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We use machine learning (ML) enhanced computational reverse engineering

analysis of scattering experiments (CREASE) to interpret small-angle X-ray

scattering (SAXS) data obtained from a system of nanoparticles without a priori

knowledge of their exact shapes (e.g. spheres or ellipsoids), sizes (0.5–50 nm)

and distributions. The SAXS measurements yielded three categories of scat-

tering profiles exhibiting ‘strong’, ‘weak’ and ‘no’ features. Diminishing features

(e.g. broadening or disappearing peaks) in scattering profiles have always been

attributed to the presence of significant dispersity in the system. Such featureless

SAXS data are not suitable for traditional analysis using analytical models. If

one were to fit a relevant analytical model (e.g. the lmfit analytical model for

polydisperse spheres) to these ‘weak’ and ‘no’ SAXS profiles from our nano-

particle systems, one would obtain non-unique interpretations of the data.

Relying on electron microscopy to identify the distributions of nanoparticle

shapes and sizes is also unfeasible, especially in high-throughput synthesis and

characterization loops. In such situations, to identify the distributions of particle

sizes and shapes that could be present in the sample, one must rely on methods

like ML-CREASE to interpret the data quickly and output all relevant inter-

pretations about the structure present in the system. The ML-CREASE opti-

mization loop takes the experimental scattering profile as input and outputs

multiple candidate solutions whose computed scattering profiles match the

SAXS profile input. The ML-CREASE method outputs distributions of relevant

structural features, such as the volume fraction of the nanoparticles in the

system and the mean and standard deviation of the particle size and aspect ratio,

assuming a type of distribution (e.g. normal, log-normal) for size and aspect

ratio. We find that, for the SAXS profiles analyzed here, accounting for the

shape dispersity along with size dispersity of the nanoparticles using ML-

CREASE improved the match between the computed scattering profiles and

input experimental profiles.

1. Introduction

Advances in particle synthesis methods have led to the

availability of nanoparticles in a variety of shapes (Glotzer &

Solomon, 2007). A few notable examples include the thin film

stretching method (Ho et al., 1993) to produce ellipsoidal

particles, achieving aspect ratios between two and five, and

the particle replication in non-wetting templates or PRINT

method (Rolland et al., 2005) to produce disc-like and rod-

like nanoparticles (Kinnear et al., 2017; Liu et al., 2022).

Compared with spherical nanoparticles, anisotropy in particle

shape provides additional degrees of freedom for tuning the
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interactions between the nanoparticles and their targets, which

can then be leveraged in various applications, e.g. drug

delivery (Shi et al., 2017; Beach et al., 2024), energy harvesting

(Thorkelsson et al., 2015) and chemical sensing (Zheng et al.,

2021). Shape anisotropy can also be used for directing

assembly into complex structures with spatial arrangements

for use in applications requiring certain optical and photonic

properties (Wu & Pauly, 2022; Wang et al., 2020). Advances in

particle synthesis methods have increased the need for

improved characterization techniques that identify the shapes

and sizes of nanoparticles more accurately. Most researchers

rely on microscopy techniques, e.g. transmission electron

microscopy (TEM) (Carter & Williams, 2016; Fultz & Howe,

2012), scanning electron microscopy (SEM) (Goldstein et al.,

2017; Ul-Hamid, 2018) and atomic force microscopy (Voigt-

länder, 2019; Eaton & West, 2010), or scattering techniques,

e.g. small-angle X-ray scattering (SAXS) (Lindner & Ober-

disse, 2024; Narayanan et al., 2017), to identify the size and

shape distributions of nanoparticles (Modena et al., 2019;

Mourdikoudis et al., 2018). Although microscopy techniques

(SEM and TEM) provide high-resolution scans of the nano-

particles, these 2D images lack depth-related information (Li

et al., 2016; Dawadi et al., 2021) and sample preparation can be

tedious, making it less practical in high-throughput automated

synthesis and characterization loops. On the other hand,

scattering techniques measure the ensemble-averaged infor-

mation about the structure across multiple length scales and

are also amenable to high-throughput automation loops

(Quek et al., 2023; Dyer et al., 2014; Rodrı́guez-Ruiz et al.,

2017).

While scattering techniques are suitable for high-

throughput characterization, the interpretation of scattering

data can be non-trivial (Jeffries et al., 2021; Yager et al., 2023).

Structural information obtained through scattering techniques

is in reciprocal space (i.e. the intensity of the scattered wave

versus the magnitude of the wavevector). Interpreting these

data generally requires analytical model fitting, computational

methods and/or machine learning algorithms. In analytical

model fitting, the user selects relevant theoretical models, e.g.

the hard sphere (Blum & Stell, 1979; Salacuse & Stell, 1982) or

sticky hard sphere models (Menon et al., 1991), to fit experi-

mental data by finding model parameters that minimize the

difference between the experimental scattering profile and the

analytical model. Analytical models for traditional geometries

of soft materials and their assemblies have been collated into

user-friendly packages such as SASfit (Breßler et al., 2015),

Irena (Ilavsky & Jemian, 2009), McSAS (Bressler et al., 2015)

and ATSAS (Petoukhov et al., 2012; Manalastas-Cantos et al.,

2021; Franke et al., 2025). Other model-agnostic methods

include Guinier analysis, which is used to determine the radius

of gyration of particles in a sample by plotting the logarithm of

the scattering intensity against the square of the magnitude of

the scattering vector (Guinier, 1955). Similarly, Porod analysis

(Porod, 1951), applied to the high-q region of the scattering

profile, provides information about the surface area and

interface roughness of the particles (Schmidt, 1988). Users can

also use Fourier transform methods to convert scattering data

from reciprocal space to real space, providing direct infor-

mation about the size and shape of the scattering objects

(Schmidt-Rohr, 2007; Röding et al., 2022). Computational

methods like reverse Monte Carlo (RMC) (McGreevy &

Pusztai, 1988) simulations have also been used to iterate

towards structures whose computed scattering patterns match

the experimental data (McGreevy, 1995; McGreevy, 2001).

Studies that utilize the RMC technique for the interpretation

of scattering profiles include the analysis of ultra-small-angle

scattering data to obtain the representative 3D configurations

of silica nanoparticles in a rubber matrix (Hagita et al., 2018),

analysis of 2D small-angle scattering data to obtain the

representative 3D configurations and orientations of magnetic

nanoparticles (Barnsley et al., 2022), analysis of X-ray scat-

tering data to obtain atomistic configurations of liquid

mercury near its critical point (Hagita et al., 2010), and

analysis of neutron scattering data to obtain representative 3D

configurations of polymer grafted nanoparticles using the

MONSA program for RMC (Luo et al., 2018). RMC alleviates

some of the drawbacks of analytical model fits by providing a

representative 3D structure as an output but suffers from low

computational efficiency when the density of soft materials or

their assemblies is expected to be high.

