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EVENT-DRIVEN READOUT SYSTEM WITH
NON-PRIORITY ARBITRATION FOR
MULTICHANNEL DATA SOURCES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a National Phase application of Inter-
national Application No. PCT/US2022/022707, filed Mar.
31, 2022, which claims the benefit of and priority to U.S.
Provisional Application No. 63/175,625, filed Apr. 16, 2021,
and U.S. Provisional Application No. 63/244,692, filed Sep.
15, 2021, the disclosures of which are incorporated herein
by reference in their entireties.

STATEMENT OF GOVERNMENT LICENSE
RIGHTS

This invention was made with Government support under
contract number DE-SC0012704 awarded by the U.S.
Department of Energy. The present invention was made with
Government support under NASA grant NNX16AC42G
awarded by the National Aeronautics and Space Adminis-
tration. The United States government may have certain
rights in this invention.

BACKGROUND

The disclosed embodiments generally relate to an event-
driven readout system with non-priority arbitration for mul-
tichannel data sources.

SUMMARY

The disclosed embodiments relate to an event-driven
readout management system including non-priority access
arbitration of a plurality of channels. The system includes an
arbitration tree circuit, response circuit, in-channel logic
circuit, and output periphery circuit. The arbitration tree
circuit determines to which of the plurality of channels to
grant access to a common signal transfer resource shared by
the plurality of channels based on a readout access request
provided by at least one of the plurality of channels. The
arbitration tree circuit excludes simultaneous occurrence of
multiple readout access requests from the determination, and
the readout access request is stored in the arbitration tree
circuit until access is granted to the common signal transfer
resource by the arbitration tree circuit. The arbitration tree
circuit terminates a prior readout transaction and com-
mences a subsequent readout transaction in response to a
single edge of a clock signal. The response circuit is
operatively coupled to the arbitration tree circuit, and a state
of the clock signal represents an acknowledge token. The
acknowledge token is provided to the arbitration tree circuit,
which uses the acknowledge token to grant access to the
common signal transfer resource. The in-channel logic cir-
cuit is operatively coupled to the arbitration tree circuit, and
generates the readout access request and receives the
acknowledge token. The in-channel logic circuit terminates
the prior readout transaction and commences the subsequent
readout transaction in response to receiving the acknowl-
edge token. The output periphery circuit converts informa-
tion received from the plurality of channels into an output
format on the common signal transfer resource.

The common signal transfer resource may include at least
one of an analog signal transfer line and a digital signal
transfer line, and the readout access request may be gener-
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ated in response to an event, wherein the event may include
activation of at least one of the plurality of channels to
generate transferrable data. The readout transaction may
include a plurality of readout phases, and at least one of the
plurality of readout phases may cause transfer of at least a
portion of information from one of the plurality of channels
to the common signal transfer resource. A duty cycle asso-
ciated with the clock signal may be selectable to maximize
settling time associated with the common signal transfer
resource, and the determination may include determining
which of a plurality of readout phases associated with the
readout transaction is assigned to the plurality of channels
independent of at least one of readout access requests stored
in the arbitration tree circuit, readout access requests
received, and a relative position of the plurality of channels
with respect to the arbitration tree circuit. A quantity of
edges associated with the clock signal may be equal to a
quantity of readout phases associated with the readout
transaction, and the arbitration tree circuit may operate
asynchronously with the plurality of channels. The arbitra-
tion tree circuit may operate synchronously with the output
periphery circuit, may operate synchronously with the in-
channel logic circuit, and the in-channel logic circuit may
operate asynchronously in generating the read access request
using the acknowledge token such that a duration of the
acknowledge token defines an acceptance time window
associated with the read access request.

A duty cycle of the acknowledge token signal may be
selectable to extend a minimum readout phase time. The
plurality of channels may provide information to the com-
mon signal transfer resource such that a transmission order
associated with concurrently requesting channels is inde-
pendent of arbitration tree positions associated with the
concurrently requesting channels. The readout request out-
put in each stage of arbitration tree may represent a logical
sum of request signals from a stage lower in the arbitration
tree or a logical sum of the result signals from arbitration
between requests or internal signals of the single arbitration
cell, in the case when the arbitration cell is performing
arbitration not only between the readout requests but also
between the readout requests and the state of the acknowl-
edge line. Thus, the acknowledge token is prevented from
being blocked even if there are still active readout access
requests when the read out is terminated.

The disclosed embodiments further relate to a method of
non-priority arbitration of a plurality of channels using an
event-driven readout management system. The method
includes determining, using an arbitration tree circuit, to
which of the plurality of channels to grant access to a
common signal transfer resource shared by the plurality of
channels, wherein the determination is based on a readout
access request provided by at least one of the plurality of
channels; excluding, using the arbitration tree circuit, simul-
taneous occurrence of multiple readout access requests from
the determination; storing the readout access request in the
arbitration tree circuit until access is granted to the common
signal transfer resource by the arbitration tree circuit; ter-
minating, using the arbitration tree circuit, a prior readout
transaction and commencing a subsequent readout transac-
tion in response to a single edge of a clock signal; providing
an acknowledge token to the arbitration tree circuit, wherein
the arbitration tree circuit uses the acknowledge token to
grant access to the common signal transfer resource, and
wherein a state of the clock signal represents the acknowl-
edge token; generating, using an in-channel logic circuit, the
readout access request and receiving the acknowledge token,
wherein the in-channel logic circuit is operatively coupled to
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the arbitration tree circuit; terminating, using the in-channel
logic circuit, the prior readout transaction and commencing
the subsequent readout transaction in response to receiving
the acknowledge token; and converting, using an output
periphery circuit, information received from the plurality of
channels into an output format on the common signal
transfer resource.

The disclosed embodiments yet further relate to a com-
puter-readable medium including instructions that, when
executed by a processing device, perform operations includ-
ing: determining, using an arbitration tree circuit, to which
of the plurality of channels to grant access to a common
signal transfer resource shared by the plurality of channels,
wherein the determination is based on a readout access
request provided by at least one of the plurality of channels;
excluding, using the arbitration tree circuit, simultaneous
occurrence of multiple readout access requests from the
determination; storing the readout access request in the
arbitration tree circuit until access is granted to the common
signal transfer resource by the arbitration tree circuit; ter-
minating, using the arbitration tree circuit, a prior readout
transaction and commencing a subsequent readout transac-
tion in response to a single edge of a clock signal; providing
an acknowledge token to the arbitration tree circuit, wherein
the arbitration tree circuit uses the acknowledge token to
grant access to the common signal transfer resource, and
wherein a state of the clock signal represents the acknowl-
edge token; generating, using an in-channel logic circuit, the
readout access request and receiving the acknowledge token,
wherein the in-channel logic circuit is operatively coupled to
the arbitration tree circuit; terminating, using the in-channel
logic circuit, the prior readout transaction and commencing
the subsequent readout transaction in response to receiving
the acknowledge token; and converting, using an output
periphery circuit, information received from the plurality of
channels into an output format on the common signal
transfer resource.

Other embodiments will become apparent from the fol-
lowing detailed description considered in conjunction with
the accompanying drawings. It is to be understood, however,
that the drawings are designed as an illustration only and not
as a definition of the limits of any of the embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings are provided by way of example
only and without limitation, wherein like reference numerals
(when used) indicate corresponding elements throughout the
several views, and wherein:

FIG. 1 shows a readout resources management system
with multiple sources of data requesting readouts asynchro-
nously, in which a common output bandwidth is significantly
smaller than a total bandwidth of channels during simulta-
neous channel submissions;

FIG. 2A shows a block diagram of data-push architecture;

FIG. 2B shows a block diagram of two-dimensional
data-push architecture;

FIG. 3 shows a block diagram of token ring architecture;

FIG. 4A shows a block diagram of a readout system with
address-encoder and reset-decoder architecture;

FIG. 4B shows a block diagram of a readout system with
address-encoder and reset-decoder architecture and an addi-
tional data bus;

FIG. 5 shows a block diagram illustrating communication
based on address event representation architecture;

FIG. 6 shows a block diagram of an embodiment of a
readout management system;
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FIG. 7 shows a block diagram of a first embodiment of an
asynchronous readout requester;

FIG. 8 shows a schematic diagram of a second embodi-
ment of the readout requester;

FIG. 9A shows a schematic diagram of a third embodi-
ment of the readout requester with different logic states;

FIG. 9B shows a schematic diagram of the third embodi-
ment of the readout requester with an additional signal that
indicates activity of channel readout phases;

FIG. 10A shows a schematic diagram of a fourth embodi-
ment of the readout requester;

FIG. 10B shows a schematic diagram of a fifth embodi-
ment of the readout requester;

FIG. 11 shows a timing diagram showing readout
requester waveforms;

FIG. 12 shows a block diagram of an embodiment of a
synchronous readout requester;

FIG. 13 shows a schematic diagram of an embodiment of
the synchronous readout requester shown in FIG. 12;

FIG. 14A shows a block diagram of an embodiment of an
arbitration cell;

FIG. 14B shows a block diagram of an embodiment of an
arbitration cell shown in FIG. 14A of type 0, which is
referred to herein as “arbitration cell type 07;

FIG. 14C shows a block diagram of an embodiment of an
arbitration cell, which is referred to herein as “arbitration
cell type 17

FIG. 14D shows a block diagram of an embodiment of an
arbitration cell, which is referred to herein as “arbitration
cell type I1I”;

FIG. 14E shows a block diagram of an embodiment of an
arbitration cell, which is referred to herein as “arbitration
cell type 1117

FIG. 15 shows a block diagram of an embodiment of an
address encoder;

FIGS. 16 A-D show symbols representing arbitration cells
depending on a type of arbitration cell and address encoder
inclusion;

FIGS. 17A-B show block diagrams of alternating con-
figurations of P-type stage and N-type stage arbitration cells;

FIG. 18 shows a block diagram of an embodiment of
arbitration trees with address encoders;

FIG. 19A shows a Seitz arbiter;

FIG. 19B shows an embodiment of arbiter type I;

FIG. 19C shows an embodiment of arbiter type II;

FIG. 19D shows an embodiment of arbiter type III that
may be subject to blockage;

FIG. 19E shows an embodiment of arbiter type I1I that is
immune to blockage;

FIGS. 20A-B show an SR latch with NAND gates and its
truth table;

FIGS. 21A-B show an SR latch with NOR gates and its
truth table;

FIGS. 22A-D show metastable filters implemented using
inverters and buffers;

FIGS. 23A-B show metastable filters implemented using
multiple input NOR and NAND gates;

FIGS. 23C-D show metastable filters implemented using
inverters with hysteresis;

FIGS. 23E-F show metastable filters implemented using
inverters with feedback;

FIGS. 24A-F show embodiments of a commutator and
truth tables;

FIGS. 25A-B show embodiments of an address encoder
implemented using tristate buffers;

FIGS. 26A-B show embodiments of an address encoder
implemented using tristate inverters;
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FIG. 27 shows an embodiment of a response circuit with
asynchronous generation of acknowledge based on an output
request state;

FIG. 28 shows an embodiment of a response circuit;

FIG. 29 shows an embodiment of an output periphery;

FIG. 30 shows a first embodiment of a serializer;

FIG. 31 shows a timing diagram of waveforms illustrating
operation of the first embodiment of the serializer shown in
FIG. 30;

FIG. 32 show a second embodiment of the serializer in
which pull-up/pull-down networks are not used on data
signals and settling time is maximized;

FIG. 33 shows a timing diagram of waveforms illustrating
operation of the second embodiment of the serializer shown
in FIG. 32;

FIG. 34 shows an embodiment including grouped chan-
nels and a spatially distributed arbitration tree;

FIG. 35 shows an embodiment including grouped chan-
nels including independent data busses and arbitrations
trees;

FIG. 36 shows an embodiment including an additional
buffering stage on the data bus; and

FIG. 37 shows a block diagram of at least a portion of an
exemplary machine in the form of a computing system that
performs methods according to one or more embodiments
disclosed herein.

