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We use machine learning (ML) enhanced computational reverse engineering
analysis of scattering experiments (CREASE) to interpret small-angle X-ray
scattering (SAXS) data obtained from a system of nanoparticles without a priori
knowledge of their exact shapes (e.g. spheres or ellipsoids), sizes (0.5-50 nm)
and distributions. The SAXS measurements yielded three categories of scat-
tering profiles exhibiting ‘strong’, ‘weak’ and ‘no’ features. Diminishing features
(e.g. broadening or disappearing peaks) in scattering profiles have always been
attributed to the presence of significant dispersity in the system. Such featureless
SAXS data are not suitable for traditional analysis using analytical models. If
one were to fit a relevant analytical model (e.g. the /mfit analytical model for
polydisperse spheres) to these ‘weak’ and ‘no’ SAXS profiles from our nano-
particle systems, one would obtain non-unique interpretations of the data.
Relying on electron microscopy to identify the distributions of nanoparticle
shapes and sizes is also unfeasible, especially in high-throughput synthesis and
characterization loops. In such situations, to identify the distributions of particle
sizes and shapes that could be present in the sample, one must rely on methods
like ML-CREASE to interpret the data quickly and output all relevant inter-
pretations about the structure present in the system. The ML-CREASE opti-
mization loop takes the experimental scattering profile as input and outputs
multiple candidate solutions whose computed scattering profiles match the
SAXS profile input. The ML-CREASE method outputs distributions of relevant
structural features, such as the volume fraction of the nanoparticles in the
system and the mean and standard deviation of the particle size and aspect ratio,
assuming a type of distribution (e.g. normal, log-normal) for size and aspect
ratio. We find that, for the SAXS profiles analyzed here, accounting for the
shape dispersity along with size dispersity of the nanoparticles using ML-
CREASE improved the match between the computed scattering profiles and
input experimental profiles.

1. Introduction

Advances in particle synthesis methods have led to the
availability of nanoparticles in a variety of shapes (Glotzer &
Solomon, 2007). A few notable examples include the thin film
stretching method (Ho et al, 1993) to produce ellipsoidal
particles, achieving aspect ratios between two and five, and
the particle replication in non-wetting templates or PRINT
method (Rolland et al., 2005) to produce disc-like and rod-
like nanoparticles (Kinnear et al., 2017; Liu et al., 2022).
Compared with spherical nanoparticles, anisotropy in particle
shape provides additional degrees of freedom for tuning the
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interactions between the nanoparticles and their targets, which
can then be leveraged in various applications, e.g. drug
delivery (Shi et al., 2017; Beach et al., 2024), energy harvesting
(Thorkelsson et al., 2015) and chemical sensing (Zheng et al.,
2021). Shape anisotropy can also be used for directing
assembly into complex structures with spatial arrangements
for use in applications requiring certain optical and photonic
properties (Wu & Pauly, 2022; Wang et al., 2020). Advances in
particle synthesis methods have increased the need for
improved characterization techniques that identify the shapes
and sizes of nanoparticles more accurately. Most researchers
rely on microscopy techniques, e.g. transmission electron
microscopy (TEM) (Carter & Williams, 2016; Fultz & Howe,
2012), scanning electron microscopy (SEM) (Goldstein et al.,
2017; Ul-Hamid, 2018) and atomic force microscopy (Voigt-
lander, 2019; Eaton & West, 2010), or scattering techniques,
e.g. small-angle X-ray scattering (SAXS) (Lindner & Ober-
disse, 2024; Narayanan et al., 2017), to identify the size and
shape distributions of nanoparticles (Modena et al., 2019;
Mourdikoudis et al., 2018). Although microscopy techniques
(SEM and TEM) provide high-resolution scans of the nano-
particles, these 2D images lack depth-related information (Li
et al.,2016; Dawadi et al., 2021) and sample preparation can be
tedious, making it less practical in high-throughput automated
synthesis and characterization loops. On the other hand,
scattering techniques measure the ensemble-averaged infor-
mation about the structure across multiple length scales and
are also amenable to high-throughput automation loops
(Quek et al., 2023; Dyer et al., 2014; Rodriguez-Ruiz et al.,
2017).

While scattering techniques are suitable for high-
throughput characterization, the interpretation of scattering
data can be non-trivial (Jeffries et al., 2021; Yager et al., 2023).
Structural information obtained through scattering techniques
is in reciprocal space (i.e. the intensity of the scattered wave
versus the magnitude of the wavevector). Interpreting these
data generally requires analytical model fitting, computational
methods and/or machine learning algorithms. In analytical
model fitting, the user selects relevant theoretical models, e.g.
the hard sphere (Blum & Stell, 1979; Salacuse & Stell, 1982) or
sticky hard sphere models (Menon et al., 1991), to fit experi-
mental data by finding model parameters that minimize the
difference between the experimental scattering profile and the
analytical model. Analytical models for traditional geometries
of soft materials and their assemblies have been collated into
user-friendly packages such as SASfir (BreBler ef al., 2015),
Irena (Ilavsky & Jemian, 2009), McSAS (Bressler et al., 2015)
and ATSAS (Petoukhov et al., 2012; Manalastas-Cantos et al.,
2021; Franke et al., 2025). Other model-agnostic methods
include Guinier analysis, which is used to determine the radius
of gyration of particles in a sample by plotting the logarithm of
the scattering intensity against the square of the magnitude of
the scattering vector (Guinier, 1955). Similarly, Porod analysis
(Porod, 1951), applied to the high-g region of the scattering
profile, provides information about the surface area and
interface roughness of the particles (Schmidt, 1988). Users can
also use Fourier transform methods to convert scattering data

from reciprocal space to real space, providing direct infor-
mation about the size and shape of the scattering objects
(Schmidt-Rohr, 2007; Roding et al., 2022). Computational
methods like reverse Monte Carlo (RMC) (McGreevy &
Pusztai, 1988) simulations have also been used to iterate
towards structures whose computed scattering patterns match
the experimental data (McGreevy, 1995; McGreevy, 2001).
Studies that utilize the RMC technique for the interpretation
of scattering profiles include the analysis of ultra-small-angle
scattering data to obtain the representative 3D configurations
of silica nanoparticles in a rubber matrix (Hagita et al., 2018),
analysis of 2D small-angle scattering data to obtain the
representative 3D configurations and orientations of magnetic
nanoparticles (Barnsley et al., 2022), analysis of X-ray scat-
tering data to obtain atomistic configurations of liquid
mercury near its critical point (Hagita er al, 2010), and
analysis of neutron scattering data to obtain representative 3D
configurations of polymer grafted nanoparticles using the
MONSA program for RMC (Luo et al., 2018). RMC alleviates
some of the drawbacks of analytical model fits by providing a
representative 3D structure as an output but suffers from low
computational efficiency when the density of soft materials or
their assemblies is expected to be high.

