

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2022/0204984 A1 Shanklin et al.

(43) **Pub. Date:**

Jun. 30, 2022

(54) METHODS AND COMPOSITIONS FOR MODIFYING PHENOTYPES OF PLANTS EXPRESSING FATTY ACID TRANSGENES AND REDUCED EXPRESSION OF BADC **GENES**

- (71) Applicants: Brookhaven Science Associates, LLC, Upton, NY (US); The Research Foundation For The State University of New York, Albany, NY (US)
- (72) Inventors: John Shanklin, Shoreham, NY (US); Xioa-Hong Yu, Mount Sinai, NY (US); Hui Liu, Middle Island, NY (US); Jantana Keereetaweep, Wading River, NY (US); Yuanheng Cai, Shirley, NY (US)
- (21) Appl. No.: 17/534,993
- (22) Filed: Nov. 24, 2021

Related U.S. Application Data

(60) Provisional application No. 63/131,755, filed on Dec. 29, 2020, provisional application No. 63/118,209, filed on Nov. 25, 2020.

Publication Classification

- (51) Int. Cl. C12N 15/82 (2006.01)
- U.S. Cl. CPC C12N 15/8247 (2013.01)

(57)ABSTRACT

Compositions that are plants, seeds or crops that have a combination of defective BADC genes and genes for making hydroxy fatty acids produced normal levels of oil containing specialty fatty acids, and exhibited an increases in total oil accumulation, increase in absolute hydroxy (specialized) fatty acid accumulation per seed and/or per plant and/or per unit land area. Defective BADC genes and genes for synthesizing hydroxy fatty acids are combined to produce specialized fatty acids without substantially slowing production of endogenous fatty acids. Methods are also described for increasing production of unusual fatty acids and increasing total fatty acid levels in plants by a mechanism involving combining defective BADC genes and genes for making hydroxy fatty acids to produce steady or increased levels of oil containing the increased specialty products as described herein.

Specification includes a Sequence Listing.

Figure 1.

igure 2.

Figures 3.A-3.C

Figure 4

Figure 5

Figures 6.A-6.C

aa taatoosot 7000 stooctotaloolaa taitla oolaa tooolaa aatoota. Caitoolaikoolaikoateloolootiaaaan toooliitoolaa taitooloaaa AND CONTROL OF THE CO

Figure 7. EMS mutation caused truncation of FAE1 in foe1 mutant. FAE1 gene was amplified from fae1 mutant and its sequence showed a mutated codon (TGG1395TGA, highlighted in green). SEQ ID MO: 3.

Figure 8

Figure 9

Figure 10

FIG. 11

FIG. 14

DsRed - pPhas

FIG. 16 A: FAII exemplified by RcFAII nucleotide sequence: Gene ID # 8267537 >NM 001323721.1 FAII mRNA SEQ ID NO: 4

ACCTTAAGCGAGCGCGCACACGAAGCCTCCTTTCACACTTGGTGACCTCAAGAGAGCCATCCCACCCCA TTGCTCTGAACGCTCTTTTGTGCGCTCATTCTCCTATGTTGCCTATGATGTCTGCTTAAGTTTTCTTTTC TACTOGATOGOCACCAACTTCTTCCCTTACATCTCTTCTCCGCTCTCGTATGTCGCTTGGCTGGTTTACT OGCICTICCAAGGCTGCATTCTCACTGGTCTTTGGGTCATCGGCCATGAATGTGGCCATCATGCTTTTAG TGAGTATCAGCTGGCTGATGACATTGTTGGCCTAATTGTCCATTCTGCACTTCTGGTTCCATATTTTTCA TOGAAATATAGOCATOGOOGOCACCATTCTAACATAGGATCTCTOGAGOGAGACGAAGTGTTCGTCOCGA AATCAAAGTCGAAAATTTCATGGTATTCTAAGTACTTAAACAACCCGCCAGGTCGAGTTTTGACACTTGC TGCCACGCTCCTTGGCTGGCCTTTATACTTAGCTTTCAATGTCTCTGGTAGACCTTACGATCGCTTT OCTTGCCATTATGATCCCTATGGCCCAATATTTTCCGAAAGAGAAAGGCTTCAGATTTACATTGCTGACC TOGGAATOTTOCCACAACGTTTGCGCTTTATCAGGCTACAATGGCAAAAGGGTTGGCTTGGGTAATGCG TATCTATGGGGTGCCATTGCTTATTGTTAACTGTTTCCTTGTTATGATCACATACTTGCAGCACACTCAC CCAGCTATTCCACGCTATGGCTCATCGGAATGGGATTGGCTCCGGGGAGCAATGGTGACTGTCGATAGAG ATTATGGGOTGTTGAATAAAGTATTCCATAACATTGCAGACACTCAGGTAGCTCATCATCTCTTTGCTAC AGTGCCACATTACCATGCAATGGAGGCCACTAAAGCAATCAAGCCTATAATGGGTGAATATTACCGGTAT GATGGTACCCCATTTTACAAGGCATTGTGGAGGGAGGCAAAGGAGTGCTTGTTCGTCGAGCCAGATGAAG GAGCTCCTACACAAGGCGTTTTCTGGTACCGGAACAAGTATTAA

DCBI Deference Sequence: ND_001010650.1

FIG. 16 B: FAH amino acid sequence: NP_001310650.1 oleate hydroxylase FAH12 [Ricinus communis: SEQ ID NO: 7

MGGGGRMSTVITSNNSEKKGGSSHLKBAPHTKPPFTLGDLKRAIPPHCSERSFVRSFSVVAYDVCLSFLF
YSIATNFFPYISSPLSYVAWLVYWLFQGCILTGLWVIGHECGHHAFSEYQLADDIVGLIVHSALLVPYFS
WKYSHRRHHSNIGSLERDEVFVPRSKSKISWYSKYLNNPPGRVLTLAATLLLGWPLYLAFNVSGRPYDRF
ACHYDPYGPIFSERERLQIYIADLGIPATTFALYQATMAKGLAWVMRIYGVPLLIVNCFLVMITYLQHTH
PAIPRYGSSEWDWLRGAMVTVDRDYGVLNKVFHNIADTQVAHHLFATVPHYHAMEATKAIKPIMGEYYRY
DGTPFYKALWREAKECLFVEPDEGAPTQGVFWYRNKY

FIG. 16 C: Camelina BADC1 SEQ ID NO: 8 First isoform nucleotide sequence: >Csa04g042500.1

ATGGCGTCTTCTGCAGCTCTCGGATCTCTTCATCAGACTTTAGGGTCACAGAGTGAGCTT
CATTTGCTTTCTGGAAACTGGTCTGCCTCTGGTACTTCTTGCGTTCCACGGTGGAGATTA
TCCAACAGGAGTAGCAATTACACGCTTGTGTTACGTGCAAAGGCCTCTAAAACTTCGACA
ACAACCAAAAGCGATGATTCATCTGATGCGACTGTGTCAAAACGGGAAGAATCTGTTCGA
CGGACAACCTTCCCGAAAGAAGTGGAGGCACTGGTTCACGAGATGTGTGATGAGACTGAG
GTTGCTGTCCTGAAACTTAAGGTTGGAGGATTTCGAGATGAAACCGTAGCACCTCCGATTCCT
TCTGAGCCCCATGGATAAATCTGTTTCTTCTGCTCCCAGCCCATCTAAAACCGAAGATTGGT
GAAAAAGTATCTCCATTTATGAATACATCATATGGGAAAACCAGCGAAGTTGGTAGCTTTG
GAGGCCATCTGGATCAAACAATTATGTTCTAGTCAAATCTCCCTCAGTTGGCGAGTTTCAC

AGAAGCAGAACTGTAAAAGGAAAGAAACTATCTCCTAGCTGCAAAGAGGGTGATGAAATA
AAGGAAGGCCAAGTTATTGGATACTTACATCAGTTGGGAACAGAACTTCCAGTGACGTCG
GATGTAGCTGGGGAAGTCCTCAAGCTTCTTTCAGATGACGGAGACTCCGTAGGTTATGGT
GATCCTCTGGTTGCGGTCTTGCCATCGTTCCACGATATCAACATCCAGTGA

FIG. 16 D: Camelina BADC1 SEQ ID NO: 9 First isoform amino acid sequence >Csa04g042500.1

MASSAALGSLHQTLGSQSELHLLSGNWSASGTSCVPRWRLSNRSSNYTLV
LRAKASKTSTTTKSDDSSDATVSWGKKSVRRTTFPKEVEALVHEMCDETE
VAVLKLKVGDFEMNLKRRIGAATNPIPVEDISPTVAPPIPSEPMDKSVSS
APSPSKAKPSEKVSFFMINTSYGKPAKLVALEASGSNNYVLVKSPSVGEFH
RSRTVKGKKLSPSCKEGDEIKEGQVIGYLHQLGTELPVTSDVAGEVLKLL
SDDGDSVGYGDPLVAVLPSFHDINIO

FIG. 16 E: Camelina BADC1 SEQ ID NO: 10 Second isoform nucleotide sequence >Csa06g030800.1

FIG. 16 F: Camelina BADC1 SEQ ID NO: 11 Second isoform amino acid sequence >Csa06g030800.1

MASSAALGSLHQTLGSQSELHLLSGNWSASGTSCVPRWRLSNRSSNYTLV LRAKASKTSTTTKSDDSSDATVSNGKESVRRTTFPKEVEALVHENCDETE VAVLKLKASYSGVGDFEMNLKRKIEAATNPIBVEDISPTVAPPIBSEPMN QSVSSIBSPSKAKPSEKVSPFINTSVGKPAKLAALEASGSNNYVLVKSPS VGEFHRSRTVKGKKLSPSCKEGDEIKEGQVIGYLHQLGTELPVTSDVAGE VLKLLSDDGDSVOYGDPLVAVLPSFHDINIO

FIG. 16 G: Camelina BADC1 SEQ ID NO: 12 Third isoform nucleotide sequence >Csa09g068300.1

ATGGCGTCTTCTGCAGCTCTCGGATCTCTTCATCATCCGATCTTTTTGTGGCAATTGGTT GTTGTGGTGACTGAATTAGAGACTTTAGGGTCACAGAGTGAGCTTCACTTGCTTTCTGGA AATTOGTCTGCTTCTGGTACTTCTTGTGTACCACGGTGGAGATTATCCAACAGGAGCAGC AATTACACGCTTGTGTTACGTGCAAAGGCCTCTAAAACTTCGACAACAACCAAAAGCGAT GATTCATCTGATGCAACTGTGTCAAACGGGAAGAATCTGTTCGAAGGACAACTTTCCCC AAAGAAGTGGAGACACTGGTTCACGAGATGTGTGATGAGACTGAGGTTGCTGTCCTGAAA CTCAAGGCAAGATACTCTGGCGTTGGAGATTTCGAGATGAACCTAAAACGGAAGATTGGA GCTACCACAAACCCCATTCCTGTGGAGGATATATCTCCAACCGTAGCACCTCCAATTCCT TCTGAGCCCATGAATCAATCGGTTTCCTCTGCTCCCAGCCCATCTACAGCAAAACCGTCT GAAAAAGTATCTCCATTTATGAATACATCATATGGGAAACCAGCAAAGTTGGCAGCTTTG GAGGCATCTGGATCAAACAATTATGTTCTAGTCAAATCTCCCTCAGTTGGCGAGTTTCAC AGAAGCAGAACTGTAAAAGGAAAGAAACTATCTCCTAGCTGCAAAGAGGGTGATGAAATA AAGGAAGGCCAAGTGATTGGATACTTACATCAGTTGGGAACAGAACTTCCAGTGACGTCG GATGTAGCTGGGGAAGTCCTCAAGCTTCTTTCAGATGACGGAGACTCCATAGG TTATGGTGATCCTCTGGTTG CGGTCTTGCCATCGTTCCACGATATCAACATCCAGTGA

FIG. 16 II: Camelina BADC1 SEQ ID NO: 13 Third isoform amino acid sequence >Csa09g068300.1

MASSAALOSLHEPER WQLVVVVTELETLGSQSELHILSGNWSASGTSCV
PRWRLSNRSSNYTLVLRAKASKTSTTTKSDDSSDATVSNGKKSVRRTTFP
KEVETLVHEMCDETEVÄVLKLKARYSGVGDFEMNLKRKIGATTNPIPVED
ISDTVAPPIPSEPMNQSVSSAPSPSTARPSEKVSPFMINTSYGKPAKLAAL
EASGSNNYVLVKSPSVGEFHRSRTVKGKKLSPSCKEGDEIKEGQVIGYLH
QLGTELPVTSDVAGEVLKLLSDDGDSIGYGDPLVAVLPSFHDINIQ

FIG. 16 I: Camelina BADC3 SEQ ID NO: 14

First isoform nucleotide sequence >Csa15g020290.1

FIG. 16 J: Camelina BADC3 SEQ ID NO: 15

First isoform amino acid sequence >Csa15g020290.1

MASCSLGVPKIKISAVDLSRVSSGSLLIPFSQRSLLGQRPVKYLSLRTIF
GSVKAVQVSTVPTAETSATIEVEDSEETKSSPLNAQLVPKPSEVEALVTE
ICDSSSIAEFELKLGGFRLYVARDLTDKSSFQPHPVPAVAAASETTKSPD
SNGSTPSTSLAHTRPASSAADHGLMILQSPKVGFPRISKTIKGRRMPSSC
KEKDQVKEGQILCYIEQLGGQFPIESDVSGEVVKILREDGEPVGYNDALI
SILPSFPGIKKLO

FIG. 16 K: Camelina BADC3 SEQ ID NO: 16

Second isoform nucleotide sequence >Csa19g022480.1

ATGGCATCCTGTAGCCTAGGAGTTCCTAAAATTAAAATCTCAGCAGTAGACCTTAGTAGA
GTAAGTTCTGGAAGCTTACTGATACCATTCAGTCAAAGATCATTGCTTGGACAAAGGCCG
GTGAAGTACTTGAGTCTGAGGACAACTTTTGGATCTGTGAAAGCTGTACAAGTATCTACT
GTCCCAGCTGCAGAAACATCAGCTACTGTAGGAGGAAGATTCTGAAGAAACCAAGTCA

TCCCCATTGAACGCTCAGCTAGTTCCCAAGCGATCTGAGGTGGAAGCTCTTGTCACTGAA
ATATGCGACTCCTCATCAATTGCAGAGTTTGAACTGAAACTGGGGGGGTTTCCGCCTATAT
GTAGCAAGGGATCTAGCTGACAAAAGTAGTCCGCAGCCTCATCCAATTCCTGCTGTGGCT
GCTGCAAGTGAAACTACCAAGAGTCCTGATTCGAATGGATCAACACCTTCTACTTCATTG
GCTATCACAAGACCAGCATCTTCAGCTGCTGATCAGGGGTTTGATGATTCTCCAATCTCCA
AAAGTAGGGTTCTTTAGGAGATCCAAAACCATAAAGGGTAAACGCATGCCTTCGTCATGT
AAAGAAAGACCAAGTGAAAGAAGGTCAAATTCTGTGCTACATTGAACAACTCGGTGGC
CAATTCCCAATAGAGTCTGATOTCAGCGGTGAGGTTGTCAAAATACTCCGCGAAGATGGA
GAACCTGTAGGATACAATGATGCTCTCATCTCGATCCTTCCCTCTTTCCCTGGGATCAAG
AAGCTTCAGTAA

FIG. 16 L: Camelina BADC3 SEQ ID NO: 17

Second isoform amino acid sequence >Csn19g022480.1

MASCSLGVPRIKISAVDLSRVSSGSLLIPFSQRSLLGQRFVKYLSLRTIF
GSVKAVQVSTVPAAETSATVGVEDSEETKSSPLNAQLVPRRSEVEALVTE
ICDSSSIAEFELKLGGFBLYVARDLADKSSPQFHPIPAVAAASETTKSPD
SXGSTPSTSLAITRPASSAADQGLMILQSPKVGFFRRSKTIKGKRMPSSC
KEKDQVKEGQILCYTEQLGGQFFTESDVSGEVVKILREDGEPVGYNDALI
SILPSFPGIKKLQ

FIG. 16 M: Camelina BADC3 SEQ ID NO: 18

Third isoform nucleotide sequence >Csa01g018320.1

Patent Application Publication Jun. 30, 2022 Sheet 18 of 22 US 2022/0204984 A1

GATTCGAATGGATCAACACCTTCTACTTCATTGGCTATCACAAGACCAGCATCTTCAGCT
GCTGATCAGGGTTTGATGATTCTCCAATCTCCAAAAGTAGGGTTCTTTAGGAGATCCAAA
ACCATAAAGGGTAAACGCATGCCTTCGTCATGTAAAGAGAAAGACCAAGTGAAAGAAGGT
CAAATTCTGTGCTACATTGAACAACTCGGTGGCCAATTCCCAATAGAGTCTGATGTCAGC
GGCGAGGTTGTCAAAATACTCCGAGAAGATGGAGAGCCTGTAGGGTACAATGATGCTCTC
ATCTCGATCCTTCCCTCTTTCCCTGGGATCAAGAAGCTTCAGTAA

FIG. 16 N: Camelina BADC3 SEQ ID NO: 19

Third isoform amino acid sequence >Csa01g018320.1

MASCSLGVPKIKISAVDLSRVSSGSLLVPFSQRSLLGQRTVKYLSLRKTF
GSVKAVQLSTVPAAETSATVGVEDSEETKSSPLNAQLVPNPSEVEALVTE
ICDSSSIAEFELKLGGFPLYVAPDLADKSSPQPHPIPAVAAASETTKSPD
SNGSTPSTSLAHTRPASSAADQGLMHQSPKVGFFRRSKTIKGKRMPSSC
KEKDQVKEGQHLCYIEQLGGQFPIESDVSGEVVKILREDGEPVGYNDALI
SHLPSFFGIKKLO

