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Shaper Design in CMOS for High Dynamic Range
Gianluigi De Geronimo and Shaorui Li

Abstract—We start with an analysis of the configurations com-
monly adopted to implement linear shapers. We show that, once
the ENC from the charge amplifier is defined, the dynamic range
of the system is set by the voltage swing and the value of the ca-
pacitance realizing the poles. The configuration used to realize the
poles has also an impact, and those configurations based on passive
components in feedback are expected to offer a higher dynamic
range than the ones that use both active and passive components,
like scaling mirrors. Finally, we introduce the concept of delayed
dissipative feedback (DDF), which consists of delaying the resis-
tive feedbacks from the furthest available nodes along the shaping
chain. We will show that, in order to implement semi-Gaussian
shapers, a small capacitor in positive feedback is required. The
DDF technique can overcome some of the limitations of the more
classical configurations. For example, in a third order shaper a
factor of two higher dynamic range can be obtained or, at equal
dynamic range, about 25% of the capacitance is needed (i.e. about
30% of the area in practical cases).

Index Terms—CMOS, high dynamic range, low-noise, shaper.

I. INTRODUCTION

F RONT-END electronics for capacitive sensors typically
includes a preamplifier followed by a filter. The preampli-

fier provides low-noise amplification of the signals induced in
the sensor electrodes. The filter, by properly limiting the signal
bandwidth, maximizes the signal-to-noise (S/N) ratio. Addition-
ally the filter limits the duration of the output signal associated
with the measured event and, for those sensors where the in-
duced signal is relatively slow, it maximizes the signal ampli-
tude (i.e. it minimizes the ballistic deficit) [1].
Filters can be either time-variant or time-invariant. In elec-

tronics for radiation sensors, filters are frequently referred to as
“shapers” since, in a time-domain view, they “shape” the re-
sponse associated to the event. Filters can also be synthesized
digitally, even though in most cases this is impractical due to
constraints from power and real-estate budgets.
This contribution focuses on the design of low-noise

analog shapers, but some basic blocks can be used as part of
time-variant filters. The most frequently adopted shape is the
semi-Gaussian, available in different orders (i.e. number of
poles). Semi-Gaussian shapers are relatively easy to implement
and can offer a signal-to-noise ratio within a few percent
from the usually impractical optimal shapes. For example,
assuming white series and white parallel noise contributions,
the minimum Equivalent Noise Charge (ENC) for a high order
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Fig. 1. First order schematic of a charge amplifier followed by a shaper.

semi-Gaussian shape is about 12.5% higher than the one for the
optimum shape (i.e. infinite cusp) [2], [3].
In Section II we analyze the classical configurations based

on voltage feedback with passive components. In Section III
we briefly discuss some alternative configurations which make
use of additional active devices in feedback to provide current
scaling. Finally, in Section IV we introduce the concept of de-
layed dissipative feedback (DDF), which consists of delaying
the resistive feedbacks from the furthest available nodes along
the shaping chain. We will show that, in order to implement
semi-Gaussian shapers, a small capacitor in positive feedback
is required. The DDF technique can overcome some of the lim-
itations of the more classical configurations. For example, in a
third order shaper a factor of two higher dynamic range can be
obtained or, at equal dynamic range, about 25% of the capaci-
tance is needed (i.e. about 30% of the area in practical cases).

II. NOISE AND DYNAMIC RANGE IN

CLASSICAL CONFIGURATIONS

Charge amplifiers, along with providing low-noise ampli-
fication, offer a low input impedance (virtual ground) which
stabilizes the potential of the sensor electrode and reduces the
inter-electrode cross-talk. The charge amplifier is schematized
in Fig. 1, where we assume an ideal voltage amplifier with
infinite gain and bandwidth (a finite gain and bandwidth would
have negligible consequence on our analysis—if the dc loop
gain is high and the rise time is a small fraction of the peaking
time).
The current induced in the sensing electrode is amplified

with current gain (or charge gain) equal to the ratio of the
feedback impedance and the coupling impedance . This
ratio must be a real number (i.e. the gain ), in order to avoid
undesired tails in the output current injected in the next stage.
The output current is injected, with opposite polarity, into
the next stage, which offers another virtual ground and repre-
sents the input stage of the shaper. The current (or charge) is
then filtered and converted into a voltage with transfer func-
tion . It is followed by further processing such as discrimina-
tion, peak- or time- detection, and/or counting. It is worth noting
that the charge amplifier can be implemented using two or more
charge-amplification stages with gains and overall
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Fig. 2. Schematic of a charge amplifier assuming a capacitive feedback for the
charge amplifier and a single-pole transimpedance amplifier as input stage of
the shaper.