To accelerate and potentially automate the interpretation of

scattering profiles, researchers have begun to turn to machine

learning (ML) methods; we encourage readers to consult the

references cited in the recent review articles on this topic

(Anker et al., 2023; Lu & Jayaraman, 2024). One such method

is the ML enhanced computational reverse engineering

analysis of scattering experiments (ML-CREASE) which has

been successfully used to interpret structures from scattering

profiles for a variety of materials – polymer solutions (Wu &

Jayaraman, 2022; Ye et al., 2021; Wessels & Jayaraman, 2021b;

Beltran-Villegas et al., 2019), surfactant-coated particles (Heil

et al., 2023a), nanoparticle mixtures (Heil et al., 2023b; Heil et

al., 2022; Heil & Jayaraman, 2021), biomolecular networks

(Lee et al., 2020) and dipeptide solutions (Gupta et al., 2025).

In many of these cases, traditional analytical model fits had

failed either because the models available were too approx-

imate for the system at hand or because the material’s struc-

ture had significant dispersity in dimensions for which the

analytical models perform poorly. While earlier implementa-

tions of CREASE were used to analyze azimuthally averaged

scattering profiles, recent extension of this method has led to

the CREASE-2D method, which interprets the entire 2D

scattering profiles without any azimuthal angle averaging to

assess the extent of structural anisotropy in addition to other

relevant information about the structure (Akepati et al., 2024;

Gupta et al., 2025).

ML-CREASE’s interpretation of the scattering profiles

provides a detailed understanding of the form and structure of

the assembled materials as distributions of mathematical

parameters that describe relevant structural features. ML-

CREASE also provides as output representative 3D real-

space structures for various structural features which in turn

can be used for other analyses (e.g. structure-induced property

calculation) (Heil et al., 2023b; Patil et al., 2022a; Patil et al.,
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2022b). This would be impossible with analytical models that

do not provide real-space candidate 3D structures. While

RMC simulations can also provide 3D structures as output, in

that approach the user is optimizing one real-space structural

configuration at a time, which can lead to a single locally

optimized (perhaps not globally optimized) 3D representation

as the interpretation. The use of genetic algorithms in the ML-

CREASE approach provides multiple possible structural

interpretations of the scattering profiles (i.e. degenerate

solutions) (e.g. Lee et al., 2020; Wessels & Jayaraman, 2021a).

These multiple real-space structural interpretations can then

be compared with information from other measurements

(structure, property) or molecular simulations to identify

which of the multiple answers that ML-CREASE outputs are

physically possible and which are numerically correct but

unphysical.

In this work, we use the ML-CREASE method to analyze

the distribution of sizes and shapes of gold nanoparticles from

azimuthally averaged 1D SAXS profiles. Gold nanoparticles

were synthesized using an automated fluidic platform based

on the Turkevich method (Wuithschick et al., 2015) and

subsequently characterized in situ by SAXS to probe their

nanoscale morphology at the National Synchrotron Light

Source II (NSLS-II) at Brookhaven National Laboratory. The

resulting nanoparticle SAXS profiles were then classified into

distinct categories based on the presence or absence of

pronounced features (peaks) as ‘strong’, ‘weak’ and ‘no’

profiles. In our work presented in this paper, we find that the

ML-CREASE method is capable of predicting the size and

shape distributions of nanoparticles even when the scattering

profiles lack any pronounced features; as noted before, the

analysis of such featureless scattering profiles has proven

difficult with traditional fitting approaches using analytical

models. The predictions from ML-CREASE include the

extent of dispersity in sizes (e.g. spherical volume radius) as

well as dispersity in shapes (aspect ratio) ranging from

spherical (aspect ratio �1.0) to ellipsoidal (mean aspect ratio

>1.0). Our results also suggest that selecting analytical models

assuming all the nanoparticles are spherical is too restrictive

and including shape dispersity leads to improvement in fits to

SAXS profiles. This work shows the power of the ML-

CREASE method to predict the distributions in sizes and

shapes of nanoparticles from their 1D scattering profiles

without a priori knowledge of the shape and size distributions,

which are only accessible via imaging techniques that are

incompatible with high-throughput SAXS characterization.

The article is structured as follows. First, the synthesis of

nanoparticles, SAXS characterization and steps involved in

ML-CREASE are presented in Section 2. Next, the distribu-

tions of nanoparticle shapes and sizes predicted by the ML-

CREASE approach for the SAXS inputs are discussed in

Section 3. Finally, in Section 4 we conclude by summarizing

the capabilities of the ML-CREASE method and how it can

be broadly applied to problems within the community. All

code used in this work is hosted on GitHub (https://github.

com/arthijayaraman-lab/CREASE_Size_Shape_Dispersity)

and is freely available for use by the scientific community.

2. Methods

2.1. Experiments

2.1.1. Materials and preparation of gold nanoparticles

Sodium citrate (NCit), hydrogen chloride (HCl), sodium

hydroxide (NaOH), Tween 20 and chloroauric acid (HAu)

were purchased from Sigma–Aldrich, and used as received

without further purification. Reagent solutions – 16 mM NCit,

0.01 wt% Tween in deionized water, 10 mM HCl, 10 mM

NaOH and 2 mM HAu – were precisely injected using auto-

mated syringes (precision <1 mL) through selection valves into

the main flow path, before undergoing well mixing by static

mixer. The reaction was conducted at 100�C, and the as-

synthesized products were analyzed after 10 min of reaction

time.

2.1.2. Protocol for small-angle scattering experiments

Samples containing nanoparticles in solution were

subjected to SAXS characterization at the Soft Matter Inter-

faces (SMI, 12-ID) and Complex Materials Scattering (CMS,

11-BM) beamlines at NSLS-II. At the SMI beamline, SAXS

data were collected using a beam energy of 16.1 keV and beam

size of 200 � 30 mm with a Pilatus 1M area detector (Dectris,

Switzerland). The detector, consisting of 0.172 mm square

pixels in a 981 � 1043 array, was placed 5 m downstream from

the sample position. At the CMS beamline, SAXS data were

collected using a beam energy of 13.5 keV and beam size of

200 � 200 mm with a Pilatus 2M area detector (Dectris, Swit-

zerland). The detector, comprising 0.172 mm square pixels in a

1475 � 1679 array, was positioned 5 m downstream from the

sample. Scattering patterns from each detector angle were

stitched together using custom-developed software. Typical

exposure times were 1 s at the SMI beamline and 15 s at the

CMS beamline. The 2D SAXS patterns, collected continuously

during synthesis, were reduced to 1D scattering intensity, I(q),

through real-time circular averaging. Here, q represents the

wavevector transfer, q = (4�/�) sin(�), where � = 0.77 Å is the

X-ray wavelength and 2� is the scattering angle. Scattering

angles were calibrated using silver behenate as the standard.

2.1.3. Description of the SAXS data

The scattering intensities were azimuthally averaged after

background subtraction to obtain a total of 30 profiles with

I(q) as a function of q in the range of [0.02–0.18] Å� 1. On the

basis of the presence or absence of characteristic peaks

(features) in these profiles, the 30 scattering profiles are

manually classified as profiles with ‘strong’, ‘weak’ and ‘no’

features. Representative examples of the ‘strong’, ‘weak’ and

‘no’ scattering profiles are shown in Fig. 1.

