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PROGRESS AND POTENTIAL

Scientific experiments,

particularly those at large-scale

user facilities, are increasingly

automated. With the advent of

new technologies for optimal

experimental design, automated

experiments are being pushed to

higher degrees of autonomy.

However, many approaches to

self-driving experiments are

focused on optimizing some

objective or seeking novelty. Our

research addresses the challenge

of experimental design for

epistemic goals. We developed a

formulation of value for arbitrary

types of measurements, which
SUMMARY

The challenge of optimal design of experiments pervades materials
science, physics, chemistry, and biology. Bayesian optimization has
been used to address this challenge but requires framing experi-
mental campaigns through the lens of maximizing some observable.
However, this framing is insufficient for epistemic research goals
that seek to comprehensively analyze a sample space, without an
explicit scalar objective. In this work, we propose a flexible formula-
tion of scientific value that recasts a dataset of input conditions and
higher-dimensional observable data into a continuous, scalar
metric. Intuitively, the functionmeasures where observables change
significantly, emulating the perspective of experts driving an exper-
iment. We demonstrate this as a collaborative analysis tool and
objective for optimization technique using two simulated and two
experimental examples. The method is flexible, easily deployed,
seamlessly compatible with existing optimization tools, can be
extended to multi-modal and multi-fidelity experiments, and can
integrate existing models of an experimental system.
enables researchers from broad

domains to tackle the sole

objective of understanding their

systems. This is a pressing need

for facilities that provide

characterization services for

diverse samples. The method is

compatible with optimization

tools and provides a potent

analysis technique. Given the

common challenge of formulating

a scalar metric or objective to

optimize, we believe our research

could be used as a default agent in

materials acceleration platforms.
INTRODUCTION

The combination of automation and artificial intelligence (AI) to create closed-loop

self-driving, autonomous laboratories—or human-interfaced acceleration plat-

forms—has begun revolutionizing scientific research across chemistry,1,2 biology,3,4

and materials science.5–9 These contemporary platforms mostly use single AI

agents, but can also leverage the added value of multiple agents working in tan-

dem.10 To date, most efforts in agent development have focused on designing algo-

rithms that optimize a target value11 or resource allocation.12,13 Unfortunately, these

approaches to agent design do not encompass the research settings where the

objective is more epistemic; that is, the research pertains to comprehensive under-

standing or interpretation of an experimental space,14 and not the optimization of a

target. Examples of epistemic objectives are ubiquitous in characterization,15 user

facilities, and ‘‘science as a service’’ platforms.16 These bring forth a new challenge

in how to leverage AI advancements for optimal experiment design.

Research motivated by comprehensive understanding of a system is common across

disciplines. It appears in problems involving spatial characterization or fixed sample

spaces, such as device mapping,17,18 tomography,7 or phase mapping.19,20 It also is

recurrent when searching large plateaus of space for sharp changes, such as in search-

ing for reactivity21 or phase changes.20,22 Nonetheless, when research questions are

directed more by understanding a system than by optimizing the system for a single

property, certain measurements will still prove more valuable than others. Traditional
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design of experiment (DOE) approaches the exploration of a known space to explain

the variation of a response function in that space, albeit it is not adaptive and expects

each input parameter to impact the response function.23 In the case of allocating

limited resources over independent samples, reinforcement learning (RL) has been

used to extract maximal value.12 When a model for the system is available, Bayesian

inference can be used to query data that will best mitigate the uncertainty of that

model.24–26 Bayesian optimization over expected information gain27 can be used to

explore the experimental space; however, without a conversion between an observ-

able and a finite objective, Bayesian optimization cannot be effectively leveraged.

