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Abstract

The thermodynamics of the o, 3 and vy polymorphs of AlH; were determined using differential scanning calorimetry and ex situ X-ray diffraction.
These results demonstrate that at around 100 °C the decomposition of the 3 and «y polymorphs occurs by an initial phase transition to the o polymorph
followed by decomposition of the a phase. The total heat evolved during the B— « transition is 1.5 = 0.4 kJ/mol AlH; and 2.8 4 0.4 kJ/mol AlH;
during the y— « transition. The transformation to the a phase is exothermic and is therefore likely to occur spontaneously at room temperature.
A formation enthalpy of approximately —10kJ/mol AlH; was measured for a-AlHj;, which is in good agreement with previous experimental and

calculated results.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Aluminum hydride (AlH3) is a covalently bonded, metastable
solid at room temperature with a large gravimetric and volumet-
ric hydrogen capacity (10.1 wt.% and 149 kg/m?, respectively).
The high capacity and rapid kinetics [1-3] has generated consid-
erable interest in using AIH3 as an Hj source in automotive fuel
cells. AIH3 was originally synthesized as a nonsolvated solid
using an organometallic synthesis route by Brower et al. [4]. In
addition to the « phase, Brower et al. successfully prepared six
other non-solvated AIH3 polymorphs, i.e. a, o, B, v, d, € and
L. Over the past 30 years the o phase has been thoroughly in-
vestigated [5-13,1,2]. However, little is known about the other
solid alane polymorphs. In this letter we present new informa-
tion on the thermal stability of freshly synthesized «, B and vy
polymorphs of AlH3.

The thermal decomposition reaction of the subject poly-
morphs is quite straight forward as shown below:

AlH; — Al +3/2H, (1)

This reaction was studied using differential scanning
calorimetry (DSC) in conjunction with ex situ X-ray diffraction
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to determine the reaction mechanism and enthalpy. In addition,
the transition enthalpy of the conversion of the 3 and vy phases
to the o phase was also delineated.

2. Experimental

Differential scanning calorimetry was performed using a Mettler-
Toledo DSC822¢. This instrument uses the Boersma, or heat-flux con-
figuration whereby energy released or absorbed is determined by mea-
suring the heat flow between the sample and a reference crucible.
The reaction enthalpies were determined by measuring the heat ab-
sorbed/released during a temperature ramp between 35 °C and 300 °C
at a rate of 10 °C/min. In this study it is assumed that the magnitude
of the decomposition enthalpy is equivalent to the formation enthalpy.
Although measurements were performed during the decomposition re-
action, the values are reported as formation enthalpies (with a sign
change) to be consistent with similar studies in the literature. Ex situ X-
ray diffraction measurements were performed at room temperature on
a Philips diffractometer using Cu Ka radiation. X-ray samples received
the same thermal treatment as the DSC samples, but were quenched in a
room temperature water bath after reaching a given point in the thermal
ramp.

The synthesis of the «, 3 and vy polymorphs were previously
described in detail; for convenience a brief summary is presented
here [3]. AIH; was synthesized via an ethereal reaction of AlCI;
with LiAlH, to produce an etherated species of aluminum hydride,
AlH;-0.3[(C,Hs5),0] [4]. The removal of the associated ether complex
was accomplished by heating the solvated AlH; in the presence of a
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Fig. 1. (a) Differential scanning calorimetry plot of a-AlH3 in the temperature range of 35-300 °C ramped at a rate of 10 °C/min; (b) ex situ diffraction patterns
acquired at room temperature before thermal treatment (I) and after a temperature ramp to 300 °C (II).

complex metal hydride (LiAlH4, LiBH4) under vacuum. The synthesis
is extremely sensitive to the desolvating conditions (e.g. temperature
and time) and small alterations can lead to the precipitation of a differ-
ent AlH; polymorph. y-AlH; forms in the presence of excess LiAlHy,
while 3-AlH; forms in the presence of excess LiAlH, and LiBH, [4,3].
In both cases, a slightly higher temperature (~ 70 °C) and/or a longer
heating time will lead to the formation of a-AlHj;.

3. Results and discussion

Fig. 1a shows a DSC plot of a-AlH3 over a temperature range
of 35-300°C. A large endothermic peak is observed around
170°C and is attributed to the decomposition of AIH3 (reac-
tion (1)). Fig. 1b displays the corresponding diffraction pattern
at 35 °C and after ramping to 290 °C. As expected, the diffrac-
tion pattern demonstrates that a-AlH3 is completely transformed
to Al metal (and Hy) during the temperature ramp. The mea-
sured formation enthalpy is AH; = —9.9 + 0.4kJ/mol AlH3
as shown in Table 1. This is similar to the enthalpy measured
by Sinke et al. (—11.4 4+ 0.8kJ/mol AlH3) using calorime-
try and calculated values by Wolverton et al. (—6.95kJ/mol
AlH3) [14] and Ke et al. (—12.35 kJ/mol AlH3) [15]. The Gibbs
free energy of formation at room temperature (AGoogk) was
calculated using the measured formation enthalpy and an en-
tropy change (AS) of 130.7J/mol K, which is the entropy as-
sociated with the transformation of hydrogen from a disor-
dered gas to an ordered solid. The Gibbs formation energy is
AGoogg = 48.5 = 0.4kJ/mol AlH3 as shown in Table 1. It is
interesting to note that this value yields an H, equilibrium pres-
sure of 5 x 10° bar at 298 K, which is comparable to the value

Table 1

predicted by Claudy et al. [13], but considerably higher than the
values measured by Baranowski and Tkacz. [7].