2.2. ML-CREASE

Taking one SAXS profile at a time as input, we aim to

identify the corresponding shape and size distributions for the

nanoparticles in the system via the ML-CREASE method.

We first assume that all nanoparticles are spherical [Figs.

2(a)–2(c)] with dispersity in size. In this case, the output from
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our analysis using ML-CREASE will be the mean and stan-

dard deviation for the radii of the spherical nanoparticles

(assuming a normal distribution). Next, we relax the spherical

assumption and expect dispersity in both particle size and

particle shape [Figs. 2(d)–2( f)]. In this case, the output from

our analysis using ML-CREASE will be the mean and stan-

dard deviation of the nanoparticle’s size, denoted as ‘equiva-

lent sphere’ radius and nanoparticle aspect ratio, assuming a

normal distribution for both radius and aspect ratio. In addi-

tion to the above structural features (e.g. mean and standard

deviation of size and aspect ratio), ML-CREASE outputs a

few representative real-space 3D structures of the nano-

particles [as shown in Fig. 2(a) and Fig. 2(d)]. Users can obtain

as many representative 3D structures as they wish using the

previously published open-source CASGAP method (Gupta

& Jayaraman, 2023) which takes as input structural features

(nanoparticle size and shape distributions) and outputs a real-

space 3D structure.

To use ML-CREASE to interpret scattering profiles, we

have to follow these steps:

(i) Identify relevant structural features.

(ii) Create 3D real-space representations of structures for

systematically varied values of the structural features; in this

work we uniformly sample structural features within relevant

pre-defined ranges.

(iii) Compute 1D scattering profiles for every 3D structural

representation generated in step (ii).

(iv) Train and test an ML model on the dataset of input

structural features and output 1D scattering profiles generated

in step (iii).

(v) Embed the trained ML model in the genetic algorithm

of the ML-CREASE method to identify sets of structural

features whose computed scattering profiles match the

experimental target.

2.2.1. Identifying relevant structural features

For the system of nanoparticles with dispersity in both

particle size and particle shape, two structural features are

required to describe the distribution of particle size (assuming

a normal distribution in particle size), and two structural

features are required to describe the distribution of particle

shape (assuming a normal distribution in particle shape).

Additionally, a structural feature is required to describe the

degree of packing in the nanoparticle system.

For the case where we assume that the nanoparticles are

spherical, with dispersity only in particle size, as discussed

above, only the mean and standard deviation of the radii, and

the volume fraction of nanoparticles in the system, are

required as structural features. For the case where we expect

dispersity in shape and size of the nanoparticles, we assume

the nanoparticles can be spheres or other non-spherical

ellipsoids. The volumetric radius of an ellipsoidal particle is
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Figure 2
(a) Representative 3D structure for a nanoparticle system with dispersity
only in particle size. (b) The probability density function (normal distri-
bution) of the volumetric radii of the nanoparticles for a system with
dispersity only in nanoparticle size. (c) The probability density function
(Dirac delta distribution) of the aspect ratio of the nanoparticles for a
system with dispersity only in nanoparticle size. (d) Representative 3D
structure for a nanoparticle system with dispersity in both particle size
and shape. (e) The probability density function (normal distribution) of
the volumetric radii of the nanoparticles for a system with dispersity in
both nanoparticle size and shape. ( f ) The probability density function
(normal distribution) of the aspect ratio of the nanoparticles for a system
with dispersity in both nanoparticle size and shape.

Figure 1
The three classes of experimental scattering profiles are manually labeled
as ‘strong’, ‘weak’ and ‘no’ profiles according to the presence or absence
of pronounced features (peaks) in that profile. Representative example of
a (a) ‘strong’ experimental profile, (b) ‘weak’ experimental profile and (c)
‘no’ experimental profile.



defined as the radius of a sphere that has the same volume as

the ellipsoidal particle (Akepati et al., 2024; Gupta &

Jayaraman, 2023). For a sphere, the volumetric radius and the

radius are interchangeable.

To define the shape of an ellipsoidal particle, one may

choose three mutually perpendicular semi-axial lengths a, b

and c. We assume that two of the three mutually perpendicular

semi-axial lengths are equal (a = b). This restricts the shape

anisotropy of the ellipsoids to be along one of the three semi-

axial lengths (c). As such, the aspect ratio (� = c/a) is used as a

structural feature to describe shape. For spheres, the value of

� = 1.

For both cases, we use the volume fraction (�), defined as a

ratio of the total volume of all the nanoparticles in the system

to the volume of the entire system, to describe the extent of

crowding among the nanoparticles in the system.

In summary, for a system of spherical nanoparticles with

dispersity only in particle size, the three structural features are

the mean volumetric radius (R�), the standard deviation of the

volumetric radii (R�) and the volume fraction (�). For a

system of nanoparticles with dispersity in both particle size

and shape, the five structural features include R�, R� and �, in

addition to the mean aspect ratio (��) and the standard

deviation of the aspect ratio (��).

2.2.2. Creating 3D structures for systematically varied values

of the structural features

The next step is to generate a dataset of 3D representations

for systematically varied values of structural features within

defined ranges. We use the CASGAP method (Gupta &

Jayaraman, 2023) to generate representative 3D structures

corresponding to desired values of mean and standard

deviation of radius and aspect ratio; the values of radius and

aspect ratio are sampled from the truncated normal distribu-

tion for this study. The range of structural features can be

defined by experiments (e.g. possible maximum and minimum

sizes of nanoparticles) and to some extent by preliminary

manual matching and sensitivity analysis procedures (e.g. to

identify how values of structural features affect the scattering

profile). For some examples of the manual matching analysis,

see Section S1 in the supporting information. For some

examples of the sensitivity analysis see Section S2.

For spherical nanoparticles with dispersity only in size, we

obtain predictions from ML-CREASE for all three (’strong’,

‘weak’ and ’no’) classes of scattering profiles. We generate

3000 structures of nanoparticles with polydispersity only in

size by systematically varying R�, R� and �. Fig. 3(a) depicts

the uniformly sampled values used to create these 3000

structures. R� was sampled in the ranges [5–20) Å, [20–100) Å

and [100–500) Å (1000 samples each). All values of R� were

sampled such that R�/R� was between 0 and 1. All values of �

were sampled from the range [0.05–0.15). We then use

CASGAP to generate 3D real-space structures for all sampled

values. The number of nanoparticles in a 3D structure

generated using CASGAP must be large enough to capture

the nanoparticle size and shape distributions well. At the same

time, the number of nanoparticles must not be so large that the

computation of scattering profiles [in step (iii) of the ML-

CREASE method] becomes too slow. To obtain a reasonably

sized 3D real-space structure that captures the size distribu-

tions of the spherical nanoparticles without requiring a

computationally exhaustive scattering computation, we use

three different box lengths to sample the 3000 real-space
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Figure 3
Structural features of the system [identified in step (i) of the ML-CREASE method] varied using a uniform distribution to generate 3D real-space
structural representations. (a) Histograms for mean volumetric radius (R�), standard deviation of the volumetric radii (R�/R�) and volume fraction (�)
show the distribution of each structural feature in the 3000 sets of structural features studied. 3D real-space structural representations that vary (b) only
in R�, (c) only in R�/R� and (d) only in �. Nanoparticles in (b–d) are color-coded with respect to their radii.
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structures of spherical nanoparticles with dispersity only in

particle size. For R� in the range [5, 20), [20, 100) and [100,

500) Å, the box length in CASGAP was set to 600, 3000 and

15000 Å, respectively. In Figs. 3(b)–3(d) we present a few

representative 3D structures.