charge gain given by the product of those. This is usually
done when large values of are required, such as for sensors
generating very small signals.
For simplicity we assume for an infinite resistive compo-

nent and a finite capacitive component . This is justified con-
sidering that designers tend to keep the resistive component as
high as possible in order to minimize the parallel noise contri-
bution at the front-end. The coupling impedance will be capaci-
tive according to . We also assume, initially, that the
input stage of the shaper is realized using a transimpedance am-
plifier with feedback impedance , thus pro-
viding the first pole of the shaper with time constant .
Finally, we assume that the shaper amplifiers are characterized
by infinite gain and are noiseless. The latter is justified by the
fact that, in most practical cases, the noise contribution from
the amplifiers can be made negligible by increasing the size and
power of the active devices (this is not always easy to achieve,
and then the noise from the amplifier must be taken into ac-
count). The configuration resulting from these assumptions is
shown in Fig. 2, where the output waveform in response to
a charge Q is also shown, with peak amplitude .
Starting from these assumptions and from the configuration

in Fig. 2, we can calculate the contribution to the Equivalent
Noise Charge (ENC) of the first stage of the shaper. The noise
contribution comes from the dissipative component of the
shaper [4]. The parallel noise spectral density of is given by
4 and it can be reported as an equivalent parallel noise
generator at the input of the charge amplifier by scaling it with
the square of the charge gain . It must be kept in mind that this
is done for calculation purposes and the actual noise source is
further down in the channel, not to be confused with the physical
sources of parallel noise at the input. It follows the contribution
to the ENC of , given by:

(1)

where is the ENC coefficient for white parallel noise [2], [3],
[5] and is the peaking time (from 1% to peak) of the shaped
signal. It is worth noting that an analysis based on a front-end
voltage amplifier without feedback (see for example Fig. 6.11 in
[5]) would give dependent on the input capacitance, which

TABLE I
COEFFICIENTS FOR UNIPOLAR SHAPERS WITH REAL (R) AND
COMPLEX-CONJUGATE (C) POLES, DIFFERENT ORDERS

is not the case for the charge amplifier configuration in Fig. 2.
From (1) it can be observed that the contribution decreases as
increases. Since the peaking time is proportional to the time

constant, , we can write:

(2)

where depends on the type of shaping. Table I summarizes the
values of and for semi-Gaussian shapers with real poles
(even and odd) and complex conjugate poles (odd only) where
the first stage gives the real pole. In Table I are also reported
(the ENC coefficient for white series noise) and the two coeffi-
cients (which takes into account the noise contribution of the
next stages) and RDR (the relative dynamic range), both dis-
cussed later in this section.
It can now be observed that, for a given shaper, the contri-

bution only depends on the values of and . The
values of and also define the maximum charge that
the stage can process without saturation. If is the max-
imum voltage swing at the output of the stage, it follows:

(3)

We now express the dynamic range DR of the front-end as the
ratio between the maximum charge and the total ENC,
which includes the from the charge amplifier and the

from the first stage of the shaper:

(4)

A design that aims at offering the highest possible resolution
(lowest possible ENC) tends to keep negligible with re-
spect to . Assuming about 10% (in power) it follows:

(5)
It is important to observe that depends inherently on

the input capacitance and on the peaking time . Here we
assume that the charge amplifier has been already optimized for
given and , and that the design of the shaper (with the
10% requirement on the contribution) follows from that. Equa-
tion (5) shows that the dynamic range increases with
and with the square root of . For a given shaper and ca-
pacitor value the dynamic is maximized if ,
where is the maximum voltage allowed by the technology,
which means that the shaper amplifier must implement a rail-to-
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Fig. 3. Example of DR and ENC vs. charge gain Ac. The four cases of ,
2, 11, and 31 are pointed out.

