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SUMMARY

The challenge of optimal design of experiments pervades materials
science, physics, chemistry, and biology. Bayesian optimization has
been used to address this challenge but requires framing experi-
mental campaigns through the lens of maximizing some observable.
However, this framing is insufficient for epistemic research goals
that seek to comprehensively analyze a sample space, without an
explicit scalar objective. In this work, we propose a flexible formula-
tion of scientific value that recasts a dataset of input conditions and
higher-dimensional observable data into a continuous, scalar
metric. Intuitively, the function measures where observables change
significantly, emulating the perspective of experts driving an exper-
iment. We demonstrate this as a collaborative analysis tool and
objective for optimization technique using two simulated and two
experimental examples. The method is flexible, easily deployed,
seamlessly compatible with existing optimization tools, can be
extended to multi-modal and multi-fidelity experiments, and can
integrate existing models of an experimental system.

INTRODUCTION

The combination of automation and artificial intelligence (Al) to create closed-loop
self-driving, autonomous laboratories—or human-interfaced acceleration plat-
forms—has begun revolutionizing scientific research across chemistry,'? biology,**
and materials science.”™” These contemporary platforms mostly use single Al
agents, but can also leverage the added value of multiple agents working in tan-
dem.'® To date, most efforts in agent development have focused on designing algo-
rithms that optimize a target value'' or resource allocation.'"? Unfortunately, these
approaches to agent design do not encompass the research settings where the
objective is more epistemic; that is, the research pertains to comprehensive under-
standing or interpretation of an experimental space,'* and not the optimization of a
target. Examples of epistemic objectives are ubiquitous in characterization,'” user
facilities, and “science as a service” platforms.'® These bring forth a new challenge
in how to leverage Al advancements for optimal experiment design.

Research motivated by comprehensive understanding of a system is common across
disciplines. It appears in problems involving spatial characterization or fixed sample
spaces, such as device mapping,’’"'® tomography,” or phase mapping.'”?° It also is
recurrent when searching large plateaus of space for sharp changes, such as in search-
ing for reactivity’' or phase changes.”>”? Nonetheless, when research questions are
directed more by understanding a system than by optimizing the system for a single
property, certain measurements will still prove more valuable than others. Traditional
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PROGRESS AND POTENTIAL
Scientific experiments,
particularly those at large-scale
user facilities, are increasingly
automated. With the advent of
new technologies for optimal
experimental design, automated
experiments are being pushed to
higher degrees of autonomy.
However, many approaches to
self-driving experiments are
focused on optimizing some
objective or seeking novelty. Our
research addresses the challenge
of experimental design for
epistemic goals. We developed a
formulation of value for arbitrary
types of measurements, which
enables researchers from broad
domains to tackle the sole
objective of understanding their
systems. This is a pressing need
for facilities that provide
characterization services for
diverse samples. The method is
compatible with optimization
tools and provides a potent
analysis technique. Given the
common challenge of formulating
a scalar metric or objective to
optimize, we believe our research
could be used as a defaultagentin
materials acceleration platforms.
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design of experiment (DOE) approaches the exploration of a known space to explain
the variation of a response function in that space, albeit it is not adaptive and expects
each input parameter to impact the response function.”” In the case of allocating
limited resources over independent samples, reinforcement learning (RL) has been
used to extract maximal value.'? When a model for the system is available, Bayesian
inference can be used to query data that will best mitigate the uncertainty of that
model.?*~?® Bayesian optimization over expected information gain?’ can be used to
explore the experimental space; however, without a conversion between an observ-
able and a finite objective, Bayesian optimization cannot be effectively leveraged.