We sample R�/R� from the range [0, 1) even though we find

(during sensitivity analysis) that the R� structural feature is

inconsequential to the computed scattering profile when it is

greater than 50% of R� (see Section S2 for details). This range

for R�/R� is chosen to make a one-to-one comparison between

the predictions from ML-CREASE and the predictions from

the lmfit analytical model for polydisperse spheres (Newville

et al., 2024). The lmfit model always predicts R�/R� greater

than 0.5 for the ‘no’ scattering profiles. The consequences of

including an unrestricted range for R�/R� on the predictions

of ML-CREASE are discussed in the results section.

For nanoparticles with dispersity in size and shape, we

restrict our analysis to the ‘strong’ and ‘weak’ classes of

experimental profiles. After the manual matching procedure

and sensitivity analysis, we generate another 3000 structures

with systematic variation in the five structural features – mean

volumetric radius (R�), standard deviation of the volumetric

radii (R�), mean aspect ratio (��), standard deviation of the

aspect ratio (��) and volume fraction (�). R� is sampled from

the range [20, 100) Å, R�/R� is sampled from the range

[0, 0.5), �� is sampled from the range [0.8, 4), ��/�� is sampled

from the range [0, 0.5) and � is varied in the range [0.05, 0.15).

A box length of 3000 Å is used in CASGAP to generate all 3D

representations for this case. The histogram in Fig. 4(a) depicts

the variation of the two additional structural features that

account for the dispersity in particle shape, mean aspect ratio

(��) and standard deviation of the aspect ratio (��). The

differences in the 3D representations as one of the structural

features is varied while the other four structural features are

held constant are shown in Figs. 4(b)–4(c).

2.2.3. Computing 1D scattering profiles from 3D real-space

structural representations

CASGAP outputs the coordinates and aspect ratios for

each nanoparticle into a format that is convenient for visua-

lization with programs such as OVITO (Stukowski, 2009).

Once the coordinates and aspect ratios for all 3D repre-

sentations have been collected, they can be used to calculate

the scattering profile using the scattering equation (Guinier,

1955; Glatter, 1979; Brisard & Levitz, 2013).

The computation of scattering profiles is much faster when

the complex scattering amplitudes [AcompðqÞ� are first

computed instead of directly computing the scattering inten-

sities [IcompðqÞ] using the Debye scattering equation (Akepati

et al., 2024; Brisard & Levitz, 2013). The equation we use to

calculate the complex scattering amplitudes of the nano-

particles is

AcompðqÞ ¼
XN

n¼1

��n�n fn qð Þ exp � iq � rnð Þ: ð1Þ

AcompðqÞ can be understood as the Fourier transform of the

scattering length density contrast (��n) of the nanoparticles.

fnðqÞ is the analytical form factor of the nanoparticles. For

ellipsoids, fnðqÞ can be calculated using the analytical form

factor expression reported in Pedersen’s tabulation of analy-

tical form factors (Pedersen, 1997). For a detailed explanation

of the analytical form factor expression for ellipsoids and its

implementation, we refer the reader to the work of Akepati et

al. (2024).

Box length corrections are applied to the computed scat-

tering amplitudes following the work of Brisard & Levitz

(2013). Once the box length corrections are applied to the

computed scattering amplitudes, the scattering intensities

[IcompðqÞ] of the nanoparticles can be computed in a

straightforward manner, as shown in equation (2) where � is

azimuthal angle:

Icomp qð Þ ¼
1

V
AcompðqÞ
�
�

�
�2

D E

�
: ð2Þ

Another advantage of computing the scattering profiles using

the complex amplitudes instead of the Debye scattering

equation (Cantor & Schimmel, 1980; Svergun et al., 2013) is

that the full 2D projection of the scattering profile (as is

measured experimentally) can be computed without azimu-

thal averaging. This becomes crucial for systems with orien-

tational anisotropy, where the 2D scattering profile contains

valuable information that could be lost through azimuthal

averaging. The Debye scattering equation, on the other hand,

can only compute azimuthally averaged scattering profiles. For
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Figure 4
Mean aspect ratio and standard deviation of aspect ratio are additional
structural features identified for nanoparticles with dispersity in both size
and shape, beyond the three structural features identified for nano-
particles with dispersity only in particle size. (a) Histograms for mean
aspect ratio (��) and standard deviation of the aspect ratio (��/��) show
the distribution of the two structural features in the 3000 sets of structural
features studied. (b) CASGAP-generated 3D representations that vary
only in the structural feature ��. (c) CASGAP-generated 3D repre-
sentations that vary only in the structural feature ��/��. Nanoparticles in
(b–c) are color-coded with respect to their aspect ratios.



this work, as we do not consider orientational anisotropy and

are working with 1D scattering data from experiments, we

average the scattering profiles azimuthally [h. . .i�, where � is

azimuthal angle in equation (2)] to obtain 1D scattering

profiles.

Using the methods above, we calculate the computed

scattering profiles for all the structures generated for each case

in the previous step.

2.2.4. ML model training to compute I(q) from the structural

features

To create a surrogate ML model that links structural

features to computed scattering profiles, we make use of the

datasets generated in steps (ii) and (iii). We choose the

eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin,

2016) surrogate ML model for use in ML-CREASE. Although

deep learning and neural networks are popular for image and

language processing applications, the XGBoost method is

generally known to work better for tabular data (Song et al.,

2020; Choi, 2019; Shwartz-Ziv & Armon, 2022). Furthermore,

conventional deep learning models exhibit limited capacity to

generate diverse structural solutions without extensive

training data (>104 samples), a requirement prohibitive for

many experimental scattering studies (Elasri et al., 2022;

Shrestha & Xie, 2023).

From our dataset containing 3000 sets of structural features

and the corresponding scattering profiles, we set aside 80% of

the dataset for training and 20% for testing. We repeat this

process for the datasets collected for the first case of spherical

nanoparticles with polydispersity in size and for the second
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Figure 5
(a) Pearson correlation matrix of the dataset generated for spherical nanoparticles with dispersity only in particle size. (b) Feature importance values
assigned by the XGBoost model from the training set for spherical nanoparticles with dispersity only in particle size. (c) Comparing the performance of
the XGBoost ML model on the training and test sets using the R2 and MSE metrics (spherical nanoparticles with dispersity in size). (d) Pearson
correlation matrix of the dataset generated for nanoparticles with dispersity in particle size and shape. (e) Feature importance values assigned by the
XGBoost ML model from the training set for nanoparticles with dispersity in particle size and shape. ( f ) Comparing the performance of the XGBoost
ML model on the training and test sets using the R2 and MSE metrics (nanoparticles with dispersity in size and shape).



case of nanoparticles with dispersity in both particle size and

particle shape; these lead to two distinct ML models for the

two cases. The training dataset for both cases is formatted into

a tabular form that includes the values of structural features,

the q value and the corresponding computed scattering

profiles [I(q)]. The training dataset for spherical nanoparticles

with dispersity only in size contains 2234400 rows (2400

training samples � 931 q values) and five columns [three

structural features, q and I(q) entries in every row]. The

training dataset for nanoparticles with dispersity in size and

shape also contains 2234400 rows (2400 training samples �

931 q values) and seven columns [five structural features, q

and I(q) entries in every row].