It is to be appreciated that elements in the figures are
illustrated for simplicity and clarity. Common but well-
understood elements that are useful or necessary in a com-
mercially feasible embodiment are not shown in order to
facilitate a less hindered view of the illustrated embodi-
ments.

DETAILED DESCRIPTION

Data readout and computer network systems that either
collect or transmit data strive for optimal usage of available
bandwidth associated with links. One category of data
transmission includes links that are permanently configured
to assure data streaming rates, which translates into substan-
tial reductions in latency and data loss at the cost of
reserving the link even when data is not being transferred.
Another category includes links configured upon receiving
transmission requests from sources of data or the sources of
data determine whether to occupy bandwidth of a link after
probing channel occupancy and constating that the link is
not used by another concurring source. The latter risks false
detection of an idle state associated with the data link due to
finite channel propagation speed. This may occur when two
or more distant sources initiate transmission after detecting
that a channel is empty. However, transmissions from other
channels may still not reach distant sources to allow detec-
tion by these distant sources of a busy state. To handle such
situations without losing transmitted data, collision detect-
ing mechanisms are incorporated in the network systems,
such as that used in 10BASE5 and 10BASE2 Ethernet
standards in accordance with IEEE 802.3. Solving the
problem of transmission medium access by ordering a
source to send requests for transmission to a switch or data
concentrator and to receive access acknowledgements uti-
lizes a handshaking protocol. Execution of such a protocol
introduces latency, and thus inefficiency in the readout
system. Setting up private links to sources of data or
establishing handshaking protocols are costly and often
require non-optimal allocation of bandwidth, additional
hardware, and increased latency.
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Addressing how to collect data efficiently from spatially
distributed sources poses similar challenges regardless of
whether it concerns a distributed grid associated with in-
field deployed sensors, computers on a network, cells in
content addressable memories, channels in neuromorphic
chips, or elements in one-dimensional (line) or two-dimen-
sional (pixelated) radiation detectors. These facilities or
instruments typically share a common feature of concur-
rently reporting data by two or more sources of data, which
may be seen as asynchronous with respect to clocking
associated with a receiver. Although synchronizing sources
of data using data concentration is possible by distributing a
common time base, achieving this goal comes at a greater
cost. Additional links for distributing a clock signal results
in greater power dissipation. In particular, the clock is
widely distributed regardless of how sparse data is trans-
mitted since idle time between consecutive data transmis-
sion events are present.

As shown in FIG. 1, an efficient readout system 10 is
disclosed for collecting sparse data originating from mul-
tiple sources or channels 11, in which the channels 11
operate asynchronously. Each channel 11 optimally provides
data to a central data acquisition system 13 in such a way
that the order of channels 11 that transmit concurrently is
independent of their geographical positions. The protocol
and hardware architecture are developed for Application
Specific Integrated Circuits (ASICs) that are used, for
example, to read out one-dimensional or two-dimensional
multichannel radiation sensors, which are implemented
using, for example, micro-strip or pixelated radiation sen-
SOrS.

The readout system 10 provides an alternative to a token-
passing scheme, but does not exhibit deficiencies of that
scheme, such as a deterministic order of read out channels
and a varied delay in accessing these channels as a function
of the location of channels at a beginning or end of a token
passing route. The readout system 10 ensures that there are
no collisions and that no channel is starved for the allocation
of time slots to transmit data. That is, there is no situation in
which an access to the readout resources is unfairly or
perpetually denied to one or more of the channels. A
characteristic feature of this readout system 10 is that the
common output bandwidth 12 of the data link is significantly
less than the total data bandwidths 14 of all channels 11
when transmitting simultaneously.

Generally, readout resource management architectures are
classified in the following categories.

(1) Data-Push Architecture (DPA) is a data driven archi-
tecture that initiates readout cycles of valid data from a
channel without receiving an external trigger. DPA can
be found, inter alia, in simple multi-channel applica-
tion, such as that shown in FIG. 2A. DPA receives
asynchronous data, records a time-of-arrival, and
sequences the data on a common bus. These operations
take place as follows: after an event, such as deposition
of a particle, a high logic state is set on a hit line
corresponding to the channel in which the event
occurred. This information is then sent to a buffer 19 for
storage. The buffer 19 generates a channel reset (crst)
signal that resets an analog circuit inside the channel so
that the analog circuit is ready to detect a new event.
Information from the buffer 19 is strobed into a FIFO
20 by a system clock and subsequent operations are
thereafter synchronous as represented by lines 28,
whereas asynchronous data lines are represented by
line 30. A counter 18 value, which is interpreted as a
timestamp of the event, is strobed into its own FIFO 21
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simultaneously. FIFOs 20, 21 reduce dead time, during
which a channel does not detect new events because the
channel is processing a previous event, while reducing
the probability of losing data. The oldest information
from the FIFO 21 is provided to a register 23. This data
is referred to as a current processed event and can
include information regarding multiple events if these
events occur with the same timestamp. To handle
multiple events, priority encoder, decoder, and single
bit reset functions in the register 23 are used. The first
of these functions finds an active bit in a logic vector,
stores the active bit in the register 23, and converts a
position of the most significant active bit to a binary
value. This value is then latched to an additional
register (not shown). From that register, the value is
transmitted, together with the timestamp, to the output
periphery 25 by a bus control 27. From there the value
is sent out to an external system. Output from the
register 23 is also decoded to one hot code, which is a
binary vector with an active bit in one position. Such a
representation of the address is used to clear a bit in the
register 23 so that the next hit address can be encoded
and sent out. If there are no more active bits, subse-
quent data is obtained from the FIFO 21. Synchroni-
zation with the system clock 17 occurs inside the buffer
register 19 or FIFOs 20, 21. The DPA can suffer from
metastable states, which result in invalid logic levels
due to asynchronous data from a channel changing near
an edge of the system clock 17. This can result in
invalid timestamp assignment and/or data loss. FIG. 2B
illustrates implementation of the DPA with a two-
dimensional input array that provides data to a readout
control and row logic block 31. A practical advantage
of DPA is that it does not require continuous distribu-
tion of a clock to the channels. However, DPA may
exhibit the following disadvantages:

(a) pipeline stages, such as buffers, FIFOs, and registers
introduce delays in outputting data;

(b) metastable states caused by triggering synchronous
readout and latching synchronous data (e.g., time
stamps) using asynchronous hit signals;

(c) readout is not fully data-driven for two-dimensional
arrays since channels with valid hit signals are found
after columns are selected; and

(d) if multiple events occur, the events are processed
using a fixed priority that favors some cells over
other cells.

(2) Token Ring Architecture (TRA) 37 is a readout polling
architecture, as shown in FIG. 3. A token is injected
into a chain of channels and transferred from one cell
to another cell until a cell containing valid data is
reached. The cell with valid data retains the token for
a sufficient amount of time to output data. After readout
of this cell is completed, the cell releases the token to
propagate further, as shown in FIG. 3. Signals 36 show
a path of the token until the token finds a cell with valid
data 38. Readout is then initiated and another cell with
valid data 41 waits for the next cycle. If the token
originates in the token logic 39, the channels located
farther from the source of tokens may experience a
shortage of tokens during times of high event intensity.
Alternatively, if a token is transferred from a channel
after readout of that channel, additional strobing is
transmitted to all channels in the ring. Thus, the length
of the chain is important as this length determines how
much of the total readout time slot is available for data
settling since the token requires time to reach its
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destination. This travel time can be short or long. If the
chain is too long, there is a risk of timing failure. An
additional clock that strobes advancement of the token
to successive cells can be distributed across channels.
However, presence of the additional clock increases
power consumption. In addition, the allocation of time
to cover the travel time of the token to the farthest cell
in the chain and settling time for the data results in
suboptimal use of link bandwidth in this token passing
readout architecture.

(3) Address-Encoder and Reset-Decoder (AERD) 42 is a
form of data driven readout architecture as shown in
FIG. 4A. Reporting which channel includes data to be
read out and switching to the next channel to report is
achieved using an arbitration tree 44. The arbitration
tree 44 is implemented using a cascade of blocks with
substantially identical functions. Cascading is used to
expand the quantity of arbitrated channels. There are
two types of input to the arbitration tree 44. The first
type of input includes channel STATE signals 48 that
indicate data present in the channels or empty channels.
The second type of input includes SELECT signals 56
on the data acquisition side that are decoded as a
RESET 50 signal upon reaching the destination chan-
nel. The arbitration tree 44 encodes an address of the
channel that is allowed to report during propagation of
the STATE signals 48 until a VALID output signal 46
is obtained. The arbitration tree 44 also decodes chan-
nels that receive the RESET 50 signal during propa-
gation of the SELECT signals 56 in the opposite
direction, that is, from the acquisition side to the
channel side. The SELECT signals 56 are generated
synchronously using the clock signal if the VALID
signal 46 is active. Priority encoders and reset decoders
in each block of the arbitration tree 44 are used to select
the channel having its address encoded and to what
channel the reset signal is sent in the event of simul-
taneous notifications of channel occupancies and their
readiness to report. When the SELECT signal 56
reaches a channel and the RESET 50 signal changes its
state, a readout is initiated. Communication with a
channel is terminated after the RESET 50 signal returns
to its initial state. The STATE flag is then cleared and
the address is no longer available on the address bus 54.
Due to this double-edge scheme, dead time before
switching to the next channel is possible, which
reduces the available time for driving the bus. Timing
in a AERD cell may result in unwanted glitches on
more than one RESET input on the same edge of the
SELECT signal, and thus data loss.

In a standard, data driven AERD embodiment, the cor-
ruption of data may occur if a higher priority channel
requests readout while a lower priority channel is perform-
ing readout. In this case, an additional strobe signal, which
is distributed across channels, is used to latch the state in all
channels before readout begins. However, in implementing
this feature, the architecture becomes synchronous rather
than event driven.

Adding extra in-channel logic 45 to the AERD system
provides the ability to read additional data from channels as
shown in FIG. 4B. This logic 45 drives the data bus in
response to a change on the RESET signal. After the RESET
signal returns to its initial state, buffers in the channel are
disabled. Effectively, data on the data bus is available at the
same time as an address on the address bus.