To accelerate and potentially automate the interpretation of
scattering profiles, researchers have begun to turn to machine
learning (ML) methods; we encourage readers to consult the
references cited in the recent review articles on this topic
(Anker et al., 2023; Lu & Jayaraman, 2024). One such method
is the ML enhanced computational reverse engineering
analysis of scattering experiments (ML-CREASE) which has
been successfully used to interpret structures from scattering
profiles for a variety of materials — polymer solutions (Wu &
Jayaraman, 2022; Ye et al., 2021; Wessels & Jayaraman, 2021b;
Beltran-Villegas et al., 2019), surfactant-coated particles (Heil
et al., 2023a), nanoparticle mixtures (Heil et al., 2023b; Heil et
al., 2022; Heil & Jayaraman, 2021), biomolecular networks
(Lee et al., 2020) and dipeptide solutions (Gupta et al., 2025).
In many of these cases, traditional analytical model fits had
failed either because the models available were too approx-
imate for the system at hand or because the material’s struc-
ture had significant dispersity in dimensions for which the
analytical models perform poorly. While earlier implementa-
tions of CREASE were used to analyze azimuthally averaged
scattering profiles, recent extension of this method has led to
the CREASE-2D method, which interprets the entire 2D
scattering profiles without any azimuthal angle averaging to
assess the extent of structural anisotropy in addition to other
relevant information about the structure (Akepati et al., 2024;
Gupta et al., 2025).

ML-CREASE’s interpretation of the scattering profiles
provides a detailed understanding of the form and structure of
the assembled materials as distributions of mathematical
parameters that describe relevant structural features. ML-
CREASE also provides as output representative 3D real-
space structures for various structural features which in turn
can be used for other analyses (e.g. structure-induced property
calculation) (Heil et al., 2023b; Patil et al., 2022a; Patil et al.,
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2022b). This would be impossible with analytical models that
do not provide real-space candidate 3D structures. While
RMC simulations can also provide 3D structures as output, in
that approach the user is optimizing one real-space structural
configuration at a time, which can lead to a single locally
optimized (perhaps not globally optimized) 3D representation
as the interpretation. The use of genetic algorithms in the ML-
CREASE approach provides multiple possible structural
interpretations of the scattering profiles (i.e. degenerate
solutions) (e.g. Lee et al., 2020; Wessels & Jayaraman, 2021a).
These multiple real-space structural interpretations can then
be compared with information from other measurements
(structure, property) or molecular simulations to identify
which of the multiple answers that ML-CREASE outputs are
physically possible and which are numerically correct but
unphysical.

In this work, we use the ML-CREASE method to analyze
the distribution of sizes and shapes of gold nanoparticles from
azimuthally averaged 1D SAXS profiles. Gold nanoparticles
were synthesized using an automated fluidic platform based
on the Turkevich method (Wuithschick er al, 2015) and
subsequently characterized in situ by SAXS to probe their
nanoscale morphology at the National Synchrotron Light
Source IT (NSLS-II) at Brookhaven National Laboratory. The
resulting nanoparticle SAXS profiles were then classified into
distinct categories based on the presence or absence of
pronounced features (peaks) as ‘strong’, ‘weak’ and ‘no’
profiles. In our work presented in this paper, we find that the
ML-CREASE method is capable of predicting the size and
shape distributions of nanoparticles even when the scattering
profiles lack any pronounced features; as noted before, the
analysis of such featureless scattering profiles has proven
difficult with traditional fitting approaches using analytical
models. The predictions from ML-CREASE include the
extent of dispersity in sizes (e.g. spherical volume radius) as
well as dispersity in shapes (aspect ratio) ranging from
spherical (aspect ratio ~1.0) to ellipsoidal (mean aspect ratio
>1.0). Our results also suggest that selecting analytical models
assuming all the nanoparticles are spherical is too restrictive
and including shape dispersity leads to improvement in fits to
SAXS profiles. This work shows the power of the ML-
CREASE method to predict the distributions in sizes and
shapes of nanoparticles from their 1D scattering profiles
without a priori knowledge of the shape and size distributions,
which are only accessible via imaging techniques that are
incompatible with high-throughput SAXS characterization.

The article is structured as follows. First, the synthesis of
nanoparticles, SAXS characterization and steps involved in
ML-CREASE are presented in Section 2. Next, the distribu-
tions of nanoparticle shapes and sizes predicted by the ML-
CREASE approach for the SAXS inputs are discussed in
Section 3. Finally, in Section 4 we conclude by summarizing
the capabilities of the ML-CREASE method and how it can
be broadly applied to problems within the community. All
code used in this work is hosted on GitHub (https://github.
com/arthijayaraman-lab/CREASE_Size_Shape_Dispersity)
and is freely available for use by the scientific community.

2. Methods
2.1. Experiments
2.1.1. Materials and preparation of gold nanoparticles

Sodium citrate (NCit), hydrogen chloride (HCI), sodium
hydroxide (NaOH), Tween 20 and chloroauric acid (HAu)
were purchased from Sigma-Aldrich, and used as received
without further purification. Reagent solutions — 16 mM NCit,
0.01 wt% Tween in deionized water, 10 mM HCI, 10 mM
NaOH and 2 mM HAu - were precisely injected using auto-
mated syringes (precision <1 pL) through selection valves into
the main flow path, before undergoing well mixing by static
mixer. The reaction was conducted at 100°C, and the as-
synthesized products were analyzed after 10 min of reaction
time.

2.1.2. Protocol for small-angle scattering experiments

Samples containing nanoparticles in solution were
subjected to SAXS characterization at the Soft Matter Inter-
faces (SMI, 12-ID) and Complex Materials Scattering (CMS,
11-BM) beamlines at NSLS-II. At the SMI beamline, SAXS
data were collected using a beam energy of 16.1 keV and beam
size of 200 x 30 pm with a Pilatus 1M area detector (Dectris,
Switzerland). The detector, consisting of 0.172 mm square
pixels in a 981 x 1043 array, was placed 5 m downstream from
the sample position. At the CMS beamline, SAXS data were
collected using a beam energy of 13.5 keV and beam size of
200 x 200 pm with a Pilatus 2M area detector (Dectris, Swit-
zerland). The detector, comprising 0.172 mm square pixels in a
1475 x 1679 array, was positioned 5 m downstream from the
sample. Scattering patterns from each detector angle were
stitched together using custom-developed software. Typical
exposure times were 1 s at the SMI beamline and 15 s at the
CMS beamline. The 2D SAXS patterns, collected continuously
during synthesis, were reduced to 1D scattering intensity, 1(q),
through real-time circular averaging. Here, g represents the
wavevector transfer, ¢ = (47/A) sin(f), where A = 0.77 A is the
X-ray wavelength and 26 is the scattering angle. Scattering
angles were calibrated using silver behenate as the standard.

2.1.3. Description of the SAXS data

The scattering intensities were azimuthally averaged after
background subtraction to obtain a total of 30 profiles with
1(g) as a function of ¢ in the range of [0.02-0.18] A~". On the
basis of the presence or absence of characteristic peaks
(features) in these profiles, the 30 scattering profiles are
manually classified as profiles with ‘strong’, ‘weak’ and ‘no’
features. Representative examples of the ‘strong’, ‘weak’ and
‘no’ scattering profiles are shown in Fig. 1.

2.2. ML-CREASE

Taking one SAXS profile at a time as input, we aim to
identify the corresponding shape and size distributions for the
nanoparticles in the system via the ML-CREASE method.