Using the respective tabular training sets, we employ

Bayesian optimization (Thebelt et al., 2022) to identify the

optimal set of hyperparameters for the XGBoost regressor.

During Bayesian optimization, the hyperparameters related to

the architecture of the decision trees in the XGBoost model

(e.g. learning rate, maximum depth of decision tress) are

optimized to minimize the cross-validation error while also

avoiding overfitting. The optimized hyperparameters for the

two XGBoost ML models are shown in Section S3. After

hyperparameter tuning, we train the two XGBoost ML models

on the two training sets for the two cases – spherical nano-

particles with dispersity only in particle size and nanoparticles

with dispersity in particle size and shape.

In Fig. 5(a), we show the Pearson correlation matrix

analyzed using the dataset from spherical nanoparticles with

dispersity only in particle size. The correlation matrix shows

the strongest correlation between the intensity value (I) and q;

this is not surprising as the scattering intensities are a function

of q by definition. The R�/R� structural feature shows the

weakest correlation with the intensity. As mentioned

previously, during sensitivity analysis we find that with

increasing values of R�/R� the scattering profiles become

increasingly featureless, and when R�/R� is larger than 0.5, the

effect on scattering profiles is minimal. Therefore, the weak

correlation in Fig. 5(a) between R�/R� and intensity is not

surprising. The importance assigned to the three structural

features (R�, R�/R� and �) and q by the trained XGBoost

model for the prediction of intensity is shown in the feature

importance plots in Fig. 5(b). In Fig. 5(c), the R2 and mean

squared error (MSE) scores are used to quantify the perfor-

mance of the XGBoost ML model on the training and test sets.

The R2 and MSE metrics for the training and test samples are

obtained by comparing the I(q) predictions of the XGBoost

ML model with the corresponding I(q) computed from the

scattering equation [step (iii) of the ML-CREASE method]

for that sample. The ‘Sample Index’ in Fig. 5(c) is not the same

as the ‘Sample ID’. The ‘Sample ID’ for the training and test

samples is chosen at random to obtain 2400 samples for

training and 600 samples for testing. ‘Sample Index’ is used in

Fig. 5(c) for the ease of differentiating the performance of the

XGBoost model on the training and test samples. The average

R2 and average MSE of the XGBoost ML model (for spherical

nanoparticles with dispersity only in particle size) during the

training and testing are sufficiently close, as shown in Table 1.

In Fig. 5(d), we show the Pearson correlation matrix

analyzed using the dataset from nanoparticles with dispersity

in size and shape. The correlation matrix once again shows the

strongest correlation between the intensity value I(q) and q, as

expected. The two additional structural features �� and ��/��,

which relate to the shape distribution of the nanoparticles,

show the weakest correlation with the intensity value, I(q).

This is because, in orientationally disordered systems with

many particles, the information related to the shapes of the

nanoparticles gets averaged out while computing the

ensemble-averaged 1D scattering profiles. This does not imply

that methods seeking to interpret 1D scattering profiles can

choose to ignore the shape-related information and assume

spherical nanoparticles. If anything, the averaging out of

shape-related information in 1D scattering profiles drives

scattering methods to consider multiple shapes and provide

the user with many/all interpretations of the input profile. The

feature importance assigned to the five structural features and

q by the trained XGBoost model for the prediction of the

intensity I(q) is shown in Fig. 5(e). In Fig. 5( f), the R2 and

MSE scores are used to quantify the performance of the

XGBoost ML model for the training and test samples. The

average R2 and average MSE of the XGBoost ML model (for

nanoparticles with dispersity in both particle size and shape)

during the training and testing are sufficiently close, as shown

in Table 1.

After training, the XGBoost ML model can take the

structural features (R�, R�/R� and �) and the q values as input

(in tabular form) and predict the corresponding scattering

intensity values [I(q)]. Analogously, the XGBoost ML model

for nanoparticles with dispersity in particle size and shape is

capable of taking the structural features (R�, R�/R�, ��, ��/��
and �) and the q values as an input (in tabular form) and

predicting the corresponding scattering intensity values [I(q)].

After establishing the forward mapping from structural

features to I(q) for the two cases, we move onto the next step

of the ML-CREASE method, which is using the genetic

algorithm (GA) optimization loop to identify sets of structural

features whose computed scattering profiles closely match the

input experimental profile.
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Table 1
Comparison of the average R2 and average MSE metrics during the
XGBoost ML model training and testing for the two cases: nanoparticles
with dispersity only in particle size and nanoparticles with dispersity in
both particle size and shape.

The average R2 and average MSE from the training sets are calculated from
the 2400 training samples. The average R2 and average MSE from the test sets
are calculated from the 600 test samples.

Dataset
Average R2

(training set)
Average R2

(test set)
Average MSE
(training set)

Average MSE
(test set)

Nanoparticles
with dispersity

only in particle
size

0.997 0.994 0.002 0.005

Nanoparticles
with dispersity
in both particle
size and shape

0.998 0.994 0.001 0.003



2.2.5. CREASE’s genetic algorithm (CREASE-GA)

With the ML model serving as a forward model linking

structural features to the computed scattering profile, one can

use a variety of optimization algorithms to solve the inverse

problem of identifying the structural features for a given

experimental scattering profile. We prefer the use of GAs in

CREASE as they identify multiple optimal solutions (sets of

structural features) for a given input scattering profile. By

incorporating the trained XGBoost ML model into the

CREASE-GA, the interpretation of the input scattering

profiles (1D) can be achieved in much less time.

There are various types of GAs, such as the continuous-

parameter GA and binary GA (Mitchell, 1998; Holland, 1992).

In our work, we use a continuous-parameter GA which is

better suited for the evolution of ‘genes’. In ML-CREASE,

each structural feature is mapped onto a ‘gene’ and the

complete set of structural features identified in step (i) of the

ML-CREASE method forms an ‘individual’. For the case of

spherical nanoparticles with dispersity in particle size, each

‘individual’ has an assigned value for the three structural

features. For the case of nanoparticles with dispersity in both

particle size and shape, each ‘individual’ has an assigned value

for five structural features. In both cases, the GA loop has 100

‘individuals’ in each ‘generation’.