(4) Address Event Representation (AER) 60 is a data-

driven architecture based on an asynchronous arbitra-
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tion tree 60 shown in FIG. 5. This architecture primar-
ily focuses on cell activity represented as its address
appearing on a data link. Each event inside a channel
generates a request. In response to this request, an
acknowledge is generated and an address of the
requesting cell is transmitted. One of the distinguishing
features of AER is that the acknowledge, which enables
outputting of the data from a channel or its address, is
generated automatically based on requests. Regardless
of the number of channels requesting communication,
only one of these channels is active at any given time
to avoid collisions on the link. Communication with an
external system is not synchronized by a clock and
requires a handshaking interface. These features render
AER suitable for only specific applications and limit
the use of more universal acquisition systems.

Embodiments of the readout system disclosed herein are

adapted for the efficient transmission of data from a plurality
of data sources, which can be arranged in one-dimensional
structures, two-dimensional structures, and/or any other
form. These embodiments possess improvements and fea-
tures that are advantageous for the integrated readout of strip
and pixel radiation detectors, as well as building neuromor-
phic or other event-driven processing circuits. These
embodiments further enable sending additional data, beyond
merely the active channel address, and providing a reliable
mechanism that prevents the collision of channels accessing
a common data bus. An interface to a synchronous data
acquisition system is also provided. A block diagram of an
embodiment of the readout system 70 is shown in FIG. 6.
The readout system 70 can be used in a variety of applica-
tions with different units inside the channels. A universal
interface to these functional units is provided to adapt to
different sources and types of input data. The universal
interface includes the following signals.

(1) ain 72 represents an analog input in the form of one or
a plurality of connections to in-channel logic 76, which
includes the result of processing from analog units of
the channel;

(2) din 74 represents digital data input in the form of one
or a plurality of connections to the in-channel logic 76
with signal inputs, which include the result of process-
ing from digital units of the channel;

(3) cfg 78 represents configuration input in the form of
one or a plurality of connections that specify a mode of
operation of the in-channel logic 76; and

(4) rdy 80 represents a ready flag, which is set after the
channel units have finished processing the data, fol-
lowing which a read request is transmitted from the
channel.

External sources of the clock (clk) 82 originate from acqui-
sition systems or on-chip clock resources. Output signals
include digital (dout) 84 and analog (aout) 100.

Functional blocks of the readout system 70 include the

following.

(1) An in-channel readout logic 76 is present in every
channel. The primary function of the in-channel logic
76 is to issue requests to signal when data from a
channel requires a read out (e.g., when data is ready
after in-channel processing). Readout can include any
type of individual or combined analog or digital infor-
mation generated by a channel, such as an address
identifier of the read out channel, time-of-arrival of a
signal, amplitude of a signal, and/or any other result of
processing. Requesting the readout is achieved by
activating a req signal 86. After the readout request is
issued, the in-channel logic 76 waits for an acknowl-
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edge token the arrival of which indicates permission to
use the data bus 88 has been granted. The acknowledge
token is detectable by the in-channel logic 76 as a
change on an ack line 90.

(2) An arbitration tree 92 determines to which channel the
acknowledge token is directed. The interface to the
in-channel logic 76 is located at the bottom of the tree.
At the top of the tree, the rqo signal, which is a logical
sum of all channel requests, is available. The acknowl-
edge input acki is also located on the top of the tree.
The arbitration tree 92 decision is made based on new
read requests and stored information regarding the
order in which these requests have already arrived.
Depending on the quantity of channels in the system
and their grouping, the arbitration tree 92 may include
multiple stages, each of which may be configured from
multiple, two-input (for the readout request) arbitration
cells. Each arbitration cell monitors its inputs and
information concerning an origin of requests. Subse-
quent requests wait until a prior request has been
withdrawn.

(3) A response circuit 94 generates the acki signal and
feeds these acknowledges to the arbitration tree 92 for
distribution to the channels that request to be read out.
In the subject architecture, the acknowledge indicates
that the logic state on the line changes from a default
state, which is the state after reset, to an active state.
The default state can be considered as a token with a
fixed lifetime that depends on a duty cycle of the input
clock clk. Delivery of the token to the channel triggers
an action. However, token management is different
from that in Token Ring Architecture. In TRA, the
token is injected into the channel chain with a task of
finding the first requesting channel. However, in the
subject architecture, the token waits at the top of the
arbitration tree 92 until a path to the channel is set by
the arbitration tree 92. Then, the token is either dis-
tributed to the selected channel or, if no path is avail-
able during its lifetime, the token expires.

(4) An output periphery 96 is a synchronous block that
converts input data from the data bus and address bus
into an appropriate output format used by the chip
interface and control blocks for communicating with an
external acquisition system. The format can include a
serial stream of bits. The data and address bus can be
separate or can be configured as one bus, onto which
data and/or addresses can be multiplexed.

(5) The data bus 88 is shared across a channel’s digital
line(s) driven in idle state by default using a pull-up/
pull-down network. These lines are used for data trans-
mission from a channel to the output periphery 96.
After readout from the selected channel begins, tri-state
buffers inside the channel override the data bus idle
state set by the pull-up/pull-down network with data
from the tri-state buffers.

(6) An analog bus 100 is shared across the channel line(s).
The analog bus 100 is used for analog value transmis-
sion from channels to an analog processing block (not
shown).

(7) The address bus 98 is shared across the channel digital
line(s) using tristate buffers inside the arbitration tree
92, in which an address of the channel with an estab-
lished acknowledge path is generated. Alternatively,
addresses of current readout channels are formed and
transmitted on the data bus directly from the channel
selected for read out. It is to be noted that the address
bus is optional.
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(8) A pull-down/pull-up network 102 is used to set a
default value on the data bus 88 when none of the
tristate buffers driving the data bus during readout is
active due to, for example, read requests not being
issued by any channel or when a requesting channel
waits for an acknowledge token. The network 102 is
implemented using digital buffers or resistors con-
nected between the bus line and one of the power lines.
In both cases, buffers placed inside the channels are
designed to override the logical state set by the network
102. To override this logic state, buffers with a greater
drive strength are used.

The readout system 70 operates according to the follow-

ing scheme.

(1) Channels operate independently and are generally not
synchronized. If any of the channels requires use of a
shared resource, that channel activates its ready signal.
The readout request flag inside the in-channel logic is
activated as a result. This operation can be completely
asynchronous, which means that the readout request
flag can be set to active at any moment regardless of the
clock.

(2) The request is propagated up the arbitration tree 92
through multiple stages inside the arbitration tree 92 to
the rqo output 110. During this process, the path for
directing the acknowledge signal is established by logic
inside each arbitration cell. If two readout requests
reach the same arbitration cell, a path for the acknowl-
edge signal is established for only one of the readout
requests and this decision is based on the order of the
readout request arrivals. This action is referred to as an
arbitration process and is performed by a logic block
containing a cell that is referred to as the “Seitz arbiter”
in the arbitration cell. If this order is difficult to
determine as a result of substantially simultaneous
readout request signals, the arbitration decision may be
delayed for an indefinite time. After arbitration is
completed, the readout request is propagated to the next
stage.

(3) Information regarding a source of the request 104 that
prevailed in the arbitration processes is obtained from
the arbitration tree 92 and is available to read on the
address bus 98, if used. In the variant with no address
bus, the address may be generated inside the channel
and transferred on the data bus

(4) In the meantime, a response circuit, which functions
independently of the arbitration process, generates
acknowledge tokens based on the clock signal clk 82.
Tokens are synchronously available on the acknowl-
edge input of the arbitration tree 92 and have a fixed
duration. The time between tokens represents a mini-
mum guarantying time for buffers in a channel to drive
the data bus and transmit data to the output periphery
96.

(5) As soon as the readout request arrives at the top of the
arbitration tree 92, the acknowledge path is complete
and the token, if available, is distributed back to the
requestor. If the token is not available, the arbitration
tree 92 waits for generation of a new token.

(6) When the token arrives back at the cell, the readout
process begins. Although every token has the same
initial duration at the top of the arbitration tree 92, the
duration of a single readout from a channel can vary.
This results from how tokens are generated and how
tokens are moved from one channel that ends its access
to the bus to another channel that obtains access to the
bus. This time is maximized when a path for a token is
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already established before an actual token is generated,
and is minimized when a readout request comes late. In
the latter case, propagation of the readout request
through the arbitration tree 92 and setting up the
acknowledge path essentially races with an expiration
of the associated token. However, the cell readout logic
is sensitive to an event (e.g., arrival of the token) rather
than a logical level on the acknowledge line, and thus
varying the duration of the token is not an issue.

(7) The in-channel logic 76 may be configured to handle
at least one readout cycle in response to a single readout
request. This process is referred to as the “readout
phase” because it divides an entire readout into con-
secutive readout phases. In each readout phase, differ-
ent data can be driven on the data bus. This allows a
width of the bus to be reduced or reconfiguration of the
bus to read out different data sets from the channel. The
latter is accomplished by various configurations
selected using configuration (cfg) bits. The configura-
tion is dynamically selectable during operation.

(8) The readout signal (rdo) inside the in-channel logic 76
may be a single bit or multi-bit logic vector, which is
used to distinguish which readout phase is active.
One-hot encoding is used for this purpose, which
means that only one bit of the rdo logic vector is active
at a time. The first bit of rdo is set upon arrival of the
first token after the request has been issued. This bit is
then used to enable a bank of tristate buffers and/or
transmission gate banks. As an alternative to using
banks of gates, a multiplexor can be added to select
between data to be sent onto previously activated gates.
The next set of data is sent with the next rdo bit set. In
this way, during each readout phase, different data can
be transmitted from the channel.

(9) The acknowledge path to the channel is not detached
until the last readout phase ends because the readout
request is held during this time. As a result, each newly
generated token is immediately still fed to the same
channel. A new readout phase is initiated after each
token arrives. After the last phase is processed, a
subsequent token initiates a reset procedure for the
in-channel logic and the request flag is cleared. This
process disconnects the path for the acknowledge.

(10) A new path is established as soon as all necessary
arbitrations are performed if there are any pending
requests from other channels. The token that was
previously used to reset the in-channel logic 76 of the
channel, if that token is still valid, can be reused and
sent to the new channel. This feature advantageously
prevents wasting time between read outs from different
channels.

(11) The pull-up/pull-down transistor network 102 is used
to drive the data bus 88 and/or address bus 98 to the
selected default values when there is no active readout
on any of the channels. The preferred technique for
selecting this default data pattern is to make the default
pattern different from any possible actual data. Addi-
tionally, the default pattern should already provide
direct current (DC) balance in the event that data is
further transmitted serially and without DC balancing
encoding.

(12) Regardless of the source of data on the data bus 88
or address bus 98, data is latched inside the output
periphery 96 by the clock signal clk 82. Latching of the
data synchronizes the readout with the data acquisition
system. Data is latched before generation of each new
token or as long as data is stable, thereby yielding a new
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set of latched data for each token. Data can be trans-
mitted serially. The serialization clock is used for
generating readout tokens by appropriately dividing the
serialization clock.

(13) The division ratio is derived from the quantity
number of bits obtained in the output periphery 96 on
the data bus 88 and address bus 98 in one shot and the
quantity of output serial links to match serialization
speed.

(14) Analog values, if provided by a channel, are sampled
for further processing at the analog output periphery
(e.g., for analog-to-digital conversion) or buffered in
preparation for being sent to an external processing
system in parallel to the latched digital data.