rail output stage. Further increase can only be achieved by in-
creasing the value of , which also means increasing (as
in (3)) and the area (and power) of the first stage of the shaper.
For example, a CMOS 130 nm technology with 1.2 V supply
and typical MIM capacitance of 2 , assuming a CU-3
shaper with available area , the dy-
namic range is limited, according to (5), to .
For a given , higher values of dynamic range can only be

obtained at the expense of the ENC, and the maximum would
be achieved when dominates over . Equation (5)
can be written in the more general form:

(6)

where is the ratio between the squares of the total ENC
and the from the first stage of the shaper: the higher the
first stage contribution, the lower the value of .
Fig. 3 shows an example of compromise between ENC

and dynamic range assuming the previous technology case
and . The four cases of , 2, 11,
and 31 (corresponding to , 1, 10,
and 30 respectively) are shown, and it can be observed how
the dynamic range can be increased at the expense of the
ENC. Values of lower than 1.1 (ENC dominated by )
would not benefit much the DR but would further limit the
resolution by increasing the total ENC. The extreme case is for

(i.e. no charge amplification) where and
. On the other hand, values of higher than 11

(ENC dominated by ) would not benefit much the ENC
but would further limit the DR.
From (6) it is observed that a reduction in area at equal DR

can be obtained by decreasing while keeping the ratio
constant (the charge gain would decrease according to (3)).
However, the ENC will increase according to the square root of

.
For practical cases, where and the maximum charge

are given, a decrease in corresponds to a decrease in useful
dynamic range according to the square root of (note

Fig. 4. Schematic of a charge amplifier followed by a shaper with real coinci-
dent poles.

that the maximum charge of interest may differ from the max-
imum charge that can be processed by the front-end). In
other words, decreasing the value of increases the maximum
charge beyond the one of interest, while still increases the value
of ENC. In low-noise design, the increase in ENC is still ac-
ceptable if contained within 10% from , which means

. For the value of is reduced about 50%
(factor 1.91) with respect to .
It is worth emphasizing one more time that, in this analysis,

the is assumed defined and optimized for noise (i.e. the
charge amplifier is designed for given and ) and that the
design of the shaper follows from that. From (6) it can also be
observed that such defined DR does not depend on the peaking
time . However, once the system is designed with a given op-
timized and a given , an adjustment of the peaking time
(obtained scaling the value of the resistors) would in most cases
change and then would modify and the DR (while the
noise contribution from the shaper would not change).
So far we have assumed negligible the noise contribution

from subsequent stages, which provide the additional poles
of the shaper. We first consider the case of real coincident
poles. These configurations are frequently referred to as
“ shapers” since they can be implemented using
one CR filter followed by filters of RC type, and they
are assumed to be connected at the voltage output of the charge
amplifier. The resulting transfer function provides one zero in
the origin, which compensates for the pole in the origin from
the feedback capacitor of the charge amplifier, and n poles
with time constant RC. The order of the shaper is equal to n
(zeroes cancelled, n poles in total). The lowest possible order
without divergence of noise is (the well known and
widely adopted CR-RC shaper). The equations in the frequency
(Laplace) and time domains are as follows:

(7)
where n is the order and p are the real poles, coincident.
Fig. 4 shows a frequently adopted configuration for

shapers. Each additional pole is obtained
adding one stage with components , , and , where

is the dc voltage gain. Assuming that the first stage operates
rail-to-rail, as required to minimize its and the following noise
contributions, the performance of the shaper is maximized when
also the subsequent stages operate rail-to-rail, which is obtained
with , , , , and
so on. We can estimate the noise contribution of the two dis-
sipative components of the second stage, i.e. and .
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When reported as equivalent parallel generators at the input of
the first pole, the noise spectral densities are respectively given
by:

(8)

and they can be combined into a single noise generator:

(9)

where we set for coincident poles. Such contri-
bution can be reported as an equivalent parallel noise generator
at the input of the charge amplifier by scaling it with the square
of the charge gain . After a few steps it follows the contribu-
tion to the ENC of the second stage, given by:

