, XES, measures the intensity distribution of soft X-rays emitted due to radiative decay of a core hole. With an attenuation length of photons in this energy range of typically hundreds of nanometers, the method is inherently bulk sensitive.

The Scienta XES 350 is ultrahigh vacuum compatible, but it can also be used with relatively high pressure gas systems such as vapor deposition equipment. Scienta XES 350 can therefore be used for **in-situ** characterization in thin film deposition. It also makes it possible to study liquids and solid/liquid interfaces. Since the X-ray emission process follows the dipole selection rule, XES offers detailed information about the valence band electronic structure. For solids, essentially a partial density-of-state (PDOS) mapping is obtained.

In XES problems encountered with electron spectroscopy, such as charging or disturbance from electromagnetic fields, are not present. XES makes measurements of insulators, large bandgap semiconductors and ferromagnets feasible. The bulk sensitivity of XES makes it possible to study buried layers such as corrosion-sensitive films covered by an inert capping layer.

But really... how big?

- Total length **120 m** does not fit in NSLS-II’s experimental hall
- 15-m long spectrometer needs to rotate from (120° range) to measure deflection angle, bringing the building footprint to **9000 square feet**
- Spectrometer splits light in the vertical, brings roof height to **22 feet**
The SIX beamline

- NSLS-II design (J. Dvorak, I. Jarrige, B. Leonhardt, Y. Zhu)
- Will use 15 state-of-the-art mirrors to focus, bounce, color-split the beam
- Will require the most stable mechanical systems ever built in the field
- Will outperform the best current resembling beamline in the world by a factor 10 in terms of ‘color’ resolution, for a similar flux of light
- 10/13 approval to start early procurement, 10/16 early completion, 10/17 start of operations
The SIX external building

- BNL design (T. Joos, O. Dyling et al.)
- Engineered for low vibrations (28” thick slab isolated from ‘the rest of the world’) and high thermal stability (±0.3°)
- Contractor: Construction Consultants of Long Island (Riverhead, NY)
- Contract: $3.55M
- 05/13 start of contract, 08/13 footings, 09/13 floor slab, 11/13 steel, 02/14 weather tight, 06/14 construction complete
The SIX external building

Bill Leonhardt
SIX mechanical engineer
The SIX external building in photos

The chronology of the construction, in photos...
What scientific challenges for SIX? Energetic!

- **High-temperature superconductivity: Make it hot**
 - Superconducting copper wires = zero resistance, can move power over long distances without any loss
 - But need LOTS of liquid nitrogen to be chilled to superconduct
 - Crucial to *understand superconductivity and design room-temperature superconductors*

 ![Image of a superconducting cable](image1.png)

 The LIPA-DOE Holbrook Superconductor Project: 600-m long cable, powers 300,000 homes, needs 13,000 gallons of LN₂

- **Lithium and fuel cell batteries: Long live**
 - Ageing is the result of several physicochemical processes
 - Study mechanism of lithium, hydrogen and oxygen ion transport in batteries
 - *Understand how to improve efficiency and lifetime*

 ![Image of a lithium-ion battery and a fuel cell](image2.png)

- **Spintronics for Computing: Making memories**
 - Magnetic processing of information, rather than charge, yields smaller, faster data storage
 - Spintronics transistors to create ultra-fast, low-consumption computer chips
 - *Understand the nature of magnetic properties to help the design of future devices*

 ![Image of a spintronic device](image3.png)
Conclusions

• **X-rays are not just for looking at broken bones**

 We watch, poke and control atoms and electrons, ...without breaking them.

• **SIX is a big tool to look at small things that have a big impact**

 We look at the tiny things that control the bigger phenomena.

• **SIX to do clean science for a cleaner future**

 Synchrotron light is clean... ...but why stop there?

 At SIX, clean energy is our ultimate goal!