Based on the above description, features of the disclosed

system include the following.

(1) In comparison with DPA, there is no or substantially
no risk of a metastability state occurrence, which can
corrupt data. Rather than latching asynchronous data
using a system clock, as is done in DPA, there is
effectively a clock gating structure in the form of the
arbitration tree 92. This ensures that latching is per-
formed if the data is already stable due to the order of
actions being performed.

(2) There is no or substantially no delay introduced by
pipeline stages. Data stored in a channel have a direct
path to the output periphery after permission to use the
shared data bus is granted. The arbitration process is
also fully asynchronous such that signals flowing from
stage to stage do not require additional buffering, and
construction of the arbitration tree 92 ensures that
distance, counted as a quantity of gates, from the top of
the tree 92 to each channel is the same.

(3) direct synchronization is not performed using a dis-
tributed clock in the channel, which saves space and
power. Synchronization is based on fixed token dura-
tion that is generated synchronously to create time
widows for data. The time between expiration of a prior
token and generation of a subsequent token is used to
ensure a sufficient duration of time for fetching data
from the channel. During this time, data settling time is
guaranteed and the data is safely latched when the next
token is about to be generated.

(4) There is no polling and read requests are triggered by
registration of events in the channels, thereby making
the system event driven.

(5) Variations in the delay time of receiving the acknowl-
edge token by a channel is minimized due to the binary
tree topology of the arbitration tree 92.

(6) A risk of missing time slots, when at least one channel
is requesting readout, but default data is sent, is elimi-
nated as tokens can wait for a propagated request at the
top of the tree 92. There are rare situations in which the
acknowledge token seen by the cell is too short to be
able to trigger a readout because the request was sent
too late relative to an active token. However, such a
situation does not disturb operation of the system. The
channel waits for the next available token and synchro-
nization is preserved by sending the default data to the
acquisition system.

(7) Racing between incoming new read requests and an
active channel readout is eliminated due to the arbitra-
tion tree 92 that determines which request was first and
stores this information. This is substantially more
advantageous in comparison to the AERD architecture,
in which memory blocks are not allocated for arbitra-
tion.
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(8) There is no prioritization since requests are ordered by
their arrival time to the each arbitration tree 92 and,
only once the request is satisfied, the next request
reroutes the acknowledge path

(9) Once established, the acknowledge path persists until
the corresponding request is cleared. This feature, in
conjunction with continuous generation of new tokens,
facilitates a readout phasing circuit because multiple
tokens can be fed to a channel in response to only one
request

(10) Since the generation of tokens is strictly connected
with the acquisition clock, there is no need for addi-
tional synchronization, and thus the system can operate
based on a single clock signal provided by, for example,
an external system. All periods of this clock are used
for transmission.

A readout cycle begins in a cell, in which the ready signal
80 is set, following an operation being performed. The ready
signal 80 is activated and fed to the in-channel logic 76
together with the resulting data (digital 74 and/or analog 72).
The readout cycle is completed once data from channel are
latched in output periphery. The primary block in the in-
channel logic 76 is a readout requester 112, which is shown
in greater detail in FIG. 7.

The ready (rdy) signal triggers a controller, which then
issues a readout request 86. This request is held until the
done (dne) 122 signal is no longer active. This feature
enables multiple acknowledge tokens to be distributed to the
readout requester one-by-one. Simultaneously, an active
(act) 116 flag is set, and as a result, the readout phaser 118
transitions from an initial state to an arm state. In this new
state, the readout phaser 118 is sensitive to changes on the
ack line 90. The controller can also be disabled by using one
of the configurations (cfg) bits. In this case, no request is
issued, which effectively blocks readout from the channel.
When the token arrives at the channel, a first readout phase
is initiated by setting one of the bits in the readout (rdo)
vector 108 by the readout phaser 118. Each new token
arriving at the readout requester 112 causes the position of
an active bit of the rdo logic vector 108 to be shifted by one
until its position, which is set by the configuration, is
reached. Then, an end flag 120 is set and the done indicator
block is armed. The readout requester 112 waits for one
more token to trigger the done (dne) signal 122, which is
then fed back to the controller 114, and the req signal 86 and
act signal 116 are deactivated. After the request is cleared,
the acknowledge path to the channel is detached. The
readout phaser 118 enters an initial state in response to the
act signal 116 being reset, in which state there is no active
bit on the readout vector 108.

Generally, the process from receiving the token to detach-
ing the acknowledge path is much shorter than the token
duration and thus, when the process ends, the token is still
active and can be redistributed to another cell. This allows
two operations to take place during the lifetime of the token,
neither of which is adversely affected by simultaneous
operations.

Thus, two functions performed by the readout requester
112 following distribution of the active token to the readout
requester 112 include the following.

(1) A readout phase initiation, in which the arriving token
initiates a new readout phase that lasts until a new token
appears.

(2) A reset initiation, in which no new readout is started.
The reset operation is performed immediately to allow
as much time as possible to redistribute the still valid
token to another requesting channel, if any.
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An embodiment of the readout requester 124 is shown in
FIG. 8, in which an additional rst signal 91 is used as a
global reset signal. An active request is indicated by a high
logic state on the req signal 86. The token is active when the
logic state of the ack 90 is low and the bit of rdo signal 108
is active when that bit is low. As some applications use
different active logic states, an alternative embodiment 126
of the readout requester is implemented as shown in FIG. 9.
In this case, active logic states for the rqo, ack, and rdo
signals are low, high, and high, respectively.

A maximum quantity of readout phases is adjusted by
increasing or decreasing the quantity of flip-flops in a chain
inside the readout phaser 118. Accordingly, a quantity of
flip-flops 130 and gates 132 shown in FIG. 9A can be
increased or decreased as shown in FIGS. 10A-B. A mode of
operation is illustrated using example waveforms shown in
FIG. 11 based on the following assumptions:

(1) acki, ack, req and rdo are active when their logic level

is high;

(2) dne is active when its logic level is low;

(3) there are a maximum of two (2) readout phases and the
configuration bit cgfl is used to select between one of
two phases; and

(4) two channels are observed.

Based on the waveforms shown in FIG. 11, the following
features are illustrated:

(1) An action in the in-channel logic is triggered when the
active token reaches the channel. The active token at
the top of the arbitration tree is represented by one of
the logic states on the acki line. In the example shown,
the active token is the high state. The arrival of a token
on a channel is represented by a state change on the
channel’s ack input, and this event triggers an action in
the in-channel logic, which is illustrated by a sequence
of arrows 1-1A-1B, 2-2A-2B, 3-3A-3B, 3-3D-3E,
4-4A-4B shown in FIG. 11 by arrows 131;

(2) based on the acki duty cycle, flip-flop delay, and
arbitration tree propagation time, a minimum readout
phase time is determined; and

(3) after the reset state, the active token is redistributed to
another channel as illustrated by a sequence of arrows
3-3A-3B-3C-3D-3E shown in FIG. 11 by arrows 131.

In one or more of the disclosed embodiments, the duty
cycle of the acki signal is selectable to maximally extend
readout phase time. As a result, redistribution based on
feature (3) directly above occurs without risking a collision
on the data bus. Conventional architectures require that two
edges of the acknowledge signal be provided to the arbitra-
tion tree. For example, a channel is selected on a falling edge
of the acknowledge signal and disabled on the rising edge.
Such behavior of the readout system may limit, in advance,
the settling time of the data on the data bus by the duration
of the high state of the acknowledge signal. These imple-
mentations also impose further restrictions on the minimum
duty cycle of the acknowledge signal, and thus the ratio
between the high logic state and low logic state, since the
duration of the high state is required to be long enough to
perform additional functions.

From the readout requestor block, additional rda (readout
any) signals are derived as outputs from a first flip-flop in the
readout phaser, as shown in FIG. 9B. The rda signals 135,
133 are used as an indicator that readout from the channel is
occurring no matter which readout phase is currently active.
The rda signal is effectively a logical sum of all readout
signals without the need for adding additional logic struc-
tures.
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An advantage of the disclosed embodiments is further
illustrated by the synchronous readout requester with a
distributed clock 130 shown in FIGS. 12 and 13, in which a
clk signal 132 is added. The clk signal 132 has the same
source as the acki signal from the top of the arbitration tree,
but in those embodiments, it is distributed directly to chan-
nels, thereby omitting the arbitration tree. In this embodi-
ment 130, the acknowledge signal does not have the two
functions, which means that the reset is not initiated by a
token, but rather the clk signal 132 is used to initiate the reset
phase. In addition, the request signal 134 is set on the edge
of the clk signal 132. These modifications make the rdo
signals 136 at the top of the arbitration tree synchronous
with respect to the acki signal. Thus, a distinction between
empty data and valid data can be made based on the rdo
signals 136 rather than by using the pull-up/pull-down
network. However, clock distribution needs to be performed,
which adds complexity to the routing process and results in
greater power consumption. Using the clk signal 132 as a
trigger, rather than signals having determinate timing rela-
tions, can also introduce metastability. This embodiment 130
represents a break from an event-driven paradigm since
synchronization is made on an in-channel logic level, which
is not the case in the asynchronous readout requestor
described above.

In addition to the readout requester, the in-channel logic
includes transmission gates and/or tristate buffers that are
used in conjunction with multiplexers. As a result, two
techniques for selecting data to drive a data bus are as
follows:

(1) using multiple banks of tristate buffers/transmission
gates, each bank of which is connected to the data
and/or analog bus, only one or neither of the banks are
active at a given time, and activation is performed by
using the rdo 136 vector bits; and

(2) using one bank of tristate buffers/transmission gates
and multiplexers, in which a multiplexer is controlled
by the rdo vector 136 between the input data from the
cell and the buffers that selects data sent at a given time.

After the request signal 134 is activated, the associated
request is provided to the arbitration tree, following which
the arbitration process occurs. This allows the token to be
distributed to the channel. The arbitration tree is imple-
mented using blocks referred to as arbitration cells, as shown
in FIG. 14A. Specifically, a simple arbitration cell, which is
referred to herein as “arbitration cell type 0” in FIG. 14B,
upon receiving (read) request signals 152, selects one of the
request signals and routes an acknowledge signal 160 that
reaches this cell from the cell above in the arbitration tree,
which is farther down the arbitration tree in the direction
from which the accepted request came. Routing is performed
by essentially gating the acknowledge signal (i.e., acknowl-
edge gating). This create a continuous path for acknowledge
token from the top of the tree to the bottom of the tree where
the requesting channel is located. The acknowledge gating is
performed in a logic block referred to herein as the com-
mutator 158 and is performed using grant signals 154 (e.g.,
gnt0, gntl) generated inside the arbitration cell 150. These
grant signals are generated by an arbiter 156.

The arbitration cell 150 includes two blocks as follows.

(1) A Seitz arbiter 156 determines which of the req
(request) signals 152 arrived first and activates the
corresponding gnt (grant) signal 154, which are mutu-
ally exclusive. That is, only one of the gnt (grant)
signals 154 is active at any time.

(2) A commutator 158 establishes a path for the acknowl-
edge token by directing the acki (acknowledge) signal
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160 to the output ack (acknowledge) signal 162 corre-
sponding to the active gnt signal 154. The commutator
158 also indicates if any of the gnt signals 154 is active
and, if so, sends a request to the next arbitration stage
by activating the rqo (request output) signal 162. For
each arbitration cell 150, an address encoder 170, as
shown in FIG. 15, can be added to obtain an address of
the cell to which the acknowledge path is established.