(10)

where is the ENC coefficient for white parallel noise and
depends on the order of the shaper with for the second
order, 0.83 for the third order, 0.78 for the fourth order, and so
on. From (10) it can be observed that the noise contribution from
the second stage of the shaper, relative to the first, decreases
as the order increases and as the ratio increases, and in
principle can be made negligible for , i.e. at expenses
of area and power.
As the order increases, the noise contribution from the next

stages must be added. Eventually, the total contribution from the
shaper can be written as:

(11)

where we assume rail-to-rail operation, is the average ca-
pacitance per pole, and for the second order, 1.13 for
the third order, 1.24 for the fourth order, 1.3 for the fifth order,
and so on. It is worth emphasizing that the contribution of each
additional stage can be made negligible by increasing its capac-
itance relative to , which at equal gain (rail-to-rail operation)
corresponds to a reduction in the value of the resistors.
Next we consider the case of complex conjugate poles. These

configurations, introduced by Ohkawa [6], have a number of
advantages [7], among which a faster return to zero at equal
peaking time with respect to the real poles of the same order.
The equations in the frequency (Laplace) domain are:

(12)

Fig. 5. Schematic of a charge amplifier followed by a shaper with complex
conjugate poles.

where n is the order, is the real pole (n odd only), and
are the real and imaginary parts of the complex-conjugate poles,
obtained as roots of the equation

, while in the time domain are:

(13)

where the coefficients (magnitude and argument )
are given by:

(14)

Fig. 5 shows a frequently adopted configuration for these
shapers: if n is the order (odd in these cases), the real pole is
given by the first stage and the complex conjugate poles are
given by the additional stages. Each additional stage
has transfer function:

(15)

where the values of (real pole), and , normal-
ized to the peaking time , can be obtained from Table II. The
value of is about 20% of the value of , and we can thus
assume an average capacitance per pole .
Evaluating the noise contribution of the dissipative compo-

nents of these stages is cumbersome. Eventually, the total con-
tribution from the shaper can be written again as in (11), where
we assume again rail-to-rail operation, is the average capac-
itance per pole, and for all orders. In these configura-
tions most of the noise contributions come from the series resis-
tors . Once again it is worth emphasizing that, apart from the
first stage (real pole), the contributions can be made negligible
by increasing the value of the average capacitance per pole .
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TABLE II
DESIGN COEFFICIENTS FOR UNIPOLAR SHAPERS WITH
COMPLEX-CONJUGATE POLES, DIFFERENT ORDERS

Table I summarizes the value of for various orders. Also
included in Table I is the relative dynamic range RDR, i.e. the
DR normalized to the one for the RU-2 case, assuming the same
values for and (e.g. which is the practical case
where ), and assuming all shapers using
the same value of and . From Table I it may appear
that low order shapes offer a higher DR. A thorough compara-
tive analysis, though, should include the impact of the shape on

. For example, under constraint of finite pulse width (e.g.
rate constraint) and dominant white series noise, higher order
shapes offer a lower due to the higher symmetry (i.e.
longer peaking time at equal width). Higher order shapers can
also offer some advantage in terms of pile-up reduction and bal-
listic deficit [7].
We conclude this section by applying these results to the (5)

and (6) for the dynamic range, obtaining:

(16)

For a given total capacitance , where n is
the order of the shaper, the DR in (16) has a maximum around:

(17)

which, for all of low order shapers and the high order shapers
with complex conjugate poles, is about while for high
order shapers with real coincident poles is somewhat lower. The
rest of the capacitance can be distributed in equal amount among
the additional poles, but it should be observed that slightly better
results can be obtained assigning larger capacitance values to the
last stages. Since the maximum is relatively shallow, the value
of DR obtained for is still a good approximation.
In the previously reported example with ,

, it follows and 2,800 for
CU-3 and RU-2 respectively. With the described configurations
and assuming comparable area and power and given , the
shapers with real poles offer a dynamic range about 70% higher
than the ones with complex conjugate poles.