There is also a significant body of work examining alternative approaches to the design
problem, particularly in the context of RL and rewarding discovery.?® “Curiosity-driven”

2739 and more generally knowledge-based methods,*'*? have been used for

robots,
self-driving and exploratory experiments, with expectations of foundation models aid-
ing scientific exploration.®® Other works suggest abandoning objectives and rewards
entirely, positing that novelty alone is sufficient to supersede objective-driven evolu-
tionary algorithms>* or for learning new skills in simulated robotic tasks.*> While novelty
is a meaningful goal in its own right, many experimental designs—especially at large
scientific user facilities—are as concerned with understanding connections between
unique observations, as much as the discovery of those novel observations. This is in
line with the motivations of our colleagues consulted in this work, and outlined by
the sociology of science: specifically, that scientific “awards are linked with strategies

more likely to bridge disconnected network components.”**

With an epistemic goal, an optimal agent will therefore yield an experimental design
that produces the best dataset for understanding the experimental space. This un-
derstanding would be derived from expert interpretation, modeling, Al, or some
combination of techniques. Furthermore, the agent should be able to operate
with or without a model of space or the observable. It must also be robust to the
"cold start” problem,*” operating efficiently under initially extremely data- and infor-
mation-limited conditions. Last, it would be beneficial for any agent to make use of
contemporary advancements in optimization methods.

Herein, we propose a generic scientific value function (SVF) that recasts a dataset of ob-
servables into scalar measures of “value” by mirroring the perspective and actions of
human experts. While natively model free, the SVF can incorporate models of the exper-
imental or observable space. Crucially, it can be used as an optimization target in other
procedures, such as Bayesian or Monte Carlo optimization.”” We demonstrate the appli-
cation of the SVF through (1) a simulated X-ray diffraction (XRD) phase mapping of first-
and second-order transitions; (2) a simulated absorption spectroscopy study of a
periodic phase boundary; (3) a variable temperature X-ray total scattering study of
BaTiO3; and (4) an ultraviolet-visible (UV-vis) absorption spectroscopic analysis of nano-
particle synthesis conditions. The adaptive applications of the SVF are accomplished by
choosing the next measurement in experimental space according to a Gaussian
process? surrogate model and Bayesian optimization.”’~*?*° This work creates oppor-
tunities for optimal dataset creation and research acceleration without a pre-existing
optimization target, and will find broad applicability across scientific disciplines.

RESULTS AND DISCUSSION

A surrogate function for scientific value

We set out to construct a surrogate function for scientific value that would emulate
the judgment of an expert scientist without a model for their experimental system.
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Consider a prototypical example of mapping the phase diagram of a material over
multiple dimensions. A rational scientific goal would be to measure every unique
phase at least once, and measure with greater resolution across phase boundaries.
At the start of a campaign, the measurement of every location has the same potential
value. As the campaign progresses, measuring the regions where the observable is
not changing with the ordinate becomes less valuable than measuring regions of
rapid change. We consulted with staff and users at NSLS-Il to understand this intu-
ition, and defined the SVF, U, to capture these behaviors while remaining flexible
to include experiment-specific knowledge.

First, we consider an input space X, where queries of X;e X comprise a dataset Dy: =
{(X1,51),--- (XN, YN}, where ¥, are noisy, multi-dimensional observations of some

function, f(X;), such as a diffraction image. We further define two correlation functions
for both the input space and the observation space, h(X, X;) and 9(7,-77]-), respec-

tively. The default correlation function used in this work for both hand gis the Euclidean

distance, or Ly norm, || - ||, Thus, we define the dataset-dependent SVF as follows:
2
1 h(?“ 7])
U(xi,y;, Dn) = Z 9(71-7 _)j) P -7 (1 (Equation 1)
(Yj‘ﬂl) <Dy henin (X7, D)

where hmin(X;, Dn) is the distance between x; and its nearest neighbor in Dy. Using
Equation 1, the scientific value can be computed for all inputs in Dy.

The SVF considers the individual value of a new datum with respect to each existing
datum and sums over all members of the dataset for a net value. The first term con-
siders where the observable is distinct from those contained in the dataset, and thus
valuable. The second term decays that value with respect to how far the data are in
the input space, and takes on values between 0 and e /2 for any x; € Dy. In order to
avoid overestimating the value of local regions, the second term is regularized by the
nearest neighbors of points in input space. The dynamic feature of this regularization
is highlighted in Figures S8 and S11. We considered other forms of the SVF that
would use these correlation functions (e.g., proportionate or derivative-like func-
tions, or ones similar to that of Equation 1 but with constant values for hmi, [Fig-
ure S15]). However, we chose the form of the second term such that it would have
a bounded range, and evolving regularization.