We first assume that all nanoparticles are spherical [Figs.
2(a)-2(c)] with dispersity in size. In this case, the output from
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Figure 1

The three classes of experimental scattering profiles are manually labeled
as ‘strong’, ‘weak’ and ‘no’ profiles according to the presence or absence
of pronounced features (peaks) in that profile. Representative example of
a (a) ‘strong’ experimental profile, (b) ‘weak’ experimental profile and (c)
‘no’ experimental profile.

our analysis using ML-CREASE will be the mean and stan-
dard deviation for the radii of the spherical nanoparticles
(assuming a normal distribution). Next, we relax the spherical
assumption and expect dispersity in both particle size and
particle shape [Figs. 2(d)-2(f)]. In this case, the output from
our analysis using ML-CREASE will be the mean and stan-
dard deviation of the nanoparticle’s size, denoted as ‘equiva-
lent sphere’ radius and nanoparticle aspect ratio, assuming a
normal distribution for both radius and aspect ratio. In addi-
tion to the above structural features (e.g. mean and standard
deviation of size and aspect ratio), ML-CREASE outputs a
few representative real-space 3D structures of the nano-
particles [as shown in Fig. 2(a) and Fig. 2(d)]. Users can obtain
as many representative 3D structures as they wish using the
previously published open-source CASGAP method (Gupta
& Jayaraman, 2023) which takes as input structural features
(nanoparticle size and shape distributions) and outputs a real-
space 3D structure.

To use ML-CREASE to interpret scattering profiles, we
have to follow these steps:

(i) Identify relevant structural features.

(ii) Create 3D real-space representations of structures for
systematically varied values of the structural features; in this
work we uniformly sample structural features within relevant
pre-defined ranges.

(iii) Compute 1D scattering profiles for every 3D structural
representation generated in step (ii).

(iv) Train and test an ML model on the dataset of input
structural features and output 1D scattering profiles generated
in step (iii).

(v) Embed the trained ML model in the genetic algorithm
of the ML-CREASE method to identify sets of structural
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Figure 2

(a) Representative 3D structure for a nanoparticle system with dispersity
only in particle size. (b) The probability density function (normal distri-
bution) of the volumetric radii of the nanoparticles for a system with
dispersity only in nanoparticle size. (¢) The probability density function
(Dirac delta distribution) of the aspect ratio of the nanoparticles for a
system with dispersity only in nanoparticle size. (d) Representative 3D
structure for a nanoparticle system with dispersity in both particle size
and shape. (e) The probability density function (normal distribution) of
the volumetric radii of the nanoparticles for a system with dispersity in
both nanoparticle size and shape. (f) The probability density function
(normal distribution) of the aspect ratio of the nanoparticles for a system
with dispersity in both nanoparticle size and shape.

features whose computed scattering profiles match the
experimental target.

2.2.1. Identifying relevant structural features

For the system of nanoparticles with dispersity in both
particle size and particle shape, two structural features are
required to describe the distribution of particle size (assuming
a normal distribution in particle size), and two structural
features are required to describe the distribution of particle
shape (assuming a normal distribution in particle shape).
Additionally, a structural feature is required to describe the
degree of packing in the nanoparticle system.

For the case where we assume that the nanoparticles are
spherical, with dispersity only in particle size, as discussed
above, only the mean and standard deviation of the radii, and
the volume fraction of nanoparticles in the system, are
required as structural features. For the case where we expect
dispersity in shape and size of the nanoparticles, we assume
the nanoparticles can be spheres or other non-spherical
ellipsoids. The volumetric radius of an ellipsoidal particle is

J. Appl. Cryst. (2025). 58, 1384—1398

Rohan S. Adhikari et al. + Quantifying dispersity in nanoparticle size and shape

1387



research papers

defined as the radius of a sphere that has the same volume as
the ellipsoidal particle (Akepati et al, 2024; Gupta &
Jayaraman, 2023). For a sphere, the volumetric radius and the
radius are interchangeable.

To define the shape of an ellipsoidal particle, one may
choose three mutually perpendicular semi-axial lengths a, b
and c. We assume that two of the three mutually perpendicular
semi-axial lengths are equal (a = b). This restricts the shape
anisotropy of the ellipsoids to be along one of the three semi-
axial lengths (c¢). As such, the aspect ratio (y = c/a) is used as a
structural feature to describe shape. For spheres, the value of
y=1

For both cases, we use the volume fraction (¢), defined as a
ratio of the total volume of all the nanoparticles in the system
to the volume of the entire system, to describe the extent of
crowding among the nanoparticles in the system.

In summary, for a system of spherical nanoparticles with
dispersity only in particle size, the three structural features are
the mean volumetric radius (R,,), the standard deviation of the
volumetric radii (R,) and the volume fraction (¢). For a
system of nanoparticles with dispersity in both particle size
and shape, the five structural features include R/, R, and ¢, in
addition to the mean aspect ratio (y,) and the standard
deviation of the aspect ratio (y,).

2.2.2. Creating 3D structures for systematically varied values
of the structural features

The next step is to generate a dataset of 3D representations
for systematically varied values of structural features within
defined ranges. We use the CASGAP method (Gupta &
Jayaraman, 2023) to generate representative 3D structures

corresponding to desired values of mean and standard
deviation of radius and aspect ratio; the values of radius and
aspect ratio are sampled from the truncated normal distribu-
tion for this study. The range of structural features can be
defined by experiments (e.g. possible maximum and minimum
sizes of nanoparticles) and to some extent by preliminary
manual matching and sensitivity analysis procedures (e.g. to
identify how values of structural features affect the scattering
profile). For some examples of the manual matching analysis,
see Section S1 in the supporting information. For some
examples of the sensitivity analysis see Section S2.

For spherical nanoparticles with dispersity only in size, we
obtain predictions from ML-CREASE for all three (’strong’,
‘weak’ and ’'no’) classes of scattering profiles. We generate
3000 structures of nanoparticles with polydispersity only in
size by systematically varying R, R, and ¢. Fig. 3(a) depicts
the uniformly sampled values used to create these 3000
structures. R,, was sampled in the ranges [5-20) A, [20-100) A
and [100-500) A (1000 samples each). All values of R, were
sampled such that R,/R,, was between 0 and 1. All values of ¢
were sampled from the range [0.05-0.15). We then use
CASGAP to generate 3D real-space structures for all sampled
values. The number of nanoparticles in a 3D structure
generated using CASGAP must be large enough to capture
the nanoparticle size and shape distributions well. At the same
time, the number of nanoparticles must not be so large that the
computation of scattering profiles [in step (iii) of the ML-
CREASE method] becomes too slow. To obtain a reasonably
sized 3D real-space structure that captures the size distribu-
tions of the spherical nanoparticles without requiring a
computationally exhaustive scattering computation, we use
three different box lengths to sample the 3000 real-space

a
( )zoo
500f 500¢
3 100 3 300 5 300
O O O
100} 100}
01217 306090 100300 500 5 35 65 9% 5 3 12 15
R,[A] R,A] R,[A] Ro /Ry, [%)] ¢*102
@ Variation

(b) Ru Variation (©)

Figure 3

Ro/Ru Variation
Ay ol

&

Ro/Rp = 90% ¢=0.12 ¢=0.15

Structural features of the system [identified in step (i) of the ML-CREASE method] varied using a uniform distribution to generate 3D real-space
structural representations. (a) Histograms for mean volumetric radius (R,,), standard deviation of the volumetric radii (R,/R,,) and volume fraction (¢)
show the distribution of each structural feature in the 3000 sets of structural features studied. 3D real-space structural representations that vary (b) only
in R, (c) only in R,/R,, and (d) only in ¢. Nanoparticles in (b—d) are color-coded with respect to their radii.
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structures of spherical nanoparticles with dispersity only in
particle size. For R, in the range [5, 20), [20, 100) and [100,
500) A, the box length in CASGAP was set to 600, 3000 and
15000 A, respectively. In Figs. 3(b)-3(d) we present a few
representative 3D structures.