There is also a significant body of work examining alternative approaches to the design

problem, particularly in the context of RL and rewarding discovery.28 ‘‘Curiosity-driven’’

robots,29,30 and more generally knowledge-based methods,31,32 have been used for

self-driving and exploratory experiments, with expectations of foundation models aid-

ing scientific exploration.33 Other works suggest abandoning objectives and rewards

entirely, positing that novelty alone is sufficient to supersede objective-driven evolu-

tionary algorithms34 or for learning new skills in simulated robotic tasks.35While novelty

is a meaningful goal in its own right, many experimental designs—especially at large

scientific user facilities—are as concerned with understanding connections between

unique observations, as much as the discovery of those novel observations. This is in

line with the motivations of our colleagues consulted in this work, and outlined by

the sociology of science: specifically, that scientific ‘‘awards are linked with strategies

more likely to bridge disconnected network components.’’36

With an epistemic goal, an optimal agent will therefore yield an experimental design

that produces the best dataset for understanding the experimental space. This un-

derstanding would be derived from expert interpretation, modeling, AI, or some

combination of techniques. Furthermore, the agent should be able to operate

with or without a model of space or the observable. It must also be robust to the

‘‘cold start’’ problem,37 operating efficiently under initially extremely data- and infor-

mation-limited conditions. Last, it would be beneficial for any agent to make use of

contemporary advancements in optimization methods.

Herein, we propose a generic scientific value function (SVF) that recasts a dataset of ob-

servables into scalar measures of ‘‘value’’ by mirroring the perspective and actions of

human experts.While nativelymodel free, the SVF can incorporatemodels of theexper-

imental or observable space. Crucially, it can be used as an optimization target in other

procedures, suchasBayesianorMonteCarlooptimization.27Wedemonstrate the appli-

cation of the SVF through (1) a simulated X-ray diffraction (XRD) phase mapping of first-

and second-order transitions; (2) a simulated absorption spectroscopy study of a

periodic phase boundary; (3) a variable temperature X-ray total scattering study of

BaTiO3; and (4) an ultraviolet-visible (UV-vis) absorption spectroscopic analysis of nano-

particle synthesis conditions. The adaptive applications of the SVF are accomplished by

choosing the next measurement in experimental space according to a Gaussian

process38 surrogate model and Bayesian optimization.27,39,40 This work creates oppor-

tunities for optimal dataset creation and research acceleration without a pre-existing

optimization target, and will find broad applicability across scientific disciplines.
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RESULTS AND DISCUSSION

A surrogate function for scientific value

We set out to construct a surrogate function for scientific value that would emulate

the judgment of an expert scientist without a model for their experimental system.
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Consider a prototypical example of mapping the phase diagram of a material over

multiple dimensions. A rational scientific goal would be to measure every unique

phase at least once, and measure with greater resolution across phase boundaries.

At the start of a campaign, the measurement of every location has the same potential

value. As the campaign progresses, measuring the regions where the observable is

not changing with the ordinate becomes less valuable than measuring regions of

rapid change. We consulted with staff and users at NSLS-II to understand this intu-

ition, and defined the SVF, U; to capture these behaviors while remaining flexible

to include experiment-specific knowledge.

First, we consider an input spaceX; where queries of x!i˛X comprise a datasetDN: =

fð x!1; y
!

1Þ;.ð x!N; y
!

NÞg, where y!i are noisy, multi-dimensional observations of some

function, fð x!i ), such as a diffraction image. We further define two correlation functions

for both the input space and the observation space, hð x!i; x
!

jÞ and gð y!i; y
!

jÞ, respec-
tively. The default correlation function used in this work for both h andg is the Euclidean

distance, or L2 norm, k $kL2 . Thus, we define the dataset-dependent SVF as follows:
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where hminðxi;DNÞ is the distance between xi and its nearest neighbor in DN: Using

Equation 1, the scientific value can be computed for all inputs in DN:

The SVF considers the individual value of a new datum with respect to each existing

datum and sums over all members of the dataset for a net value. The first term con-

siders where the observable is distinct from those contained in the dataset, and thus

valuable. The second term decays that value with respect to how far the data are in

the input space, and takes on values between 0 and e� 1=2 for any xi ˛DN: In order to

avoid overestimating the value of local regions, the second term is regularized by the

nearest neighbors of points in input space. The dynamic feature of this regularization

is highlighted in Figures S8 and S11. We considered other forms of the SVF that

would use these correlation functions (e.g., proportionate or derivative-like func-

tions, or ones similar to that of Equation 1 but with constant values for hmin [Fig-

ure S15]). However, we chose the form of the second term such that it would have

a bounded range, and evolving regularization.