FIG. 16 O: FAEL, AT4G34520, Coding sequence: SEQ ID NO: 20

GOSTICCTOSCOGGAAAAGCCTCTCGGCTTACCATAAACGATCTCCACAACITCCTTTCCTATCTCCAACACAC CCTTATAACASTAACTITACTCTTTGCTTTCACTGTTTTCGGTTTGGGTTCTCTACATCGTAACCCGACCCAATCC GGTTTATCTCGTTGACTACTCGTGTTACCTTCCACCACCGCATCTCAAAGTTAGTGTCTCTAAAGTCATGGATA CTGAGGAAGATTCAAGAGCGTTCAGGTCTAGGTGATGAGACGTACAGTCCTGAGGGACTCATTCACGTACCA CCGCGGAAGACTTTTGCAGCGTCACGTGAAGACACAGAGAAGGTTATCATCGGTGCGCTCGAAAATCTATTC GAGAACACCAAAGTTAAOOCTAGAGAGATTGGTATACTTGTGGTGAACTCAAGCATGTTTAATOCAACTOCTT COCTATCCGCTATGGTCGTTAATACTTTCAAGCTCCGAAGCAACATCAAAAGCTTTAATCTAGGAGGAATGGG TTGTAGTGCTGGTGTTATTGCCATTGATTTGGCTAAAGACTTGTTGCATGTTCATAAAAAACACTTATGCTCTTG TGGTGAGCACTGAGAACATCACAAGGCATTTATGCTGGAGAAAATAGATCAATGATGGTTAGCAATTGCTT GTTTCGTGTTGGTGGGGCCGCGATTTTGCTCTCTAACAAGTCGGGAGACGGGAGACGGTCCAAGTACAAGCTA GTTCACACGGTCCGAACGCATACTGGAGCTGATGACAAGTCTTTTCGATGTGTGCAACAAGAAGACGATGAG AGCGGCAAAATCGGAGTTTGTCTGTCAAAGGACATAACCAATGTTGCGGGGGACAACACTTACGAAAAATATA OCAACATTOGOTCCOTTGATTCTTCCTTTAAGCGAAAAGTTTCTTTTTTTCGCTACCTTCGTCGCCAAGAAACT TCTAAAGGATAAAATCAAGCATTACTATGTTCCGGATTTCAAGCTTGCTGTTGACCATTTCTGTATTCATGCCG AAGAATGAAGAAAGGGAATAAAGCTTGGCAGATTGCTTTAGGATCAGGGTTTAAGTGTAATAGTGCGGTTTG

FIG. 16 P: FAE1, AT4634528, Protein Sequence SEQ ID NO: 21

MTSVNVKILYRYVLTNFFNLCLFPLTAFLAGKASRLTENDLHNFLSYLQHNLITVTLLFAFTVFGLVLYIVTR9N9VYLV DYSCYLPPPHLKVSVSKVMDIFYQIRKADTSSRNVACDDPSSLDFLRKIQERSGLGDETYSPEGLHVPPRKTFAASR EETEKVIIGALENLFENTKVNPREIGILVVNSSMFNPTPSLSAMVVNTFKLRSNIKSPNLGGMOCSAGVIAJDLANDL LHVHKNTYALVVSTENITOGIYAGENRSMMVSNCLFRVGGAAILLSNKSGDRRRSKYKLVHTVRTHTGADDKSFR CVQQEDDESGKIGVCLSKDITNVAGTILTKNIATLGPLILPLSEKFLFFATFVAKKLLKDKIKHYYVPDFKLAVDHF CHAGGRAVIDELEKNLGLSPIDVEASRSTLHRFONTSSSSIWYELAYIEAKGRMKKGNKAWQIALGSGFKCNSAV WVALRNVKASANSFWOHCIDRYPVKIDSDLSKSKTHVONGRS

FIG. 16 Q: Arabidopsis FAD2, AT3G12120.1, Coding sequence: SEQ ID NO: 22

ATGGGTGCAGGTGGAAGAATGCCGGTTCCTACTTCTTCCAAGAAATCGGAAACCGACACCACAAAGCGTGTGCCG TOCGAGAAACCGCCTTTCTCGGTGGGAGATCTGAAGAAAGCAATCCCGCCGCATTGTTTCAAACGCTCAATCC CTOGCTCTTTCTCCTACCTTATCAGTGACATCATTATAGCCTCATGCTTCTACTACGTCGCCACCAATTACTTCT CTCTCCTCCCTCAGCCTCTCTCTTACTTQGCTTGGCCACTCTATTQGGCCTGTCAAGGCTGTGTCCTAACTGGTA TCTGGGTCATAGCCCACGAATGCGGTCACCACGCATTCAGCGACTACCAATGGCTGGATGACACAGTTGGTCT TATCTTCCATTCCTTCCTCCTCGTCCCTTACTTCTCCTGGAAGTATAGTCATCGCCGTCACCATTCCAACACTGG ATCCCTCGAAAGAGATGAAGTATTTGTCCCAAAGCAGAAATCAGCAATCAAGTGGTACGGGAAATACCTCAA CAACCCTCTTGGACGCATCATGATGTTAACCGTCCAGTTTGTCCTCGGGTGGCCCTTGTACTTAGCCTTTAACCG TCTCTGGCAGACCGTATGACGGGTTCGCTTGCCATTTCTTCCCCAACGCTCCCATCTACAATGACCGAGAACG CCTCCAGATATACCTCTCTGATGCGGGTATTCTAGCCGTCTGTTTTGGTCTTTACCGTTACGCTGCTGCACAAG GGATGGCCTCGATGATCTGCCTCTACGGAGTACCGCTTCTGATAGTGAATGCGTTCCTCGTCTTGATCACTTAC TTGCAGCACACTCATCCCTCGTTGCCTCACTACGATTCATCAGAGTGGGACTGGCTCAGGGGGAGCTTTGGCTA COGTAGACAGAGACTACOGGAATOTTGAACAAGGTGTTCCACAACATTACAGACACACACGTGGCTCATCACC TGTTCTCGACAATGCCGCATTATAACGCAATGGAAGCTACAAAGGCGATAAAGCCAATTCTGGGAGACTATTA CCAGTTCGATGGAACACCGTGGTATGTAGCGATGTATAGGGAGGCAAAGGAGTGTATCTATGTAGAACCGGA CAGGGAAGGTGACAAGAAAGGTGTGTACTGGTACAACAATAAGTTATGA

FIG. 16 R: Arabidopsis FAD2, AT3G12126.1, Protein Sequence SEQ ID NO: 23

MGAGGRMP VPTSSKKSËTDT TKRVPCEKPPFSVGDLKKAIPPHCFKRSIPÄSFSYLISDIHASCFYYVATNYFSLLPQPLSY
LAWPLYWACQGCVLTGIWVIAHECGEHAPSDYQWLDDTVGLIFHSFLLVPYFSWKYSHRKHHSNTGSLEPDEVF
VPKQKSAIKWYGKYLNNPLGRIMMLTVQFVLGWPLYLAFNVSGRPYDGFACHFFPNAPIYNDRERLQIYLSDAGIL
AVCFGLYKYAAAQGMASMICLYGVPLLIVXAPLVLITYLQHTHPSLPHYDSSEWDWLRGALATVDRDYGENKVF
HNITDTHVAHHLFSTMPHYNAMEATKAIKPILGDYYQFDGTPWYVAMYREAKECIVVEPDREGDKKGVYWYNN
KL

FIG. 16 S: Arabidopsis FAD3, AT2G29980.1, CDS SEQ ID NO: 24

ATGGTTGTTGCTATGGACCAACGCACCAATGTGAACGGAGATCCCGGCGGCGGAGACCGGAAGAAGAAGAAGAAG GTTTGATCCGAGTGCACAACCACCOTTCAAGATCGGAGATATAAGGGCGGCGATTCCTAAGCACTGTTGGGTT AAGAGTCCTTTGAGATCAATGAGTTACGTCGTCAGAGACATTATCGCCGTCGCGGCTTTGGCCATCGCTGCCG TGTATGTTGATAGCTGGTTCCTTTGGCCTCTTTATTGGGCCGCCCAAGGAACACTTTTCTGGGCCATCTTTGTTC TCTTTCATCCTCGTTCCTTACCATGGTTGGAGAATAAGCCACCGGACACCACCAGCAGCATGCTTG AAAACGACGAGTCATGGGTTCCGTTACCAGAAAGGGTGTACAAGAAATTGCCCCACAGTACTCGGATGCTCA GATACACTOTOCCTCTOCCCATGCTCGCATATCCTCTCTATTTGTGCTACAGAAGTCCTGGAAAAGAAGGATCA CATTITAACCCATACAGTAGTTTATTTGCTCCAAGCGAGAGAAGCTTATTGCAACTTCAACTACTTGTTGGTC CATAATGTTCGTCAGTCTTATCGCTCTATCTTTCGTCTTCGGTCCACTCGCGGTTCTTAAAGTCTACGGTGTACC GTACATTATCTTTGTGATGTGGTTGGGTGCTGTCACGTATTTGCATCATCGTCACGATGAGAAGTTGCCTT OGTATAGAGGCAAGGAATGGAGTTATCTACGTGGAGGATTAACAACAATTGATAGAGATTACGGAATCTTTA ACAACATTCATCACGACATTGGAACTCACGTGATCCATCATCTCTCCCACAAATCCCTCACTATCACTTGGTC GACOCCACGAAAGCAOCTAAACATGTGTTGGGAAGATACTACAGAGAACCAAAGACGTCAGGAGCAATACC TTCTACGAGACAGATCCAGATCTCTACGTTTACGCTTCTGACAAATCTAAAATCAATTAA

FIG. 16 T: Arabidopsis FAD3, AT2G29980.1, Protein SEQ ID NO: 25

MVVAMDQRINVNGDPGAGDRIKEERFDPSAQPPKKIDDIRAAIPKHCWVKSPLRSMSYVVRDIIAVAALAIAAVYVDS
WFLWPLYWAAQGILFWAIFVLGHDCGHGSFSDIPLLNSVVGHILHSFILVPYHGWRISHRIHHQNHGHVENDESW
VPLPERVYKKLPHSTRMLRYTVPLPMLAYPLYLCYRSPGKEGSHFNPYSSLFAPSERKLIATSTTCWSIMFVSLIALS
FVFGPLAVLKVYGVPYIIFVMWLDAVTYLHHHGHDEKLPWYRGKEWSVLRGGLTTIDRDVGIFNNIHHDIGTHVI
HHLFPQIPHYHLVDATKAAKHVLGRYYREPKTSGAIPIHLVESLVASIKKDHYVSDTGDIVFYETDPDLYVYASDKS
KIN

FIG. 16 U: mutant fatty acid elongation 1 (FAE1) DNA sequence (also see FIG., 7) SEQ ID NO; 26

ATGACGTCCGTTAACGTTAAGCTCCTTTACCGTTACGTCTTAAGCAACTTTTTCAACCTC TGTTTGTTCCCGTTAACGGCGTTCCTCGCCGQAAAAGCCTCTCGGCTTACCATAAACGAT CTCCACACTTCCTTTCCTATCTCCAACACACCTTATAACAGTAACTTTACTCTTTGCT TTCACTGTTTCGGTTTGGTTCTCTACATCGTAACCCGACCCAATCCGGTTTATCTCGTT GACTACTOGTGTTACCTTCLACCACCGCATCTCAAAGTTAGTGTCTCTAAAGTCATGGAT ATTTTCTACCAAATAAGAAAAGCTGATACTTCTTCACGGAACGTGGCATGTGATGATCCG TECTOGOTOGATTTCCTGAGGAAGATTCAAGAGCGTTCAGGTCTAGGTGATGAGACGTAC AGTCCTGAGGGACTCATTCACGTACCACCGCGGAAGACTTTTGCAGCGTCACGTGAAGAG ACAGAGAAGGTTATCATCGGTGCGCTCGAAAATCTATTCGAGAACACCAAAGTTAACCCT AGAGAGATTGOTATACTTGTGGTGAACTCAAGCATGTTTAATUCAACTCCTTUGCTATCC OCTATGGTUGTTAATACTTTCAAGCTCCGAAGCAACATCAAAAGCTTTAATCTAGGAGGA ATGGGTTGTAGTGCTGTTGTTGCCATTGATTTGGCTAAAGACTTGTTGCATGTTCAT AAAAACACTTATGCTCTTGTGGTGAGCACTGAGAACATCACACAAGGCATTTATGCTGGA GAAAATAGATCAATGATGGTTAGCAATTGCTTGTTTCGTGTTGGTGGGCCCCCGATTTTG CTCTCTAACAAGTCGGGAGACCGGAGACGGTCCAAGTACAAGCTAGTTCACACGGTCCGA ACGCATACTGGAGCTGATGACAAGTCTTTTCGATGTGCGAACAAGAAGACGATGAGAGC GGCAAAATOGGAGTTTGTCTGTCAAAGGACATAACEAATGTTGCGGGGACAACACTTACG AAAAATATAGCAACATTGGGTCCGTTGATTCTTCCTTTAAGCGAAAAGTTTCTTTTTTTC GCTACCTTCGTCGCCAAGAAACTTCTAAAGGATAAAATCAAGCATTACTATGTTCCGGAT TTCAAGCTTGCTGTTGACCATTTCTGTATTCATGCCGGAGGCAGAGCCGTGATCGATGAG CTAGAGAAGAACTTAGGACTATOGCCGATCGATGTGGAGGCATCTAGATCAACGTTACAT OGAGGATGAGGAAGGGAATAAGCTTGGCAGATTGCTTTAGGATCAGGGTTTAAGTGT AATAGTGCGGTTTGAGTGGCTCTACGCAATGTCAAGGCATCGGCAAATAGTCCTTGGCAA CATTGCATCGATAGATATCCGGTTAAAATTGATTCTGATTTGTCAAAGTCAAAGACTCAT GTCCAAAACGGTCGGTCCTAA

FIG. 16 V: mutant fatty acid elongation 1 (fact) protein sequence (also see FIG... 7) SEQ ID NO: 27

MISVEVELLERY ULTISPRICE PLITAFLAGE ASSETTED LENGLSY LQENERY VILLE AFT VEGLVELY VILLE PROTEIN VEGLVELY VILLE PROTEIN VEGLVELY VILLE PLAGE

EFTEK VIBGALENIFENTE VEGLVENSSMEN PERSON VENTER SNIKSEN LGGMGCS AGVIAID LAND L

LEVERNY VALVESTENTY GIVAGENESMEN VENCLER VGGAALLENES GEBERSKYKEN HEVET FOR DOKSER

CVQQED DESGRIGVELSKONT VAGTILIKNIAT LGPLILPLSEKFLEFATEVAKKLEKOKKHYYVED FREAVDER

CHAGGRAVIDELEKNIG LSPIDVEASEST LERFONTSSSSIWYELAYIEAKGENKAWQIALGSGEKCNSAV

FIG. 17 A: E. coli Cyclopropane fatty acid synthase (EcCPSI) DNA, NCBI Gene ID:944811; >NC 000913.3:1741413-1742561 SEQ ID NO: 28

ATGAGTTCATCGTGTATAGAAGAAGTCAGTGTACCGGATGACAACTGGTACCGTATCGCCAACGAATTAC TTAGCCGTGCCGGTATAGCCATTAACGGTTCTGCCCCGGCGGATATTCGTGTGAAAAACCCCGATTTTTT CGACTGGATATGTTTTTTAGCAAAGTCTTACGCGCAGGTCTCGAGAACCAACTCCCCCATCATTTCAAAG ACACGCTGCGTATTGCCGGCGCTCGTCTCTTCAATCTGCAGAGTAAAAAACGTGCCTGGATAGTCGGCAA AGAGCATTACGATTTGGGTAATGACTTGTTCAGCCGCATGCTTGATCCCTTCATGCAATATTTCCTGCGCTTACTGGAAAGATGCCGATAATCTGGAATCTGCCCAGCAGCGAAGCTCAAAATGATTTGTGAAAAATTGC AGTTAAAACCAGGGATGCGCGTACTGGATATTGGCTGCGGCTGGGGCGGACTGGCACACTACATGGCATC TAATTATGACGTAAGCGTGGTGGGGCGTCACCATTTCTGCCGAACAGCAAAAAATGGCTCAGGAACGCTGT GAAGGCCT6GATGTCACCATTTTGCTGCAAGATTATCGTGACCTGAACGACCAGTTTGATCGTATTGTTT CTGTGGGGATGTTCGAGCACGTCGGACCGAAAAATTACGATACCTATTTTGCGGTGGTGGATCGTAATTT GAAACCGGAAGGCATATTCCTGCTCCATACTATCGGTTCGAAAAAAACCGATCTGAATGTTGATCCCTGG ATTAATAAATATATTTTTCCGAACGGTTGCCTGCCCTCTGTACGCCAGATTGCTCAGTCCAGCGAACCCC ACTITIGATIGA AGACTIGICATA ACTITIGATICATI ACGATACITACGITIGATIGATIGATIGA ACG ATTCCTCGCCGCATGGCCAGAAATTGCGGGATAACTATAGTGAACGCTTTAAACGAATGTTTACCTATTAT CTGAATGCCTGTGCAGGTGCTTTCCGCGCCCGTGATATTCAGCTCTGGCAGGTCGTGTTCTCACGCGGTG TEGANANCOGCCTTCGAGTGGCTCGCTAA

FIG. 17 B: E. coli Cyclopropone faity acid synthase (EcCPSI) protein, NP_416178.1 SEQ ID NO: 29
MSSSCIEEVSVPDDMWYRIANELLSRAGIANGSAPADEVXNPDFFRRVLQEGSLGLGESYMDGWWECD
RLDMFFSRVLRAGLENQLPHFRDTLRIAGARLFNLQSKRAWIVGKEHYDLGNDLFSRMLDPFMQYSCA
YWXDADNLESAQQAKLKMICEKLQLKPGMRVLDIGCGWGGLAHYMASNYDVSVVGVTISAEQQKMAQERC
EGLDVTILLQDYRDLNDQFDRIVSVGMFHVGPKNYDTYFAVVDRNKPEGIFLLHTIGSKKTDLNVDPW
INKYIFFNGCLPSVRQIAQSSEPHFVMEDWHNFGADYDTILMAWYERFLAAWPEIADNYSERFRRMFTYY
LNACAGAFFARDIOLWOVVTSRGVENGLRVAR

FIG. 17 C: Crepis palaestina delta 12 fatty acid epoxygenase GenBank#: Y16283.1;>Y16283.1:30-1154 Crepis palaestina mRNA for delta 12 fatty acid epoxygenase SEO ID NO: 30