We sample R,/R,, from the range [0, 1) even though we find
(during sensitivity analysis) that the R, structural feature is
inconsequential to the computed scattering profile when it is
greater than 50% of R, (see Section S2 for details). This range
for R,/R,, is chosen to make a one-to-one comparison between
the predictions from ML-CREASE and the predictions from
the Imfit analytical model for polydisperse spheres (Newville
et al., 2024). The Imfit model always predicts R,/R,, greater
than 0.5 for the ‘no’ scattering profiles. The consequences of
including an unrestricted range for R,/R,, on the predictions
of ML-CREASE are discussed in the results section.

For nanoparticles with dispersity in size and shape, we
restrict our analysis to the ‘strong’ and ‘weak’ classes of
experimental profiles. After the manual matching procedure
and sensitivity analysis, we generate another 3000 structures
with systematic variation in the five structural features — mean
volumetric radius (R,,), standard deviation of the volumetric
radii (R,), mean aspect ratio (y,,), standard deviation of the
aspect ratio (y,) and volume fraction (¢). R,, is sampled from
the range [20, 100) A, R,/R, is sampled from the range
[0, 0.5), y,, is sampled from the range [0.8, 4), y,/y,, is sampled
from the range [0, 0.5) and ¢ is varied in the range [0.05, 0.15).
A box length of 3000 A is used in CASGAP to generate all 3D

(a

500( 500
= =3
3 300 3 300
3° S

100} 100

15 25 35 5 25 15
Yu Yo /Y (%]
g/yu Variation

(b) yu Variation (c)

yolyu=20%

yu=2.0 yolyu=10%

St

yolyp=30% yolyu=50%
Figure 4

Mean aspect ratio and standard deviation of aspect ratio are additional
structural features identified for nanoparticles with dispersity in both size
and shape, beyond the three structural features identified for nano-
particles with dispersity only in particle size. (@) Histograms for mean
aspect ratio (y,,) and standard deviation of the aspect ratio (¥,/y,,) show
the distribution of the two structural features in the 3000 sets of structural
features studied. (b) CASGAP-generated 3D representations that vary
only in the structural feature y,. (c) CASGAP-generated 3D repre-
sentations that vary only in the structural feature y,/y,,. Nanoparticles in
(b—c) are color-coded with respect to their aspect ratios.

representations for this case. The histogram in Fig. 4(a) depicts
the variation of the two additional structural features that
account for the dispersity in particle shape, mean aspect ratio
(v,) and standard deviation of the aspect ratio (y,). The
differences in the 3D representations as one of the structural
features is varied while the other four structural features are
held constant are shown in Figs. 4(b)—4(c).

2.2.3. Computing 1D scattering profiles from 3D real-space
structural representations

CASGAP outputs the coordinates and aspect ratios for
each nanoparticle into a format that is convenient for visua-
lization with programs such as OVITO (Stukowski, 2009).
Once the coordinates and aspect ratios for all 3D repre-
sentations have been collected, they can be used to calculate
the scattering profile using the scattering equation (Guinier,
1955; Glatter, 1979; Brisard & Levitz, 2013).

The computation of scattering profiles is much faster when
the complex scattering amplitudes [Acomp(q)] are first
computed instead of directly computing the scattering inten-
sities [Icomp(q)] using the Debye scattering equation (Akepati
et al., 2024; Brisard & Levitz, 2013). The equation we use to
calculate the complex scattering amplitudes of the nano-
particles is

Acomp(q) = Z Apnvnfn(q) eXP(_lq ' rn)' (l)

Acomp(q) can be understood as the Fourier transform of the
scattering length density contrast (Ap,) of the nanoparticles.
fa(q) is the analytical form factor of the nanoparticles. For
ellipsoids, f,,(q) can be calculated using the analytical form
factor expression reported in Pedersen’s tabulation of analy-
tical form factors (Pedersen, 1997). For a detailed explanation
of the analytical form factor expression for ellipsoids and its
implementation, we refer the reader to the work of Akepati et
al. (2024).

Box length corrections are applied to the computed scat-
tering amplitudes following the work of Brisard & Levitz
(2013). Once the box length corrections are applied to the
computed scattering amplitudes, the scattering intensities
[lcomp(q)] of the nanoparticles can be computed in a
straightforward manner, as shown in equation (2) where 6 is
azimuthal angle:

Femg@) = 3 ([ Acmp(@[’),. @

Another advantage of computing the scattering profiles using
the complex amplitudes instead of the Debye scattering
equation (Cantor & Schimmel, 1980; Svergun et al., 2013) is
that the full 2D projection of the scattering profile (as is
measured experimentally) can be computed without azimu-
thal averaging. This becomes crucial for systems with orien-
tational anisotropy, where the 2D scattering profile contains
valuable information that could be lost through azimuthal
averaging. The Debye scattering equation, on the other hand,
can only compute azimuthally averaged scattering profiles. For

J. Appl. Cryst. (2025). 58, 1384—1398

Rohan S. Adhikari et al. + Quantifying dispersity in nanoparticle size and shape

1389



research papers

this work, as we do not consider orientational anisotropy and
are working with 1D scattering data from experiments, we
average the scattering profiles azimuthally [{...)y, where 0 is
azimuthal angle in equation (2)] to obtain 1D scattering
profiles.

Using the methods above, we calculate the computed
scattering profiles for all the structures generated for each case
in the previous step.

2.2.4. ML model training to compute I(q) from the structural
features

To create a surrogate ML model that links structural
features to computed scattering profiles, we make use of the
datasets generated in steps (ii) and (iii). We choose the
eXtreme Gradient Boosting (XGBoost) (Chen & Guestrin,
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Figure 5

2016) surrogate ML model for use in ML-CREASE. Although
deep learning and neural networks are popular for image and
language processing applications, the XGBoost method is
generally known to work better for tabular data (Song et al.,
2020; Choi, 2019; Shwartz-Ziv & Armon, 2022). Furthermore,
conventional deep learning models exhibit limited capacity to
generate diverse structural solutions without extensive
training data (>10" samples), a requirement prohibitive for
many experimental scattering studies (Elasri et al., 2022;
Shrestha & Xie, 2023).