III. ALTERNATIVE CONFIGURATIONS

In this Section we review some configurations which can be
found, in part, in the literature and that could provide an al-
ternative solution to the voltage feedback circuit for realizing

Fig. 6. Alternative configurations for the realization of low-noise single-pole
stages.

low-noise single pole stages. The review would like to provide
insights on performance and noise analysis, without aiming at
being exhaustive. Some valuable information can also be found
in [8], [9].
The alternative configurations are shown in Fig. 6. Theymake

use of CMOS current mirrors to scale down the current in the
resistor R, thus reducing its noise contribution. In fact, if

is the scaling factor, the dissipative current feedback
through can be approximated as , where

. is the equivalent resistance which sets, with C, the
time constant of the filter, given by . The parallel noise
contribution from R, reported at the input of the stage, scales
down with , being given by 4 , i.e. 4 .
It results that, at equal C and time constant, the noise contribu-
tion from R is a factor lower than the one from in the
corresponding configuration of Fig. 2.
On the other hand, design constraints for linearity and dy-

namic range suggest that the dominant noise contribution comes
from the channel noise of the last transistor of the feedback
chain, .
We start analyzing the configuration in Fig. 6(a). This config-

uration can also make use of a cascode stage , as shown in
the detail in Fig. 6(a), frequently used in complementary config-
urations [10], [11]. In order to guarantee a linear response, the
relationship must be satisfied, where is the
transconductance of (or the one of the cascode MOSFET,
if applicable). This relationship imposes a limit to the minimum
current flowing through R. Assuming that operates in
moderate inversion (as required to mirrors to guarantee a large
enough voltage swing), its can be approximated as

, where n is the sub-threshold factor ( typical)
and is the thermal voltage ( 25 mV at 300 K). It
follows the requirement on the voltage drop across R, given by

. Since operates in moderate inversion, its
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white noise spectral density is given by . By con-
sidering the mirror ratio and by imposing the relationship for
linear response it follows:

(18)

which shows that, at equal C and time constant (i.e. when
) the noise spectral density from would dominate, and

it would be larger than the one from in Fig. 2, given by 4
. The low-frequency noise component from should

also be added, but this contribution can be reduced, to some
extent, by increasing the gate area of (i.e. by increasing
both L and W of ). Finally, the non-stationary noise con-
tribution [12] should be considered, associated to the increase
in the drain current of in presence of a signal. In the time
domain this contribution, integrated in C, can be approximated
as where is the signal current and is the peaking
time (a measure of the integration time). On the other hand, the
signal integrated in C is given by , where Q is the input
charge and is the charge amplifier gain. By considering that

it follows for the signal-to-noise ratio due to the
non-stationary contribution:

(19)

where N is the number of signal electrons at the input of the
charge amplifier. In most practical cases this contributions has
negligible impact on the total S/N due to , as it can
be observed assuming a minimum signal (ENC in
number of electrons).
Attempts to improve the linearity by controlling the gate

voltage of the cascode can be considered, as shown in
Fig. 6(b) and in [13]. However, the noise contribution from the
controlling stages must be taken into account; also, maintaining
the voltage drop across R below the thermal voltage might
be a challenge.
Most of the previous arguments also apply to the configura-

tion in Fig. 6(c) [14], where the is now the MOSFET used
as source follower.
With regards to the configuration in Fig. 6(d), ideally the

voltage drop across can be kept small but, in practical cases,
it is difficult to reduce it to values much lower than the thermal
voltage , and (18) would still apply.
A further challenge towards the various configurations in Fig.

6 is to obtain a high linearity in the mirror stages over a wide
dynamic range of currents. On the positive side, these configu-
rations, at equal capacitance, use resistors of lower value thus
reducing the relative area, even though the additional area for
the current mirrors should now be accounted for.
These observations suggest that the linear configurations that

make use of active devices in the signal path (e.g. current mir-
rors) cannot offer a dynamic range wider than the ones based on
passive components only. It should be observed that OTA-based
CMOS stages would enter this category as well [15]. The use
of BiCMOS technologies would greatly alleviate the limita-
tion in linearity, as shown in [16], but some of the limitations
previously discussed still apply, including the loss due to the

Fig. 7. Delayed dissipative feedback (DDF) applied to a second order shaper.

voltage drops. The same reference, interestingly, moves in the
direction of delaying the feedback, which can offer improve-
ments in noise. In the next section we introduce the concept of
delayed dissipative feedback (DDF), applied to voltage-based
configuration.