Due to the structure of the arbitration tree, which is
divided into multiple stages that include multiple arbitration
cells, each stage can provide one bit of the address and this
bit is provided by one of the cells in the stage. To satisfy this
requirement, the adr signal 171 drives one line of the address
bus using a tristate buffer. The adr output is enabled when
any of the gnt signals is active, and the driven value depends
on which of the gnt signals is active. When none of the gnt
signals is active, the adr output is in a high-impedance state.

The logic state, which is considered to be active or
inactive, depends on the physical implementation. To mini-
mize the quantity of transistors used during implementation,
two types of blocks that differ in logic polarity, P-type 180,
182 and N-type 184, 186, are used, as shown in FIGS.
16A-D. Blocks 182, 186 include an address encoder and
blocks 180, 184 do not include the address encoder. A circle
at any port indicates that the corresponding signal is con-
sidered to be active when its logic state is low.

The arbitration tree is configured as a structure including
M=[log, N stages, in which N represents a quantity of cells
to be read out. Each stage includes n(m)=n(m+1)x2 arbitra-
tion cells where m&[1, MM] and n(M)=1. The quantity of
transistors is minimized by configuring stages using alter-
nating types of arbitration cell as illustrated in FIGS. 17A-B.
Based on the cell type, two types of stages are used, P-type
200, 206 and N-type 202, 204. Connections between stages
200, 202, 204, 206 are also shown in FIGS. 17A-B. One
benefit of using alternating stage types is that there is no
additional logic required between stages. Further, it does not
matter which stage type is used first, and the selection of
stage type can be made based on logic states of other signals
in the system. If address encoders are used, the arbitration
tree 210 is configured as shown in FIG. 18.

The arbitration cell includes an arbiter that decides which
one of the two (read) request signals is to be selected. While
the arbiter does not have a preference for which one of the
two (read) request signals is selected for routing to the
output, only one of the two read request signals is selected.
This selection is a function of the arrival time, that is, the
first request signal to be received dominates, and is thus
selected. Switching from the selected request signal to
another request signal is not permitted for the entire length
of time during which the selected request signal is active.
When two request signals arrive simultaneously, one of the
request signals is selected. This selection is random and does
not generate ambiguous intermediate steps at the output of
the arbiter. Transition from selection of one request signal
does not include any time when both signals are selected or
switching back and forth between selected request signals
are eliminated.

The selected request signal generates a corresponding
grant signal 154, which then gates routing of the acknowl-
edge signal. Blocking of the acknowledge paths results in no
activity being sent to the channel that issues its read request
signal. Conversely, unblocking this path, enables sending an
acknowledge token down the acknowledge path to activate
or deactivate a channel for starting and stopping transmis-
sion of data by the channel on the common data bus. A token
is an active state on the acknowledge path with an assigned
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expiration time. After this expiration time, the acknowledge
signal changes its state back to being inactive. This func-
tionality is achieved by using a digital clock to generate the
acknowledge signal. This clock includes alternating logic
states, high and low, that repeat at a given frequency. The
ratio of the duration of the high and low states is referred to
as a duty cycle. The logic state of a digital clock can be
associated with the activity of a token, and this association
depends on the blocks used to build the arbitration tree and
their polarity. The duty cycle and frequency of this digital
clock signal is selectable or programmable over a broad
range or latitude.

The simple arbitration cell 150 shown in FIG. 14B utilizes
a single Seitz arbiter 156, which can accept request signals
at any time, regardless of the current level of the acknowl-
edge signal. Switching to read out, a new channel occurs
immediately after finishing a current readout. For example,
the Seitz arbiter 156 switches to the second channel after the
first request signal is deactivated, which corresponds to
completion of reading of the first channel, in the case of two
request signals being activated simultaneously. In such a
situation, an active state of one output of the Seitz arbiter
156 is deactivated and the second output is activated.
However, such a smooth transition is only possible if the
request output from the arbitration cell is kept active during
the entire described process. Otherwise, an undesirable
situation may occur, in which a cell that is located higher up
in the arbitration tree identifies a change, even a short one,
on the request output line and interprets this change. as no
active requests. In the result, it disconnects the acknowl-
edgement path. Under these conditions, a short phenomenon
on the acknowledge line may occur that reaches the second
channel and triggers a readout even if the acknowledge line
changes back to the inactive state. Thus, the arbitration cell
shown in FIG. 14B is not suitable for some applications.

The request signal that leaves the arbitration cell is
generated in the commutator 158 logic block as a logic sum
of the incoming request signals (i.e., it is activated when at
least one of the input request signals is active) The inputs to
this sum can be taken from the grant outputs of the arbiter
as shown in FIG. 14C, directly from the inputs to the
arbitration cell as shown in FIG. 14D, or can be generated
by additional logic inside an arbiter as shown in FIG. 14E.
The apostrophe characters shown in FIGS. 14C and 14E
indicate that mixing different commutator and arbiter
embodiments may vary the functionality of the arbitration
cell. Accordingly, both the commutator and the arbiter are
typically configured as a matched pair.

The core of the arbitration cell includes the Seitz arbiter
220, an embodiment of which is shown in FIG. 19A. The
Seitz arbiter 220 includes an SR latch 222 and a metasta-
bility filter 224. The SR latch 222 is a bistable multivibrator
that stores state information. The SR latch 222 includes two
inputs (S and R) and two outputs (Q and ~Q). The mode of
operation is as follows

(1) In an idle state, inputs S and R are inactive, which
results in both outputs Q and ~Q being inactive as well.
Some studies refer to this state as a forbidden state, but
this applies to standard logic circuits, in which ~Q is a
negated version of Q. However, this does not apply to
the subject arbiters.

(2) A set operation occurs when, during the idle state, S
becomes active, which causes a transition of the Q
output to the active state.

(3) A reset operation occurs when, during the idle state, R
becomes active, which causes a transition of the ~Q
output to the active state.
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(4) In a hold state, both inputs are active, but only one
output is active. The active output is related to the most
recent set/reset operation.

Different types of the SR latch 222 may be implemented
depending on the logic state of the inputs and outputs in the
idle state. Two of these types can be implemented using two
gates with cross-connected outputs to inputs. For example,
FIGS. 20A-B show an embodiment 230 of the SR latch
using NAND gates and its corresponding truth table, in
which inputs are low and outputs are high during the idle
state. FIGS. 21A-B show an embodiment 240 of the SR latch
using NOR gates and its corresponding truth table, in which
inputs are high and outputs are low during the idle state.

Since the input signals of the SR latch in the arbiter are
asynchronous, a situation can occur in which both inputs
transition to an active state at the same or almost the same
time. This situation creates a race condition, and the SR latch
must resolve this condition and switch to the hold state with
an active output that represents a result of this arbitration
process. The disclosed embodiments of the SR latch perform
this process, but may take an indefinite amount of time,
during which both outputs are in a metastable state that is
neither a high nor a low logic state. Physically, this process
is manifested as a voltage level between a logic supply
voltage and ground. Metastability in a circuit can lead to
errors in operation. Metastability can also propagate to other
logic blocks or be mistakenly transformed into a valid logic
state. In the arbitration tree, the latter possibility is undesir-
able as this can break the mutual exclusivity requirement if
both outputs are in the active state, which may result in
collision on the data bus. For this reason, a metastability
filter after the SR latch 222 is implemented. This metasta-
bility filter 224 does not allow metastability to propagate to
other blocks and forces outputs of the Seitz arbiter 220 to
stay in an inactive state until the arbitration process has
ended.

Implementation of the metastable filter 224 is different for
NAND and NOR SR latch configurations, however, both
configurations can use the same quantity of transistors.
Embodiments of pairs of metastable filters are as follows.

(1) Embodiments of a standard filter 250, 252, 254, 256
are shown at the gate and transistor level in FIGS.
22A-E and implemented using two cross-connected
(between an input and one of the power lines) inverters
and buffers at the output. During the idle state, both
outputs are freely connected to the power lines corre-
sponding to the inactive state regardless of the presence
of the cross-connection. When one of the inputs
changes (the SR latch outputs are inputs for the meta-
stable filters) the second input is used as a supply
voltage for an active state. When both inputs change, a
maximum output voltage cannot be higher than a
metastable voltage and is attenuated by another input
with a metastable voltage level, which cannot fully
open the driving transistor. As a result, both filter output
voltage levels are less than a maximum metastable
voltage and these levels are continuously treated as
being inactive by successive buffers until the inputs
transition from the metastable state to two final and
opposing states.

(2) Embodiments of a filter 260, 262 shown in FIG.
23A-B are based on a standard logic cell implemented
using multi-input NOR/NAND that, when all inputs are
connected together, can effectively be seen as an
inverter, in which the transition threshold is shifted
toward the value of one of the supply lines. The shift is
created by the difference in driving strengths of the
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transistors implementing the gate for different states at
the output. In contrast to the standard filter described
directly above, there is no attenuation element and the
certainty of mutual exclusion is obtained by checking
that a maximum metastable voltage level remains lower
than a toggle level of the skewed inverters. An advan-
tage of this embodiment is that it can be implemented
automatically using a standard cell library with place
and route tools.

(3) Embodiments of a filter shown in FIG. 23C-D are
based on an inverter with hysteresis on the transition
characteristic. These embodiments follow operating
principles similar to those based on multi-input gates,
which include shifting the transition threshold of the
inverter. However, rather than operating on transistor
driving strengths, these embodiments introduce posi-
tive feedback from output to input, and thus additional
voltage above the nominal transition needs to be used
to force the output to change its state. There is no need
for switching feedback in both directions, as there is a
risk of a metastable state only when transitioning from
inactive to active states at the SR latch output. This
second feedback would make the hysteresis loop wider
and is undesirable because it increases a probability
that both filter outputs are in the active state as a result
of fluctuations at the inputs. As a result, the embodi-
ments shown in FIGS. 23E-F with active feedback in
only one direction, can be used.

The filters described the above include an inverting func-
tion, so that the output active state is inverted. Based on
arbitration cell logic polarity in different types of arbitration
cell, a NAND SR latch with a P-type metastability filter is
used to implement an arbitration cell type P 250, 252, 260
and a NOR SR latch with an N-type metastability filer 254,
256, 262 is used to implement an arbitration cell type N.

A commutator is the next block used to implement the
arbitration cell. The function of the commutator is to merge
information regarding activity on the Seitz arbiter outputs
into one signal, which is equivalent to generating a logic
sum of the signals, which is then provided to the next
arbitration stage. Based on signals from the Seitz arbiter, the
commutator also creates a logic path for the acki signal.
After this path is created, the state of the acki signal, based
on the commutator input, is transferred to one of the ack
outputs, which corresponds to the active arbiter output. If
both arbiter outputs are inactive, the state of the acki signal
is not transferred. Two complementary embodiments of the
commutator 270, 280 with corresponding truth tables are
shown in FIGS. 24A-D. These embodiments use the same
quantity of transistors, and are used in arbitration cell types
P and N, respectively. States 272, 282 in the corresponding
truth tables are forbidden states that should not appear since
both gnt signals should not be active at the same time.