From our dataset containing 3000 sets of structural features
and the corresponding scattering profiles, we set aside 80% of
the dataset for training and 20% for testing. We repeat this
process for the datasets collected for the first case of spherical
nanoparticles with polydispersity in size and for the second
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(a) Pearson correlation matrix of the dataset generated for spherical nanoparticles with dispersity only in particle size. (b) Feature importance values
assigned by the XGBoost model from the training set for spherical nanoparticles with dispersity only in particle size. (¢) Comparing the performance of
the XGBoost ML model on the training and test sets using the R* and MSE metrics (spherical nanoparticles with dispersity in size). (d) Pearson
correlation matrix of the dataset generated for nanoparticles with dispersity in particle size and shape. (e) Feature importance values assigned by the
XGBoost ML model from the training set for nanoparticles with dispersity in particle size and shape. (f) Comparing the performance of the XGBoost
ML model on the training and test sets using the R? and MSE metrics (nanoparticles with dispersity in size and shape).
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Table 1

Comparison of the average R” and average MSE metrics during the
XGBoost ML model training and testing for the two cases: nanoparticles
with dispersity only in particle size and nanoparticles with dispersity in
both particle size and shape.

The average R* and average MSE from the training sets are calculated from
the 2400 training samples. The average R* and average MSE from the test sets
are calculated from the 600 test samples.

Average R? Average R? Average MSE Average MSE
Dataset (training set) (test set) (training set) (test set)
Nanoparticles 0.997 0.994 0.002 0.005
with dispersity
only in particle
size
Nanoparticles 0.998 0.994 0.001 0.003

with dispersity
in both particle
size and shape

case of nanoparticles with dispersity in both particle size and
particle shape; these lead to two distinct ML models for the
two cases. The training dataset for both cases is formatted into
a tabular form that includes the values of structural features,
the ¢ value and the corresponding computed scattering
profiles [I(q)]. The training dataset for spherical nanoparticles
with dispersity only in size contains 2234400 rows (2400
training samples x 931 ¢ values) and five columns [three
structural features, ¢ and I(g) entries in every row]. The
training dataset for nanoparticles with dispersity in size and
shape also contains 2234400 rows (2400 training samples X
931 g values) and seven columns [five structural features, g
and I(q) entries in every row].

Using the respective tabular training sets, we employ
Bayesian optimization (Thebelt et al., 2022) to identify the
optimal set of hyperparameters for the XGBoost regressor.
During Bayesian optimization, the hyperparameters related to
the architecture of the decision trees in the XGBoost model
(e.g. learning rate, maximum depth of decision tress) are
optimized to minimize the cross-validation error while also
avoiding overfitting. The optimized hyperparameters for the
two XGBoost ML models are shown in Section S3. After
hyperparameter tuning, we train the two XGBoost ML models
on the two training sets for the two cases — spherical nano-
particles with dispersity only in particle size and nanoparticles
with dispersity in particle size and shape.

In Fig. 5(a), we show the Pearson correlation matrix
analyzed using the dataset from spherical nanoparticles with
dispersity only in particle size. The correlation matrix shows
the strongest correlation between the intensity value (/) and g;
this is not surprising as the scattering intensities are a function
of g by definition. The R,/R,, structural feature shows the
weakest correlation with the intensity. As mentioned
previously, during sensitivity analysis we find that with
increasing values of R,/R,, the scattering profiles become
increasingly featureless, and when R,/R,, is larger than 0.5, the
effect on scattering profiles is minimal. Therefore, the weak
correlation in Fig. 5(a) between R,/R,, and intensity is not
surprising. The importance assigned to the three structural
features (R, R,/R, and ¢) and g by the trained XGBoost

model for the prediction of intensity is shown in the feature
importance plots in Fig. 5(b). In Fig. 5(c), the R* and mean
squared error (MSE) scores are used to quantify the perfor-
mance of the XGBoost ML model on the training and test sets.
The R* and MSE metrics for the training and test samples are
obtained by comparing the I(g) predictions of the XGBoost
ML model with the corresponding /(g) computed from the
scattering equation [step (iii) of the ML-CREASE method]
for that sample. The ‘Sample Index’ in Fig. 5(c) is not the same
as the ‘Sample ID’. The ‘Sample ID’ for the training and test
samples is chosen at random to obtain 2400 samples for
training and 600 samples for testing. ‘Sample Index’ is used in
Fig. 5(c) for the ease of differentiating the performance of the
XGBoost model on the training and test samples. The average
R? and average MSE of the XGBoost ML model (for spherical
nanoparticles with dispersity only in particle size) during the
training and testing are sufficiently close, as shown in Table 1.

In Fig. 5(d), we show the Pearson correlation matrix
analyzed using the dataset from nanoparticles with dispersity
in size and shape. The correlation matrix once again shows the
strongest correlation between the intensity value I(g) and g, as
expected. The two additional structural features y,, and y,/y,,,
which relate to the shape distribution of the nanoparticles,
show the weakest correlation with the intensity value, I(g).
This is because, in orientationally disordered systems with
many particles, the information related to the shapes of the
nanoparticles gets averaged out while computing the
ensemble-averaged 1D scattering profiles. This does not imply
that methods seeking to interpret 1D scattering profiles can
choose to ignore the shape-related information and assume
spherical nanoparticles. If anything, the averaging out of
shape-related information in 1D scattering profiles drives
scattering methods to consider multiple shapes and provide
the user with many/all interpretations of the input profile. The
feature importance assigned to the five structural features and
q by the trained XGBoost model for the prediction of the
intensity /(¢) is shown in Fig. 5(¢). In Fig. 5(f), the R* and
MSE scores are used to quantify the performance of the
XGBoost ML model for the training and test samples. The
average R’ and average MSE of the XGBoost ML model (for
nanoparticles with dispersity in both particle size and shape)
during the training and testing are sufficiently close, as shown
in Table 1.

After training, the XGBoost ML model can take the
structural features (R,,, R,/R,, and ¢) and the g values as input
(in tabular form) and predict the corresponding scattering
intensity values [/(g)]. Analogously, the XGBoost ML model
for nanoparticles with dispersity in particle size and shape is
capable of taking the structural features (R,,, R,/R,, Vi, Vol Vi
and ¢) and the ¢ values as an input (in tabular form) and
predicting the corresponding scattering intensity values [1(q)].
After establishing the forward mapping from structural
features to I(g) for the two cases, we move onto the next step
of the ML-CREASE method, which is using the genetic
algorithm (GA) optimization loop to identify sets of structural
features whose computed scattering profiles closely match the
input experimental profile.
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2.2.5. CREASFE’s genetic algorithm (CREASE-GA)

With the ML model serving as a forward model linking
structural features to the computed scattering profile, one can
use a variety of optimization algorithms to solve the inverse
problem of identifying the structural features for a given
experimental scattering profile. We prefer the use of GAs in
CREASE as they identify multiple optimal solutions (sets of
structural features) for a given input scattering profile. By
incorporating the trained XGBoost ML model into the
CREASE-GA, the interpretation of the input scattering
profiles (1D) can be achieved in much less time.

There are various types of GAs, such as the continuous-
parameter GA and binary GA (Mitchell, 1998; Holland, 1992).
In our work, we use a continuous-parameter GA which is
better suited for the evolution of ‘genes’. In ML-CREASE,
each structural feature is mapped onto a ‘gene’ and the
complete set of structural features identified in step (i) of the
ML-CREASE method forms an ‘individual’. For the case of
spherical nanoparticles with dispersity in particle size, each
‘individual’ has an assigned value for the three structural
features. For the case of nanoparticles with dispersity in both
particle size and shape, each ‘individual’ has an assigned value
for five structural features. In both cases, the GA loop has 100
‘individuals’ in each ‘generation’.