The DSC plot of 3-AlH3 is shown in Fig. 2a. In addition to the
large endothermic peak observed around 170 °C, there is a sig-
nificant exothermic peak that appears at approximately 100 °C.
Diffraction patterns were acquired prior to the thermal treatment,
after aramp to 130 °C, and after a ramp to 290 °C and are shown
in Fig. 2b. Prior to thermal treatment the sample is predominately
composed of the (3 phase with a small amount of a -y phase im-
purity as shown in pattern I. Subsequent to the temperature ramp
up to 130 °C the sample is almost entirely composed of a-AlH3
with a small amount of Al metal and residual 3-AIH3 as shown
in pattern II. As the temperature is further increased the o phase
has decomposes to Al metal (and Hj) as shown in pattern III. It
is clear that the B— o transition is the preferred decomposition
pathway at around 100 °C. However, it should be noted that at
lower temperatures or faster heating rates the [3 phase may de-
compose more readily to Al 4+ 3/2H,. The transition enthalpy
(A Hp), heat of formation for Al + 3/2H; —a-AlH3 (A Hy), to-
tal formation enthalpy (A Hiotal = AHy + A Hp) and the Gibbs
free energy for y-AlH3 are shown in Table 1. The measured
transition enthalpy may be slightly higher than the actual value
due to the contribution from the y phase impurity. Therefore,
the magnitudes for A Hqa and A Goog k may underestimate the
actual values.

The DSC plot of y-AlH3, shown in Fig. 3a, also exhibits a
large exothermic peak around 100 °C. The ex situ diffraction
patterns acquired prior to the thermal treatment, after a ramp to
133 °C, and after aramp to 290 °C are shown in Fig. 3b. The start-
ing material is composed of pure y-AlH3, which transforms to

Formation energies and temperature onsets for o, 3 and y-AlH3 showing transition enthalpy (A Hyp) and temperature onset (7), heat of formation for Al +3/2H; —a-
AlH3 (AHj) and temperature onset (77), total formation enthalpy (A Hioral = A Hop + A Hj) and the Gibbs free energy (AGr9sk = A Hioral — TAS where AS =

130.7J/mol K)
Polymorph AHy (kJ/mol AlH3) Ty (°C) AH; (KJ/mol AlH3) Ti (°C) AHg (KJ/mol AlH3) AGaogk (kKJ/mol AlH3)
a-AlH; - - —99+06 162.1 —9.94+0.6 48.54+0.6
B-AlH; 1.54+04 91.0 —9.540.6 157.1 —8.0£1.0 50.5+1.0
v-AlH3 2.8+04 100.7 —9.940.6 1583 —7.1+10 51.4+1.0
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Fig. 2. (a) Differential scanning calorimetry plot of 3-AlHj3 in the temperature range of 35-300 °C ramped at a rate of 10 °C/min; (b) ex situ diffraction patterns
acquired at room temperature before thermal treatment (I), after a temperature ramp to 130°C (II) and after a temperature ramp to 300°C (III).
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Fig. 3. (a) Differential scanning calorimetry plot of y-AlHj3 in the temperature range of 35-300 °C ramped at a rate of 10 °C/min; (b) ex situ diffraction patterns
acquired at room temperature before thermal treatment (I), after a temperature ramp to 130° (II) and after a temperature ramp to 300°C (III).

a-AlH3 upon a temperature ramp to 133 °C. Additional heating
to 290 °C exhibits the expected decomposition of the a phase to
Al metal (and Hy). These results demonstrate that, similar to the
[ phase, the decomposition of y-AlH3 occurs by an initial y—«
transition followed by decomposition of the o phase. Similar ob-
servations of the y—« transition were observed by Claudy et
al. [16]. Despite the complete y— « transition at 100 °C, it is
possible that the y phase decomposes directly to the elements
at other temperatures. The transition enthalpy, heat of forma-
tion for Al + 3/2H, —a-AlH3 and the Gibbs free energy for
v-AlHj3 are shown in Table 1.

4. Conclusion

Ex situ X-ray diffraction of 3 and y-AlH3 performed during
thermal treatment has demonstrated that the decomposition oc-
curs via a transition to the more stable « phase at around 100 °C
followed by the decomposition of the o phase to Al and H».
The heats evolved during the polymorph transformations are
1.5kJ/mol AlH3 for the —« transition and 2.8 kJ/mol AIH3

for the y— « transition. These reactions are exothermic and are
therefore likely to occur spontaneously even at room tempera-
ture. The measured formation enthalpy for a-AlHj3 is approxi-
mately —10kJ/mol AlH3, which is consistent with other exper-
imental and calculated results.
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