In the arbitration cell type I shown in FIG. 14C, the
logical sum is not sensitive to a short-lived phenomenon that
occurs when the arbiter cell toggles the selection between
the two inputs and when it is expected that acknowledge
should be relayed from one cell output to another. This
relaying may not occur correctly as a result of a short
moment, during which both outputs of the Seitz arbiter are
not active while transitioning from one state to another state.
This is the problem that was described for arbitration cell
type 0

Thus, the inputs to the logical sum taken from the inputs
of the Seitz arbiter cell should be free of this short-lived
phenomenon. The gating of the acknowledge signal (i.e.,
acknowledge gating) and logical summing of request signals



US 12,517,855 B2

21

may be implemented using logic circuits including NAND
and/or NOR gates, depending on a desired active logic
polarity of the signals in the arbitration cells on a given level
of the arbitration tree. The active logic polarity determines
the voltage level corresponding to the digital value of the
signals, and can be different for different signals. The logic
polarity can be toggled from one stage of the arbitration tree
to another stage of the arbitration tree to simplify the logic
design, or can be kept the same, which may require more
logic gates.

Two embodiments of the Seitz arbiter and commutator
include the P type and the N type. These embodiments are
generally implemented to work optimally with both positive
and negative active polarities of the signals. For ease of
understanding and presentation, the embodiments disclosed
herein use the terms, arbiter, Seitz arbiter, commutator,
arbitration cell, OR block, and/or AND block, which are not
specified as to the polarity of these features. Nevertheless,
the actual implementation of these features as P type and/or
N type would be understood by one skilled in the art as
described herein in view of DeMorgan’s laws.

The arbitration cell type O can be used in readout systems,
in which new read request signals do not arrive during times
when the acknowledge signal, which is sent down the
arbitration tree, is active. Should this condition not be met,
using one Seitz arbiter in the arbitration cell is insufficient
for accurate arbitration. The active acknowledge token is
defined as that token that propagates down the arbitration
tree, is gated through all the arbitrations cells on this
propagation route, reaches a channel that requested an
output of data, and causes either starting or stopping of data
communication from the requesting channel. Each time
gating of the acknowledge token occurs, an arbitration cell
in the arbitration tree, and thus a channel at the end of the
route, encounters a transition or edge. Transitions essentially
cause actions in the channels with respect to data transmis-
sion, such as commencement of data outputting, moving
from one readout phase to another, ending data outputting,
and the like.

Ifit is possible to assure that all read request signals arrive
or be accumulated during the inactive state of the acknowl-
edge signals, readout systems can use the arbitration cell
type O for the readout management on all the levels of the
arbitration tree. However, if this condition cannot be guar-
anteed, the simple arbitration cell type 0 can be used on a top
level of the arbitration tree, since arbitration cell type 0 does
not propagate its output request further, but arbitration cells
positioned below the top level of the arbitration tree must be
different. These lower-level arbitrations cells should not
only decide which of the two read request signals can be
serviced, but should also include new read request signals
that arrive during the active level of the acknowledge signal
in this arbitration. The latter goal presents a need for
arbitrating between the read request signals and the
acknowledge signals. This leads to the general concept of
the readout control system with arbitration that is operated
without distributing any system clock to channels. Channels
may send readout requests asynchronously and any possible
collisions are resolved at the arbitration-tree level regardless
of when the readout request was sent.

Further, in a preferred embodiment, there are two options
for a more complete arbitration that may be utilized. The first
option uses the arbiter type I shown in FIG. 19B and the
commutator type 0 shown in FIG. 24E, which is a logically
equivalent embodiment of the commutator type O that is
compatible with the arbiter type 1. Together, these functions
form the arbitration cell type 1. The arbiter type I first
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arbitrates between the two request signals keeping the result
internally, and the winning request signal is arbitrated with
the acknowledge signal.

The second option is implemented either as the arbitration
cell type II with the arbiter type II shown in FIG. 19C, or as
the arbitration cell type I1I with the arbiter type III shown in
FIG. 19D and FIG. 19E. Both types utilize the same com-
mutator type II shown in FIG. 24, which is a logically
equivalent embodiment of the commutator type II that is
compatible with the arbiter type III. These arbiters, that is,
types Il and I1II, reverse the operations relative to arbiter type
1, thereby first realizing arbitration of each individual request
signal with the acknowledge signal, followed by arbitrating
the results of these two arbitrations, which results in a gating
signal that enables further undisturbed propagation of the
acknowledge signal down the arbitration tree. Both solutions
use the same quantity of electronic components, or add
buffers, and effectively allowing readout in the event of
accumulated read request signals without dead-time. The
buffers may be added to handle additional capacitive loads
or to provide a desired active logic level, but the buffers may
typically be considered as optional elements and may be
added in a standard procedure of digital implementation
with timing enclosure.

The arbitration cell type II does not exhibit any issues that
can lead to errors in arbitrating between the channels.
Nevertheless, arbitration cell type Il may exhibit a dead time
during readout, which can be measured as a skipped
acknowledge time slot. This situation can occur when one of
the arbitration cells, and consequently the entire arbitration
tree, is blocked until the current token expires, rather than
being able to accept new data to be transferred. This situa-
tion also occurs when there is a second request sent at the
same time while there is an acknowledge token present in
the cell that has been received due to an earlier request sent
to the same cell. Such a blockage occurs because a request
output is not gated by an acknowledge input in any way, and
thus the acknowledge input can be activated even when the
full arbitration process is not able to be conducted inside the
arbiter. That is, the token remains in the arbitration cell
because the next stage is informed that there is still a request
from the preceding stage of the tree, but that token cannot be
used or redirected from one acknowledge output to the
second acknowledge output because the path to the second
acknowledge output cannot be established, and as a result,
there is no active grant signal. The same blocking phenom-
enon is observed in arbitration cell type III, which is based
on an embodiment of arbiter type III shown in FIG. 19D.

The problem of arbitration tree blockage in arbitration cell
type III is addressed by generating a request output as a
logical sum of signals after the first process of arbitration,
thereby using so-called “ferried requests” (freq0, freql)
wherein, if at least one of the ferried requests is active, then
the request output is active. By using this technique, a token
is not blocked in the arbitration cell and can be withdrawn
from an arbitration cell even if the request was sent while the
token was still active in the arbitration cell. This allows the
token to be transferred to the other requesting channel
without waiting for the token to expire. An embodiment of
an arbiter type III that implements the above technique is
shown in FIG. 19E.

The difference between the two versions, that is, type I
versus type 11 or III of the arbitration cell, manifests in how
high up the arbitration tree disconnection of the acknowl-
edge path propagates when switching from servicing one
channel to servicing another channel. This results in differ-
ent orders of reading out the channels when the operation of
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the readout tree with the type 1 version of the generalized
arbitration cell is compared with the operation of the readout
tree with the type II or IIl version of the generalized
arbitration cell. For the readout tree with the type I arbitra-
tion tree, the disconnection of the acknowledge path occurs
up to the top cell even when two neighboring channels that
send their read request signals to the arbitration cell, are to
be read out (i.e., a domino effect). For the readout tree with
type II/II1 of the arbitration cell, the acknowledge path is
disconnected only up to the next level of the arbitration tree,
where one of the two read request signals is active. In the
case of two read request signals in the same arbitration cell,
there is no disconnection of the acknowledge path that
occurs for the case of the type II/III circuit.

Thus, the blocking phenomenon and method of resolving
the blocking phenomenon render the arbitration cell type 111,
which includes the embodiment of the arbiter shown in FIG.
19E, a preferred arbitration method when the acknowledge
path should only be disconnected from the nearest level of
the arbitration tree.

Another element used to implement the arbitration cell is
the address encoder. The address encoder is implemented in
two complementary embodiments 290, 294 shown in FIGS.
25A-B for use in different arbitration cell types. Alterna-
tively, rather than tristate buffers, embodiments 298, 304
having tristate inverters can be used as shown in FIGS.
26A-B.

Abandonment of the priority encoder found in AERD and
AER architectures in favor of the Seitz arbiter is advanta-
geous in readout systems since doing so introduces asyn-
chronous memory elements while eliminating glitches dur-
ing arbitration and distribution of the acknowledge. An
embodiment using the Seitz arbiter, which is asynchronous
and generates acknowledge tokens based on requests is
implemented in accordance with the disclosed embodiments
using a response circuit 308, such as that shown in FIG. 27.
However, this embodiment 308 is not able to generate
multiple tokens that can be used by in-channel logic to
provide multiple readout phases or initiate request resets.
For these reasons, an embodiment of the response circuit
312 shown in FIG. 28 is used. In this embodiment 312,
tokens are generated based on a clock, which is provided by
an external acquisition system directly or derived from the
external acquisition system using an on-chip clock manage-
ment circuit. Since decisions regarding sending in of tokens
are not made based on requests, but rather tokens are
generated as time windows expire synchronously, time
frames for a readout are also precisely defined.

FIG. 29 shows an embodiment of an output periphery
block 313 that includes a system serializer 314 and clock
divider 316. An external clock 318 is fed to the clock divider
316 and divided by a factor of M. The original clock 318 and
divided clock 320 are fed to the serializer 314 as a fast (fclk)
320 and slow (sclk) clock 318, respectively. The slow clock
318 is used to latch the parallel on-chip data bus 322 and/or
analog bus 324 (pin) and the fast clock 320 is used to transfer
that data in series using a serial output (sout). The slow clock
318 is also fed to the response circuit as a source of tokens.
This relationship (i.e., using the same source clock to latch
data and activate/deactivate in-channel readout) synchro-
nizes the readout process and eliminates potential metasta-
bility issues. The quantity of serial output lines that are
present and/or used is not limited and additional serial
output lines can be used in parallel to transmit more data at
the same time. In general, the quantity of bits latched in
serializer during a readout cycle from the channel is equal to
the product of a serialization factor and a quantity of outputs.
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An embodiment of the serializer 340 is shown in FIG. 30,
in which a quantity of flip-flops in a ring counter block 342
and data FF block 344, and buffers in a tristate buffer block
346 depend on the quantity of data lines. In general, both of
these numbers are equal unless additional functionality is
implemented, such as a serial-parallel transmission of data.
A clock synchronization block 348 synchronizes edges of
the fast clock 320 and slow clock 318 and initiates the
serialization process. A source select block is used to send
synchronization patterns to the external acquisition system
following reset. This operation is used to define the first bit
of data frame in an output bitstream. The ring counter 342
stores an actual position of a bit to be transmitted. This
position is stored as a vector with one active bit at given
time. The ring counter 342 is initialized using the set(S)/
reset(R) pins of flip-flops included in the ring counter 342.
The data FF block 344 includes a set of flip-flops that are
used to latch values from the data bus 322. The tristate
buffers 346 drive serial output lines using bit values corre-
sponding to a position pointed to by the ring counter 342.