For each individual, the XGBoost ML model takes as input
the values of the structural features and predicts the computed
scattering profile. The fitness of the individual is calculated on
the basis of how closely the computed scattering profile
matches the input experimental profile. We use the weighted
sum of log squared errors (SSE) as implemented by Wu &
Jayaraman (2022) to evaluate the fitness of each individual, as
shown below:

SSE = Z w, {log [ﬂlﬂ} } , 3)

1 comp (Qz) +c

where w; = log(g;/qi—1)- Since the experimental profile is in
arbitrary units, the computed scattering profiles predicted by
the XGBoost model need to be uniformly scaled by a factor f
during the fitness evaluation. In addition, experimental
profiles obtained through background subtraction can have
minor uncertainties. We use the parameter c to capture these
uncertainties due to background subtraction. The values for f
and ¢ for a GA individual are obtained such that they mini-
mize the SSE between the computed scattering profile for that
individual and the experimental profile.

If the value of SSE is high, it implies a poor match and low
fitness; alternatively, a low value of SSE denotes a good match
and a high fitness for that individual. In each iteration of the
CREASE-GA, the fitness of the 100 individuals in the
generation is evaluated and the individuals are ranked
according to their fitness. The 100 individuals for the next
generation are obtained by the single-point crossover and
adaptive mutation operations. The top 30 individuals ranked
according to their fitness by the CREASE-GA (‘parents’) are
randomly paired to obtain 70 new individuals (‘children’) for

the next generation. From this new generation composed of
‘parents’ and ‘children’, the top two best-performing indivi-
duals (‘elites’) are retained as is for the next generation, the
other 98 individuals undergoing an adaptive mutation opera-
tion. The adaptive mutation operation is necessary to ensure
that the CREASE-GA does not converge quickly to a local
minimum. For more details about the crossover and adaptive
mutation operations in the context of ML-CREASE, we refer
the reader to previous publications on CREASE (Beltran-
Villegas et al., 2019; Wu & Jayaraman, 2022; Akepati et al.,
2024). Finally, CREASE-GA converges when a generation is
composed of individuals with similar fitness values. After
analyzing the composition of individuals in successive
generations, we conclude that 200 generations of the GA are
sufficient to obtain convergence (see Section S4).

Another advantage of using GAs is that the final generation
of individuals from ML-CREASE can be used to obtain a
distribution of the identified values for every structural
feature. We include or exclude an individual from the final
identification of structural features and their ranges depending
on how closely the computed scattering profile for that indi-
vidual matches the input experimental profile. We enforce the
following fitness criterion for the selection of individuals
(shown below):

(SSE)jns <10 x (SSE)iny'. ()

The individual with the best fitness has the lowest SSE
[(SSE)XY]. In both cases, all of the individuals included in
identifying a range of structural features from ML-CREASE
have an SSE [(SSE); ;] less than ten times that of the SSE for
the best-performing individual [(SSE)!}']. This fitness of the
accepted individuals is a parameter in the CREASE-GA
Python script and can be set to the desired value by the user.

Next, we describe in silico tests to ensure that ML-
CREASE is working as expected and then use ML-CREASE
to obtain distributions of size and shape from the 1D SAXS
profiles.

3. Results
3.1. In silico inputs to validate the ML-CREASE approach

We take 600 test samples whose scattering profiles are not
used in the ML model training and provide them as an input to
ML-CREASE. At the end of the CREASE-GA run for each
test sample, the best-ranked structural features of the final
generation are selected and compared with the original
structural features of that test sample. After this procedure is
completed for all 600 test samples, we use a parity plot to
compare the original values for each structural feature with
the predictions from ML-CREASE. Both the ML-CREASE
predictions and the original structural features are non-
dimensionalized in the cross plots; a value of zero indicates the
minimum value and one indicates the maximum value of that
structural feature.

For spherical nanoparticles with dispersity only in particle

size, the in silico test for the three structural features — R,
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Figure 6

Validation of ML-CREASE using in silico tests for spherical nanoparticles with dispersity only in size. All values for structural features (R,,, R,/R,, and
¢) shown in (a—c) are non-dimensionalized from [0-1], with O representing the minimum value of the structural features in the 600 test samples and 1
representing the maximum value of the structural features in the 600 test samples. (a) CREASE predictions for R, compared with the original value of
R, for the 600 test samples. The data points are color-coded with respect to R,/R,,. (b) CREASE predictions for R,/R,, compared with the original value
of R,/R,, for the 600 test samples. The data points are color-coded with respect to R,,. (c) CREASE predictions for ¢ compared with the original value of
¢ for the 600 test samples. The data points are color-coded with respect to R,/R,,.

R,/R,, and ¢ —is shown in Fig. 6. The mean volumetric radius On the basis of the results for spherical nanoparticles (Fig.
[Fig. 6(a)] and the volume fraction [Fig. 6(¢c)] are color-coded 6) with dispersity only in particle size, we restrict the ranges of
with respect to the standard deviation of the volumetric radii R./R,, and y,/y, to [0-0.5) for the analysis of nanoparticles
(expressed as a fraction of the mean volumetric radius, R,/R,,) with dispersity in both size and shape. The ML-CREASE
to understand the role of dispersity in the performance of ML- predicted structural features for systems of nanoparticles with
CREASE (in the prediction of particle size and volume dispersity in both size and shape are compared with the
fraction). The standard deviation of the volumetric radii [Fig. original structural feature values in Fig. 7. The ML-CREASE
6(b)] is color-coded with respect to the mean volumetric radius predictions of R, and ¢ are color-coded with respect to y,/y,,
to understand the effect of the particle size on the perfor- for us to understand the effect of particle shapes on the quality
mance of ML-CREASE (in the prediction of size dispersity). of the ML-CREASE predictions. Analogously, the predicted
The ML-CREASE predicted R, is in good agreement with values of y,, are color-coded with respect to R,, to understand
the original R, value when R,/R,, is less than 0.5; the same the effect of particle size on the ML-CREASE predictions.
trend is also observed when comparing ML-CREASE The ML-CREASE predictions for R,, and ¢ compare well
predicted and original values for R,/R,. When R,/R, is with their original values, as shown in Figs. 7(a) and 7(b),
greater than 0.5, the ML-CREASE predictions deviate from respectively. Fig. 7(a) indicates a correlation between the
the original, regardless of the value of R, of the system. deviations in the ML-CREASE predicted R/, and the original
During the sensitivity analysis procedure, we find that the R,/ mean aspect ratio (y,,) of the nanoparticle system. The best-
R,, structural feature no longer influences the scattering performing ML-CREASE individual predicts a lower R/, than
intensities when it is greater than 0.5 (see Section S2). Hence the original for nanoparticle systems with a high aspect ratio
the scatter in the ML-CREASE predictions for R,/R,, when and a higher R, than the original for nanoparticle systems
the original R,/R,, is greater than 0.5 is to be expected. We with a low aspect ratio. We attribute this systematic trend as a
conclude, from these results, that it is impossible for the consequence of defining an effective sphere radius (volumetric
CREASE-GA to correctly interpret the standard deviation of radius) for ellipsoidal particles. We use the volumetric radius
the volumetric radii when it is greater than 0.5 times the mean (effective sphere radius) due to its intuitive definition. We

volumetric radius. conclude the systematic trend is not significant, since the
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Figure 7