For each individual, the XGBoost ML model takes as input

the values of the structural features and predicts the computed

scattering profile. The fitness of the individual is calculated on

the basis of how closely the computed scattering profile

matches the input experimental profile. We use the weighted

sum of log squared errors (SSE) as implemented by Wu &

Jayaraman (2022) to evaluate the fitness of each individual, as

shown below:

SSE ¼
XN

n¼1

wi log
IexpðqiÞ

fIcompðqiÞ þ c

" #( )2

; ð3Þ

where wi ¼ logðqi=qi� 1Þ. Since the experimental profile is in

arbitrary units, the computed scattering profiles predicted by

the XGBoost model need to be uniformly scaled by a factor f

during the fitness evaluation. In addition, experimental

profiles obtained through background subtraction can have

minor uncertainties. We use the parameter c to capture these

uncertainties due to background subtraction. The values for f

and c for a GA individual are obtained such that they mini-

mize the SSE between the computed scattering profile for that

individual and the experimental profile.

If the value of SSE is high, it implies a poor match and low

fitness; alternatively, a low value of SSE denotes a good match

and a high fitness for that individual. In each iteration of the

CREASE-GA, the fitness of the 100 individuals in the

generation is evaluated and the individuals are ranked

according to their fitness. The 100 individuals for the next

generation are obtained by the single-point crossover and

adaptive mutation operations. The top 30 individuals ranked

according to their fitness by the CREASE-GA (‘parents’) are

randomly paired to obtain 70 new individuals (‘children’) for

the next generation. From this new generation composed of

‘parents’ and ‘children’, the top two best-performing indivi-

duals (‘elites’) are retained as is for the next generation, the

other 98 individuals undergoing an adaptive mutation opera-

tion. The adaptive mutation operation is necessary to ensure

that the CREASE-GA does not converge quickly to a local

minimum. For more details about the crossover and adaptive

mutation operations in the context of ML-CREASE, we refer

the reader to previous publications on CREASE (Beltran-

Villegas et al., 2019; Wu & Jayaraman, 2022; Akepati et al.,

2024). Finally, CREASE-GA converges when a generation is

composed of individuals with similar fitness values. After

analyzing the composition of individuals in successive

generations, we conclude that 200 generations of the GA are

sufficient to obtain convergence (see Section S4).

Another advantage of using GAs is that the final generation

of individuals from ML-CREASE can be used to obtain a

distribution of the identified values for every structural

feature. We include or exclude an individual from the final

identification of structural features and their ranges depending

on how closely the computed scattering profile for that indi-

vidual matches the input experimental profile. We enforce the

following fitness criterion for the selection of individuals

(shown below):

ðSSEÞ
acc
ind < 10� ðSSEÞ

best
ind : ð4Þ

The individual with the best fitness has the lowest SSE

[ðSSEÞbest
ind ]. In both cases, all of the individuals included in

identifying a range of structural features from ML-CREASE

have an SSE [ðSSEÞacc
ind] less than ten times that of the SSE for

the best-performing individual [ðSSEÞbest
ind ]. This fitness of the

accepted individuals is a parameter in the CREASE-GA

Python script and can be set to the desired value by the user.

Next, we describe in silico tests to ensure that ML-

CREASE is working as expected and then use ML-CREASE

to obtain distributions of size and shape from the 1D SAXS

profiles.

3. Results

3.1. In silico inputs to validate the ML-CREASE approach

We take 600 test samples whose scattering profiles are not

used in the ML model training and provide them as an input to

ML-CREASE. At the end of the CREASE-GA run for each

test sample, the best-ranked structural features of the final

generation are selected and compared with the original

structural features of that test sample. After this procedure is

completed for all 600 test samples, we use a parity plot to

compare the original values for each structural feature with

the predictions from ML-CREASE. Both the ML-CREASE

predictions and the original structural features are non-

dimensionalized in the cross plots; a value of zero indicates the

minimum value and one indicates the maximum value of that

structural feature.

For spherical nanoparticles with dispersity only in particle

size, the in silico test for the three structural features – R�,
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R�/R� and � – is shown in Fig. 6. The mean volumetric radius

[Fig. 6(a)] and the volume fraction [Fig. 6(c)] are color-coded

with respect to the standard deviation of the volumetric radii

(expressed as a fraction of the mean volumetric radius, R�/R�)

to understand the role of dispersity in the performance of ML-

CREASE (in the prediction of particle size and volume

fraction). The standard deviation of the volumetric radii [Fig.

6(b)] is color-coded with respect to the mean volumetric radius

to understand the effect of the particle size on the perfor-

mance of ML-CREASE (in the prediction of size dispersity).

The ML-CREASE predicted R� is in good agreement with

the original R� value when R�/R� is less than 0.5; the same

trend is also observed when comparing ML-CREASE

predicted and original values for R�/R�. When R�/R� is

greater than 0.5, the ML-CREASE predictions deviate from

the original, regardless of the value of R� of the system.

During the sensitivity analysis procedure, we find that the R�/

R� structural feature no longer influences the scattering

intensities when it is greater than 0.5 (see Section S2). Hence

the scatter in the ML-CREASE predictions for R�/R� when

the original R�/R� is greater than 0.5 is to be expected. We

conclude, from these results, that it is impossible for the

CREASE-GA to correctly interpret the standard deviation of

the volumetric radii when it is greater than 0.5 times the mean

volumetric radius.

On the basis of the results for spherical nanoparticles (Fig.

6) with dispersity only in particle size, we restrict the ranges of

R�/R� and ��/�� to [0–0.5) for the analysis of nanoparticles

with dispersity in both size and shape. The ML-CREASE

predicted structural features for systems of nanoparticles with

dispersity in both size and shape are compared with the

original structural feature values in Fig. 7. The ML-CREASE

predictions of R� and � are color-coded with respect to ��/��
for us to understand the effect of particle shapes on the quality

of the ML-CREASE predictions. Analogously, the predicted

values of �� are color-coded with respect to R� to understand

the effect of particle size on the ML-CREASE predictions.

The ML-CREASE predictions for R� and � compare well

with their original values, as shown in Figs. 7(a) and 7(b),

respectively. Fig. 7(a) indicates a correlation between the

deviations in the ML-CREASE predicted R� and the original

mean aspect ratio (��) of the nanoparticle system. The best-

performing ML-CREASE individual predicts a lower R� than

the original for nanoparticle systems with a high aspect ratio

and a higher R� than the original for nanoparticle systems

with a low aspect ratio. We attribute this systematic trend as a

consequence of defining an effective sphere radius (volumetric

radius) for ellipsoidal particles. We use the volumetric radius

(effective sphere radius) due to its intuitive definition. We

conclude the systematic trend is not significant, since the
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Figure 7
Validation of ML-CREASE using in silico tests for nanoparticles with dispersity in both size and shape. All values for structural features (R�, � and ��)
shown in (a–c) are non-dimensionalized from [0–1], with 0 representing the minimum value of the structural features in the 600 test samples and 1
representing the maximum value of the structural features in the 600 test samples. (a) CREASE predictions for R� compared with the original value of
R� for the 600 test samples. The data points are color-coded with respect to ��. (b) CREASE predictions for � compared with the original value of � for
the 600 test samples. The data points are color-coded with respect to ��. (c) CREASE predictions for �� compared with the original value of �� for the
600 test samples. The data points are color-coded with respect to R�.