This formalism offers a few key features and advantages. First, it adequately reflects

the intuition of researchers in practice. It also reduces the dimensionality of the

observable space to a scalar objective function that can be readily optimized. While

the approach is natively model free, the correlation functions g and h are flexible and

can readily incorporate models of the system. For instance, a discrete input space

could easily use the Levenshtein or Manhattan distance. With knowledge of the

observable space, the distance in a latent space from a variational autoencoder

has been used in early implementations of the SVF. Even without a model of the

observable space, more involved functions could be considered, such as those

from time-resolved pair-correlation functions24 or topological data analysis.25

In the following we made use of Bayesian optimization over a Gaussian process (GP)

surrogate model of SVF. Other black-box optimization approaches could be consid-

ered, albeit the dataset-dependency of the SVF will constrain their design. The GP

used a Matern kernel with homoskedastic noise to construct a probabilistic model
Matter 7, 685–696, February 7, 2024 687
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Figure 1. Visual summary of the simulated XRD experiment

(A) The proportion of each of the four phases as a function of position, x: Regions of change are

highlighted with a gray background.

(B) A histogram of the average number of counts/experiment as a function of position x and the

current dataset size N using the UCB acquisition function with b= 10: Results are averaged over 300

independent experiments.

(C) The average value of the natural log of MSE as a function ofN; plotted with a confidence interval

of 2 standard deviations. See also Figures S1–S8.
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ofU in all input space, including regions where there are no observations. When con-

ditioning the GP, we scaled the value of U to U˛ ½0;1�. We used the expected

improvement (EI)41 and upper confidence bound (UCB)42 acquisition functions for

Bayesian optimization. For the UCB functions presented, we used a weighting for

variance of b = 10, although similar results were obtained for values of b ranging

from 10 to 100.

We benchmarked this against a common experimental design of measuring over an

optimal grid given allotted resources (e.g., time or number of measurements),

described here as grid search. We chose this benchmark as the preferred tool of

our collaborators, albeit also considered random search strategies (Figures S2 and

S10), and Bayesian inference approaches (Figures S3 and S12). Herein, we call the

SVF modeling procedure used in tandem with the tools of Bayesian optimization

(or black-box optimization in general) the Scientific Value Agent (SVA). We note

that despite the specific choices used in this work, the extensibility and flexibility

of the SVF allows it to be used with any optimization protocol or probabilistic model

that can approximate it. While regularization prevents SVA from dwelling on over-

sampled regions, we stress the importance of the diversity of thought and models,43

particularly for the potential of combining novelty-seeking approaches44 in multi-

agent systems.
Characterizing a one-dimensional phase space with simulated XRD

We first tested the SVA in silico using the simulated XRD measurement of a library

that contained linear mixtures of four phases (Figure 1). This sampling of a one-

dimensional space is common in studying phase behavior over composition or state

variables.10,17,45 The four XRD patterns corresponding to the phases were defined

by a series of randomly placed Gaussian peaks over a constant background (Fig-

ure S1). Normally distributed noise was introduced to the observation at each query

by adding a random value to each point of the observation sampled from a distribu-

tion with a mean of 0 and standard deviation of 0.1, then squared to ensure positiv-

ity. In order to simulate reasonable and challenging types of phase changes, we
688 Matter 7, 685–696, February 7, 2024
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chose functional forms to represent first- and second-order transitions: sigmoidal to

approximate a discontinuous first-order transition, and linear and quadratic for

different rates of second order. These are highlighted in the three shaded regions

of Figure 1A. In an optimal measurement of this compositional library, sampling den-

sity should be correlated to the rates of change of the phases.

To quantify sampling performance, we tracked the mean squared error (MSE) be-

tween the true observation space (phase fractions) and the observation space that

could be reconstructed by the sampled queries (assuming oracle knowledge of

phase fractions given the observable). The reconstructed dataset is produced by lin-

early interpolating observations between measured points. As shown in Figure 1C,

this metric will decay as more observations are made, with a smaller error corre-

sponding to more robust sampling.

Figure 1B shows the average sampling histogram of the SVA over 300 independent

experiments. Even at small N; we see that the three-phase boundary regions were

sampled in proportions commensurate with the rate of change of the phases in those

regions. The linear change region was only sparsely sampled (but still sampled more

compared with regions of no change), whereas the quadratic region was sampled

much more densely. Nonetheless, the region of near-instantaneous change was

sampled most densely and earliest, as the algorithm discovered this very sharp

boundary, and therefore required more samples to produce an accurate representa-

tion of the observable in that region. This sampling density is also reflected in the

surrogate model’s perceived scientific value over time (Figure S4).