Validation of ML-CREASE using in silico tests for nanoparticles with dispersity in both size and shape. All values for structural features (R, ¢ and y,,)
shown in (a—c) are non-dimensionalized from [0-1], with O representing the minimum value of the structural features in the 600 test samples and 1
representing the maximum value of the structural features in the 600 test samples. (a) CREASE predictions for R, compared with the original value of
R,, for the 600 test samples. The data points are color-coded with respect to y,,. (b) CREASE predictions for ¢ compared with the original value of ¢ for
the 600 test samples. The data points are color-coded with respect to y,,. (c) CREASE predictions for y,, compared with the original value of y,, for the
600 test samples. The data points are color-coded with respect to R,,.
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agreement between the R, of the best-performing ML-
CREASE individual and the original R, is good for the range
of aspect ratios considered in our work. The ML-CREASE
predictions for y,, do not compare well with their original
values [Fig. 7(c)] which is expected considering the low
correlation between the y,, structural feature and the intensity
values /(q) obtained during the ML model training [Fig. 5(d)].
As discussed before, in the absence of orientational and
positional order (as in amorphous liquid or non-crystalline
materials), the information about the shapes of the nano-
particles can be averaged out in the scattering measurement.

For results of the in silico tests for R,/R, and y,/y, see
Section S5. Since the range of R,/R,, is restricted to [0, 0.5) for
nanoparticles with dispersity in size and shape, the ML-
CREASE predicted R,/R,, compares well with the original R,/
R,. ML-CREASE predictions for y,/y,, do not compare well
with the original y,/y,; this is expected as we find during the
ML model training that there is no correlation between y,/y,,
and intensity values I(q) [Fig. 5(d)].

In our in silico test, we are only comparing the predicted
values from ML-CREASE’s best-ranked individual with the
original values; thus, the deviation between the ML-CREASE
predictions and the original values of y,, is to be expected.
Next, we analyze the variability in the ML-CREASE predic-
tions among the individuals in the last ‘converged’ generation
of the GA loop. The variability in the ML-CREASE predic-
tions between the 100 CREASE-GA individuals is analyzed in
Section S6. The deviation in R, of a CREASE-GA individual
from the R, of the best-performing CREASE-GA individual
gets larger as the individual is ranked lower. The R, value
reaches its extrema for the worst-performing GA individuals.
The variability in y,, between the CREASE-GA individuals
does not follow the same pattern. The y,, value frequently
reaches its extrema for individuals ranked in the top half by
CREASE-GA. Hence the analysis of variability between the
GA individuals suggests that ML-CREASE can identify
multiple nanoparticle systems with disparate shapes as
possible solutions to an input scattering profile.

On the basis of the in silico tests of ML-CREASE with only
particle size dispersity, particularly the in silico tests for R,/R,,,
we expect good agreement between the predictions from ML-
CREASE and those from the /mfit analytical model when the
dispersity in nanoparticle size is low. We expect a disagree-
ment between the predictions from ML-CREASE and those
from the Imfit analytical model when the dispersity in the
nanoparticle size is high. For the case of nanoparticles with
dispersity in both size and shape, from the variability analysis
(Section S6) for y,,, we expect ML-CREASE to be able to
identify nanoparticle systems with distinct shape distributions
for the input experimental profiles.

3.2. Interpretation of SAXS profiles

First, the 30 SAXS profiles — ten profiles each for the
‘strong’, ‘weak’ and ‘no’ classes — are input to ML-CREASE
by assuming spherical nanoparticles with dispersity only in
particle size. In Figs. 8(a) and 8(b) we compare the ML-

CREASE identified R, and R,/R,, values with the predictions
from the Imfit analytical model for polydisperse spheres
(Newville et al., 2024). In Fig. 8(a), the ML-CREASE
predictions for R, agree with the analytical model (poly-
disperse spheres) for the ‘strong’ profiles and ‘weak’ profiles.
However, in contrast, the ‘no’ profiles do not agree for most
cases. This is not surprising as the dispersity in size and shape
is likely what gave rise to the lack of peaks in the scattering
profiles for the ‘no’ class, as partly confirmed in the next figure.
In Fig. 8(b), the ML-CREASE predictions for R,/R,, from the
‘strong’, ‘weak’ and ‘no’ profiles are clustered. The R,/R,,
values identified by ML-CREASE for ‘strong’ profiles are the
lowest. The R,/R,, values identified by ML-CREASE for the
‘weak’ profiles are higher than those values identified for the
‘strong’ profiles and are generally lower than those values
identified by ML-CREASE for the ‘no’ profiles. The R,/R,,
values identified by ML-CREASE for the ‘no’ profiles are
generally the highest, supporting our reasoning for why the
mean radius values are not in agreement with the analytical
model.

We note that the results shown here correspond to a trun-
cated normal distribution of the size dispersity in the spherical
nanoparticles. It is straightforward to adapt the ML-CREASE
method for different kinds of distributions to model dispersity.
This is demonstrated in Section S7 by analyzing the dispersity
in the spherical nanoparticles using a log-normal distribution.

In comparison with analytical models, there are some
unique advantages of ML-CREASE. In particular, the ML-
CREASE predictions have error bars associated with them.
These denote the range of variation for a particular structural
feature within the GA individuals that pass the acceptance
criterion [shown in equation (4)] in the final generation of the
CREASE-GA output. In Fig. 8(c) the computed scattering
profile for the best-performing CREASE individual is
compared with the experimental data for one representative
case each of the ‘strong’, ‘weak’ and ‘no’ profiles. The shaded
regions around the CREASE predictions represent the stan-
dard deviation between the ML-CREASE predicted I(q)s for
the GA individuals that pass the fitness criterion [equation
(4)]. Hence, the use of GAs in ML-CREASE allows for the
quantification of uncertainty in the interpretation of small-
angle scattering data. For a comparison of the predicted 1(g)s
and the interpreted features between ML-CREASE and
analytical models, see Section S8.

Next, we interpret experimental scattering profiles by
allowing for dispersity in particle shape in addition to particle
size. Distributions of aspect ratios of ellipsoids are usually
represented using the Cauchy or Lorentz distributions (Pabst
& Berthold, 2007; Lai & Balakrishnan, 2009). Since the gold
nanoparticles synthesized for this work are orientationally and
positionally disordered, the information about the shape
distribution of the nanoparticles gets averaged out. Hence, we
choose to model the aspect ratios of the nanoparticles with the
better understood normal distribution instead of the Cauchy
or Lorentz distributions. We explain the adaptation of ML-
CREASE to different kinds of distributions using an example
in Section S7. Users can follow a similar procedure to adapt
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ML-CREASE for more detailed structural feature distribu-
tions, where necessary.