IV. A LOWER-NOISE CONFIGURATION: THE DELAYED
DISSIPATIVE FEEDBACK (DDF)

In this section we discuss configurations that perform beyond
the DR limits imposed by (16). The approach consists of de-
laying wherever possible the feedback of the resistive (dissi-
pative) components. An example of this concept, applied to a
second order filter, is shown in Fig. 7.
In this configuration the resistive (dissipative) feedback to

the input of the shaper is provided through from the output
, which is delayed by the time constant and amplified,

rather than from .1 Note that must be positive in order
for the feedback through to be negative. The input stage of
the amplifier is not a virtual ground, but does not need to
be rail-to-tail. The transfer function can be alternatively
implemented using an active filter, with minor impact on the
noise performance.
The transfer function can be easily calculated as:

(20)

It can be verified that two real and coincident poles with time
constant are obtained if and .
Assuming that the first stage operates rail-to-rail, the perfor-
mance of the shaper is maximized when also the next stage op-
erates rail-to-rail, which is obtained for
(i.e. the ratio between the peaking time and is a factor
2.718 lower than the case in Fig. 3). It also follows the value

of . We can now calculate the noise contribution of
the two dissipative components, and . Concerning , the
result in (2) still applies, where (from Table I). The
contribution from can be either calculated or simulated. The
total contribution from the shaper can be written as in (11) with

and the dynamic range as in (16) with a maximum,
again, for . When compared with the same order con-
figuration in Fig. 4, the noise power of this configuration at equal
total capacitance is less than a half ( factor) and the dy-
namic range is about 50% higher ( factor).

1This specific configuration, limited to , has been first envisioned
by F. S. Goulding [17] and then widely adopted.
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Fig. 8. Delayed dissipative feedback (DDF) applied to a third order shaper.

The configuration in Fig. 7 can also be used to realize a second
order shaper with two complex conjugate poles. This is ob-
tained for and where
the values of and can be obtained from Table II. For this
configuration the values of and are 0.4 and 1.38 respec-
tively. The noise power at equal capacitance and the dynamic
range are comparable to the ones for the previous case of real
poles, with the advantage of a slightly faster return to baseline
at equal peaking time.
The delayed dissipative feedback can be used for higher order

configurations as well. Fig. 8 show an example of a third order
realization, which has transfer function:

(21)

where , , , and
(here ). It is important to observe that

without the small capacitance in positive feedback it would
not be possible to obtain a semi-Gaussian shaper, either with
real coincident or with complex conjugate poles. In the case of
real coincident poles with time constant , it follows:

(22)
which, once solved, yields:

(23)
The values and should be chosen in

order to have all stages operating at equal output voltage range
(i.e. rail-to-rail), which also corresponds to the minimum noise
at equal gain. Finally, the condition must be satisfied,
where offers the minimum noise. The
consequent value of to be used in (11) is 3.6. When compared
to the same order configuration in Fig. 4, the noise power at
equal total capacitance is a factor 0.58 lower and the dynamic
range is about 31% higher.
The configuration in Fig. 8 can also be used to realize a third

order shaper with complex conjugate poles, by imposing:

(24)

Fig. 9. Delayed dissipative feedback (DDF) applied to a fifth order shaper.

TABLE III
COEFFICIENTS FOR DDF SHAPERS

The values and should be chosen in
order to have all stages operating at rail-to-rail output, which
also corresponds to the minimum noise at equal gain. The con-
dition must be satisfied, where

offers the minimum noise. The consequent value of to
be used in (11) is 4.32. When compared to the same order con-
figuration in Fig. 5, the noise power at equal total capacitance is
a factor 0.26 lower and the dynamic range is about 95% higher.
Finally, Fig. 9 show an example of a fifth order realization.

Also this configuration can be used for real or complex conju-
gate poles. The transfer function can be written as:

(25)

where , , , ,
, and (here ).