The waveforms shown in FIG. 31 illustrate operations
performed by the serializer. These waveforms illustrate
serializer operation cycles following reset (low level on the
rst line) as well as cause-effect dependencies between indi-
vidual signals. Data appearing on the din* bus, is provided
for example only and, in fact, depends on the activity of the
channels. The outputting of the “synch—SYNCH” value is
forced by an active state of the synch_data signal 325. Data
from the data bus 322 is latched between the falling edge of
the slow clock 318, which corresponds to the token expira-
tion and the last moment before the readout phase is trig-
gered, and the next rising edge, which corresponds to the end
of the readout phase or communication with a channel and
the beginning of a new readout phase, if needed. An addi-
tional quantity of flip-flops, located at the end of the set of
flip-flops, which use a different trigger source, may be used
to ensure that data is stable when a selected buffer is enabled.

When there is no active readout from any channel per-
formed, the state of the data bus is set by a pull-up/pull-down
network. As a result, this state, which is referred to as the
“default” or “empty” state, is latched in the serializer.

To save power required to override the default state of the
data bus during readout, another alternative approach is
introduced. Rather than using a pull-up/pull-down network
on all lines included in the data bus, an additional signal 352
and multiplexer 354 are added, as shown in the modified
embodiment 350 of FIG. 32. This additional signal 352 is
used to indicate that a readout from a channel is being
performed. A pull-up resistor (not shown) on the additional
signal 352 is used and a high state is overridden during
readout by a buffer inside a corresponding channel. Based on
the state of this additional signal 152, the multiplexer 354
selects the source of data to be processed. This can be either
a fixed value that represents empty data or data on the data
bus driven by buffers inside one of the channels, from which
the readout is being performed.

There is one additional difference between embodiment
350 and embodiment 340. In the embodiment 340, the data
settling time on the data bus is not maximized because the
data latching is performed at least one fast clock cycle before
the rising edge of the slow clock, and the slow clock is
responsible for generating the acknowledge tokens. In con-
trast, in embodiment 350, the settling time is maximized
because the rising edge of slow clock is latching data
directly. As a result, a different initialization pattern, which
includes the reset and set inputs, for the ring counter 342 is
used to ensure that bits are transmitted in the correct order,
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that is, from the least significant bit to the most significant
bit. In general, latching may even occur after the slow clock
edge, if that data has not changed

The waveforms shown in FIG. 33 illustrate operation of
the serializer in embodiment 350. The waveform of the
additional selector din[n] 352, for example, depends on
activity of the channels. The waveform of the rqo signal
from the arbitration tree corresponding to the signal din[n]
154 is also shown.

In a chip or system, the arbitration tree is spatially
distributed according to the channel configuration, which
can be grouped, for example, into columns or smaller arrays.
Such an embodiment 400 is shown in FIG. 34. One or more
outputs, which are used to transfer data to the outside of the
chip, are used depending on a serialization factor, data bus
width, and/or a quantity of readout phases. Since the quan-
tity of readout phases may be dynamically reconfigured,
some outputs can be physically present, yet remain unused
in a given configuration. For example, a single output mode
with multiple readout phases or a single-phase mode readout
with multiple outputs can be implemented and configured.

Managing a chip and/or system that includes larger quan-
tities of channels may require additional considerations.
Buffers connected to a shared line add extra capacitance to
that shared line. This capacitance is primarily added in the
form of buffer output capacitance, but also includes the
capacitance of additional wire connections. If the overall
capacitance is too large, data may be not able to fully settle
in the required time on the data bus, which may result in
timing violations and data corruption. Increasing the buffer
strength on channels can be a solution, but this not only
consumes additional area and power, but also presents
limitations, such as larger buffers having larger output
capacitance. Another approach includes dividing channels
into groups, each having a dedicated data bus. However, this
consumes a larger routing area, and thus may be appropriate
for systems having narrower busses. Another advantage of
this technique is higher data rates, as each data bus can be
treated as an independent link so that multiple channels can
be read out in parallel during the same time interval. In this
case the entire system can have multiple outputs (i.e., one or
more for each group) or a high-speed output with time
division multiplexing. Such an embodiment 402 is shown in
FIG. 35.

In general, a combination of both techniques can be
implemented in a system by creating a group hierarchy.
Downstream groups can share a single data bus and be
bundled in a higher upstream group, in which different
groups have their own dedicated data bus. It can also be
substantially advantageous to introduce additional stages of
buffering in each group. These buffers are preferably tristate
buffers activated by a logical sum of buffer enable signals
associated with a lower hierarchical priority. Such an
embodiment 404 is shown in FIG. 36.

The disclosed embodiments include well-specified yet
flexible architectures. There is no restriction on data types
that are transferred during the readout phase. One of the
most useful techniques using the disclosed embodiments is
sending information from adjacent cells regarding a shared
event, such as a particle hit on a sensor and its associated
charge sharing effect.

It is to be noted that embodiments disclosed herein may
be implemented using MOSFETs or bipolar transistors while
remaining within the scope of the intended disclosure.

One or more embodiments disclosed herein, or a portion
thereof, may make use of software running on a computer or
workstation. By way of example, only and without limita-
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tion, FIG. 37 is a block diagram of an embodiment of a
machine in the form of a computing system 900, within
which is a set of instructions 902 that, when executed, cause
the machine to perform any one or more of the methodolo-
gies according to embodiments of the invention. In one or
more embodiments, the machine operates as a standalone
device; in one or more other embodiments, the machine is
connected (e.g., via a network 922) to other machines. In a
networked implementation, the machine operates in the
capacity of a server or a client user machine in a server-client
user network environment. Exemplary implementations of
the machine as contemplated by embodiments of the inven-
tion include, but are not limited to, a server computer, client
user computer, personal computer (PC), tablet PC, personal
digital assistant (PDA), cellular telephone, mobile device,
palmtop computer, laptop computer, desktop computer,
communication device, personal trusted device, web appli-
ance, network router, switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine.

The computing system 900 includes a processing device
(s) 904 (e.g., a central processing unit (CPU), a graphics
processing unit (GPU), or both), program memory device(s)
906, and data memory device(s) 908, which communicate
with each other via a bus 910. The computing system 900
further includes display device(s) 912 (e.g., liquid crystal
display (LCD), flat panel, solid state display, or cathode ray
tube (CRT)). The computing system 900 includes input
device(s) 914 (e.g., a keyboard), cursor control device(s)
916 (e.g., a mouse), disk drive unit(s) 918, signal generation
device(s) 920 (e.g., a speaker or remote control), and net-
work interface device(s) 924, operatively coupled together,
and/or with other functional blocks, via bus 910.

The disk drive unit(s) 918 includes machine-readable
medium(s) 926, on which is stored one or more sets of
instructions 902 (e.g., software) embodying any one or more
of the methodologies or functions herein, including those
methods illustrated herein. The instructions 902 may also
reside, completely or at least partially, within the program
memory device(s) 906, the data memory device(s) 908,
and/or the processing device(s) 904 during execution thereof
by the computing system 900. The program memory device
(s) 906 and the processing device(s) 904 also constitute
machine-readable media. Dedicated hardware implementa-
tions such as, but not limited to, ASICs, programmable logic
arrays, and other hardware devices can likewise be con-
structed to implement methods described herein. Applica-
tions that include the apparatus and systems of various
embodiments broadly comprise a variety of electronic and
computer systems. Some embodiments implement functions
in two or more specific interconnected hardware modules or
devices with related control and data signals communicated
between and through the modules, or as portions of an ASIC.
Thus, the example system is applicable to software, firm-
ware, and/or hardware implementations.

The term “processing device” as used herein is intended
to include any processor, such as, for example, one that
includes a CPU (central processing unit) and/or other forms
of processing circuitry. Further, the term “processing
device” may refer to more than one individual processor.
The term “memory” is intended to include memory associ-
ated with a processor or CPU, such as, for example, RAM
(random access memory), ROM (read only memory), a fixed
memory device (for example, hard drive), a removable
memory device (for example, diskette), a flash memory and
the like. In addition, the display device(s) 912, input device
(s) 914, cursor control device(s) 916, signal generation
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device(s) 920, etc., can be collectively referred to as an
“input/output interface,” and is intended to include one or
more mechanisms for inputting data to the processing device
(s) 904, and one or more mechanisms for providing results
associated with the processing device(s). Input/output or I/O
devices (including, but not limited to, keyboards (e.g.,
alpha-numeric input device(s) 914, display device(s) 912,
and the like) can be coupled to the system either directly
(such as via bus 910) or through intervening input/output
controllers (omitted for clarity).

In an integrated circuit implementation of one or more
embodiments, multiple identical dies are typically fabricated
in a repeated pattern on a surface of a semiconductor wafer.
Each such die may include a device described herein and
may include other structures and/or circuits. The individual
dies are cut or diced from the wafer, then packaged as
integrated circuits. One skilled in the art would know how
to dice wafers and package die to produce integrated cir-
cuits. Any of the exemplary circuits or method illustrated in
the accompanying figures, or portions thereof, may be part
of an integrated circuit. Integrated circuits so manufactured
are considered part of this invention.

In accordance with various embodiments, the methods,
functions, or logic described herein is implemented as one or
more software programs running on a computer processor.
Dedicated hardware implementations including, but not
limited to, application specific integrated circuits, program-
mable logic arrays and other hardware devices can likewise
be constructed to implement the methods described herein.
Further, alternative software implementations including, but
not limited to, distributed processing or component/object
distributed processing, parallel processing, or virtual
machine processing can also be constructed to implement
the methods, functions or logic described herein.

The embodiment contemplates a machine-readable
medium or computer-readable medium including instruc-
tions 902, or that which receives and executes instructions
902 from a propagated signal so that a device connected to
a network environment 922 can send or receive voice, video,
or data, and to communicate over the network 922 using the
instructions 902. The instructions 902 are further transmitted
or received over the network 922 via the network interface
device(s) 924. The machine-readable medium also contains
a data structure for storing data useful in providing a
functional relationship between the data and a machine or
computer in an illustrative embodiment of the systems and
methods herein.

While the machine-readable medium 902 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” shall also be taken to include
any medium that is capable of storing, encoding, or carrying
a set of instructions for execution by the machine and that
cause the machine to perform anyone or more of the
methodologies of the embodiment. The term “machine-
readable medium” shall accordingly be taken to include, but
not be limited to: solid-state memory (e.g., solid-state drive
(SSD), flash memory, etc.); read-only memory (ROM), or
other non-volatile memory; random access memory (RAM),
or other re-writable (volatile) memory; magneto-optical or
optical medium, such as a disk or tape; and/or a digital file
attachment to e-mail or other self-contained information
archive or set of archives is considered a distribution
medium equivalent to a tangible storage medium. Accord-
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ingly, the embodiment is considered to include anyone or
more of a tangible machine-readable medium or a tangible
distribution medium, as listed herein and including art-
recognized equivalents and successor media, in which the
software implementations herein are stored.

It should also be noted that software, which implements
the methods, functions and/or logic herein, are optionally
stored on a tangible storage medium, such as: a magnetic
medium, such as a disk or tape; a magneto-optical or optical
medium, such as a disk; or a solid state medium, such as a
memory automobile or other package that houses one or
more read-only (non-volatile) memories, random access
memories, or other re-writable (volatile) memories. A digital
file attachment to e-mail or other self-contained information
archive or set of archives is considered a distribution
medium equivalent to a tangible storage medium. Accord-
ingly, the disclosure is considered to include a tangible
storage medium or distribution medium as listed herein and
other equivalents and successor media, in which the soft-
ware implementations herein are stored.