Figure 6
Validation of ML-CREASE using in silico tests for spherical nanoparticles with dispersity only in size. All values for structural features (R�, R�/R� and
�) shown in (a–c) are non-dimensionalized from [0–1], with 0 representing the minimum value of the structural features in the 600 test samples and 1
representing the maximum value of the structural features in the 600 test samples. (a) CREASE predictions for R� compared with the original value of
R� for the 600 test samples. The data points are color-coded with respect to R�/R�. (b) CREASE predictions for R�/R� compared with the original value
of R�/R� for the 600 test samples. The data points are color-coded with respect to R�. (c) CREASE predictions for � compared with the original value of
� for the 600 test samples. The data points are color-coded with respect to R�/R�.



agreement between the R� of the best-performing ML-

CREASE individual and the original R� is good for the range

of aspect ratios considered in our work. The ML-CREASE

predictions for �� do not compare well with their original

values [Fig. 7(c)] which is expected considering the low

correlation between the �� structural feature and the intensity

values I(q) obtained during the ML model training [Fig. 5(d)].

As discussed before, in the absence of orientational and

positional order (as in amorphous liquid or non-crystalline

materials), the information about the shapes of the nano-

particles can be averaged out in the scattering measurement.

For results of the in silico tests for R�/R� and ��/�� see

Section S5. Since the range of R�/R� is restricted to [0, 0.5) for

nanoparticles with dispersity in size and shape, the ML-

CREASE predicted R�/R� compares well with the original R�/

R�. ML-CREASE predictions for ��/�� do not compare well

with the original ��/��; this is expected as we find during the

ML model training that there is no correlation between ��/��
and intensity values I(q) [Fig. 5(d)].

In our in silico test, we are only comparing the predicted

values from ML-CREASE’s best-ranked individual with the

original values; thus, the deviation between the ML-CREASE

predictions and the original values of �� is to be expected.

Next, we analyze the variability in the ML-CREASE predic-

tions among the individuals in the last ‘converged’ generation

of the GA loop. The variability in the ML-CREASE predic-

tions between the 100 CREASE-GA individuals is analyzed in

Section S6. The deviation in R� of a CREASE-GA individual

from the R� of the best-performing CREASE-GA individual

gets larger as the individual is ranked lower. The R� value

reaches its extrema for the worst-performing GA individuals.

The variability in �� between the CREASE-GA individuals

does not follow the same pattern. The �� value frequently

reaches its extrema for individuals ranked in the top half by

CREASE-GA. Hence the analysis of variability between the

GA individuals suggests that ML-CREASE can identify

multiple nanoparticle systems with disparate shapes as

possible solutions to an input scattering profile.

On the basis of the in silico tests of ML-CREASE with only

particle size dispersity, particularly the in silico tests for R�/R�,

we expect good agreement between the predictions from ML-

CREASE and those from the lmfit analytical model when the

dispersity in nanoparticle size is low. We expect a disagree-

ment between the predictions from ML-CREASE and those

from the lmfit analytical model when the dispersity in the

nanoparticle size is high. For the case of nanoparticles with

dispersity in both size and shape, from the variability analysis

(Section S6) for ��, we expect ML-CREASE to be able to

identify nanoparticle systems with distinct shape distributions

for the input experimental profiles.

3.2. Interpretation of SAXS profiles

First, the 30 SAXS profiles – ten profiles each for the

‘strong’, ‘weak’ and ‘no’ classes – are input to ML-CREASE

by assuming spherical nanoparticles with dispersity only in

particle size. In Figs. 8(a) and 8(b) we compare the ML-

CREASE identified R� and R�/R� values with the predictions

from the lmfit analytical model for polydisperse spheres

(Newville et al., 2024). In Fig. 8(a), the ML-CREASE

predictions for R� agree with the analytical model (poly-

disperse spheres) for the ‘strong’ profiles and ‘weak’ profiles.

However, in contrast, the ‘no’ profiles do not agree for most

cases. This is not surprising as the dispersity in size and shape

is likely what gave rise to the lack of peaks in the scattering

profiles for the ‘no’ class, as partly confirmed in the next figure.

In Fig. 8(b), the ML-CREASE predictions for R�/R� from the

‘strong’, ‘weak’ and ‘no’ profiles are clustered. The R�/R�
values identified by ML-CREASE for ‘strong’ profiles are the

lowest. The R�/R� values identified by ML-CREASE for the

‘weak’ profiles are higher than those values identified for the

‘strong’ profiles and are generally lower than those values

identified by ML-CREASE for the ‘no’ profiles. The R�/R�
values identified by ML-CREASE for the ‘no’ profiles are

generally the highest, supporting our reasoning for why the

mean radius values are not in agreement with the analytical

model.

We note that the results shown here correspond to a trun-

cated normal distribution of the size dispersity in the spherical

nanoparticles. It is straightforward to adapt the ML-CREASE

method for different kinds of distributions to model dispersity.

This is demonstrated in Section S7 by analyzing the dispersity

in the spherical nanoparticles using a log-normal distribution.

In comparison with analytical models, there are some

unique advantages of ML-CREASE. In particular, the ML-

CREASE predictions have error bars associated with them.

These denote the range of variation for a particular structural

feature within the GA individuals that pass the acceptance

criterion [shown in equation (4)] in the final generation of the

CREASE-GA output. In Fig. 8(c) the computed scattering

profile for the best-performing CREASE individual is

compared with the experimental data for one representative

case each of the ‘strong’, ‘weak’ and ‘no’ profiles. The shaded

regions around the CREASE predictions represent the stan-

dard deviation between the ML-CREASE predicted I(q)s for

the GA individuals that pass the fitness criterion [equation

(4)]. Hence, the use of GAs in ML-CREASE allows for the

quantification of uncertainty in the interpretation of small-

angle scattering data. For a comparison of the predicted I(q)s

and the interpreted features between ML-CREASE and

analytical models, see Section S8.

Next, we interpret experimental scattering profiles by

allowing for dispersity in particle shape in addition to particle

size. Distributions of aspect ratios of ellipsoids are usually

represented using the Cauchy or Lorentz distributions (Pabst

& Berthold, 2007; Lai & Balakrishnan, 2009). Since the gold

nanoparticles synthesized for this work are orientationally and

positionally disordered, the information about the shape

distribution of the nanoparticles gets averaged out. Hence, we

choose to model the aspect ratios of the nanoparticles with the

better understood normal distribution instead of the Cauchy

or Lorentz distributions. We explain the adaptation of ML-

CREASE to different kinds of distributions using an example

in Section S7. Users can follow a similar procedure to adapt
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ML-CREASE for more detailed structural feature distribu-

tions, where necessary.