ATGGGTGCCGGCGGTCGTGGTCGGACATCGGAAAAATCGGTCATGGAACGTGTCTCAGTTGATCCAGTAA CCTTCTCACTGAGTGAATTGAAGCAAGCAATCCCTCCCCATTGCTTCCAGAGATCTGTAATCCGCTCATC TTACTATGTTGTTCAAGATCTCATTATTGCCTACATCTTCTACTTCCTTGCCAACACATATATCCCTACT CTTOCTACTAGTOTAGCCTACTTAGCTTGGCCCGTTTACTGGTTCTGTCAAGCTAGCGTCCTCACTGGCT TATUGATOLTOGGCCACGAATGTGGTCACLATGCCTTTAGCAALTALACATGGTTTGACGACACTGTGGG AACACAAGTTCGATTGATAACGATGAAGTTTACATTCCGAAAAGCAAGTCCAAACTCGCGCGTATCTATA AACTTCTTAACAACCCACCTGGTCGGCTGTTGGTTTTGATTATCATGTTCACCCTAGGATTTCCTTTATA CCTCTTGACAAATATTTCCGGCAAGAAATACGACAGGTTTGCCAACCACTTCGACCCCATGAGTCCAATT ttcaaagaacgtgagcggtttcaggtcttcctttcggatcttggtcttcttgccgtgtttatggaatta AAGTTGCTGTAGCAAATAAAGGAGCTGCTTGGGTAGCGTGCATGTATGGAGTTCCGGTATTAGGCGTATT TACCTTTTTCGATGTGATCACCTTCTTGCACCACCCCATCAGTCGTCGCCTCATTATGATTCAACTGAA TGGAACTGGATCAGAGGGGCCTTGTCAGCAATCGATAGGGACTTTGGATTCCTGAATAGTGTTTTCCATG ATGITACACACACTCATGCATGCATCATITGTTTTCATACATTCCACACTATCATGCAAAAGGAGGCAAG ogatgcaatcaagccaatcttoggcgacttttatatgatcgacaggactccaattttaaaagcaatgtgg <u>AGAGAGGGCAGGGAGTGCATGTACATCGAGCCTGATAGCAAGCTCAAAGGTGTTTATTGGTATCATAAAT</u>

FIG. 17 D: >CAA76156.1 delts 12 fatty acid epoxygenase [Crepis palaestina] NEQ ID NO: 31 MGAGGRGESEKSVMERVSVDPVTFSLSELKQAIPPECPGRSVIRSSYVVVQDLHAVIFYFLANTYIPT LPTSLAVLAWPVYWFCQASVLTGLWILGHECGHHAFSNYTWFDDTVGFILHSFLLTPYFSWRFSHRNHHS NTSSIDNDEVYDRSKSKLADIVKLLNNPPGRLLVLHMFTLGFPLYLLTNISGKRYDRFANHFDPMSPI FKEREFQVYLSDLGLLAVPVGKVAVANKGAAWVACMYGVPVLGVFTFFDVITFLHHTHQSSPHYDSTE WNWIRGALSAIDRDFGFLNSVFHDVTHHVMHHLFSVIPHYHAKEARDAIRPILGDFYMIDRTPILKAMW PEGRECNYIEPDSKLKGVYWYMEL

FIG. 17A - H

FIG. 17 E: Crepis alpina delta-12 fatty acid acetylenase GenBank#: DQ289485.1; SEQ ID NO: 32 >DQ289485.1 Crepis alpina delta-12 fatty acid acetylenase (vFAD2) gene, complete cds

AAGATGGGTGGCGGTGGCCGTGGTCGGACTTCGCAAAAACCCCTCATGGAACGTGTCTCAGTTGATCCAC CCTTCACOGTGAGTGATCTCAAGCAAGCAATCOCTCOCCATTGCTTCAAGCGATCTGTAATCCGTTOCTC TEACTACATAGTCCAGGATGCTATTATCGCCTACATCTTCTACTTCCTTGCCGACAAATACATTCCGATT CTCCCTGCCCCTCTAGCCTACCTCGCTTGGCCCCTTTACTGGTTCTGTCAAGCTAGCATCCTCACCGGCT TATGGGTCATCGGTCACGAATGCGGTCACCATGCCTTCAGCGACTACCAGTGGGTTGACGACACTGTGGG CTTCATCCTCCACTOGTTTCTCATGACCCGGTATTTCTCCTGGAAATACAGCCACGGGAACCACCATGGC AACACAAATTCGCTTGACAACGATGAAGTTTACATCCCCAAAAGCAAGGCCAAAGTCGCGCTTTACTATA AAGTTOTCAACCACCTACCTGGCCGACTGTTGATTATGTTCATCACCTTCACCCTAGGCTTCCCTCTATA CCTCTTTACCAATATTTCCGGCAAGAAGTATGAAAGGTTTGCCAACCATTTCGACCCCATGAGTCCGATT TTCAAAGAGCGTGAGCGGTTTCAGGTCTTGCTATCGGATCTTGGCCTTCTTGCTGTGCTTTACCGAGTTA AACTTGCGGTAGCAGCGAAAGGCGCCGCTTGGGTGACGTGCATTTACGGAATTCCAGTTTTAGGCGTGTT TATCTTTTCGATATCACCACCTACTTGCACCACACCCATCTGTCGTTGCCTCATTATGATTCATCTGAA TGGAACTGGCTCAGAGGGGCTTTGTCAACAATCGATAGGGACTTTGGGTTCCTGAATAGTGTGCTCCATG ATGTTACACACACTCACGTTATGCATCATCTGTTTTCATACATTCCACACTATCATGCGAAGGAGGCAAG GGATGCAATCAACACTCTTGGGCGACTTTTATAAGATCGATAGGACTCCAATTCTGAAAGCAATGTGG AGAGAGGCCAAGGAATGCATCTTCATCGAGCCTGAAAAAGGTAGGGAGTCCAAGGGTGTATATTGGTACA ATAAATTCTGA

FIG. 17 F: >ABC00769.1 delta-12 fatty acid acetylenase [Crepis alpina] SEQ ID NO: 33 MGGGGRGETSQXPLMER.VSVDPPTVSDLKQABPHCFERSVIRSSYVIVHDAHAYDVFLADKVIPIL PAPLAYLAWPLYWFCQASE.TGLWVIGHECGHHAFSDYQWVDDTVGFILHSFLMTPYFSWKYSHRNHHAN INSLDNDEVYDKSKAKVALYYKVLNHPPGRLLIMFTITIGFPLYLFTNISGKKVERFANHPDPMSPIF KERERFQVLLSDLGLLAVLYGVKLAVAAKGAAWVTCIYGIPVLGVFIFFDHTYLHHTHLSLPHYDSSEW XWLRGALSTIDRDFGFLNSVLHDVTHTHVMHHLFSYIPHYHAKEARDADYTVLGDFYKIDRTPILKAMWR EAKECIFIEPEKGRESKGVYWYNXT

FIG. 17 G: Momordica Momordica charantia Conjugase (FadX) GenBank#: AF182521.1; >AF182521.1 Momordica charantia delta-12 oleic acid desaturase-like protein (FadX) mRNA, complete cds SEO ID NO: 34

aataaáttagčitcittittitaágigagigaagggagatciggaggcaatggggggcagagggagctattg GASTACTGAGGAACGGTGGCGGCCCAAAAAAGAAAATGGGGCCGGGCAGGGGCTGGGGCCGGGGAGCG CGATCCCTCCGCCGCTCTTTTCCTACCTTCTTTCCGACATTGCCCTCGTCTCTGCCTTTTATTACGTTG $\hat{c}cgacacctacttocaccgcctgccccaccccctactccactacctggcccggtccgtttactggttctg$ TCAGGGGGCGTACTCACGGGCATGTGGGGCATGGCTCACGACTGCGGCCACCACGCCTTCAGCGACTAC CAATTGGTAGACGACGTGGTTGGGTTCCTCATCCACTCTTTGGTTTTTGTCCCTTACTTCTCCTTCAAGA TOAGOCACOGOCGOCACOACTOCAACACOTOATOCGTGGACOGGGAGGTGTTOGTCOCCAAGOCGAA <u>ACTTOGACCOGAACAGOOCCATATTCAGCOCAAAGGAGCGCGTTCTCGTTCATATCTCCAACGCTGGGCT</u> TOTGGCGACCGGGTATTTGCTGTACAGGATCGCAATGCCGAAGGGGGTGGGGTGGTTGATCCCCTTGTAC GGAGTGCCGCTGATCGTTTTAAACGEGTGCGTAGTTCTGATCACAGCGCTGCAGCACACCCACCCTTCGT TCCCGTATTACGACTCGACGGAATGGGATTGGCTGAGAGGGGAATCTGGTGACGGTGGACAGAGATTACGG CCGCACTACAACGGGAAAGAGGCGACGGTTGCAGCAAAGCGAATACTGGGAGAGTACTACCAGTTTGATG GGACCCCAATTTGGAAGGCGGCCTGGAGGGAATTCAGAGAGTGCGTTTATGTAGAGCCAGACGAAGACGA TGGGGCCACTTCCGGCTCCAGTAGTAAGGGTGTTTTCTGGTACCACAACAAGCTCTGAATTCAATAATAT CCTCTTTCACCTCTCTTTTTCATAAAAAAAAAAAAAA

FIG. 17 H: >AAF05916.1 delta-12 oleic acid desaturase-like protein

[Momordicz charantia] SEQ ID NO: 35

MGGRGAGVIRNGGGPKKKMGPGOGLGPGERITHARPPFSISQIKKAIPPHCFQRSIRRSFSYLLSDIAL
VEAFYYVADTYFHELPHPLLHYLAWPVYWFCQGAVLTGMWGIAHDCGHHAFSDYQLVDDVVGFLHSLVF
VPYFSFKISHRRHHSNISSVDRDEVFVPRPKAKMPWYFKYLTNPARVFHIFITLTLGWPMYLTFNISGR
YYGRFTSHFDPNSPIFSPKERVLVHISNAGLVATGYLLYRIAMAKGVGWLIRLYGVFLIVLNACVVLITA
LQHTHPSFPYYDSTEWDWLRGNLVTVDRDYGPIKNRVFHHITDTHVVHHLFPSMPHYNGKEATVAAKRIL
GEYYQFDGTPIWRAAWREFRECVYVEPDEDDGATSGSSSKGVFWYHNKL

METHODS AND COMPOSITIONS FOR MODIFYING PHENOTYPES OF PLANTS EXPRESSING FATTY ACID TRANSGENES AND REDUCED EXPRESSION OF BADC GENES

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a Non-Provisional application which claims benefit of U.S. Patent Application Ser. No. 63/131,755, filed on Dec. 29, 2020, now expired, which is herein incorporated by reference in its entirety.

GOVERNMENT SUPPORT

[0002] This invention was made with Government support under contract numbers DE-SC0012704 and DE-SC0018420 awarded by the U.S. Department of Energy and IOS-13-39385 awarded by the National Science Foundation. The Government has certain rights in the invention.

SEQUENCE

[0003] A Sequence Listing has been submitted in an ASCII text file named "19963.txt" created on Mar. 23, 2022, consisting of 101,032 bytes, the entire content of which is herein incorporated by reference.

FIELD OF THE INVENTION

[0004] BADC (biotin attachment domain-containing) mutants specifically badc1, badc3 for beneficial effects on unusual fatty acid (also known as specialized fatty acid accumulation).

SUMMARY OF THE INVENTION

[0005] When enzymes that convert common fatty acids to unusual fatty acids (hydroxy, epoxy, conjugated or cyclopropane fatty acids) are expressed in plants like *Arabidopsis* or *Camelina*, the unusual fatty acid accumulates but the total yield of fatty acids decreases. Mutations in the badc1,badc3 genes i.e., negative regulators of acetyl CoA carboxylase (ACCase) may mitigate this effect and restore or maintain total fatty acid levels thereby facilitating the accumulation of unusual fatty acids.

[0006] The present discovery may be a way to reverse a roadblock in plants to specialty oil production thereby providing a pathway to grow crops that produce industrially important high-value fatty acids. Hundreds of naturally occurring specialty fatty acids (building blocks of oils) may have potential for use as raw materials for making for example, lubricants, plastics, or pharmaceuticals, if they can be produced at large scale by crop plants. Prior attempts to put genes for making these specialty building blocks into crops have resulted in the adverse effect, namely, transgenic seeds making the specialty fatty acids experienced a reduction in their oil accumulation.

[0007] The mechanism behind the oil-production slow-down is described herein. Model plants were crossbred and detailed biochemical-genetic analyses were conducted that demonstrate a strategy for reversing the roadblock and increasing production. This may provide potential for making at least one or more industrially important specialty fatty acid in plants, crops or seeds.

[0008] While the genes responsible for making specialty fatty acids were discovered several decades ago, this present mechanism may allow them to be put into compositions such as plants, crops or seeds to make renewable sources of desired fatty acids without slowing fatty acid and oil synthesis. The study focused on challenges associated with specialized fatty acid production in plants, and on deciphering the biochemical feedback loop that plants use to regulate ordinary or regular fatty acid (FA) and oil production. This study led to the discovery of a mechanism by which plants down-regulate oil synthesis when levels of a plant's ordinary or regular (endogenous) fatty acids (FAs) get too high. In other words, the system operates or functions like a thermostat. When endogenous FA (heat) gets above a certain set point, the system (furnace) turns off.

[0009] With plant oils, the machinery that controls production is an enzyme called ACCase (acetyl coA carboxylase). It has four parts, or subunits: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and two carboxyltransferases, α -carboxyltransferase and β -carboxyltransferase. As long as endogenous fatty acids are below a certain level, the four subunits act coordinately to convert acetyl-CoA to malonyl-CoA. But feeding plants additional endogenous fatty acids triggers a substitution in the machinery in which the BCCP subunit is gets replaced by biotin attachment domain-containing protein (BADC), a homolog of BADC that lacks a critical biotin attachment amino acid and is therefore inactive. ACCase in which BCCP has been replaced by BADC slows the production of malonyl-CoA and therefor the synthesis of fatty acids. In contrast, the shutdown mechanism triggered by the accumulation of specialty fatty acids (ones being produced by genes expressed in the plant) kicks in when even small amounts of the "foreign" fatty acids are present, and endogenous fatty acids aren't in excess. Because of this, they appeared to be two separate processes. But it was speculated whether the specialty fatty acids were triggering the same off switch triggered by high levels of ordinary fatty acids.

[0010] In a strain of Arabidopsis (a model plant) with two of its BADC genes deleted, the downregulation of ACCase is disabled and the plants make high levels of endogenous fatty acids. Further study looked at what would happen if the BADC genes were disabled in plants engineered to produce specialty fatty acids. A research strategy was designed to crossbreed the defective off-switch plants with an Arabidopsis strain engineered to produce hydroxy fatty acids-one of the specialty types scientists would like to produce for industrial applications. This latter strain could make the hydroxy fatty acids, but its rate of oil synthesis was only half that of normal (unmodified) plants and it accumulated significantly less oil in its seeds.

[0011] When crossing four separate genetic factors (two mutant BADC genes, a mutant in fatty acid elongase 1 (FAE1) and an overexpression of the *Ricinus communis* 12-hydroxylase gene (FAH), it takes several plant generations to produce and identify plants homozygous for the four desired genes (see FIGS. 16A and 16B FAH sequences; FIGS. 16O and 16P FAE1 sequences; FIGS. 16U and 16V mutant FAE1 sequences). Polymerase chain reaction (PCR) tests were run for analyses of greater many hundreds of plants to find those homozygous for all four alleles. Those plants were biochemically characterized, to compare their rates of ACCase activity with those of the two parental *Arabidopsis* lines used to make the new genetic combina-

tions. Plants that had the combination of defective BADC genes and genes required for making hydroxy fatty acids produced normal (unaltered) levels of oil containing the specialty products. Compared with plants that had normal (wild-type) BADC genes, the new plants exhibited increases in the total amount of fatty acid per seed, the total seed oil content per plant, and the seed yield per plant. The BADC-defective plants were unresponsive to the presence of hydroxy fatty acids and the usual response of turning off the ACCase was gone. The results prove that BADC is the mechanism for reducing ACCase activity in both scenarios—the accumulation of excess endogenous fatty acids and the presence of hydroxy fatty acid.

[0012] The BADC mechanism may be specific to the accumulation of hydroxy fatty acids, or may be common to other 'foreign' fatty acids that also reduce ACCase activity. BADC may be a general mechanism, and mutations that reduce their activity may allow for the accumulation of additional specialty fatty acids in oil-rich seeds of crop plants with minimal reduction of oil yield. This fundamental mechanistic understanding of biochemical regulation may be useful towards a viable, sustainable bioeconomy. This approach may also be used to make valuable renewable industrial starting materials at low cost in plants from carbon dioxide and sunlight, rather than relying on petrochemicals.

[0013] Thus, in one embodiment, the invention provides a composition comprising one or more mutated BADC genes for accumulating unusual fatty acids and maintaining or increasing total fatty acid levels, oil content in the composition as described herein.

[0014] The invention also provides a composition produced by any one or more of the methods of the invention, wherein the composition is a seed, plant or crop.

[0015] The invention also provides a plant composition comprising a combination of defective BADC genes and genes for synthesizing hydroxy fatty acids for producing specialized fatty acids without slowing production of endogenous fatty acids as described herein.

[0016] The invention also provides a method of increasing production of unusual fatty acids and increasing total fatty acid levels in plants, crops or seeds by a mechanism involving combining defective BADC genes and genes for making hydroxy fatty acids to produce steady or increased levels of oil containing the specialty products as described herein.