As discussed previously, we restricted the R, and y,
structural features to the ranges [0, 0.5) of R, and y,,
respectively, while developing the ML-CREASE method for
nanoparticles with dispersity in both size and shape. Since the
ML-CREASE identified R,/R, for the ‘no’ experimental
profiles are generally greater than 0.5 [Fig. 8(b)] when
assuming spherical nanoparticles with dispersity only in
particle size, we ignore the ‘no’ profiles for this analysis and
only analyze the ‘strong’ and ‘weak’ profiles for the case of
nanoparticles with dispersity in both size and shape.

All the ‘strong’, ‘weak’ and ‘no’ experimental profiles used
in this study are shown in Section S9. The predictions from
ML-CREASE for nanoparticles with dispersity in both
particle size and shape are compared with the ML-CREASE
predictions for spherical nanoparticles in Fig. 9.

The values of the structural features predicted by ML-
CREASE for the ten samples in ‘strong’ and ten samples in
‘weak’ classes are shown in Figs. 9(a) and 9(b), respectively.
For six out of the 20 experimental profiles analyzed, the ML-
CREASE method with dispersity in both shape and size
predicts sphere-like nanoparticles (y,, close to 1.0). This
indicates that the synthesized nanoparticles in these cases may
indeed be composed largely of sphere-like particles; these
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samples can be found where the pink and green symbols
overlap in Fig. 9(a) and the purple and orange symbols overlap
in Fig. 9(b), showing a value of y,, of 1.0. For the other 14
experimental profiles, the ML-CREASE method with disper-
sity in both shape and size shows that the y,, is higher than 1.0.
Interestingly, the R, values identified by the ML-CREASE
method for nanoparticles with dispersity in both size and
shape are always lower than the R, predictions from ML-
CREASE for spherical nanoparticles. This implies that when
there is dispersity in shape the particle size dispersity is likely
to be smaller than if we assumed all particles are spheres. This
indicates that shape dispersity is also a viable interpretation
for explaining the different classes of experimental profiles. In
Section S10 we compare all the fitness values of the best
individuals for the two cases — the spherical particles with
dispersity in size and the particles with shape and size
dispersity. For the 14 experimental profiles for which the two
cases have dissimilar predictions for the mean aspect ratio of
the nanoparticles, the comparison of the fitness between the
two cases shows that accounting for shape dispersity in addi-
tion to size dispersity always improves the fitness of the best-
performing GA individual. For the six experimental profiles
for which the two cases have similar predictions for the mean
aspect ratio of the nanoparticles, the fitness of the best-
performing GA individuals from the two cases is also similar.

100 . . . .
Strong (CREASE)
o  Strong (Experiment)
105k Weak (CREASE)
o Weak (Experiment)
No (CREASE)
10t A No (Experiment)

102}

Comparison of ML-CREASE identified structural features from experimental scattering profiles of nanoparticles with the predictions from the Imfit
analytical model (nanoparticles only have dispersity in particle size). The range of variation for the structural features R, and R,/R,, in the last
generation of the GA individuals is shown in (a) and (b), respectively. Symbols in (a) and (b) represent the ML-CREASE identified structural features
with the best fitness for the ‘strong’ (blue circles), ‘weak’ (red squares) and ‘no’ (black triangles) experimental profiles. (¢) The scattering profiles
predicted by the XGBoost ML model for the selected GA individuals [that pass the fitness criterion shown in equation (4)] are compared with an
experimental scattering profile for representative cases of the ‘strong’ (blue), ‘weak’ (red) and ‘no’ (black) profiles. Solid lines are the ML-CREASE
predictions for the individuals with the best fitness, shaded regions are the standard deviation in /(g) from the ML-CREASE predictions for the selected
GA individuals, and symbols are the experimental data.
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(a)
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Comparison of ML-CREASE identified structural features for nanoparticles with dispersity only in particle size with the ML-CREASE identified
structural features for nanoparticles with dispersity in both size and shape. (¢) Comparison of ML-CREASE identified structural features for ‘strong’
experimental profiles. ML-CREASE identified structural features for spherical nanoparticles with dispersity only in particle size are shown as circles
(green), ML-CREASE identified structural features for nanoparticles with dispersity in both size and shape are shown as diamonds (magenta). (b)
Comparison of ML-CREASE identified structural features for ‘weak’ experimental profiles. ML-CREASE identified structural features for spherical
nanoparticles with dispersity only in particle size are shown as circles (purple), ML-CREASE identified structural features for nanoparticles with

dispersity in both size and shape are shown as diamonds (orange).

Additionally, in Section S11, TEM images are reported
along with their corresponding SAXS profiles for one repre-
sentative case each from the ‘strong’, ‘weak’ and ‘no’ classes.
The TEM images show the lowest size and shape dispersity for
the ‘strong’ profile, moderate size and shape dispersity for the
‘weak’ profile, and the highest size and shape dispersity for the
‘no’ profile. The TEM results are in good qualitative agree-
ment with the ML-CREASE interpreted structural features
from the corresponding scattering profiles.

4. Conclusions

In summary, citrate-stabilized gold nanoparticles were
synthesized using an automated fluidic platform, and subse-
quently subjected to synchrotron-based in situ SAXS char-
acterization. The data from these measurements produced
three classes of SAXS profiles that were hand-labeled as
‘strong’, ‘weak’ and ‘no’ based on the presence or absence of
features (peaks) in that profile. We then extended the ML-
CREASE method to identify (@) the size dispersity of sphe-
rical nanoparticles and (b) the size and shape dispersity of
nanoparticles. For the assumption of spherical nanoparticles
with size dispersity [case (a)], the predictions from ML-
CREASE were compared with the predictions from the Imfit
analytical model. The ML-CREASE predictions agreed with
the predictions from the Imfit model for ‘strong’ profiles, but
the agreement worsened going from ‘weak’ profiles to ‘no’
profiles. Given that the approximations in analytical models

become weaker with increasing polydispersity, the disagree-
ments between ML-CREASE and the /mfit analytical model
for the ‘weak’ and ‘no’ profiles were expected. When we
repeated the five steps to extend ML-CREASE to identify
dispersity in both size and shape of the nanoparticles (spheres
to ellipsoids), the results suggested that the system has both
spheres and aspherical (ellipsoidal) particles. For six out of the
20 SAXS profiles, both case (a) and case (b) results confirmed
the presence of spheres only. For the remaining 14 SAXS
profiles, ML-CREASE predictions from case (b) suggest that
the particles are not all spherical; when the predicted disper-
sity in shape was high the dispersity in size was low. For these
14 SAXS profiles, the computed scattering profiles for the
predicted CREASE structures from case (b) showed a better
match to the input SAXS profile than the predicted structures
from case (a).

The power of ML-CREASE is evident in the analysis of
systems that exhibit dispersity in size and shape which usually
result in featureless (i.e. broadened or flattened peaks) scat-
tering profiles. Such systems with dispersity are often hard to
analyze with analytical models. The capability of the ML-
CREASE method to identify the size and shape distributions
of nanoparticles without a priori knowledge is particularly
consequential when such information is hard to obtain using
imaging techniques. The use of a GA in ML-CREASE also
allows for the identification of a range of structural features
that describe the size and shape distributions of nanoparticles
for an input SAXS profile.
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