Although the specification describes components and
functions implemented in the embodiments with reference to
particular standards and protocols, the embodiments are not
limited to such standards and protocols.

The illustrations of embodiments described herein are
intended to provide a general understanding of the structure
of various embodiments, and they are not intended to serve
as a complete description of all the elements and features of
apparatus and systems that might make use of the structures
described herein. Many other embodiments will be apparent
to those of skill in the art upon reviewing the above
description. Other embodiments are utilized and derived
therefrom, such that structural and logical substitutions and
changes are made without departing from the scope of this
disclosure. Figures are also merely representational and are
not drawn to scale. Certain proportions thereof are exagger-
ated, while others are decreased. Accordingly, the specifi-
cation and drawings are to be regarded in an illustrative
rather than a restrictive sense.

Such embodiments are referred to herein, individually
and/or collectively, by the term “embodiment” merely for
convenience and without intending to voluntarily limit the
scope of this application to any single embodiment or
inventive concept if more than one is in fact shown. Thus,
although specific embodiments have been illustrated and
described herein, it should be appreciated that any arrange-
ment calculated to achieve the same purpose are substituted
for the specific embodiments shown. This disclosure is
intended to cover any and all adaptations or variations of
various embodiments. Combinations of the above embodi-
ments, and other embodiments not specifically described
herein, will be apparent to those of skill in the art upon
reviewing the above description.

In the foregoing description of the embodiments, various
features are grouped together in a single embodiment for the
purpose of streamlining the disclosure. This method of
disclosure is not to be interpreted as reflecting that the
claimed embodiments have more features than are expressly
recited in each claim. Rather, as the following claims reflect,
inventive subject matter lies in less than all features of a
single embodiment. Thus, the following claims are hereby
incorporated into the detailed description, with each claim
standing on its own as a separate example embodiment.

The abstract is provided to comply with 37 CFR. §
1.72(b), which requires an abstract that will allow the reader
to quickly ascertain the nature of the technical disclosure. It
is submitted with the understanding that it will not be used
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to interpret or limit the scope or meaning of the claims. In
addition, in the foregoing Detailed Description, it can be
seen that various features are grouped together in a single
embodiment for the purpose of streamlining the disclosure.
This method of disclosure is not to be interpreted as reflect-
ing an intention that the claimed embodiments require more
features than are expressly recited in each claim. Rather, as
the following claims reflect, inventive subject matter lies in
less than all features of a single embodiment. Thus, the
following claims are hereby incorporated into the Detailed
Description, with each claim standing on its own as sepa-
rately claimed subject matter.

Although specific example embodiments have been
described, it will be evident that various modifications and
changes are made to these embodiments without departing
from the broader scope of the inventive subject matter
described herein. Accordingly, the specification and draw-
ings are to be regarded in an illustrative rather than a
restrictive sense. The accompanying drawings that form a
part hereof, show by way of illustration, and without limi-
tation, specific embodiments in which the subject matter are
practiced. The embodiments illustrated are described in
sufficient detail to enable those skilled in the art to practice
the teachings herein. Other embodiments are utilized and
derived therefrom, such that structural and logical substitu-
tions and changes are made without departing from the
scope of this disclosure. This Detailed Description, there-
fore, is not to be taken in a limiting sense, and the scope of
various embodiments is defined only by the appended
claims, along with the full range of equivalents to which
such claims are entitled.

Given the teachings provided herein, one of ordinary skill
in the art will be able to contemplate other implementations
and applications of the techniques of the disclosed embodi-
ments. Although illustrative embodiments have been
described herein with reference to the accompanying draw-
ings, it is to be understood that these embodiments are not
limited to the disclosed embodiments, and that various other
changes and modifications are made therein by one skilled
in the art without departing from the scope of the appended
claims.

What is claimed is:

1. An event-driven readout management system compris-
ing non-priority access arbitration of a plurality of channels,
the system comprising:

an arbitration tree circuit, the arbitration tree circuit
determining to which of the plurality of channels to
grant access to a common signal transfer resource
shared by the plurality of channels, the determination
being based on a readout access request provided by at
least one of the plurality of channels, the arbitration tree
circuit excluding simultaneous occurrence of multiple
readout access requests from the determination, the
readout access request being received by the arbitration
tree circuit and stored in the arbitration tree circuit until
access is granted to the common signal transfer
resource by the arbitration tree circuit, the arbitration
tree circuit terminating a prior readout transaction and
commencing a subsequent readout transaction in
response to a single edge of a clock signal;

a response circuit, the response circuit operatively
coupled to the arbitration tree circuit, a state of the
clock signal representing an acknowledge token, the
acknowledge token being provided to the arbitration
tree circuit, the arbitration tree circuit using the
acknowledge token to grant access to the common
signal transfer resource;
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an in-channel logic circuit, the in-channel logic circuit
operatively coupled to the arbitration tree circuit, the
in-channel logic circuit generating the readout access
request and receiving the acknowledge token, the in-
channel logic circuit terminating the prior readout
transaction and commencing the subsequent readout
transaction in response to receiving the acknowledge
token; and

an output periphery circuit, the output periphery circuit

converting information received from the plurality of
channels into an output format on the common signal
transfer resource.

2. The system, as defined by claim 1, wherein the common
signal transfer resource comprises at least one of an analog
signal transfer line, a digital signal transfer line.

3. The system, as defined by claim 1, wherein the readout
access request is generated in response to an event, the event
comprising activation of at least one of the plurality of
channels to generate transferrable data.

4. The system, as defined by claim 1, wherein the readout
transaction comprises a plurality of readout phases, at least
one of the plurality of readout phases causing transfer of at
least a portion of information from one of the plurality of
channels to the common signal transfer resource.

5. The system, as defined by claim 1, wherein a duty cycle
associated with the clock signal is selectable to define an
acceptance time associated with the readout access request
and to assure settling time associated with the common
signal transfer resource.

6. The system, as defined by claim 1, wherein the deter-
mination further comprises determining, with a plurality of
readout phases associated with the readout transaction,
which channel of the plurality of channels is granted access
to the common signal transfer resource independent of at
least one of readout access requests stored in the arbitration
tree circuit, readout access requests received, a relative
position of the plurality of channels with respect to the
arbitration tree circuit.

7. The system, as defined by claim 1, wherein a quantity
of edges associated with the clock signal is equal to a
quantity of readout phases associated with the readout
transaction from one channel.

8. The system, as defined by claim 1, wherein the arbi-
tration tree circuit operates asynchronously with the plural-
ity of channels.

9. The system, as defined by claim 1, wherein the arbi-
tration tree circuit operates synchronously with the output
periphery circuit.

10. The system, as defined by claim 1, wherein the
arbitration tree circuit operates synchronously with the in-
channel logic circuit, the in-channel logic circuit operating
asynchronously in generating the read access request, the
duration of the acknowledge token defining an acceptance
time window associated with the read access request for
outputting data from at least one of the plurality of channels.

11. The system, as defined by claim 1, wherein a duty
cycle of the acknowledge token signal is selectable to
provide data settling time after granting access to the com-
mon signal transfer resource.

12. The system, as defined by claim 1, wherein the
plurality of channels provides information to the common
signal transfer resource such that a transmission order asso-
ciated with concurrently requesting channels is independent
of positions associated with the concurrently requesting
channels within the arbitration tree circuit.

13. The system, as defined by claim 1, wherein the clock
signal comprises a first state and a second state, the first state
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being defined as active and comprising an acknowledge
token that enables new read access requests to be accepted,
the second state disabling acceptance of a new read access
request to avoid starting data transmission with insufficient
data settling time after access is granted to the common
signal transfer resource in response to acceptance of the new
read access request if the acknowledge token is to be routed
to a new channel.

14. The system, as defined by claim 1, wherein the readout
access requests processed by the arbitration tree circuit
comprise logical sums of readout access requests associated
with at least one lower stage in the arbitration tree circuit.

15. The system, as defined by claim 1, wherein the readout
access requests processed by the arbitration tree circuit
comprise logical sums of result signals from arbitration
between readout access requests.

16. The system, as defined by claim 1, wherein the readout
access requests processed by the arbitration tree circuit
comprise logical sums of result signals from arbitration
between results of arbitration between readout access
requests, entering arbitration cells, and the clock signal
comprising acknowledge tokens in the arbitration cells.

17. The system, as defined by claim 1, wherein the readout
access requests processed by the arbitration tree circuit
comprise logical sums of result signals from arbitration
between readout access requests, entering arbitration cells,
and the clock signal comprising acknowledge tokens in the
arbitration cells.

18. A method of non-priority arbitration of a plurality of
channels using an event-driven readout management system,
the method comprising:

determining, using an arbitration tree circuit, to which of

the plurality of channels to grant access to a common
signal transfer resource shared by the plurality of
channels, the determination based on a readout access
request provided by at least one of the plurality of
channels;

excluding, using the arbitration tree circuit, simultaneous

occurrence of multiple readout access requests from the
determination;

receiving and storing the readout access requests in the

arbitration tree circuit until access is granted to the
common signal transfer resource by the arbitration tree
circuit;

terminating, using the arbitration tree circuit, a prior

readout transaction and commencing a subsequent
readout transaction in response to a single edge of a
clock signal;

providing an acknowledge token to the arbitration tree

circuit, the arbitration tree circuit using the acknowl-
edge token to grant access to the common signal
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transfer resource, a state of the clock signal represent-
ing the acknowledge token;
generating, using an in-channel logic circuit, the readout
access request and receiving the acknowledge token,
5 the in-channel logic circuit operatively coupled to the
arbitration tree circuit;
terminating, using the in-channel logic circuit, the prior
readout transaction and commencing the subsequent
readout transaction in response to receiving the
acknowledge token; and

converting, using an output periphery circuit, information

received from the plurality of channels into an output
format on the common signal transfer resource.

19. A non-transitory computer-readable medium compris-
ing instructions that, when executed by a processing device,
perform operations comprising:

determining, using an arbitration tree circuit, to which of

the plurality of channels to grant access to a common
signal transfer resource shared by the plurality of
channels, the determination based on a readout access
request provided by at least one of the plurality of
channels;

excluding, using the arbitration tree circuit, simultaneous

occurrence of multiple readout access requests from the
determination;

receiving and storing the readout access requests in the

arbitration tree circuit until access is granted to the
common signal transfer resource by the arbitration tree
circuit;

terminating, using the arbitration tree circuit, a prior

readout transaction and commencing a subsequent
readout transaction in response to a single edge of a
clock signal;

providing an acknowledge token to the arbitration tree

circuit, the arbitration tree circuit using the acknowl-
edge token to grant access to the common signal
transfer resource, a state of the clock signal represent-
ing the acknowledge token;

generating, using an in-channel logic circuit, the readout

access request and receiving the acknowledge token,
the in-channel logic circuit operatively coupled to the
arbitration tree circuit;

terminating, using the in-channel logic circuit, the prior

readout transaction and commencing the subsequent
readout transaction in response to receiving the
acknowledge token; and

converting, using an output periphery circuit, information

received from the plurality of channels into an output
format on the common signal transfer resource.
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