[0017] In one embodiment, the invention provides a method of modifying a plant or part thereof, comprising producing a transgenic plant or part thereof that comprises a transgenic plant cell, said transgenic plant cell comprising a) reduced (e.g., lacks) expression of one or both of endogenous BADC1 and BADC3 genes, and b) expression of one or more transgenes that alters metabolism of a target fatty acid. In one embodiment, said transgenic plant exhibits one or more phenotypes of a) an increased amount of total seed fatty acid per plant, b) improved establishment of one or both of roots and plant aerial parts, and c) rescued or increased seed yield per plant. In one embodiment, said transgenic plant produces seeds, said seeds exhibiting one or more of rescued or increased seed germination rate, rescued or increased amount of total seed fatty acid per seed, rescued or increased amount of said target fatty acid per seed, and rescued or increased proportion of said target fatty acid relative to said total seed fatty acid per seed. In one embodiment, said transgenic plant cell comprises wild type BADC1 gene and reduced (or lacks) expression of said endogenous BADC3 gene. In one embodiment, said transgenic plant cell comprises wild type BADC1 gene and lacks expression of said endogenous BADC3 gene. In one embodiment, said producing comprises deleting at least a portion of said wild type BADC3 gene. In one embodiment, said deleting comprises using clusters of regularly interspaced short palindromic repeats (CRISPR) gene editing. In one embodiment, said transgenic plant cell lacks an alteration in one or both the enzyme activity and protein expression level of wild type acetyl CoA carboxylase (ACCase). In one embodiment, said target fatty acid comprises a foreign fatty acid that is not naturally produced in a wild type of said cell. In one embodiment, said target fatty acid comprises one or more of hydroxyl fatty acids, medium-chain fatty acids, very-long-chain fatty acids (VLCFAs), monounsaturated fatty acids (MUFAs), y-linolenic acid, stearidonic acids, α-eleostearic acid, conjugated fatty acids, expoxy fatty acids, cyclic fatty acids and acetylenic fatty acids. In one embodiment, said target fatty acid comprises a hydroxyl fatty acid exemplified by ricinoleic acid. In one embodiment, said plant cell is selected from a Camelina sativa plant cell, a Brassica napus plant cell and Glycine max plant cell. In one embodiment, said transgenic plant cell comprises a genomic mutation such as fad2, fad3 and fae1 or any combination thereof. In one embodiment, said genomic mutation is selected from fad2/fae1 and fad3/fae1. In one embodiment, said transgenic plant cell is a cell from Arabidopsis thaliana and comprises genomic mutation fad2/ fae1. In one embodiment, said transgenic plant cell is a cell from a plant selected from Camelina sativa, Brassica napus and Glycine max, and comprises a genomic mutation fad3/ fae1. In one embodiment, said transgenic plant cell is a cell from a plant selected from Camelina sativa, Brassica napus and Glycine max, and comprises a genomic mutation fad3/ fae1, wherein said transgene that alters metabolism of said target fatty acid encodes one or more of acetylanase, conjugase and epoxygenase. In one embodiment, said transgene that alters metabolism of said target fatty acid comprises a transgene encoding fatty acid hydroxylase exemplified by Ricinus fatty acid hydroxylase (RcFAH) mutant fatty acid elongation 1 (FAE1) (see exemplary FIGS. 16A and 16B FAH sequences; FIGS. 16O and 16P FAE1 sequences; FIGS. 16U and 16V mutant FAE1 sequences), E. coli Cyclopropane fatty acid synthase (see exemplary FIGS. 17 A and 17 B), epoxygenase exemplified by Crepis palaestina delta 12 fatty acid epoxygenase (see exemplary FIGS. 17 C and 17 D), acetylenase exemplified by Crepis alpina delta-12 fatty acid acetylenase (see exemplary FIGS. 17 E and 17 F), conjugase exemplified by Momordica charantia Conjugase (FadX) (see exemplary FIG. 17 G). In one embodiment, said transgene comprises a transgene encoding Ricinus fatty acid hydroxylase (FAH). In one embodiment, said transgene comprises a transgene encoding E. coli cyclopropane fatty acid synthase. In one embodiment, said one or more transgene that alters metabolism of said target fatty acid is under control of a seed-specific promoter. In one embodiment, said transgenic plant or part thereof that comprises reduced (or lacks) expression of one or both of said endogenous BADC1 and BADC3 genes contains a mutation in said one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said transgenic plant or part thereof is homozygous for said mutation in said one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said transgenic plant or part thereof is homozygous null for said one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said transgenic plant or part thereof is homozygous for said one or more transgene that alters metabolism of said target fatty acid. In one embodiment, said transgenic plant or part thereof is heterozygous for said mutation in said one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said transgenic plant or part thereof is heterozygous for said one or more transgene that alters metabolism of said target fatty acid. In one embodiment, said transgenic plant cell or part thereof is stably transformed with said transgene that alters metabolism of said target fatty acid. In one embodiment, said producing comprises transforming a plant cell with one or more recombinant nucleotide sequences that partially or totally silence of one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said producing comprises transforming said plant cell with one or more recombinant nucleotide sequences that alter metabolism of said target fatty acid. In one embodiment, said producing comprises transforming said plant cell with one or more recombinant nucleotide sequences that partially or totally silence of one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said producing comprises transforming said plant cell with one or more recombinant nucleotide sequences that (a) partially or totally silence of one or both of said endogenous BADC1 and BADC3 genes, and (b) alter metabolism of said target fatty acid. In one embodiment, said producing comprises crossing a first transgenic plant comprising said reduced or lacking expression of one or both of said endogenous BADC1 and BADC3 genes to a second transgenic plant comprising said one or more transgene that alters metabolism of said target fatty acid.

[0018] In one embodiment, the present invention provides a method of modifying a plant or part thereof, comprising producing a transgenic plant or part thereof that comprises a transgenic plant cell, said transgenic plant cell comprising a) reduced expression of one or both of endogenous BADC1 and BADC3 genes, and b) expression of one or more transgenes that alters metabolism of a target fatty acid. In one embodiment, said transgenic plant exhibits one or more phenotypes of a) increased amount of total seed fatty acid per plant, b) improved establishment of one or both of roots and plant aerial parts, and c) rescued or increased seed yield per plant. In one embodiment, said transgenic plant produces seeds, said seeds exhibiting one or more of rescued or increased seed germination rate, rescued or increased amount of total seed fatty acid per seed, rescued or increased amount of said target fatty acid per seed, and rescued or increased proportion of said target fatty acid relative to said total seed fatty acid per seed. In one embodiment, said transgenic plant cell comprises wild type BADC1 gene and reduced expression of said endogenous BADC3 gene. In one embodiment, said transgenic plant cell comprises wild type BADC1 gene and lacks expression of said endogenous BADC3 gene. In one embodiment, said producing comprises deleting at least a portion of said wild type BADC3 gene. In one embodiment, said deleting comprises using clusters of regularly interspaced short palindromic repeats (CRISPR) gene editing. In one embodiment, said transgenic plant cell lacks an alteration in one or both the enzyme activity and protein expression level of wild type acetyl CoA carboxylase (ACCase). In one embodiment, said target fatty acid comprises a foreign fatty acid that is not naturally produced in a wild type of said cell. In one embodiment, said target fatty acid comprises one or more of hydroxyl fatty acids, medium-chain fatty acids, very-long-chain fatty acids (VLCFAs), monounsaturated fatty acids (MUFAs), 7-linolenic acid, stearidonic acids, α-eleostearic acid, conjugated fatty acids, expoxy fatty acids, cyclic fatty acids and acetylenic fatty acids. In one embodiment, said target fatty acid comprises a hydroxyl fatty acid. In one embodiment, said hydroxyl fatty acid comprises ricinoleic acid. In one embodiment, said plant cell is selected from a Camelina sativa plant cell, a Brassica napus plant cell and Glycine max plant cell. In one embodiment, said transgenic plant cell comprises a genomic mutation such as fad2, fad3 and fae1 or any combination thereof. In one embodiment, said genomic mutation is selected from fad2/fae1 and fad3/fae1. In one embodiment, said transgenic plant cell is a cell from Arabidopsis thaliana and comprises genomic mutation fad2/ fae1. In one embodiment, said transgenic plant cell is a cell from a plant selected from Camelina sativa, Brassica napus and Glycine max, and comprises a genomic mutation fad3/ fae1. In one embodiment, said transgenic plant cell is a cell from a plant selected from Camelina sativa, Brassica napus and Glycine max, and comprises a genomic mutation fad3/ fae1, wherein said transgene that alters metabolism of said target fatty acid encodes one or more of acetylanase, conjugase and epoxygenase. In one embodiment, said transgene that alters metabolism of said target fatty acid comprises a transgene encoding *Ricinus* fatty acid hydroxylase (FAH), mutant fatty acid elongation 1 (FAE1), E. coli Cyclopropane fatty acid synthase, Crepis palaestina delta 12 fatty acid epoxygenase, Crepis alpina delta-12 fatty acid acetylenase, Momordica charantia Conjugase (FadX), RcFAH, cyclopropane fatty acid synthase. In one embodiment, said transgene comprises a transgene encoding Ricinus fatty acid hydroxylase (FAH). In one embodiment, said transgene comprises a transgene encoding E. coli cyclopropane fatty acid synthase. In one embodiment, said one or more transgene that alters metabolism of said target fatty acid is under control of a seed-specific promoter. In one embodiment, said transgenic plant or part thereof that comprises reduced expression of one or both of said endogenous BADC1 and BADC3 genes contains a mutation in said one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said transgenic plant or part thereof is homozygous for said mutation in said one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said transgenic plant or part thereof is homozygous null for said one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said transgenic plant or part thereof is homozygous for said one or more transgene that alters metabolism of said target fatty acid. In one embodiment, said transgenic plant or part thereof is heterozygous for said mutation in said one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said transgenic plant or part thereof is heterozygous for said one or more transgene that alters metabolism of said target fatty acid. In one embodiment, said transgenic plant cell or part thereof is stably transformed with said transgene that alters metabolism of said target fatty acid. In one embodiment, said producing comprises transforming a plant cell with one or more recombinant nucleotide sequences that partially or totally silence of one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said producing comprises transforming said plant cell with one or more recombinant nucleotide sequences that alter metabolism of said target fatty acid. In one embodiment, said producing comprises transforming said plant cell with one or more recombinant nucleotide sequences that partially or totally silence of one or both of said endogenous BADC1 and BADC3 genes. In one embodiment, said producing comprises transforming said plant cell with one or more recombinant nucleotide sequences that (a) partially or totally silence of one or both of said endogenous BADC1 and BADC3 genes, and (b) alter metabolism of said target fatty acid. In one embodiment, said producing comprises crossing a first transgenic plant comprising said reduced expression of one or both of said endogenous BADC1 and BADC3 genes to a second transgenic plant comprising said one or more transgene that alters metabolism of said target fatty acid.

[0019] The invention also provides a transgenic plant or part thereof that comprises a transgenic plant cell that comprises a) reduced or lacks expression of one or both of said endogenous BADC1 and BADC3 genes, and b) one or more transgene that alters metabolism of said target fatty acid. In one embodiment, the transgenic plant exhibits one or more phenotype of a) increased amount of total seed fatty acid per plant, b) improved establishment of one or both of roots and plant aerial parts, and c) rescued or increased seed yield per plant. In one embodiment, the transgenic plant produces seeds, said seeds exhibiting one or more of rescued or increased seed germination rate, rescued or increased amount of total seed fatty acid per seed, rescued or increased amount of said target fatty acid per seed, and rescued or increased proportion of said target fatty acid relative to said total seed fatty acid per seed. In one embodiment, the transgenic plant or part thereof is produced by any one or more of the invention's methods.

[0020] In one embodiment, the present invention provides a transgenic plant or part thereof that comprises a transgenic plant cell, wherein said plant cell comprises a) reduced or lacks expression of one or both of said endogenous BADC1 and BADC3 genes, and b) one or more transgene that alters metabolism of a target fatty acid. In one embodiment, said transgenic plant exhibits one or more phenotype of a) increased amount of total seed fatty acid per plant, b) improved establishment of one or both of roots and plant aerial parts, and c) rescued or increased seed yield per plant. In one embodiment, said transgenic plant produces seeds, said seeds exhibiting one or more of rescued or increased seed germination rate, rescued or increased amount of total seed fatty acid per seed, rescued or increased amount of said target fatty acid per seed, and rescued or increased proportion of said target fatty acid relative to said total seed fatty acid per seed.

[0021] In one embodiment, the present invention provides a transgenic plant or part thereof that comprises a transgenic plant cell, wherein said plant cell comprises a) reduced or lack of expression of one or both of said endogenous BADC1 and BADC3 genes, and b) one or more transgene that alters metabolism of a target fatty acid.

[0022] In one embodiment, the present invention provides a transgenic plant or part thereof that comprises: a) a genomic mutation selected from the group consisting of a mutation of fad2, fad3, and fae1, or any combination of such mutations, b) the reduced expression of one or both endogenous BADC1 and BADC3 genes, and c) one or more transgenes that alter metabolism of a target fatty acid. In one

embodiment, the present invention provides a transgenic plant or part thereof that comprises: a) genomic mutation of fad2, fad3, fae1 or any combination thereof, b) reduced expression of one or both endogenous BADC1 and BADC3 genes, and c) one or more transgenes that alter metabolism of a target fatty acid. In one embodiment, said transgenic plant part comprises wild type BADC1 gene and reduced expression of said endogenous BADC3 gene. In one embodiment, said transgenic plant part comprises reduced expression of said endogenous BADC1 gene and BADC3 gene. In one embodiment, said plant is Camelina sativa, Brassica napus or Glycine max. In one embodiment, said genomic mutation is fad2/fae1 or fad3/fae1. In one embodiment, said one or more transgenes encode Ricinus fatty acid hydroxylase (FAH), E. coli cyclopropane fatty acid synthase, Crepis palaestina delta 12 fatty acid epoxygenase, Crepis alpina delta-12 fatty acid acetylenase, or Momordica charantia Conjugase (FadX). In one embodiment, said one or more transgenes are under control of a seed-specific promoter. In one embodiment, said target fatty acid comprises one or more of hydroxyl fatty acids, medium-chain fatty acids, very-long-chain fatty acids (VLCFAs), monounsaturated fatty acids (MUFAs), gamma-linolenic acid, stearidonic acids, alpha-eleostearic acid, conjugated fatty acids, epoxy fatty acids, cyclic fatty acids and acetylenic fatty acids. In one embodiment, said transgenic plant part is from Camelina sativa, Brassica napus or Glycine max, said genomic mutation is fad3/fae1, and said transgene encodes acetylanase, conjugase, epoxygenase or any combinations thereof. In one embodiment, said transgenic plant part is from Camelina sativa, Brassica napus or Glycine max, said genomic mutation is fad2/fae1, and said transgene encodes Ricinus fatty acid hydroxylase. In one embodiment, said transgenic plant part is from Camelina sativa, Brassica napus or Glycine max, said genomic mutation is fae1, and said transgene encodes Ricinus fatty acid hydroxylase. In one embodiment, said reduced expression comprises complete silencing. In one embodiment, said reduced expression comprises complete silencing. In one embodiment, said reduced expression comprises complete silencing.

[0023] The invention further provides a progeny plant of the any of the transgenic plants of the invention.

[0024] In one embodiment, the present invention provides a method of modifying a plant or part thereof, comprising producing a transgenic plant or part thereof that comprises a transgenic plant cell, said transgenic plant cell comprising a) reduced expression of one or both of endogenous BADC1 and BADC3 genes, and b) expression of one or more transgenes that alters metabolism of a target fatty acid.

[0025] In one embodiment, the present invention provides a progeny plant of a transgenic plant or part thereof that comprises a transgenic plant cell, wherein said plant cell comprises a) reduced or lacks expression of one or both of said endogenous BADC1 and BADC3 genes, and b) one or more transgene that alters metabolism of said target fatty acid

[0026] In one embodiment, the present invention provides a progeny plant of a transgenic plant or part thereof that comprises: a) genomic mutation of fad2, fad3, fae1 or any combination thereof, b) reduced expression of one or both endogenous BADC1 and BADC3 genes, and c) one or more transgenes that alter metabolism of a target fatty acid.

[0027] The invention additionally provides a transgenic seed produced by any one or more of the methods the

invention, wherein said transgenic seed comprises a transgenic plant cell having a) reduced or lacking expression of one or both of said endogenous BADC1 and BADC3 genes, and b) one or more transgene that alters metabolism of said target fatty acid. In one embodiment, said seed exhibits one or more of a) rescued or increased amount of total seed fatty acid per seed, b) rescued or increased amount of said target fatty acid per seed, and c) rescued or increased proportion of said target fatty acid relative to said total seed fatty acid per seed.

[0028] In one embodiment, the present invention provides a method of modifying a plant or part thereof for providing a transgenic seed, comprising producing a transgenic plant or part thereof that comprises a transgenic plant cell, said transgenic plant cell comprising a) reduced expression of one or both of endogenous BADC1 and BADC3 genes, and b) expression of one or more transgenes that alters metabolism of a target fatty acid. In one embodiment, said transgenic seed comprises a transgenic plant cell having a) reduced expression of one or both of said endogenous BADC1 and BADC3 genes, and b) one or more transgene that alters metabolism of said target fatty acid. In one embodiment, said seed exhibits one or more of a) a rescued or increased amount of total seed fatty acid per seed, b) rescued or increased amount of said target fatty acid per seed, and c) rescued or increased proportion of said target fatty acid relative to said total seed fatty acid per seed.

[0029] In one embodiment, the present invention provides a transgenic seed that produces a transgenic plant or part thereof that comprises: a) genomic mutation of fad2, fad3, fae1 or any combination thereof, b) reduced expression of one or both endogenous BADC1 and BADC3 genes, and c) one or more transgenes that alter metabolism of a target fatty acid.

[0030] The invention further provides a transgenic seed that produces the plant or part thereof of any one or more of the invention's methods, wherein said transgenic seed A) comprises a transgenic plant cell having a) reduced or lacking expression of one or both of said endogenous BADC1 and BADC3 genes, and b) one or more transgene that alters metabolism of said target fatty acid, and B) exhibits one or more phenotype of producing a plant with a) increased amount of total seed fatty acid per plant, b) improved establishment of one or both of roots and plant aerial parts, c) rescued or increased seed yield per plant, d) rescued or increased seed germination rate, e) rescued or increased amount of total seed fatty acid per seed, f) rescued or increased amount of said target fatty acid per seed, g) rescued or increased seed yield per plant, and h) rescued or increased proportion of said target fatty acid relative to said total seed fatty acid per seed.

[0031] In one embodiment, the present invention provides a transgenic seed that produces a transgenic plant or part thereof that comprises a transgenic plant cell, said transgenic plant cell comprising a) reduced expression of one or both of endogenous BADC1 and BADC3 genes, and b) expression of one or more transgenes that alters metabolism of a target fatty acid, wherein said transgenic seed A) comprises a transgenic plant cell having i) reduced expression of one or both of said endogenous BADC1 and BADC3 genes, and ii) one or more transgene that alters metabolism of said target fatty acid, and B) exhibits one or more phenotype of producing a plant with i) increased amount of total seed fatty acid per plant, ii) improved establishment of one or both of

roots and plant aerial parts, iii) rescued or increased seed yield per plant, iv) rescued or increased seed germination rate, v) rescued or increased amount of total seed fatty acid per seed, vi) rescued or increased amount of said target fatty acid per seed, vii) rescued or increased seed yield per plant, and viii) rescued or increased proportion of said target fatty acid relative to said total seed fatty acid per seed.

[0032] The invention also provides a tissue culture of regenerable cells of any one or more of the transgenic plant or part thereof of the invention.