This formalism offers a few key features and advantages. First, it adequately reflects
the intuition of researchers in practice. It also reduces the dimensionality of the
observable space to a scalar objective function that can be readily optimized. While
the approach is natively model free, the correlation functions g and h are flexible and
can readily incorporate models of the system. For instance, a discrete input space
could easily use the Levenshtein or Manhattan distance. With knowledge of the
observable space, the distance in a latent space from a variational autoencoder
has been used in early implementations of the SVF. Even without a model of the
observable space, more involved functions could be considered, such as those
from time-resolved pair-correlation functions®* or topological data analysis.”®

In the following we made use of Bayesian optimization over a Gaussian process (GP)
surrogate model of SVF. Other black-box optimization approaches could be consid-
ered, albeit the dataset-dependency of the SVF will constrain their design. The GP
used a Matern kernel with homoskedastic noise to construct a probabilistic model
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Figure 1. Visual summary of the simulated XRD experiment

(A) The proportion of each of the four phases as a function of position, x. Regions of change are
highlighted with a gray background.

(B) A histogram of the average number of counts/experiment as a function of position x and the
current dataset size N using the UCB acquisition function with 8= 10. Results are averaged over 300
independent experiments.

(C) The average value of the natural log of MSE as a function of N, plotted with a confidence interval
of 2 standard deviations. See also Figures S1-58.

of Uin all input space, including regions where there are no observations. When con-
ditioning the GP, we scaled the value of U to Ue [0,1]. We used the expected
improvement (E)*" and upper confidence bound (UCB)** acquisition functions for
Bayesian optimization. For the UCB functions presented, we used a weighting for
variance of 8 = 10, although similar results were obtained for values of 8 ranging
from 10 to 100.

We benchmarked this against a common experimental design of measuring over an
optimal grid given allotted resources (e.g., time or number of measurements),
described here as grid search. We chose this benchmark as the preferred tool of
our collaborators, albeit also considered random search strategies (Figures S2 and
510), and Bayesian inference approaches (Figures S3 and S12). Herein, we call the
SVF modeling procedure used in tandem with the tools of Bayesian optimization
(or black-box optimization in general) the Scientific Value Agent (SVA). We note
that despite the specific choices used in this work, the extensibility and flexibility
of the SVF allows it to be used with any optimization protocol or probabilistic model
that can approximate it. While regularization prevents SVA from dwelling on over-
sampled regions, we stress the importance of the diversity of thought and models,*
particularly for the potential of combining novelty-seeking approaches® in multi-
agent systems.

Characterizing a one-dimensional phase space with simulated XRD

We first tested the SVA in silico using the simulated XRD measurement of a library
that contained linear mixtures of four phases (Figure 1). This sampling of a one-
dimensional space is common in studying phase behavior over composition or state
variables.'”"”** The four XRD patterns corresponding to the phases were defined
by a series of randomly placed Gaussian peaks over a constant background (Fig-
ure S1). Normally distributed noise was introduced to the observation at each query
by adding a random value to each point of the observation sampled from a distribu-
tion with a mean of 0 and standard deviation of 0.1, then squared to ensure positiv-
ity. In order to simulate reasonable and challenging types of phase changes, we
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chose functional forms to represent first- and second-order transitions: sigmoidal to
approximate a discontinuous first-order transition, and linear and quadratic for
different rates of second order. These are highlighted in the three shaded regions
of Figure 1A. In an optimal measurement of this compositional library, sampling den-
sity should be correlated to the rates of change of the phases.

To quantify sampling performance, we tracked the mean squared error (MSE) be-
tween the true observation space (phase fractions) and the observation space that
could be reconstructed by the sampled queries (assuming oracle knowledge of
phase fractions given the observable). The reconstructed dataset is produced by lin-
early interpolating observations between measured points. As shown in Figure 1C,
this metric will decay as more observations are made, with a smaller error corre-
sponding to more robust sampling.

Figure 1B shows the average sampling histogram of the SVA over 300 independent
experiments. Even at small N, we see that the three-phase boundary regions were
sampled in proportions commensurate with the rate of change of the phases in those
regions. The linear change region was only sparsely sampled (but still sampled more
compared with regions of no change), whereas the quadratic region was sampled
much more densely. Nonetheless, the region of near-instantaneous change was
sampled most densely and earliest, as the algorithm discovered this very sharp
boundary, and therefore required more samples to produce an accurate representa-
tion of the observable in that region. This sampling density is also reflected in the
surrogate model’s perceived scientific value over time (Figure S4).