Table III summarizes the coefficients and performance
achievable using the delayed dissipative feedback (DDF). The

is relative to the RU-2 case in Table I.
A comparison between Table I and Table III shows that

the DDF is particularly beneficial with the low and medium
medium order shapers. This is also highlighted observing the
ratio in Table III. A very promising configu-
ration seems to be where a factor of two higher
dynamic range can be achieved with respect to the classical
configuration. With high order cases the impact is small or
negligible due to the noise contribution from the additional
poles (see increase in coefficient ). However, the use of larger
values for reduces in all cases the value of the current re-
quired to generate the dc voltage drops, thus reducing its noise
contribution. It is worth emphasizing, again, that a thorough
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Fig. 10. Examples of realizations using the approach in Fig. 5 (a) and the DDF
in Fig. 8 at equal dynamic range (b) and at equal total capacitance (c).

comparative analysis should include the impact of the shape on
[7].

As a design example, let’s consider the case of a CdZnTe
based Gamma-ray detection system which must operate in the
10 keV to 3 MeV range with an electronic resolution better than
1 keV FWHM (e.g. electrons rms). In a first phase
we design and optimize the charge amplifier in order to meet
the required resolution. In doing so we assume a third order a
semi-Gaussian shaper with complex conjugate poles and select
a peaking time of 500 ns.
The design of the shaper starts from the requirements on the

dynamic range and resolution. We would like to keep negligible
the noise contribution from the shaper, hence selecting
in (16). It follows from (16), Table I, and a CMOS 130 nm tech-
nology (1.2 V and MIM capacitance 2 )

(26)

where C is the average capacitance per pole, and we considered
room temperature and a linear operation up to about 100 mV
from the rails (i.e. 1 V maximum swing).
If we design the shaper using the configuration in Fig. 5,

where and , we get for the total shaper capac-
itance , which corresponds to a minimum area
of about 16,750 (e.g. ). If we design
using the configuration in Fig. 8, where and

, we get for the total shaper capacitance ,
which corresponds to a minimum area of about 4,365 (e.g.

). The required total resistance is

Fig. 11. Simulated pulse response (a) and integrated output noise spectral den-
sity (a) for the circuits in Fig. 10.

in the first case and in the second case. The cor-
responding area in the selected technology for linear resistors,
characterized by , is in minimum size about
70 and 270 respectively. Once we include the rela-
tively small area for amplifiers and routings, the first case re-
quires at least 18,000 (e.g. about ) while
the second 5,000 (e.g. ), with a saving in
area of about 72%. Additionally, the value of charge gain
is 107 in the first case and 28 in the second case, and the
current needed to generate the dc voltage drops is more than 10
times lower.
In Fig. 10 the realization of the first (a) and second (b) case

are shown, along with a third case where we use again the DDF,
but with a total capacitance equal to the one of the first case.
In Fig. 11 the simulations of the pulse response to 1 fC (a) and
the integral of the output noise power spectral density (b) for
all three cases are shown. It can be observed that, compared to
the first case (a), the second (b) has comparable noise with a
capacitance about four times lower (a saving in area of about
70%) while the third case (c) has about half of the rms noise at
comparable total capacitance. In this simulation the noise con-
tributions from the amplifiers are not included for the previously
given reasons. To a first order, the noise contribution from the
first amplifier of the shaper depends only on the value of thus
being comparable in all three cases.
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V. CONCLUSIONS

Our analysis on the design of low-noise linear shapers sug-
gests that, once the ENC from the charge amplifier is defined,
the dynamic range of the system is set by the voltage swing and
the value of the capacitance realizing the poles of the shaper, in-
dependent of the peaking time. The configuration used to realize
the pole(s) has also relevant impact. Those configurations based
on passive components in feedback offer a better dynamic range
than the ones based on both active and passive components, as
for scalingmirrors. The delayed dissipative feedback (DDF) can
overcome some of the limitations of the more classical config-
urations. The DDF consists of delaying the resistive feedbacks
from the furthest available nodes along the shaping chain. In
order to implement semi-Gaussian shapers, a small capacitor in
positive feedback is required. As an example, for a third order
shaper a factor of two higher dynamic range can be obtained
with the DDF or, at equal dynamic range, about 25% of the ca-
pacitance is required by the DDF (i.e. about 30% of the area in
practical cases).
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