[0033] In one embodiment, the present invention provides a tissue culture of regenerable cells of a transgenic plant or part thereof that comprises a transgenic plant cell, wherein said transgenic plant cell comprises a) reduced or lacks expression of one or both of said endogenous BADC1 and BADC3 genes, and b) one or more transgene that alters metabolism of said target fatty acid, wherein said transgenic plant or plant part exhibits one or more phenotype of a) increased amount of total seed fatty acid per plant, b) improved establishment of one or both of roots and plant aerial parts, and c) rescued or increased seed yield per plant. [0034] In one embodiment, the present invention provides a method of producing a target fatty acid using a transgenic plant or part thereof that comprises: a) genomic mutation of fad2, fad3, fae1 or any combination thereof, b) reduced expression of one or both endogenous BADC1 and BADC3 genes, and c) one or more transgenes that alter metabolism of said target fatty acid.

BRIEF DESCRIPTION OF THE DRAWINGS

[0035] The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawings will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.

[0036] FIG. 1 Genotyping of badc1,3/fae1/FAH. Individual plants were genotyped to be fae1 homozygous via HinfI digested PCR fragment of FAE1 gene fragment; badc1 or badc3 homozygous were verified using PCR with the indicated gene-specific primer pairs and combinations with T-DNA-specific primer LBb1.

[0037] FIG. 2A-C Analysis of FIG. 2A BADC1, FIG. 2B BADC3 and FIG. 2C FAH gene expression in developing seeds. Transcript levels of BADC1, 3 were analyzed by qRT-PCR in 11- to 13-DAF developing seeds of fae1, fae1/FAH, badc1,3/fae1/FAH and badc1,3, n=3 biological replicates, and error bars represent SE. The relative expression levels are reported relative to the expression of the UBQ10 (At4g05320) transcript. Columns with different letters are significantly different (P<0.05) computed by the relative expression (REST) software algorithm using three biological replicates (Pfaffl et al., 2002).

[0038] FIG. 3A-3C Seed weight and FA content in seeds. (FIG. 3A) FA per seed. FA was determined by 5 pooled sets of 100 seeds each. (FIG. 3B) Oil content in seeds as a proportion of dry seed weight. Seed oil content, represented by total acyl lipids, was quantified by GC of fatty acid methyl esters. (FIG. 3C) Mean weight of transgenic seeds determined by five pooled sets of 100 seeds each. Error bars represent SE. Columns with different letters are significantly different using the Student's t test (P<0.05) and five biological replicates.

[0039] FIG. 4 Hydroxy FA content in seeds. HFA is expressed as a weight percentage of the total seed FA. Values represent the mean±standard deviation (n=3 pooled sets of

100 seeds). Student t test analysis found no significant difference between fae1/FAH and badc1,3/fae1/FAH (P<0. 05).

[0040] FIG. 5 ACCase activity in developing seeds. [14C] Acetate incorporation into total lipids showed ACCase activity in 11- to 13-DAF developing seeds of fae1, fae1/FAH/badc1,3 and badc1,3. Specified different letters indicate significant differences (P<0.05) as determined by Student's t test using three biological replicates. Values are presented as means±SD of three biological replicates.

[0041] FIG. 6A-6C Seed germination and establishment. A total of 180 seeds in five equal replicates from each line were plated in ½ MS media containing 1% sucrose for 14 d. Germination is scored as seeds that produced a radicle, and seedlings that produced roots and green cotyledons were counted as being able to establish. The germination rates (FIG. 6A) and establishment rates (FIG. 6B) are calculated as to the percentage of total seeds plated. Values are presented as means±SD of five biological replicates. FIG. 6C Seed yield per plant. n=10, and error bars represent ±SE. Columns with different letters are significantly different (P<0.05) of the five replicates.

[0042] FIG. 7 EMS mutation caused truncation of FAE1 in fae1 mutant. FAE1 gene was amplified from fae1 mutant an its sequence showed a mutated codon (TGG1395TGA, highlighted in green).

[0043] FIG. 8 Analysis of fatty acid synthesis related gene expression in developing seeds. Transcript levels of genes were analyzed by qRT-PCR in 11- to 13-DAF developing seeds of fae1, fae1/FAH, badc1,3/fae1/FAH and badc1,3, n=3 biological replicates, and error bars represent SD. RT-qPCR values are presented as percentages of internal control normalized as described in "Materials and Methods." No values were found to differ significantly (P<0.05) using three biological replicates computed by the relative expression (REST) software algorithm (Pfaffl et al., 2002).

[0044] FIG. 9 [14C] acetate incorporation assay in developing seeds of badc1,3. Developing seeds 11-13 days after flowering were collected from badc1,3 seeds and their fatty acid synthesis rates were determined by measuring the rate of [14C] acetate incorporation into FAs by total lipid extraction and scintillation counting. Incorporation of [14C] acetate between 20 and 100 minutes at a 20 minutes interval.

[0045] FIG. 10 Seed germination and establishment. Seeds from fae1, fae1/FAH, badc1,3/fae1/FAH and badc1,3 were germinated on ½ MS medium with 1% sugar plate and 7 and 10 day old plants were photographed.

[0046] FIG. 11 Hydroxy FA content in seeds. HFA is expressed as a weight percentage of the total seed FA. Values represent the mean±standard deviation (n=5 pooled sets of 100 seeds representing 5 biological replicates). Student t test analysis found no significant difference between CL37 and CL37/badc1 lines, but significant difference between CL37 and 4 CL37/badc3 lines (P<0.05).

[0047] FIG. 12A-12B Seed germination and establishment on media supplemented with sucrose. A total of 180 seeds in five replicates from each line were plated in ½ MS media supplemented with 1% sucrose. Germination is scored as seeds that produced a radicle, and seedlings that produced roots and green cotyledons were scored as establishment. The germination rates (FIG. 12A) and establishment rates (FIG. 12B) are calculated as to the percentage of total seeds

plated. Values are presented as means ±SD of five biological replicates. Genotypes with different letters are significantly different (P<0.05).

[0048] FIG. 13A-B Seed germination and establishment on media without sucrose. A total of 180 seeds in five replicates from each line were plated in ½ MS media. Germination is scored as seeds that produced a radicle, and seedlings that produced roots and green cotyledons were scored as being able to establish. The germination rates (FIG. 13A) and establishment rates (FIG. 13B) are calculated as to the percentage of total seeds plated. Values are presented as means±SD of five biological replicates. Genotypes with different letters are significantly different (P<0.05) of the five replicates.

[0049] FIG. 14 Seed production per plant. Plants of fae1, CL37, and CL37/badc3 lines 2 and 19 were grown side by side, and seeds were collected at maturity. Seed yields per plant were weighed. n=18, and error bars represent ±SE. Columns with different letters are significantly different (P<0.05).

[0050] FIG. 15 Vector diagram of FAH plant expression vector. RcFAH gene is placed under the control of seed-specific phaseolin promoter.

[0051] FIG. 16A: FAH (also referred to as RcFAH) nucleotide sequence: Gene ID #8267537, >NM_ 001323721.1 FAH mRNA.

[0052] FIG. 16B: FAH amino acid sequence: NP_001310650.1 oleate hydroxylase FAH12 [Ricinus communis].

[0053] FIG. 16C: Camelina BADC1, First isoform nucleotide sequence: >Csa04g042500.1.

[0054] FIG. 16D: Camelina BADC1, First isoform amino acid sequence >Csa04g042500.1.

[0055] FIG. 16E: Camelina BADC1, Second isoform nucleotide sequence >Csa06g030800.1.

[0056] FIG. 16F: Camelina BADC1, Second isoform amino acid sequence >Csa06g030800.1.

[0057] FIG. 16G: Camelina BADC1, Third isoform nucleotide sequence >Csa09g068300.1.

[0058] FIG. 16H: Camelina BADC1, Third isoform amino acid sequence >Csa09g068300.1.

[0059] FIG. 16I: Camelina BADC3, First isoform nucleotide sequence >Csa15g020290.1.

[0060] FIG. 16J: Camelina BADC3, First isoform amino acid sequence >Csa15g020290.1.

[0061] FIG. 16K: Camelina BADC3, Second isoform nucleotide sequence >Csa19g022480.1.

[0062] FIG. 16L: Camelina BADC3, Second isoform amino acid sequence >Csa19g022480.1.

[0063] FIG. 16M: Camelina BADC3, Third isoform nucleotide sequence >Csa01g018320.1.

[0064] FIG. 16N: Camelina BADC3, Third isoform amino acid sequence >Csa01g018320.1.

[0065] FIG. 16O: FAE1, AT4G34520, Coding sequence.

[0066] FIG. 16P: FAE1, AT4G34520, Protein Sequence.

 ${\bf [0067]}$ FIG. 16Q: Arabidopsis FAD2, AT3G12120.1, Coding sequence.

[0068] FIG. 16R: Arabidopsis FAD2, AT3G12120.1, Protein Sequence.

[0069] FIG. 16S: Arabidopsis FAD3, AT2G29980.1, CDS.

[0070] FIG. 16T: Arabidopsis FAD3, AT2G29980.1, Protein.

[0071] FIG. 16U: mutant fatty acid elongation 1 (FAE1) DNA sequence (also see FIG. 7).

[0072] FIG. 16V: mutant fatty acid elongation 1 (fae1) protein sequence (also see FIG. 7).

[0073] FIG. 17A: *E. coli* Cyclopropane fatty acid synthase (EcCPS1) DNA, NCBI Gene ID: 944811; >NC_000913.3: 1741413-1742561.

[0074] FIG. 17B: *E. coli* Cyclopropane fatty acid synthase (EcCPS1) protein, NP_416178.1.

[0075] FIG. 17C: Crepis palaestina delta 12 fatty acid epoxygenase GenBank #: Y16283.1; >Y16283.1:30-1154 Crepis palaestina mRNA for delta 12 fatty acid epoxygenase.

[0076] FIG. 17D: >CAA76156.1 delta 12 fatty acid epoxygenase [Crepis palaestina].

[0077] FIG. 17E: Crepis alpina delta-12 fatty acid acetylenase GenBank #: DQ289485.1; >DQ289485.1 Crepis alpina delta-12 fatty acid acetylenase (vFAD2) gene, complete cds

[0078] FIG. 17F: ABC00769.1 delta-12 fatty acid acetylenase [Crepis alpina].

[0079] FIG. 17G: Momordica charantia Conjugase (FadX) GenBank #: AF182521.1; >AF182521.1 Momordica charantia delta-12 oleic acid desaturase-like protein (FadX) mRNA, complete cds.

[0080] FIG. 17H: >AAF05916.1 delta-12 oleic acid desaturase-like protein [Momordica charantia].

DEFINITIONS

[0081] "Wild-type" and "normal" are interchangeably used when in reference to any molecule or its level (e.g., amino acid sequence, and nucleic acid sequence, etc.) and/or phenomenon or its level (e.g., expression of a gene, transcription of a DNA sequence, translation of an mRNA molecule to an amino acid sequence) and/or phenotype or its level (e.g., seed yield per plant, amount of total seed fatty acid per seed, amount of a target fatty acid per seed, seed yield per plant, seed germination rate, proportion of a target fatty acid relative to total seed fatty acid per seed, amount of total seed fatty acid per plant, establishment of roots, establishment of plant aerial parts) to mean that the molecule or its level and/or phenomenon or its level and/or phenotype or its level is the same as found in nature without alteration by the hand of man (such as by chemical and/or molecular biological techniques, etc.).

[0082] "Expression" refers to the transcription and stable accumulation of sense or anti-sense RNA derived from a nucleic acid. "Expression" may also refer to translation of mRNA into a polypeptide or protein. As used herein, the term "antisense RNA" refers to an RNA transcript that is complementary to all or a part of a mRNA that is normally produced in a cell. The complementarity of an antisense RNA may be with any part of the specific gene transcript, i.e., at the 5' non-coding sequence, 3' non-translated sequence, introns, or the coding sequence. As used herein, the term "RNA transcript" refers to the product resulting from RNA polymerase-catalyzed transcription of a DNA sequence. When the RNA transcript is a perfect complimentary copy of the DNA sequence, it is referred to as the primary transcript or it may be an RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as the mature RNA.

[0083] "Reducing gene expression" and grammatical equivalents refers to a reduction in one or both of DNA transcription into mRNA, and mRNA translation into a protein molecule. In one embodiment, reducing gene trans

scription refers to the absence (or observable decrease) in the level of protein and/or mRNA product from the target gene. Specificity refers to the ability to inhibit the target gene without manifest effects on other genes of the cell and without any effects on any gene within the cell that is producing the dsRNA molecule. The inhibition of gene expression of a target gene as described herein may result in novel phenotypic traits in the plant. Reduced gene expression may be achieved by completely silencing or downregulating expression of a gene and/or partial or incomplete silencing or down-regulation of a gene and/or introducing a mutation into the gene. Post-transcriptional gene suppression by anti-sense or sense-oriented RNA to regulate gene expression in plant cells is known in the art, as is the use of dsRNA to suppress genes in plants. Post-transcriptional gene suppression in plants may employ both sense-oriented and anti-sense-oriented, transcribed RNA that is stabilized, e.g., as a hairpin or stem-and-loop structure. In one embodiment, BADC genes are partially or totally silenced by expression of an RNAi cassette as described in WO 2017/039834 and WO 2018/009626.

[0084] "Mutation" for reducing gene expression includes deletion, insertion and/or substitution of one or more nucleotides of the gene or of sequences regulating expression of the gene. In one embodiment, said mutation comprises deleting at least a portion of the coding region, deleting the entire gene, deleting at least a portion of sequences that regulates transcription of the gene, introducing an insertion and/or a frameshift mutation, etc. so that at least one mutated allele contains a deletion of the translation start site, transcription start codon, at least a portion of the promoter region, at least a portion of the coding region, or any combination thereof. In one embodiment, said deleted sequences may be replaced with polynucleotides that are exogenous to the deleted gene sequences and that are flanked by sequences that are complementary to polynucleotide regions of the endogenous gene that flank the deleted gene sequences. In a further embodiment, at least one mutated allele is generated by site specific recombination, frame shift mutation, homologous recombination, CRISPR gene editing, or any combination thereof, in a cell such as an embryonic stem cell or germ cell.

[0085] "Genome editing" refers to the process of modifying (by insertion and/or deletion and/or substitution) of the nucleotide sequence of a genome sequence (e.g., coding sequence, non-coding sequence, tandem repeats, transposable elements, retrotransposons, long terminal repeats (LTRs), Non-long terminal repeats (Non-LTRs), etc.), preferably in a pre-determined targeted manner. In some embodiments, genome editing methods are exemplified by the CRISPR-endonuclease system, which produces a sitespecific modification of a target DNA as described in Doudna et al., U.S. Pat. No. 10,000,772 (incorporated by reference). "CRISPR" ("clusters of regularly interspaced short palindromic repeats") gene editing is exemplified in Examples 9 and 10, and is used to knockout plant genes in melon (Hooghvorst et al. (2019) Scientific Reports 9:17077) and Brassica napus FAD2 (Okuzaki et al. (2018) Plant Physiology and Biochemistry, Volume 131, October 2018, Pages 63-69).

[0086] "Transformation" is a process of introducing a DNA sequence or construct (e.g., a vector or expression cassette) into a cell or protoplast in which that exogenous DNA is incorporated into a chromosome or is capable of autonomous replication.

[0087] "Stable transformation" of a cell with a transgene means that the transgene is integrated within the cell's genome. Methods for genetic transformation of plants (including use of regulatory elements, terminators, marker genes) and for production and characterization of stably transformed plants are known in the art (WO 2018/009626). [0088] "Transgenic" and "genetically engineered" cell refer to a cell whose genome has been manipulated by any molecular biological technique, including, for example, the introduction of a transgene, homologous recombination, knockin of a gene, knockout of a gene, and/or CRISPR gene editing.

[0089] The term "transgene" refers to any nucleic acid sequence that is introduced into the cell by experimental manipulations. A transgene may be an "endogenous" DNA sequence or a "heterologous DNA sequence."

[0090] "Endogenous" molecule (such as nucleotide sequence, amino acid sequence, fatty acid) is a molecule natively found in nature in a host cell or a cell of the same species. In one embodiment, an endogenous sequence may be overexpressed or expressed at a higher level compared to wildtype and still be considered endogenous.

[0091] "Heterologous" and "foreign" molecule (such as nucleotide sequence, amino acid sequence, fatty acid) is a molecule that is not endogenous. In one embodiment, a heterologous sequence contains some modification (e.g., mutation, the presence of a selectable marker gene, etc.) relative to the naturally-occurring sequence. In this respect, the heterologous sequence may be native to the host genome, but be rearranged with respect to other genetic sequences within the host sequence. For example, a regulatory sequence may be heterologous in that it is linked to a different coding sequence relative to the native regulatory sequence. In addition, a particular sequence can be "heterologous" with respect to a cell or organism into which it is introduced (for example, a sequence that does not naturally occur in that particular cell or organism).

[0092] "BADC1" gene refers to accession AT3G56130 and/or orthologs thereof. In one embodiment, BADC1 gene is exemplified by one or more of the three isoform sequences in FIGS. 16C, 16E and 16G, including nucleotide sequences that comprise from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity to sequences in FIGS. 16C, 16E and 16G, or a complement thereof. In another embodiment, BADC1 gene encodes a polypeptide comprising from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity to any one of the three isoform polypeptide sequences in FIGS. 16D, 16F and 16H. In one embodiment,

BADC1 gene is exemplified by sequences described in WO 2018/009626, including nucleotide sequences that comprise from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity to WO 2018/009626's nucleotide sequence SEQ ID NO: 2, or a complement thereof. In another embodiment, BADC1 gene encodes a polypeptide comprising from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity to WO 2018/009626's polypeptide sequence SEQ ID NO: 1.

[0093] "BADC3" gene refers to accession AT3G15690 and/or orthologs thereof. In one embodiment, BADC3 gene is exemplified by one or more of the three isoform sequences in FIGS. 16I, 16K and 16M, including nucleotide sequences that comprise from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity to sequences in FIGS. 16I, 16K and 16M, or a complement thereof. In another embodiment, BADC3 gene encodes a polypeptide comprising from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity to any one of the three isoform polypeptide sequences in FIGS. 16J, 16L and 16N. In one embodiment, BADC3 gene is exemplified by sequences described in WO 2018/009626, including nucleotide sequences that comprise from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity to WO 2018/ 009626's nucleotide sequence SEQ ID NO: 6, or a complement thereof. In another embodiment, BADC1 gene encodes a polypeptide comprising from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity to WO 2018/009626's polypeptide sequence SEQ ID NO: 5.