Both choices of acquisition function outperformed the optimal grid design by
roughly an order of magnitude. This performance was apparent in the low-N and
limiting cases. It is important to note the balance of exploitation and exploration
in these acquisition functions, as attempting to optimize the SVF directly (i.e., greedy
optimization) would fail to discover the transition regions (Figure S5). Not only did
the SVA procedures propose experiments in relevant regions of space, they also
modeled regions of significant change more efficiently than conventional methods.

We also considered using Bayesian inference as a DOE benchmark. This approach
first clustered the data, then trained a probabilistic regressor to predict the cluster
labels, and finally queried new points where the uncertainty was maximized.”® We
found this methodology to be strongly dependent on the chosen number of clusters,
not necessarily more performant than a grid search in the limiting case, and less per-
formant on low N (Figure S5). While Bayesian inference can be a powerful tool, % itis
intrinsically model dependent, increasing in potency when a more accurate model
for the system is available. In Bayesian inference, a label assignment is necessary
(here accomplished by K-means clustering). SVA does not require a model or labels,
but can incorporate one through the correlation function, 9(7,»,7]). Considering this
comparison and the prevalence of grid searches at actual beamlines, we chose the

grid search technique as our benchmark.

Last, we analyzed the technique’s robustness with increasingly noisy data (Figure S6).
As the SVF is designed to place value on regions that are highly sensitive to small
variations in input, this could lead to an overvaluation of noisy regimes, particularly
in the heteroskedastic case where noise changes across the input space. As the
signal-to-noise ratio in the simulated data decreases, the correlation term
9y, 7]) would overvalue changes in the noise rather than in the underlying observ-
able. In high-noise situations, a measure of correlation that is not a Euclidean
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Figure 2. Visual summary of the two-phase, 2-dimensional sinusoidal interface experiment

(A) The two phases, shown in red and blue. The interface, where the phases are in equal
contribution, is white.

(B) The SVF, approximated by a GP and scaled to values between 0 and 1, shown as a backdrop to
the sampling results of N= 250 points using the UCB acquisition function with 8= 10. The phase
boundary is shown as a dotted line.

(C) The average value of the natural log of MSE as a function of N, plotted with a confidence interval
of 2 standard deviations (smaller is better). A total of 300 experiments over random initial points
and model/optimizer seeds were performed for experiment statistics. See also Figures S9-515.

distance between raw observations would be advisable, particularly one that re-

mains invariant under noisy conditions.??

Characterizing a two-dimensional space with a periodic interface

We completed a second in silico test that sought to characterize a two-dimensional
library of sample compositions defined by coordinates x e R?. In this case, the library
contained only two phases, separated by a sharp periodic boundary (Figure 2A). The
observation of phases and their mixtures was characterized by a spectrum, simulated
using Gaussian functions centered at two different locations in space, with noise
applied as in the previous example (Figure S9). As above, phases were linearly
mixed, with the proportion of the phases given by a sigmoid function of the position
on the wafer,

b(x) = %+%sin(21rx1),

(Equation 2)
1

px) = T+exp { = 50[x — b(x1)]}’

Designed to be a drastic and challenging test, the resultant phase-dependence on
position can be seen in Figure 2A.

We compared the performance of the SVA against conventional methods using the
same metrics from above. Again it was clear that a Bayesian optimization approach
coupled with SVF outperforms conventional measurement techniques (Figure 2C).
Additionally, we examined how the SVA queried the space around the phase bound-
ary, along with time-resolved plotting of the SVF (Figure S13) and the density of
sampling (Figure S14). Even in data-limited conditions, the approach successfully
mapped out regions of significant change, while still sufficiently sampling relatively
constant regions of phase space. As shown in Figure 2B, the sampling focused on the
most information-rich region, highlighted around the curve b(xy).