Both choices of acquisition function outperformed the optimal grid design by

roughly an order of magnitude. This performance was apparent in the low-N and

limiting cases. It is important to note the balance of exploitation and exploration

in these acquisition functions, as attempting to optimize the SVF directly (i.e., greedy

optimization) would fail to discover the transition regions (Figure S5). Not only did

the SVA procedures propose experiments in relevant regions of space, they also

modeled regions of significant change more efficiently than conventional methods.

We also considered using Bayesian inference as a DOE benchmark. This approach

first clustered the data, then trained a probabilistic regressor to predict the cluster

labels, and finally queried new points where the uncertainty was maximized.26 We

found this methodology to be strongly dependent on the chosen number of clusters,

not necessarily more performant than a grid search in the limiting case, and less per-

formant on low N (Figure S5). While Bayesian inference can be a powerful tool,26 it is

intrinsically model dependent, increasing in potency when a more accurate model

for the system is available. In Bayesian inference, a label assignment is necessary

(here accomplished by K-means clustering). SVA does not require a model or labels,

but can incorporate one through the correlation function, gð y!i; y
!

jÞ. Considering this

comparison and the prevalence of grid searches at actual beamlines, we chose the

grid search technique as our benchmark.

Last, we analyzed the technique’s robustness with increasingly noisy data (Figure S6).

As the SVF is designed to place value on regions that are highly sensitive to small

variations in input, this could lead to an overvaluation of noisy regimes, particularly

in the heteroskedastic case where noise changes across the input space. As the

signal-to-noise ratio in the simulated data decreases, the correlation term

gð y!i; y
!

jÞwould overvalue changes in the noise rather than in the underlying observ-

able. In high-noise situations, a measure of correlation that is not a Euclidean
Matter 7, 685–696, February 7, 2024 689
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Figure 2. Visual summary of the two-phase, 2-dimensional sinusoidal interface experiment

(A) The two phases, shown in red and blue. The interface, where the phases are in equal

contribution, is white.

(B) The SVF, approximated by a GP and scaled to values between 0 and 1, shown as a backdrop to

the sampling results of N= 250 points using the UCB acquisition function with b= 10: The phase

boundary is shown as a dotted line.

(C) The average value of the natural log of MSE as a function ofN; plotted with a confidence interval

of 2 standard deviations (smaller is better). A total of 300 experiments over random initial points

and model/optimizer seeds were performed for experiment statistics. See also Figures S9–S15.
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distance between raw observations would be advisable, particularly one that re-

mains invariant under noisy conditions.22
Characterizing a two-dimensional space with a periodic interface

We completed a second in silico test that sought to characterize a two-dimensional

library of sample compositions defined by coordinates x˛R2: In this case, the library

contained only two phases, separated by a sharp periodic boundary (Figure 2A). The

observation of phases and their mixtures was characterized by a spectrum, simulated

using Gaussian functions centered at two different locations in space, with noise

applied as in the previous example (Figure S9). As above, phases were linearly

mixed, with the proportion of the phases given by a sigmoid function of the position

on the wafer,

bðx1Þ = 1

2
+
1

4
sinð2px1Þ;

pðxÞ = 1

1+exp f � 50½x2 � bðx1Þ�g :
(Equation 2)

Designed to be a drastic and challenging test, the resultant phase-dependence on

position can be seen in Figure 2A.

We compared the performance of the SVA against conventional methods using the

same metrics from above. Again it was clear that a Bayesian optimization approach

coupled with SVF outperforms conventional measurement techniques (Figure 2C).

Additionally, we examined how the SVA queried the space around the phase bound-

ary, along with time-resolved plotting of the SVF (Figure S13) and the density of

sampling (Figure S14). Even in data-limited conditions, the approach successfully

mapped out regions of significant change, while still sufficiently sampling relatively

constant regions of phase space. As shown in Figure 2B, the sampling focused on the

most information-rich region, highlighted around the curve bðx1Þ:

Compared with the conventional grid search benchmark, the SVA outperformed this

baselineby roughly anorderofmagnitude. The results of a singleSVAexperimentusing

the UCB acquisition function with a total of 250 samples show a dense sampling of the

interface, without under-sampling the surrounding area. Both UCB and EI behaved
690 Matter 7, 685–696, February 7, 2024
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comparably and outperformed the baseline, with UCB being more exploitive of the

narrow transition region. Although trade-offs with acquisition functions are expected,

optimizing over the SVF was robust regardless of acquisition function choice.