[0094] "Ortholog" genes refers to genes that are related by vertical descent from a common ancestor and encode proteins with the same function in different species. In one embodiment, ortholog nucleotide sequences comprise from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity. In another embodiment, ortholog polypeptide sequences comprise from about 34%, 40%, 50%, 60%, 62%, 70%, 80%, 85%, 90%, 95% to about 100% sequence identity. By contrast, "paralogs" are homologous genes that have evolved by duplication and code for protein with similar, but not identical functions. Exemplary orthologs of BADC1 gene and BADC3 gene, and proteins encoded by these genes, are described in WO 2018/009626, and the following Table 1 with respect to Camelina sativa, Glycine max and Brassica napus.

TABLE 1

		BAD	C orthologs	
A. thaliana gene	TAIR ID	sub-genome/ block ¹	Ensembl Plants gene ID	species
BADC1	AT3G56130	LF	Csa04g042500	Camelina sativa
BADC1	AT3G56130	MF1	Csa06g030800	Camelina sativa
BADC1	AT3G56130	MF2	Csa09g068300	Camelina sativa
BADC1	AT3G56130	A LF	GSBRNA2T00037117001	Brassica napus
BADC1	AT3G56130	C LF	GSBRN A2T00155998001	Brassica napus
BADC1	AT3G56130	n/a	GLYMA_11G35740	Glycine max
BADC1	AT3G56130	n/a	GLYMA_18G02670	Glycine max
BADC2	AT1G52670	LF	Csa17g092720	Camelina sativa
BADC2	AT1G52670	MF1	Csa14g061920	Camelina sativa
BADC2	AT1G52670	MF2	Csa03g059640	Camelina sativa

TABLE 1-continued

BADC orthologs						
A. thaliana gene	TAIR ID	sub-genome/ block ¹	Ensembl Plants gene ID	species		
BADC3	AT3G15690	LF	Csa15g020290	Camelina sativa		
BADC3	AT3G15690	MF1	Csa19g022480	Camelina sativa		
BADC3	AT3G15690	MF2	Csa01g018320	Camelina sativa		
BADC3	AT3G15690	A MF1	GSBRNA2T00010009001	Brassica napus		
BADC3	AT3G15690	A LF	GSBRNA2T00104942001	Brassica napus		
BADC3	AT3G15690	C MF1	GSBRNA2T00018165001	Brassica napus		
BADC3	AT3G15690	C LF	GSBRNA2T00044654001	Brassica napus		
BADC2/3 ²	AT1G52670/	n/a	GLYMA_13G44040	Glycine max		
	AT3G15690					
BADC2/3	AT1G52670/	n/a	GLYMA_15G01300	Glycine max		
	AT3G15690			•		

[0095] In Table 1, sub-genome information is only given for Brassicaceae species. BADC2 and BADC3 are thought to be derived through a gene duplication event at the base of the Brassicaceae. Therefore, GLYMA13G44040 and GLYMA15G01300 are homologs to an ancient precursor of BADC2 and BADC3.

[0096] "Seed-specific" promoter refers to a promoter that preferentially controls expression of an operably linked transgenes in seed products. Seed specific promoters are exemplified by the seed-specific phaseolin promoter, Napin promoter, β -conglycinin promoter, pea legumin legA promoter, and foxtail millet pF128 promoter.

[0097] "Fatty acid" refers to a carboxylic acid consisting of a hydrocarbon chain and a terminal carboxyl group, especially any of those occurring as esters in fats and oils. Fatty acid includes "unusual fatty acid," "special fatty acid" and "specialty fatty acid," which interchangeably refer to any fatty acid that is naturally found in a plant or plant part (such as seed) at less than 2 mole percent. Unusual fatty acids in seed oils from different species have identified more than 200 naturally occurring fatty acids of which 18 representatives are listed in the following Table 2 (David Hildebrand, "Production of Unusual Fatty Acids in Plants—AOCS Lipid Library" 2018):

[0098] In one embodiment, the fatty acid comprises one or more of hydroxyl fatty acids, medium-chain fatty acids, very-long-chain fatty acids (VLCFAs), monounsaturated fatty acids (MUFAs), γ-linolenic acid, stearidonic acids, α-eleostearic acid, conjugated fatty acids, epoxy fatty acids, cyclic fatty acids and acetylenic fatty acids, medium-chain fatty acids such as lauric acid and derivatives; very-longchain fatty acids (VLCFAs) such as erucic acid; monounsaturated fatty acids (MUFAs) such as palmitoleic acid (also referred to as cis-9-hexadecenoic acid (16:1 Δ 9)), oleic acid (18:1Δ9) and petroselinic acid (18:1Δ6); γ-Linolenic acid $(\Delta 6, 9, 12-18:3)$; stearidonic acids such as octadecatetraenoic acid ($\Delta 6,9,12,15-18:4$); conjugated fatty acids such as α-Eleostearic acid (9-cis,11-trans,13-trans-octadecatrienoic acid), calendic acid (trans-8,trans-10,cis-12-octadecatrienoic acid), punicic acid (cis-9,trans-11,cis-13-octadecatrienoic acid, parinaric acid (cis-9,trans-11,trans-13,cis-15-octadecatetraenoic acid), licanic acid (4-oxo-cis-9,trans-11, trans-13-octadecatrienoic acid), and catalpic acid (trans-9, trans-11,cis-13-octadecatrienoic acid); epoxy fatty acids, such as vemolic (cis-12,13-epoxyoctadeca-cis-9-enoic) and coronaric (cis-9,10-epoxyoctadeca-cis-12-enoic) acids, acetylenic fatty acids, 9,10-epoxystearic acid, alchornoic acid (14,15-epoxycis-11-eicosenoic acid), and 15-epoxy-

TABLE 2

Common name	Chemical name	High accumulator	% UFA
alchornoic	14-epoxy,cis-11-eicosenoic	Alchornea cordifolia	50
axillarenic	11,13-dihydroxy-tetracos-trans-9-enoic	Baliospermum axillare	3
calendic	trans-8,trans-10,cis-12-octadecatrienoic	Calendula officinalis	63
catalpic	trans-9,trans-11,cis-13-octadecatrienoic	Catalpa bignonioides	
dimorphecolic	9-hydroxy-trans,10-trans-12-octadecadienoic	Dimorphotheca pluvialis	60
coronaric	9-epoxy,cis-12-octadecenoic	Chrysanthemum coronarium	
crepenynic	octadec-cis-9-en-12-ynoic	Crepis alpina	74
eleostearic	cis-9,trans-11,trans-13-octadecatrienoic	Aleurites fordii	80
epoxystearic	9-epoxy-octadecanoic	Tragopogon porrifolius	3
isanolic	8-hydroxy-octadec-17-en-9,11-diynoic	Ongokea gore	
isoricinoleic	9-hydroxy-12-cis-octadecenoic	Wrightia coccinea	76
licanic	4-oxo-cis-9,trans-11,trans-13-octadecatrienoic	Licania rigida	78
lesquerolic	14-hydroxy-cis-11-eicosenoic	Lesquerella fendleri	55
parinaric	cis-9,trans-11,trans-13,cis-15- octadecatetraenoic	Parinarium laurunum	54
punicic	cis-9,trans-11,cis-13-octadecatrienoic	Punicia granatum	86
phloionolic	9,10,18-trihydroxy octadecanoic	Chamaepeuce afra	9
ricinoleic	12-hydroxy-9-cis-octadecenoic	Ricinus communis	88
vernolic	12-epoxy,cis-9-octadecenoic	Vernonia galamensis	80

cis-9,cis-12-octadecadienoic acid; and acetylenic fatty acids such as crepenynic acid (octadec-9-en-12-ynoic acid) (David Hildebrand, "Production of Unusual Fatty Acids in Plants—AOCS Lipid Library" 2018). Examples of hydroxyl fatty acids include ricinoleic acid (A-12-hydroxy-9-cis-octadecanoic acid or 12-d-hydroxy-octadeca-cis-9-enoic acid) and densipoleic acid (9Z,12R,15Z)-12-hydroxyoctadeca-9, 15-dienoate.

[0099] "Rescued" means that if a first plant exhibits a first phenotype that is altered (increased or decreased) by a first mutation to a first nucleotide or polypeptide sequence, then a second mutation to the same or different nucleotide or polypeptide sequence is said to "rescue" the first phenotype if a second plant that has both the first and second nucleotide or polypeptide mutations exhibits substantially the same phenotype as the first plant, and the phenotype is said to be "rescued" by the second mutation. For example, if a wild type plant exhibits a first level of seed germination that is decreased by overexpression of FAH gene, then a mutation to genomic BADC3 gene is said to rescue the seed germination phenotype if a second plant that has both the FAH gene and mutant genomic BADC3 gene exhibits substantially the same level of seed germination as the wild type plant, and the seed germination phenotype is said to be "rescued" by the BADC3 gene mutation.

[0100] "Seed yield" means the number of seeds and/or weight of seeds.

[0101] "Germination" refers to the process whereby the seed coat splits and root and cotyledons start to poke out of the seed, after a dry seed is exposed to desired germination conditions such as water, light, soil, etc.

[0102] "Establishment" refers to the process whereby roots and aerial parts of a plant start to grow as a seedling starts to develop after a dry seed is exposed to desired germination conditions such as water, light, soil, etc. "Improved establishment" of roots or aerial parts of the plant refers to an increase in one or more of the length, girth and branching or roots and/or aerial parts of the plant.

[0103] "Plant" refers to a living thing that grows in the earth and has a stem, leaves, and roots, exemplified by organisms that contain orthologs to the Arabidopsis thaliana BADC genes, such as Amborella trichopoda, Arabidopsis lyrata, Arabidopsis alpine, Arachis hypogaea, Auxenochlorella protothecoides, Brassica napus, Brassica rapa, Camelina sativa, Capsella rubella, Cathamus tinctorius, Chlamydomonas reinhardtii, Chlorella variabilis, Cicer arietinum, Citrus clementina, Citrus sinensis, Coccomyxa subellipsoideas C-169, Coffea canephora, Cucumis melo, Cucumis sativus, Elaeis guineensis, Erythranthe guttata, Eucalyptus grandis, Eutrema salsugineum, Fragaria vesca, Genlisea aurea, Glycine max, Helianthus annuus, Helicosporidium ATCC 50920, Jatropha curcas, Lotus japonicas, Medicago truncatula, Marus notabilis, Musa acuminate, Nelumbo nuciera, Nicotiana sylvestris, Nicotiana tomentosiformis, Phaseolus vulgaris, Pheonix dactylifera, Physcomitrella patens, Picea sitchensis, Polytomella parva, Populus trichocarpa, Prunus mume, Prunes persica, Pyrus x bretschneideri, Ricinus communis, Selaginella moellendorffli, Sesamum indicum, Solanum lycopersicum, Solanum tuberosum, Theobroma cacao, Thlaspi arvense, Vitis viniera, or Volvox carteri.

[0104] A cell or organism is "homozygous" for a particular gene when identical alleles of the gene are present on all the homologous chromosomes. Thus, a diploid cell is

homozygous for a particular gene when the cell contains two identical alleles of the gene. A cell or organism is "homozygous null" (also referred to as "nullizygous" and "nullizygote") for a particular gene when it contains only mutant alleles for the same gene, and all the mutant alleles are complete loss-of-function (i.e., "null") alleles. Thus, a diploid cell is homozygous null for a particular gene when the cell contains two null alleles of the gene. Null mutant BADC (i.e., BADC1 and/or BADC3) plants may be generated by crossing a male transgenic plant and a female transgenic plant each bearing one artificially mutated BADC allele in its germ cells.

[0105] A cell or organism is "heterozygous" for a particular gene when different alleles of the gene are present on the homologous chromosomes. Thus, a diploid cell is heterozygous for a particular gene when the cell contains two different alleles (e.g., one wild-type allele and one mutant allele) of the gene.

[0106] "Breeding" and "crossing" and "crossbreeding" interchangeably refers to the process of selectively propagating plants with desirable characteristics using closely or distantly related individuals to produce new plant varieties or lines with desirable properties. In one embodiment, crossing a plant line having one or more transgenes and/or genomic modifications relative to a starting plant line means the techniques that result in the one or more transgenes and/or genomic modifications of the invention being introduced into a plant line by crossing a plant of a starting line with a plant of a donor plant line that comprises one or more transgenes and/or genomic modifications of the invention. Methods for breeding (such as to produce plants that are homozygous for a transgene) are disclosed herein and known in the art (WO 2018/009626).

[0107] Plant "part" refers to a plant cell and/or tissue and/or organ, exemplified by seed, leaf, pollen, ovule, fruit, rootstock, flower and scion. In one embodiment, the plant tissue comprises tissue obtained directly or indirectly (e.g., by tissue culture of regenerable cells) from the plant. In a further embodiment, the plant part comprises a seed that produces, and/or is produced by, a plant produced by the presently disclosed methods.

[0108] "Regenerable" plant cells include protoplasts and embryogenic cells. Illustrative methods for tissue culture for the regeneration of cereals from protoplasts have been described (Toriyama et al., 1986; Yamada et al., 1986; Abdullah et al., 1986; Omirulleh et al., 1993 and U.S. Pat. No. 5,508,184; each specifically incorporated herein by reference in its entirety).

[0109] "Progeny" denotes the offspring of any generation of a parent plant prepared in accordance with the instant invention. In one embodiment, the progeny exhibits one or more phenotypes of the parent plant, and comprises one or more of the transgenes and one or more of the genomic modifications of the parent plant.

[0110] The terms "reduce," "inhibit," "diminish," "suppress," "decrease," and grammatical equivalents (including "lower," "smaller," etc.) when in reference to the level of any molecule (e.g., amino acid sequence, and nucleic acid sequence, etc.) and/or phenomenon (e.g., level of expression of a gene, level of transcription of a DNA sequence, level of translation of an mRNA molecule to an amino acid sequence) and/or phenotype (e.g., seed yield per plant, amount of total seed fatty acid per seed, amount of a target fatty acid per seed, seed yield per plant, seed germination

rate, proportion of a target fatty acid relative to total seed fatty acid per seed, amount of total seed fatty acid per plant, establishment of roots, establishment of plant aerial parts) in a first composition (e.g., first plant cell) relative to a second composition (e.g., second plant cell), mean that the quantity of molecule and/or phenomenon and/or phenotype in the first composition is lower than in the second composition by any amount that is statistically significant using any artaccepted statistical method of analysis. In one embodiment, the quantity of molecule and/or phenomenon and/or phenotype in the first composition is at least 10% lower than, at least 25% lower than, at least 50% lower than, at least 75% lower than, at least 90% lower and/or 100% lower than the quantity of the same molecule and/or phenomenon and/or phenotype in the second composition. In one embodiment, the first composition lacks (i.e., contains 0% of) the molecule and/or phenomenon and/or phenotype.

[0111] The terms "increase," "elevate," "raise," and grammatical equivalents (including "higher," "greater," etc.) when in reference to the level of any molecule (e.g., amino acid sequence, and nucleic acid sequence, etc.) and/or phenomenon (e.g., level of expression of a gene, level of transcription of a DNA sequence, level of translation of an mRNA molecule to an amino acid sequence) and/or phenotype (e.g., seed yield per plant, amount of total seed fatty acid per seed, amount of a target fatty acid per seed, seed yield per plant, seed germination rate, proportion of a target fatty acid relative to total seed fatty acid per seed, amount of total seed fatty acid per plant, establishment of roots, establishment of plant aerial parts) in a first composition (e.g., first plant cell) relative to a second composition (e.g., second plant cell), mean that the quantity of molecule and/or phenomenon and/or phenotype in the first composition is higher than in the second composition by any amount that is statistically significant using any art-accepted statistical method of analysis. This includes, without limitation, a quantity of molecule and/or phenomenon and/or phenotype in the first composition that is at least 10% greater than, at least 15% greater than, at least 20% greater than, at least 25% greater than, at least 30% greater than, at least 35% greater than, at least 40% greater than, at least 45% greater than, at least 50% greater than, at least 55% greater than, at least 60% greater than, at least 65% greater than, at least 70% greater than, at least 75% greater than, at least 80% greater than, at least 85% greater than, at least 90% greater than, and/or at least 95% greater than the quantity of the same molecule and/or phenomenon and/or phenotype in the second composition.

[0112] The terms "alter" and "modify" when in reference to the level of any molecule (e.g., amino acid sequence, and nucleic acid sequence, etc.) and/or phenomenon (e.g., level of expression of a gene, level of transcription of a DNA sequence, level of translation of an mRNA molecule to an amino acid sequence) and/or phenotype (e.g., seed yield per plant, amount of total seed fatty acid per seed, amount of a target fatty acid per seed, seed yield per plant, seed germination rate, proportion of a target fatty acid relative to total seed fatty acid per seed, amount of total seed fatty acid per plant, establishment of roots, establishment of plant aerial parts) in a first composition (e.g., first plant cell) relative to a second composition (e.g., second plant cell), mean that the quantity of molecule and/or phenomenon and/or phenotype

in the first composition refer to an increase and/or decrease in the level of molecule and/or phenomenon and/or phenotype.

DESCRIPTION OF THE INVENTION

[0113] Hundreds of naturally occurring specialized fatty acids (FA) may have potential as chemical feedstocks if they can be produced at large scale by crop plants. However, transgenic expression of their biosynthetic genes has generally been accompanied by undesirable reductions in oil yield. For example, expression of *Ricinus* fatty acid hydroxylase (FAH) in the *Arabidopsis* fatty acid elongation mutant fael resulted in a 50% reduction of FA synthesis rate that was attributed to inhibition of acetyl Co-A carboxylase (ACCase) by an undefined mechanism. The hypothesis that the ricinoleic acid-dependent decrease in ACCase activity is mediated by biotin attachment domain-containing (BADC) proteins was tested.

[0114] BADCs are inactive homologs of biotin carboxy carrier protein that lack a biotin cofactor and can inhibit ACCase. Arabidopsis contains three BADC genes. To reduce expression levels of BADC1 and BADC3 in fae1/ FAH, homozygous badc1,3/fae1/FAH was created. The rate of FA synthesis in badc1, 3/fae1/FAH seeds doubled relative to fae1/FAH, restoring it to fae1 levels, increasing both native FA and HFA accumulation. Total FA per seed, seed oil content and seed yield per plant all increased in badc1,3/ fae1/FAH, to 5.8 µg, 37% and 162 mg, respectively, relative to 4.9 µg, 33% and 126 mg, respectively, for fae1/FAH. Transcript levels of fatty acid synthesis-related genes including ACCase subunits did not significantly differ between badc1,3/fae1/FAH and fae1/FAH. These results demonstrate that BADC1 and BADC3 mediate ricinoleic acid-dependent inhibition of FA synthesis. It is proposed that BADCmediated FAS (fatty acid synthesis) inhibition may be a general mechanism that limits FA accumulation in specialized FA-accumulating seeds.