Compared with the conventional grid search benchmark, the SVA outperformed this
baseline by roughly an order of magnitude. The results of a single SVA experiment using
the UCB acquisition function with a total of 250 samples show a dense sampling of the
interface, without under-sampling the surrounding area. Both UCB and EI behaved
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comparably and outperformed the baseline, with UCB being more exploitive of the
narrow transition region. Although trade-offs with acquisition functions are expected,
optimizing over the SVF was robust regardless of acquisition function choice.

As in the simulated 1-d example, we considered Bayesian inference as a potential
baseline for performance (Figure S12). While it is likely that a priori knowledge of
the two phases or nature of the boundary would improve an exploration using
Bayesian inference, using clustering to provide labels to condition a logistic regres-
sor showed poor performance compared with a grid search. The performance was
dependent on the chosen number of clusters, and performed worse than the bench-
mark even when the optimal number of clusters was used.

Characterizing the subtle phase transitions of barium titanate

The final example we present in the active setting highlights the case where naive
data-driven approaches fail.** Furthermore, we used this to demonstrate the capac-
ity to integrate more physics-aware correlation functions into the SVF to improve the
expressiveness of the surrogate modeling. We emulated a continuous valued exper-
iment in which total scattering data of BaTiO3; were measured as a function of
temperature, by interpolating a dataset measured over 5°C intervals at the pair dis-
tribution function beamline at the NSLS-II (Figure S16). These data contain incredibly
subtle transitions among four distinct crystallographic phases (rhombohedral, ortho-
rhombic, tetrahedral, and cubic) that are difficult to distinguish using data-driven ap-
proaches.*® Using established methods, we trained an ensemble of convolutional
neural networks to predict these phases from simulated diffraction patterns, and
used the trained models to create an encoding of the noisy experimental data.?
We used the SVA procedure to create a surrogate model for an SVF that used these

encodings to calculate the observation space correlation function, 9(7,.,71.).

Following the same procedure as the previous examples, we showcase the results of
the sampling as a function of the number of queries in Figure 3B. The SVA correctly
identified and attended to the phase transitions extracted by data refinement. We
compared approaches by considering the ability of the resultant dataset to construct
the Rietveld refined compositions (Figure 3A). Without the inclusion of a deep
learned embedding, the SVA produced datasets on par with conventional methods;
however, by combining the flexibility of the SVF with a deep learned embedding, it
autonomously up-sampled the phase changes of BaTiO3 (Figure S17).

Because total scattering is a measure of bulk state, it captures more phase coexis-
tence than is present locally throughout the sample, and the first-order phase tran-
sitions in BaTiO3 appear gradual and continuous. As we show in Figure S7, the
reconstructive capacity of SVA is on par with the grid search approach when transi-
tions are gradual, but superior when the transitions are sharp. Subsequently, a grid
search approach could reconstruct the bulk compositions from Rietveld refinements
as well as, if not better than, the SVA approach (Figure 3C). Nonetheless, grid search
methods failed to focus on the unique physical behavior of the transitions, which
would be exposed through pair distribution function or spectroscopic analysis.
This highlights the potential for the SVA to suggest clarifying experiments in the mul-
tifidelity or multimodal setting.'®

In-line analysis of nanoparticle synthesis
In the previous three examples, we demonstrated the use of the SVF in an adaptive
setting across diverse problems relevant to materials science. We acknowledge that
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Figure 3. Results of the BaTiO; experiment
(A) Phase fractions determined from Rietveld refinement. Refinement results applying Gibbs phase

rule to normalized Ry, and renormalizing onto [0, 1] (SI). The dotted lines show the detected phase
transitions according to the cryostream gas temperature, and will differ by a lag from the sample
temperature.

(B) A 2-dimensional histogram of the average number of queries as a function of temperature T and
current dataset size using the El acquisition function. Results are averaged over 300 independent
experiments.