As discussed previously, we restricted the R� and ��
structural features to the ranges [0, 0.5) of R� and ��,

respectively, while developing the ML-CREASE method for

nanoparticles with dispersity in both size and shape. Since the

ML-CREASE identified R�/R� for the ‘no’ experimental

profiles are generally greater than 0.5 [Fig. 8(b)] when

assuming spherical nanoparticles with dispersity only in

particle size, we ignore the ‘no’ profiles for this analysis and

only analyze the ‘strong’ and ‘weak’ profiles for the case of

nanoparticles with dispersity in both size and shape.

All the ‘strong’, ‘weak’ and ‘no’ experimental profiles used

in this study are shown in Section S9. The predictions from

ML-CREASE for nanoparticles with dispersity in both

particle size and shape are compared with the ML-CREASE

predictions for spherical nanoparticles in Fig. 9.

The values of the structural features predicted by ML-

CREASE for the ten samples in ‘strong’ and ten samples in

‘weak’ classes are shown in Figs. 9(a) and 9(b), respectively.

For six out of the 20 experimental profiles analyzed, the ML-

CREASE method with dispersity in both shape and size

predicts sphere-like nanoparticles (�� close to 1.0). This

indicates that the synthesized nanoparticles in these cases may

indeed be composed largely of sphere-like particles; these

samples can be found where the pink and green symbols

overlap in Fig. 9(a) and the purple and orange symbols overlap

in Fig. 9(b), showing a value of �� of 1.0. For the other 14

experimental profiles, the ML-CREASE method with disper-

sity in both shape and size shows that the �� is higher than 1.0.

Interestingly, the R� values identified by the ML-CREASE

method for nanoparticles with dispersity in both size and

shape are always lower than the R� predictions from ML-

CREASE for spherical nanoparticles. This implies that when

there is dispersity in shape the particle size dispersity is likely

to be smaller than if we assumed all particles are spheres. This

indicates that shape dispersity is also a viable interpretation

for explaining the different classes of experimental profiles. In

Section S10 we compare all the fitness values of the best

individuals for the two cases – the spherical particles with

dispersity in size and the particles with shape and size

dispersity. For the 14 experimental profiles for which the two

cases have dissimilar predictions for the mean aspect ratio of

the nanoparticles, the comparison of the fitness between the

two cases shows that accounting for shape dispersity in addi-

tion to size dispersity always improves the fitness of the best-

performing GA individual. For the six experimental profiles

for which the two cases have similar predictions for the mean

aspect ratio of the nanoparticles, the fitness of the best-

performing GA individuals from the two cases is also similar.
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Figure 8
Comparison of ML-CREASE identified structural features from experimental scattering profiles of nanoparticles with the predictions from the lmfit
analytical model (nanoparticles only have dispersity in particle size). The range of variation for the structural features R� and R�/R� in the last
generation of the GA individuals is shown in (a) and (b), respectively. Symbols in (a) and (b) represent the ML-CREASE identified structural features
with the best fitness for the ‘strong’ (blue circles), ‘weak’ (red squares) and ‘no’ (black triangles) experimental profiles. (c) The scattering profiles
predicted by the XGBoost ML model for the selected GA individuals [that pass the fitness criterion shown in equation (4)] are compared with an
experimental scattering profile for representative cases of the ‘strong’ (blue), ‘weak’ (red) and ‘no’ (black) profiles. Solid lines are the ML-CREASE
predictions for the individuals with the best fitness, shaded regions are the standard deviation in I(q) from the ML-CREASE predictions for the selected
GA individuals, and symbols are the experimental data.



Additionally, in Section S11, TEM images are reported

along with their corresponding SAXS profiles for one repre-

sentative case each from the ‘strong’, ‘weak’ and ‘no’ classes.

The TEM images show the lowest size and shape dispersity for

the ‘strong’ profile, moderate size and shape dispersity for the

‘weak’ profile, and the highest size and shape dispersity for the

‘no’ profile. The TEM results are in good qualitative agree-

ment with the ML-CREASE interpreted structural features

from the corresponding scattering profiles.

4. Conclusions

In summary, citrate-stabilized gold nanoparticles were

synthesized using an automated fluidic platform, and subse-

quently subjected to synchrotron-based in situ SAXS char-

acterization. The data from these measurements produced

three classes of SAXS profiles that were hand-labeled as

‘strong’, ‘weak’ and ‘no’ based on the presence or absence of

features (peaks) in that profile. We then extended the ML-

CREASE method to identify (a) the size dispersity of sphe-

rical nanoparticles and (b) the size and shape dispersity of

nanoparticles. For the assumption of spherical nanoparticles

with size dispersity [case (a)], the predictions from ML-

CREASE were compared with the predictions from the lmfit

analytical model. The ML-CREASE predictions agreed with

the predictions from the lmfit model for ‘strong’ profiles, but

the agreement worsened going from ‘weak’ profiles to ‘no’

profiles. Given that the approximations in analytical models

become weaker with increasing polydispersity, the disagree-

ments between ML-CREASE and the lmfit analytical model

for the ‘weak’ and ‘no’ profiles were expected. When we

repeated the five steps to extend ML-CREASE to identify

dispersity in both size and shape of the nanoparticles (spheres

to ellipsoids), the results suggested that the system has both

spheres and aspherical (ellipsoidal) particles. For six out of the

20 SAXS profiles, both case (a) and case (b) results confirmed

the presence of spheres only. For the remaining 14 SAXS

profiles, ML-CREASE predictions from case (b) suggest that

the particles are not all spherical; when the predicted disper-

sity in shape was high the dispersity in size was low. For these

14 SAXS profiles, the computed scattering profiles for the

predicted CREASE structures from case (b) showed a better

match to the input SAXS profile than the predicted structures

from case (a).

The power of ML-CREASE is evident in the analysis of

systems that exhibit dispersity in size and shape which usually

result in featureless (i.e. broadened or flattened peaks) scat-

tering profiles. Such systems with dispersity are often hard to

analyze with analytical models. The capability of the ML-

CREASE method to identify the size and shape distributions

of nanoparticles without a priori knowledge is particularly

consequential when such information is hard to obtain using

imaging techniques. The use of a GA in ML-CREASE also

allows for the identification of a range of structural features

that describe the size and shape distributions of nanoparticles

for an input SAXS profile.
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Figure 9
Comparison of ML-CREASE identified structural features for nanoparticles with dispersity only in particle size with the ML-CREASE identified
structural features for nanoparticles with dispersity in both size and shape. (a) Comparison of ML-CREASE identified structural features for ‘strong’
experimental profiles. ML-CREASE identified structural features for spherical nanoparticles with dispersity only in particle size are shown as circles
(green), ML-CREASE identified structural features for nanoparticles with dispersity in both size and shape are shown as diamonds (magenta). (b)
Comparison of ML-CREASE identified structural features for ‘weak’ experimental profiles. ML-CREASE identified structural features for spherical
nanoparticles with dispersity only in particle size are shown as circles (purple), ML-CREASE identified structural features for nanoparticles with
dispersity in both size and shape are shown as diamonds (orange).
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Front. Mater. 9, 956839.

Rodrı́guez-Ruiz, I., Radajewski, D., Charton, S., Phamvan, N.,
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