[0115] A longstanding crop improvement goal has been to exploit knowledge of specialized fatty acid synthesis from plants and microbes by reconstructing their synthetic pathways in crop production plants (Napier, 2007). If successful, this would allow the production of chiral fatty acid feedstocks in an inexpensive and scalable manner. However, a barrier to progress in this area was the discovery that upon the accumulation of specialized fatty acids seed oil yields are significantly decreased (Cahoon et al., 2007; Haslam et al., 2013; Vanhercke et al., 2013; Bates et al., 2014). An example of this comes from attempts to increase the accumulation of hydroxy fatty acid (HFA) in seed oils, of which much of the work has been performed in the model system *Arabidopsis* (Lu et al., 2006).

[0116] HFAs contain one or more hydroxy group(s) on a fatty acid backbone, which confer beneficial properties such as higher viscosity and chemical reactivity. The hydroxyl group of HFAs make them useful chemical feedstocks for the production of a wide range of industrial products including but not limited to: resins, waxes, nylons, plastics, lubricants, cosmetics, and additives for coatings and paints (Kim et al., 2000). Moreover, HFAs could be used as intermediates in the production of biodegradable plastics, cyclic lactones and pharmaceuticals (Wang et al., 2012). Industrial use of HFAs are available from natural sources such as castor beans which may limit their availability. Isolation of the oleate hydroxylase FAH from castor bean

over two decades ago raised the possibility of ricinoleic acid production in high-yielding oilcrops (van de Loo et al., 1995). However, in contrast to castor beans that accumulate approximately 90% of its FA as ricinoleic acid, transgenic *Arabidopsis* fatty acid elongation1 (fae1) mutant expressing the FAH i.e., fae1/FAH, (a line designated CL37) accumulated only 17% HFA in its total seed oil (Lu et al., 2006). The seeds of fae1/FAH also displayed many physiological deficits including reduced oil content and seed weight, low seed yield per plant compared with its parental fae1 line, and seed germination was also delayed (Adhikari et al., 2016).

[0117] Investigation of the reduced oil content of fael/ FAH revealed its FA synthesis rate was reduced compared to the parental fae1 line (Bates et al., 2014). While the molecular basis for this reduction in FA synthesis has not been reported, several attempts at overcoming it have proved at least partially successful. For example, overexpressing a master transcriptional regulator of fatty acid synthesis WRINKLED1 (Adhikari et al., 2016) or a lipid droplet associated factor SEIPIN1 to increase lipid droplet size (Lunn et al., 2018). Development defects of HFA-accumulating seeds are partially mitigated upon the expression of several castor acyltransferases (Lunn et al., 2018). Stacking the expression of several castor acyltransferases, including GPAT9, LPAT2, and PDAT1A along with the castor hydroxylase fae1/FAH seeds produced abundant tri-HFA TAG, restored seed oil content and partially restored seedling establishment (Lunn et al., 2019). The expression of phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT), encoded by the REDUCED OLEATE DESATURATION1 (ROD1) gene (Lu et al., 2009) which channels about 40% of the flux of polyunsaturated fatty from PC into DAG for TAG synthesis was found to potentiate efficient accumulation of HFA in Arabidopsis (Hu et al., 2012).

[0118] In dicotyledonous plants, heteromeric acetyl-CoA carboxylase (ACCase) catalyzes the first committed step of de novo fatty acid biosynthesis. This enzyme complex consists of four catalytic subunits: biotin carboxylase (BC), carboxyltransferase (CT)- α , CT- β , and biotin carboxyl carrier protein (BCCP) (Salie et al., 2016). The two BCCP isoforms (BCCP1 and BCCP2) of Arabidopsis ACCase can interact with Biotin/lipoyl attachment domain containing (BADC) proteins (Feria Bourrellier et al., 2010). BADCs are BCCP homologs that contain a biotin attachment motif, but critically lack a biotinylation site. BADC proteins can act as negative regulators of ACCase due to their lack of the biotin adduct required for carboxylation (Salie et al., 2016) and a role for them in ACCase assembly was recently proposed. These proteins have been reported to significantly inhibit ACCase activity in both E. coli and Arabidopsis (Salie et al., 2016), and it was recently proposed that they can sense pH changes (Ye et al., 2020). An additional role for BADCs in ACCase assembly has also been proposed (Shivaiah et al., 2020).

[0119] Three BADC genes have been identified in *Arabidopsis*, single badc1, badc2, badc3 *Arabidopsis* knock-out mutants do not exhibit significant changes in oil content relative to wild type plants (Keereetaweep et al., 2018), while the badc1badc3 (badc1,3) double mutant showed increased fatty acid synthesis rate and a remarkable 25% increase in seed oil content (Keereetaweep et al., 2018).

[0120] In this context, badc1,3/fae1/FAH homozygous plant were generated by crossing badc1,3 double mutant

with CL37, an *Arabidopsis* fael line expressing FAH (Lu et al., 2006). Downregulation of BADC1 and BADC3 in fael/FAH doubled the rate of FA synthesis in developing seeds, restoring it to fael levels, and increased both native FA and HFA accumulation.

DISCUSSION OF EXEMPLARY EMBODIMENTS

[0121] It was previously reported that the accumulation of HFA in Arabidopsis seeds resulted in feedback inhibition of FA synthesis (Bates et al., 2014), with ACCase activity reduced by approximately 50% relative to the parental fael line. ACCase is often considered a rate limiting enzyme for FA synthesis and is therefore under tight genetic and biochemical regulation by a variety of mechanisms (Salie et al., 2016; Ye et al., 2020). In this study, we investigated the effects of null mutations in two negative regulatory subunits of ACCase i.e., badc1 and badc3 in FAH-expressing Arabidopsis seeds with respect to FA synthesis, common FA and HFA accumulation. The data demonstrates that eliminating BADC1 and BADC3 alleviates the HFA-dependent feedback inhibition of ACCase that results in a doubling FAS rate in badc1,3/fae1/FAH seeds restoring them to that of the parental fael line. Seed FA content of badc1,3/fae1/FAH was also restored to that of the parental fael line. That no significant increases were observed for transcripts corresponding to key FA synthesis-related genes in badc1,3/fae1/ FAH is consistent with the increases being attributed to relief of BADC1 and BADC3-dependent inhibition of ACCase. Thus, data presented here employing badc1,3 null mutants demonstrates both the mechanism of HFA-dependent inhibition of ACCase and an approach to largely mitigating its effects by reducing or eliminating BADC isoforms 1 and 3. That the increased seed oil content in badc1,3/fae1/FAH didn't fully rescue seed weight relative to the parental fae1 line is consistent with previous reports in which the badc1,3 double mutant exhibited a small decrease in seed weight compare to that of wild type seeds, that likely resulted from a buildup of non-esterified FA under conditions in which their supply exceeds cellular demand. Support for this view comes from studies showing excess FAs can be associated with negative cellular consequences, including reductions in axillary bud growth in tobacco (Tso, 1964), microalgal growth (Bosma et al., 2008), cell elongation in Arabidopsis (Li et al., 2011) and cell death in Arabidopsis (Fan et al., 2013; Yang et al., 2015).

[0122] The work presented here is an extension of previous studies that focused on understanding mechanisms underlying lipid homeostasis under conditions in which FA supply exceeds that of cellular demand. Using a Brassica napus suspension cell culture we fed FA in the form of Tween esters and monitored reductions in the rate of FAS. Exposure of oleoyl-Tween for up to 2 days resulted in oleoyl-ACP-dependent reversible inhibition of ACCase (Andre et al., 2012); whereas prolonged exposure resulted in irreversible BADC-dependent inhibition (Keereetaweep et al., 2018). That BADC-dependent inhibition of ACCase activity can be elicited by chronic exposure to excesses oleate, a common naturally occurring monounsaturated FA, and ricinoleic acid, a non-native fatty acid, is intriguing. Evidence is accumulating that BADCs are conditional inhibitors of ACCase activity, i.e., that upon the accumulation of excess FA, biotin-lacking, and therefore inactive BADC subunits, replace active BCCP subunits in the BC/BCCP ACCase subcomplex (Salie et al., 2016) (Keereetaweep et al., 2018)(Liu et al., 2019). Based on in vitro studies in which a one-unit pH change caused small changes in the dissociation constants of BADCs and BCCP for BC, it has been proposed that this might contribute to in vivo changes in the inhibition of ACCase related to light- and dark-dependent pH changes (Ye et al., 2020). However, in vivo evidence to support this hypothesis is lacking, and the experiments were conducted under non-physiological conditions. Thus, whether excess FA causes BCCP to dissociate from BC, allowing BADC to join the complex, or whether excess FA drives BADCs into the complex displacing BCCP subunits is an open question that requires additional investigation to resolve.

[0123] Due to the desirability of creating an HFA-accumulating variant of a high-yielding crop, work to date has mostly focused on increasing the accumulation of HFA without deleterious effects on seed oil content. Previous studies have shown that negative HFA-dependent deficits including decreased seed oil and seed weight could be mitigated by the overexpression of several common fatty acid accumulation factors. For example, overexpression of OLEOSIN1, a lipid droplet protection protein involved in TAG biosynthesis with FAH was shown to enhance HFA accumulation (Lu et al., 2006). Likewise, overexpression of SEIPIN, a lipid droplet development factor that was previously reported to increase total seed oil (Cai et al., 2015), when expressed in HFA-accumulating seed, increased both total oil and HFA content by more than 60%, likely by increasing LD size and creating a larger sink for TAGaccumulation (Lunn et al., 2018). Seed-specific expression of the WRINKLED1 transcription factor in fae1/FAH restored FA content (Adhikari et al., 2016). Other efforts have focused on the use of factors isolated from species that naturally accumulate modified fatty acid (mFA), in which FA-metabolizing enzymes have evolved preference for mFA. These studies were initially focused on enhancing the transfer of mFA from PC into TAG (Burgal et al., 2008; Kim et al., 2011; van Erp et al., 2011; Hu et al., 2012; Li et al., 2012). In another interesting example, the 18C ricinoleic acid is elongated to the corresponding 20 C lesquerolic acid by a specialized *Physaria* elongase (Snapp et al., 2014). That lesquerolic acid alleviates feedback inhibition of FAS likely reflects decreased discrimination against lesquerolic relative to ricinoleic in its transfer from PC to TAG. Co-expression of multiple mFA-preferring enzymes, e.g., three castor acyltransferases: GPAT9, LPAT2, and PDAT1A in fae1/FAH seeds resulted in the production of abundant tri-HFA TAG and restored seed oil content relative to the parental fael line (Lunn et al., 2019).

[0124] The reduced levels of seed oil accumulation reported for HFA-accumulating seed is a general phenomenon common to other mFAs including epoxy (Li et al., 2012), conjugated (Cahoon et al., 2006) and cyclopropane (Yu et al., 2014) FA. The findings presented here demonstrating that knocking out BADC1 and BADC3 in FAH-producing *Arabidopsis* seeds restored the FA synthesis rate, total FA, seed yield may not be specific for HFA. Indeed, data herein suggests that reducing or eliminating BADC1 and BADC3 gene expression in other mFA-accumulating plants may have similar beneficial effects on mFA accumulation. Further, combining our BADC reduction strategy with the coexpression of other genes, or combinations of

genes and/or factors described above will likely increase mFA accumulation to levels equivalent to, or exceeding those of, their natural hosts.

[0125] Germination rates typically decline with increasing accumulation levels of mFA (modified fatty acid) accumulation in non-native hosts, even in plants that accumulate normal levels of TAG such as described herein and in previous studies (Lunn et al., 2019). This suggests that mFA generally impair the mobilization of lipid reserves needed for energy production during the critical stages of germination (Lunn et al., 2019). Thus, cellular components that participate in the mobilization mFA-containing TAG, mFA transport and β -oxidation represent additional targets for characterization and expression in non-native hosts to improve cellular energy supplies needed for germination to create robust mFA crops of the future.

[0126] We tested the hypothesis that HFA-dependent reduction in FA synthesis can be mediated by BADCs by the introgression of badc1,3 into fae1/FAH. Consistent with the hypothesis, knocking out BADC1 and BADC3 expression increased FA synthesis rates in developing seeds by twofold, restoring the FA synthesis rate to that of the parental fae1 line. This equally increased both normal FA and HFA accumulation in seeds. The total FA per seed and total oil content in seeds and seeds yield per plant all increased, to an average of 5.8 µg, 37% and 162 mg respectively, compared to 4.9 µg, 33% and 126 mg of fae1/FAH respectively. That fatty acid synthesis-related genes including ACCase subunits, FA condensing enzymes and transcription factors were not significantly increased upon knockout of BADC1 and BADC3, is consistent with the role of BADCs as inhibitors of FA synthesis. Knocking out BADC1 and BADC3 alleviated the inhibition of ACCase, providing a corresponding increase in the FA synthesis rate and steady or improvement in seedling establishment. Combining the deceased expression of BADCs described herein along with the expression of other demonstrated mFA accumulating factors will likely realize the goal of creating crops with industrially relevant levels of HFA-accumulation. This strategy will likely be generalizable to increasing accumulation of many other mFA in seed oils.

[0127] The badc1,3/fae1/FAH *Arabidopsis* showed better establishment than fae1/FAH although their establishment rates are similar. Roots of ten-day old plants were longer and better developed as were aerial parts of the plants. The seed yield per plant was also rescued.

[0128] Data herein shows (Example 10) that disruption of badc3 alone in CL37 (fae1/FAH) *Arabidopsis* increased HFA percentage. Surprisingly, although one expects this disruption to decrease FAS and seed weight and impair seed germination, nonetheless it was empirically determined that the seed weight and seed yield per plant were both increased significantly, and seed germination rate was restored to wild type levels. BADC3 are edited/silenced in specialized fatty acid (sFA) producing crops such as *Camelina*, soybean and *Brassica napus* in the same manner as disclosed herein regarding editing/silencing badc1,3. Disruption/silencing of BADC3 in specialized FA-producing crops should lead to increased sFA, crop yield and recovered seed germination.

EXPERIMENTAL

[0129] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques

disclosed in the examples, which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments, which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1

[0130] Materials and Methods

[0131] A. Plant Growth Conditions

[0132] Arabidopsis badc1,3 double mutant, CL37 (fae1/ FAH) and fae1 mutant were used in this study. Seeds were surface sterilized with 70% (v/v) ethanol, followed by 20% (v/v) bleach with 0.01% (v/v) Triton X-100, and washed three to four times with sterile water. Seeds were stratified for 2 d at 4° C. in the dark and germinated on half-Murashige and Skoog (MS) medium supplemented with 1% (w/v) sucrose at 23° C. with a light/dark cycle of 18 h/6 h, photon flux density at 250 μmol m⁻² s⁻¹ plants were grown in walk-in growth chambers at 22° C. with 16 h photoperiod with photon flux density of 70 μ mol m⁻² s⁻¹.

[0133] B. Seed Germination and Establishment

[0134] Seeds of fae1, fae1/FAH, badc1,3/fae1/FAH and badc1,3 were sterilized with ethanol and bleach as described above. A total of 180 seeds in five replicates from each line were sown in plates with ½ MS media containing 1% sucrose under the conditions described above for 14 d. Germination is scored as seeds that produced a radicle, and seedlings that produced roots and green cotyledons were counted as being able to establish (Adhikari et al., 2016).

[0135] C. Arabidopsis Cross and Screening of Homozygous Plants

[0136] badc1,3/fae1!FAH were generated by crossing the CL37 (frteI!FAH) with badc1,3 double mutant. Homozygous lines were identified by genotyping using PCR coupled with HinfI digestion of PCR products and GC/MS analysis of FA of individual seeds. The genotyping primers used for BADC 1 and 3 are described previously (Keereetaweep et al., 2018). To genotyping fae1, fae1 gene was amplified from CL37 with primer (gFAE-F0: catgagtttgagtatacacatgtcta (SEQ ID NO: 36) and gF AE-R0: aaagaaatcatgtaaacctaaatagaaacgc (SEQ ID NO: 37) and purified for sequencing. According to the fae1 gene sequence information, primer fae-LP: gtgatcgatgagctagagaagaac (SEQ ID NO: 38) and fae-RP: caaggacta TTTGCCGATGCCTTGA-CATTGCGT AGAGCGAC (SEQ ID NO: 39) were designed to introduce a HinfI restriction site to the fael mutant. PCR fragment were restricted with Hinfl and the fae1 mutant resulted in two fragments of 200 bp and 40 bp. [0137] D. RNA Extraction and RT-qPCR

[0138] RNA from Arabidopsis seeds was extracted according to Wu et al (Wu et al., 2002). RNA quality and concentration were determined by Nanodrop spectroscopy. cDNA was prepared using SuperScript IV VILO Master Mix with ezDNase enzyme (Invitrogen) following manufacture's manual. So Advanced Universal SYBR Green Supermix (Bio-Rad) was used in the reaction mix. RT-qPCR was carried out on the CFX96 Real-time PCR Detection System (Bio-Rad). Gene-specific primers used in the analysis for BADC1 and BADC3 are the same as previously described (Keereetaweep et al., 2018).

[0139] FAH-qFI, AATATAGCCATCGCCGCCACCATT (SEQ ID NO: 40) and FAH-qRI: TGGCAAGCAAAGCGA TCGT AAGGT (SEQ ID NO: 41) were used for F AH. The primers used for reference gene UBQIO qF, ACCAT-CACTTTGGAGGTGGA (SEQ ID NO: 42) and UBQIO qR, GTCAATGGTGTCGGAGCTTT (SEQ ID NO: 43). Statistical analysis of RT-qPCR data was carried out with REST2009 (Pfaffl et al., 200

[0140] E. Fatty Acid Analyses

[0141] Fatty acid analyses were carried out as described (Broadwater et al., 2002). Lipids were extracted in methanol/chloroform/formic acid (20:10:1) from seeds and heptadecanoic acid (17:0) was added as an internal standard. Total seed lipids were converted into fatty acid methyl esters (FAMEs) in 5% H₂SO₄ in methanol at 90° C. for 60 minutes and extracted with hexane. FAMEs from single seeds were prepared by incubating the seed with 30 µL 0.2M trimethylsulfonium hydroxide in methanol (Butte et al., 1982). Lipid profiles and acyl group identification were analyzed on a Hewlett Packard 6890 gas chromatograph equipped with a 5973 mass selective detector and Agilent DB-FATWAX UI capillary column (30 m×0.25 μm×0.25 μm). The injector was held at 225° C. and the oven temperature was set at 170° C. for one minute and then increased to 250° C. at 10° C./min, finally hold at 250° C. for 7 minutes. The FA percentage values were presented as a mean of at least three biological replicates.