As in the simulated 1-d example, we considered Bayesian inference as a potential

baseline for performance (Figure S12). While it is likely that a priori knowledge of

the two phases or nature of the boundary would improve an exploration using

Bayesian inference, using clustering to provide labels to condition a logistic regres-

sor showed poor performance compared with a grid search. The performance was

dependent on the chosen number of clusters, and performed worse than the bench-

mark even when the optimal number of clusters was used.
Characterizing the subtle phase transitions of barium titanate

The final example we present in the active setting highlights the case where naive

data-driven approaches fail.46 Furthermore, we used this to demonstrate the capac-

ity to integrate more physics-aware correlation functions into the SVF to improve the

expressiveness of the surrogate modeling. We emulated a continuous valued exper-

iment in which total scattering data of BaTiO3 were measured as a function of

temperature, by interpolating a dataset measured over 5�C intervals at the pair dis-

tribution function beamline at the NSLS-II (Figure S16). These data contain incredibly

subtle transitions among four distinct crystallographic phases (rhombohedral, ortho-

rhombic, tetrahedral, and cubic) that are difficult to distinguish using data-driven ap-

proaches.46 Using established methods, we trained an ensemble of convolutional

neural networks to predict these phases from simulated diffraction patterns, and

used the trained models to create an encoding of the noisy experimental data.22

We used the SVA procedure to create a surrogate model for an SVF that used these

encodings to calculate the observation space correlation function, gð y!i; y
!

jÞ.

Following the same procedure as the previous examples, we showcase the results of

the sampling as a function of the number of queries in Figure 3B. The SVA correctly

identified and attended to the phase transitions extracted by data refinement. We

compared approaches by considering the ability of the resultant dataset to construct

the Rietveld refined compositions (Figure 3A). Without the inclusion of a deep

learned embedding, the SVA produced datasets on par with conventional methods;

however, by combining the flexibility of the SVF with a deep learned embedding, it

autonomously up-sampled the phase changes of BaTiO3 (Figure S17).

Because total scattering is a measure of bulk state, it captures more phase coexis-

tence than is present locally throughout the sample, and the first-order phase tran-

sitions in BaTiO3 appear gradual and continuous. As we show in Figure S7, the

reconstructive capacity of SVA is on par with the grid search approach when transi-

tions are gradual, but superior when the transitions are sharp. Subsequently, a grid

search approach could reconstruct the bulk compositions from Rietveld refinements

as well as, if not better than, the SVA approach (Figure 3C). Nonetheless, grid search

methods failed to focus on the unique physical behavior of the transitions, which

would be exposed through pair distribution function or spectroscopic analysis.

This highlights the potential for the SVA to suggest clarifying experiments in themul-

tifidelity or multimodal setting.10
In-line analysis of nanoparticle synthesis

In the previous three examples, we demonstrated the use of the SVF in an adaptive

setting across diverse problems relevant to materials science. We acknowledge that
Matter 7, 685–696, February 7, 2024 691
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Figure 3. Results of the BaTiO3 experiment

(A) Phase fractions determined from Rietveld refinement. Refinement results applying Gibbs phase

rule to normalized Rwp and renormalizing onto ½0; 1� (SI). The dotted lines show the detected phase

transitions according to the cryostream gas temperature, and will differ by a lag from the sample

temperature.

(B) A 2-dimensional histogram of the average number of queries as a function of temperature T and

current dataset size using the EI acquisition function. Results are averaged over 300 independent

experiments.

(C) The average value of the natural log of MSE as a function ofN; plotted with a confidence interval

of 2 standard deviations. See also Figures S16 and S17.
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a variety of algorithms—or none at all—may be preferable for driving an experiment.