(C) The average value of the natural log of MSE as a function of N, plotted with a confidence interval
of 2 standard deviations. See also Figures S16 and S17.

avariety of algorithms—or none at all—may be preferable for driving an experiment.
Therefore, we highlighted the breadth of the approach by applying the SVF in a pas-
sive analysis setting. We deployed the SVF to visualize a spectroscopy dataset pro-
duced during an automated nanoparticle synthesis experiment at the Center for
Functional Nanomaterials at Brookhaven National Laboratory. The dataset con-
sisted of N= 375 experimental flow reactor conditions (x;) and the corresponding
UV-vis absorption spectrum (y;). The nanoparticle synthesis experiments were per-
formed in a flow reactor by varying four experimental parameters: the volume of so-
dium citrate (NaCit, 16 mmol/L), chloroauric acid (HAuCl,, 2 mmol/L), hydrochloric
acid (HCI, 10 mmol/L), and sodium hydroxide (NaOH, 10 mmol/L). The total volume
of liquid in any experiment is always equal to 40 uL (the size of the droplet in the flow
reactor). This reduces the number of degrees of freedom to 3, wherein HCI and
NaOH are used to drive the reaction pH. UV-vis absorption spectra were then taken
of the final reaction products.

The experiments were performed by domain experts using a grid search with manual
intervention. To assist in processing the large dataset of measurements, Dy, we
computed U(x;,y;, Dn) for all (x;,y;) € Dn, . This offered the scientists a visual repre-
sentation of scientific value (Figure 4A).

The analysis provided by the SVF equipped the scientist with an actionable visuali-
zation tool that kept the human in the loop of an otherwise automated experiment.
The visualization highlighted regions of high scientific value, as the dataset was
growing, by linking the positions in phase space to their individual spectra. By cross
referencing the regions of high value with their respective spectra, the scientist was
able to examine the SVF analysis and validate it with their own insight. Compared
against anomaly detection (Figure S18), SVF highlights sensitive regions of param-
eter space instead of outliers in the observable space. For example, the region of
Figure 4B could be interpreted as an anomaly because there is no absorbance,
not because the spectrum is changing or interesting. We expect the combination
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Figure 4. Visual summary of the UV-vis experiment

(A) (Top) The input reactor conditions. Colors are given by the scientific value (scaled to [0, 1],
purple to yellow). (Bottom) Spectra corresponding to the colored outlined points in the top plot,
shown in order of increasing value as defined by the average SVF in that cluster of points.

(B) The red and blue points show the lowest value (0.01) around static regions of experiment space
that produce non-absorbing particles.

(C and D) Increasing patches of scientific value (ranges shown) led the scientist to find (C) green
regions (0.09-0.13) with stable and significant absorbance and (D) regions of gradual change in
absorbance in orange (0.23-0.35). Last, the SVF analysis shown in black highlights a region of
dramaticlocal change (0.49-0.89). This cluster was selected by taking the point of highest value and
finding its 10 nearest neighbors. See also Figure S18.

of this advancement with user interface engineering will create a potent tool that im-
pacts a variety of analysis techniques.

Conclusion

In this work, we presented the SVF, which replicates the judgment of human experts,
and recasts a dataset of higher-dimensional observables into scalar measures of
value. By quantifying value, the SVF creates an epistemic research objective that
can be optimized without the need for feature engineering or a scalar observable.
We demonstrated the deployment of the SVF in an adaptive learning context
(SVA), how it can be complemented by machine learning or data-reduction tech-
niques, and how it can be used in a streaming analysis deployment for visualizations
that accelerate decision making by a human expert. This showed where the SVF can
be an important part of a scientist’s toolkit, and we expect future opportunities to

consider combining SVA with novelty-seeking approaches®~*#3*
11-13

or function opti-
mization in multi-agent systems.® Because the approach provides a flexible,
experiment-agnostic path for building autonomous workflows, it has far-reaching
implications for accelerated science across physics, chemistry, materials, and

biology.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-
filled by the lead contact, Phillip Maffettone (pmaffetto@bnl.gov).

Materials availability
This study did not generate new unique reagents.

Data and code availability

All software and data used to generate the results in this manuscript can be
found open source under a BSD-3-clause license github.com/matthewcarbone/
ScientificValueAgent (tag v1.1.0). Tarballs containing all of the data used to
generate our results are hosted open access at https://doi.org/10.5281/zenodo.
8368497. All figures presented in this manuscript can be regenerated by using these
data, and the notebooks stored at the GitHub link above. Any additional information
required to reanalyze the data reported in this paper is available from the lead con-
tact upon request.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.matt.
2023.11.012.
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