Therefore, we highlighted the breadth of the approach by applying the SVF in a pas-

sive analysis setting. We deployed the SVF to visualize a spectroscopy dataset pro-

duced during an automated nanoparticle synthesis experiment at the Center for

Functional Nanomaterials at Brookhaven National Laboratory. The dataset con-

sisted of N= 375 experimental flow reactor conditions (xi ) and the corresponding

UV-vis absorption spectrum (yi ). The nanoparticle synthesis experiments were per-

formed in a flow reactor by varying four experimental parameters: the volume of so-

dium citrate (NaCit, 16 mmol/L), chloroauric acid (HAuCl4, 2 mmol/L), hydrochloric

acid (HCl, 10 mmol/L), and sodium hydroxide (NaOH, 10 mmol/L). The total volume

of liquid in any experiment is always equal to 40 mL (the size of the droplet in the flow

reactor). This reduces the number of degrees of freedom to 3, wherein HCl and

NaOH are used to drive the reaction pH. UV-vis absorption spectra were then taken

of the final reaction products.

The experiments were performed by domain experts using a grid search with manual

intervention. To assist in processing the large dataset of measurements, DN; we

computed Uðxi; yi;DNÞ for all ðxi;yiÞ˛DN; . This offered the scientists a visual repre-

sentation of scientific value (Figure 4A).

The analysis provided by the SVF equipped the scientist with an actionable visuali-

zation tool that kept the human in the loop of an otherwise automated experiment.

The visualization highlighted regions of high scientific value, as the dataset was

growing, by linking the positions in phase space to their individual spectra. By cross

referencing the regions of high value with their respective spectra, the scientist was

able to examine the SVF analysis and validate it with their own insight. Compared

against anomaly detection (Figure S18), SVF highlights sensitive regions of param-

eter space instead of outliers in the observable space. For example, the region of

Figure 4B could be interpreted as an anomaly because there is no absorbance,

not because the spectrum is changing or interesting. We expect the combination
692 Matter 7, 685–696, February 7, 2024
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Figure 4. Visual summary of the UV-vis experiment

(A) (Top) The input reactor conditions. Colors are given by the scientific value (scaled to ½0; 1�;
purple to yellow). (Bottom) Spectra corresponding to the colored outlined points in the top plot,

shown in order of increasing value as defined by the average SVF in that cluster of points.

(B) The red and blue points show the lowest value (0.01) around static regions of experiment space

that produce non-absorbing particles.

(C and D) Increasing patches of scientific value (ranges shown) led the scientist to find (C) green

regions (0.09–0.13) with stable and significant absorbance and (D) regions of gradual change in

absorbance in orange (0.23–0.35). Last, the SVF analysis shown in black highlights a region of

dramatic local change (0.49–0.89). This cluster was selected by taking the point of highest value and

finding its 10 nearest neighbors. See also Figure S18.

ll
Article
of this advancement with user interface engineering will create a potent tool that im-

pacts a variety of analysis techniques.
Conclusion

In this work, we presented the SVF, which replicates the judgment of human experts,

and recasts a dataset of higher-dimensional observables into scalar measures of

value. By quantifying value, the SVF creates an epistemic research objective that

can be optimized without the need for feature engineering or a scalar observable.

We demonstrated the deployment of the SVF in an adaptive learning context

(SVA), how it can be complemented by machine learning or data-reduction tech-

niques, and how it can be used in a streaming analysis deployment for visualizations

that accelerate decision making by a human expert. This showed where the SVF can

be an important part of a scientist’s toolkit, and we expect future opportunities to

consider combining SVA with novelty-seeking approaches28–32,34 or function opti-

mization11–13 in multi-agent systems.10 Because the approach provides a flexible,

experiment-agnostic path for building autonomous workflows, it has far-reaching

implications for accelerated science across physics, chemistry, materials, and

biology.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Phillip Maffettone (pmaffetto@bnl.gov).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All software and data used to generate the results in this manuscript can be

found open source under a BSD-3-clause license github.com/matthewcarbone/

ScientificValueAgent (tag v1.1.0). Tarballs containing all of the data used to

generate our results are hosted open access at https://doi.org/10.5281/zenodo.

8368497. All figures presented in this manuscript can be regenerated by using these

data, and the notebooks stored at the GitHub link above. Any additional information

required to reanalyze the data reported in this paper is available from the lead con-

tact upon request.
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