[0142] F. [¹⁴C]Acetate Incorporation Assay [0143] [1-¹⁴C]Acetic acid, sodium salt, was purchased from PerkinElmer. Developing seeds at 11-13 days after flower were collected. Approximately 10 mg fresh developing seeds were labeled by incubating in 0.2 mCi of [14C] acetate for 60 min at room temperature with constant shaking. Cells were subsequently rinsed three times with water. Total lipids were extracted with 500 μL of methanol: chloroform:formic acid (20:10:1, v/v). The organic phase was then extracted with 370 µL of 1 M KCl and 0.2 M H₃PO4 and suspended in 2 mL of Ultima Gold liquid scintillation cocktail (PerkinElmer). The incorporated radioactivity was measured in cpm with a scintillation counter (Packard BioScience).

Example 2

[0144] Generation of Badc1,3/Fae1/FAH Plants

[0145] To test the hypothesis that HFA-induced inhibition of fatty acid synthesis results from BADC-dependent inhibition of ACCase, we crossed the badc1,3 double mutant with CL37, a single-insertion homozygous FAH transgenic line in a homozygous mutant fatty acid elongase1 (fae1) background (Kunst L, 1992), the seeds of which are reported to contain 17% HFA (Lu et al., 2006). The level of 18:1, FAH's substrate, is only 13% of TFA in wild type Columbia, therefore fae1, which contains much higher levels (33%) of 18:1 in its seed oil was used. Seeds resulting from this cross were germinated and genetically screened to identify heterozygous badc1,3/fae1/FAH plants. F2 seeds from the heterozygous badc1,3/fae1/FAH plants were planted to screen for homozygous plants which were used for the following studies. The fael mutant (Kunst L, 1992), the badc1 and badc3 T-DNA insertion lines (Bohannon and Kleiman, 1978; Bolle et al., 2013) all in the Arabidopsis thaliana Columbia-0 background.

[0146] To screen for fael homozygous individuals, we first needed to determine the genetic lesion underlying the

fae1 mutant. To do this we amplified the fae1 open reading frame from CL37 and sequenced it. We identified a mutation encoding a premature termination at 1395 bp (TGG1393TGA) in the fae1 mutant allele (FIG. 7). We next designed primers to introduce a HinfI restriction site to the PCR amplification of fael allele around the mutation site. Subsequent restriction digestion with HinfI of a 240 bp PCR fragment produced two fragments of 200 bp and 40 bp in the fae1 mutant, and only a single 240 bp fragment in the wide type. While the 40 bp fragment is weakly detectable on our gel system, the fael mutant displays the 200 bp fragment which can be distinguished from the wild type fragment which is characterized by the larger 240 bp band (FIG. 1). [0147] The genotypes of badc1 or badc3 were determined using gene specific primer pairs in combination with T-DNA specific primer. After screening more than 500 plants 5 badc1,3/fae1 homozygous plants carrying FAH gene were identified. GC/MS analysis of 20 individual seeds for HFA accumulation from each of the 5 badc1,3/fae1 homozygous lines was used to identify FAH expressing homozygotes lines characterized by the accumulation of HFA in all 20 seeds. Finally, we identified two badc1,3/fae1/FAH homozygous individuals.

Example 3

[0148] Knocking Out BADC1 and BADC3 Did not Change FAH Transcription

[0149] To assess whether badc1,3/fae1/FAH plants were null mutants for BADC1 (AT3G56130) and BADC3 (AT3G15690), we harvested developing seeds from siliques 11 to 13 day after flowering (DAF), and for comparison from fae1, fae1/FAH and badc1,3 seeds grown in parallel. Reverse transcription-quantitative PCR (RT-qPCR) of total RNA extracted from developing seeds confirmed that both BADC1 and BADC3 transcription were dramatically decreased in badc1,3/fae1/FAH and the badc1,3 double mutant (FIGS. 2A and 2B). To evaluate whether knocking out BADC1,3 affects FAH expression, we also quantified FAH transcription. As shown in FIG. 2C, FAH transcription showed no significant change between badc1,3/fae1/FAH and fae1/FAH seeds, showing that knocking out BADC1 and BADC3 genes did not significantly affect FAH expression (FIG. 2C).

Example 4

[0150] Disruption of BADC1 and BADC3 Did not Significantly Alter Transcript Levels of Other FA Synthesis Genes.

[0151] To investigate whether disrupting BADC1 and BADC3 expression affects the transcription of FA synthetic genes, the expression of several genes involved in the FA biosynthetic pathway were quantified by RT-qPCR. Using relative expression (REST)-specific analysis (Pfaffl et al., 2002) designed for comparing qPCR data, no significant changes in transcript abundance were observed for ACCase subunit-encoding genes including BCCP1 (AT5G16390), BCCP2 (AT5G15530), ACCASE BIOTIN CARBOXY-LASE (BC, AT5G35360), α-CT (AT2G38040) and β-CT (ATCG00500) or 3-KETOACYL ACP SYNTHASE I (KASI; AT5G46290), and KASIII (AT1G62640) (Maeo et al., 2009; To et al., 2012), two key genes in FA synthesis (FIG. 8). WRI1 was previously shown to regulate a number of FA synthesis genes (Maeo et al., 2009) and all three

BADC genes (Liu et al., 2019). Analysis of WRI1 from the same materials showed no significant changes in WRI1 transcript levels (FIG. 8). That the levels of transcripts corresponding to these genes were not significantly different from controls, suggests that the alleviation of inhibition of FA synthesis is not the result of increased transcription of other FA synthesis genes.

Example 5

[0152] Badc1,3/Fae1/FAH Plants Exhibited Increased FA Content and Seed Yield

[0153] FA content in seeds was quantified to determine if badc1,3 alleviated the feedback inhibition of FA synthesis in seeds with HFA production. fae1 seeds contain 6.00±0.07 μg of total FA, and overexpression of FAH in fae1 significantly reduced FA to 4.94±0.10 g per seed. After introduction of badc1,3, the FA content of the seeds significantly increase by 16.8% to 5.77±0.04 μg per seed (FIG. 3A). Correspondingly, seeds of fae1 plants yielded 34.3±0.4% oil content, expression of FAH significantly decreased the oil content to 32.7±0.7% and the introduction of badc1,3 increased the oil content to 36.9±0.3% (FIG. 3B). The lower oil content in fae1/FAH has been reported to reduce seed weight (Adhikari et al., 2016). Indeed, expression of FAH in fael seeds decreased average seed weight from 17.5±1.1 µg to 15.1±0.7 μg (FIG. 3C), but introduction of badc1,3 did not significantly increase seed weight (15.6±1.0 µg per seed). The small significant differences in FA content and seed yield reported herein can be attributed to differences in BADC and FAE gene expression because that both of the T-DNA lines (Bolle et al., 2013) and the fae1 (Kunst L, 1992) line were created in the Arabidopsis Columbia-0 (Arabidopsis Genome, 2000) background.

Example 6

 $\mbox{\tt [0154]}$ Both HFA and Unmodified FA Increased in Badc1, $3\mbox{\tt [FAH]}$

[0155] The badc1,3 double mutant increased total FA in badc1,3/fae1/FAH seeds. To determine whether the increase of FA was specific for either unmodified FAs or HFAs, FAMEs from the respective seed backgrounds were analyzed. HFA in fae1/FAH and badc1,3/fae1/FAH were 18.6±1.8% and 17.4 f 0.6% of the total FAs respectively (FIG. 4), showing that badc1,3 didn't significantly change the HFA percentage in mature seeds (student t test, p>0.05), rather, the increases are in both HFAs and native FAs.

Example 7

[0156] FA Synthesis Rate is Restored in Badc1,3/Fae1/FAH

[0157] It was previously reported that the production of HFA in fae1 seeds expressing FAH was associated with a reduced rate of de novo FA synthesis that resulted in the observed decrease in oil content compared with the fae1 parental line (Bates et al., 2014). The introduction of badc1,3 in the fae1/FAH line restored the FA content suggesting that it had alleviated the previously observed inhibition of FA synthesis reported in non-HFA producing lines (Salie et al., 2016; Keereetaweep et al., 2018). To test this hypothesis, mid-phase developing seeds 11-13 days after flowering were collected and their fatty acid synthesis rates were determined by measuring the rate of [14C]acetate incorporation into FAs by total lipid extraction and scintillation counting. We first

validated the assay by showing linear incorporation of [14C]acetate between 20 and 100 minutes using badc1,3 seeds (FIG. 9) and chose a 60 minute incubations for subsequent experiments. As shown in FIG. 5, compared to fae1, the badc1,3 double mutant showed a 36.8% increase in fatty acid synthesis rate, whereas expression of FAH in fae1 decreased fatty acid synthesis rate by 52.2% with respect to that of fae1. When FAH was expressed in badc1,3/fae1, the fatty acid synthesis rate was fully restored to that of parental fae1 seeds.

Example 8

[0158] Seed Germination and Development

[0159] Overexpression of FAH in fael has been reported to decrease seed germination (Adhikari et al., 2016; Lunn et al., 2018; Lunn et al., 2018). To test if the restored FA content in badc1,3 can mitigate the germination defects, seeds of badc1,3/fae1/FAH were tested for germination and seedling establishment relative to the fae1/FAH, badc1,3 parental lines and fael. Emergence of the radicle was used as a germination marker, and the appearance of roots and green cotyledons was used as a marker for establishment. Germination of fae1/FAH lines was reduced to 88% compared with 99% for fael (FIG. 6A). The germination rate of badc1,3/fae1/FAH was even lower than fae1/FAH at 76%. badc1,3 showed a germination rate of 95%, i.e., similar to that of fae1. The seedling establishment rates of fae1 and badc1,3 were the same as their germination rates (FIG. 6B). 90% of geminated fae1/FAH seedlings continued to establishment, whereas 99% of germinated badc1,3/fae1/FAH seeds continued to establishment, resulting in similar establishment rates with respect to all seeds for these two genotypes. Comparison of seedling establishment rates at 7 and 10 days showed the combining badc1,3 with fae1/FAH had the effect of reducing germination while increasing seedling establishment (FIG. 10). While the growth rate of badc1,3/ fae1/FAH was higher than that of fae1/FAH, at maturity no visible differences were observed with respect to plant height and leaf size. However, fae1 plants produced 158 mg of seeds per plant, which decreased to 126 mg in fae1/FAH, while the introduction of badc1,3 in the fae1/FAH lines more than compensated, increasing seed yield per plant to 162 mg (FIG. 6C). In summary, combining badc1,3 with fae1/FAH improved seedling establishment and restored seed yield.

Example 9

[0160] Increasing Specialty Oil in Exemplary Camelina Crop Plants.

[0161] We use a fad2/fae1 Camelina background generated through RNAi suppression of FAD2 and FAE1 that accumulates over 60% 18:1 FA in mature seed (Nguyen et al. (2013)) (see FIGS. 16Q and 16R Arabidopsis sequences). RcFAH gene is placed under the control of seed-specific phaseolin promoter (see vector diagram of FIG. 15) and transformed into fad2/fae1 Camelina. Independently transformed lines are analyzed by gas chromatography-linked mass spectrometry (GC-MS) to determine their lipid composition. Homozygous lines with high HFA accumulation are chosen for disruption of BADC 1 and BADC3 gene expression with the use of CRISPR/Cas9 gene editing. Camelina is a hexaploid so the following target sites are identified to simultaneously disrupt all 3 isoforms of each gene: i.e, either CGGTGGAGATTATCCAACAG (SEQ ID

NO: 44) or TTATGGTGATCCTCTGGTTG (SEQ ID NO: 45) are used as the target site for editing Camelina BADC1, including Csa04g042500.1, Csa06g030800.I Csa09g068300.I; and AAAATTAAAATCTCAGCAGT (SEQ ID NO: 46) is the target site for editing Camelina BADC3 including Csa15g020290.1, Csa19g022480.1 and Csa01g018320.1. The transgenic seeds are screened in media supplemented with Hygromycin B and DNA is extracted and BADC 1 and BADC3 genes are amplified and sequenced to identify the CRISPR/cas9-induced lesion and verify the target gene disruption. The fatty acid synthesis rate in developing seed of fad2/fae1 !FAHIbadc1,3 is evaluated. Mature seeds are collected, seed size and seed weight are measured, and fatty acid methyl esters are prepared from the seeds for GC-MS analysis for FA composition and total FA quantification.

Example 10

[0162] Disruption of Specific BADC Gene(s) Increases Both Hydroxy Fatty Acid Accumulation and Seed Germination in Plants Expressing a Fatty Acid Hydroxylase FAH Enzyme

[0163] In order to test whether knock out either BADC or BADC3 effects hydroxy fatty acid (HFA) accumulation in plants, we used a CRISPR/cas9 strategy to disrupt single BADC genes in Arabidopsis Columbia-0 line CL37 comprising a mutation in fatty acid elongase 1 (fae1) and overexpressing the Ricinus communis fatty acid hydroxylase gene (FAH), that accumulates approximately 17% HFA in seeds. Target sites in the exon of BADC1 and 3 were chosen using online genome-wide prediction of plant CRISPR/Cas9 target sites, and target specificities were evaluated on the website of potential off-target finder. Finally, we constructed two vectors, one targeting the 2^{nd} and 5^{th} exons of BADC1, the other targeting the 2^{nd} and 4^{th} exons of BADC3 and transformed each into CL37. Transformed progenies were genotyped and sequence analysis confirmed editing of BADC1 or BADC3 had resulted four CL37 lines with truncated BADC1 (CL37/badc1) and 4 lines with truncated BADC3 (CL37/badc3).

[0164] A. CL37/Badc3 Plants Exhibited Increased HFA Content

[0165] FA composition in seeds was analyzed to determine if badc1 or badc3 influenced HFA accumulation. CL37 seeds contain 19.1% HFA, 4 CL37/badc1 lines showed similar percentage of HFA, implying disrupting BADC1 did not change HFA accumulation. Surprisingly, disruption of badc3 significantly increased the HFA percentage in all 4 CL37/badc3 lines by more than 30% with values ranging from 26.1 to 27.2% (FIG. 11). Notably, the increased HFA percentage didn't further inhibit FA synthesis, CL37/badc3 retained similar ACCase activity as that of CL37.

[0166] B. CL37/Badc3 Rescued Seed Germination and Increased Seed Yield

[0167] Overexpression of FAH in fael is reported to decrease seed germination (Adhikari et al., 2016; Lunn et al., 2018; Lunn et al., 2018). To test if increased HFA in CL37/badc3 seeds would further impair seed germination, seeds of CL37/badc3 were tested for germination and seedling establishment relative to CL37 and fael. Emergence of the radicle was used as a germination marker, and the appearance of roots and green cotyledons was used as a marker for establishment. On plates comprising ½ MS supplemented with sucrose plate, germination of CL37 lines

was 87% compared with 99% for fae1 (FIG. 12A). Surprisingly, the germination rate of CL37/badc3 was much higher than CL37 at 97%. The seedling establishment rates of fae1 and CL37/badc3 were similar to their germination rates (FIG. 12B), whereas establishment rates dropped to 81% in both CL37 and CL37/badc1. Consistently, seed germination and seedling establishment in % MS plate without sugar were also rescued in CL37/badc3 line (FIG. 13A-B). While the growth rate of CL37/badc3 was similar as that of CL37, no visible differences were observed with respect to plant height and leaf size during plants growth and maturity. However, fael plants produced 205 mg of seeds per plant, which decreased to 141 mg in CL37, while disruption of badc3 in the CL37 lines increased seed yield per plant by 67%, to more than 235 mg, that is an increase of 15% relative to fae1 (FIG. 14). In summary, disruption of bade3 in CL37 rescued seed germination and seedling establishment, and significantly increased seed yield.

REFERENCES

- [0168] Adhikari N D, Bates P D, Browse J (2016) WRINKLED1 Rescues Feedback Inhibition of Fatty Acid Synthesis in Hydroxylase-Expressing Seeds. Plant Physiol 171: 179-191
- [0169] Andre C, Haslam R P, Shanklin J (2012) Feedback regulation of plastidic acetyl-CoA carboxylase by 18:1acyl carrier protein in *Brassica napus*. Proc Natl Acad Sci USA 109: 10107-10112
- [0170] Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815
- [0171] Bates P D, Johnson S R, Cao X, Li J, Nam J W, Jaworski J G, Ohlrogge J B, Browse J (2014) Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. Proc Natl Acad Sci USA 111: 1204-1209
- [0172] Bohannon M B, Kleiman R (1978) Cyclopropene Fatty-Acids of Selected Seed Oils from Bombacaceae, Malvaceae, and Sterculiaceae. Lipids 13: 270-273
- [0173] Bolle C, Huep G, Kleinbolting N, Haberer G, Mayer K, Leister D, Weisshaar B (2013) GABI-DUPLO: a collection of double mutants to overcome genetic redundancy in *Arabidopsis thaliana*. Plant J 75: 157-171
- [0174] Bosma R, Miazek K, Willemsen S M, Vermue M H, Wijffels R H (2008) Growth inhibition of *Monodus* subterraneus by free fatty acids. Biotechnol Bioeng 101: 1108-1114
- [0175] Broadwater J A, Whittle E, Shanklin J (2002) Desaturation and hydroxylation. Residues 148 and 324 of Arabidopsis FAD2, in addition to substrate chain length, exert a major influence in partitioning of catalytic specificity. J Biol Chem 277: 15613-15620
- [0176] Burgal J, Shockey J, Lu C, Dyer J, Larson T, Graham I, Browse J (2008) Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil. Plant Biotechnol J 6: 819-831
- [0177] Butte W, Eilers J, Hirsch K (1982) Trialkysulfonium-hydroxides and trialkylselonium-hydroxides for the pyrolytic alkylation of acidic compounds. Anal. Lett. 15: 841-850
- [0178] Cahoon E B, Dietrich C R, Meyer K, Damude H G, Dyer J M, Kinney A J (2006) Conjugated fatty acids

- accumulate to high levels in phospholipids of metabolically engineered soybean and *Arabidopsis* seeds. Phytochemistry 67: 1166-1176
- [0179] Cahoon E B, Shockey J M, Dietrich C R, Gidda S K, Mullen R T, Dyer J M (2007) Engineering oilseeds for sustainable production of industrial and nutritional feed-stocks: solving bottlenecks in fatty acid flux. Current Opinion in Plant Biology 10: 236-244
- [0180] Cai Y, Goodman J M, Pyc M, Mullen R T, Dyer J M, Chapman K D (2015) Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation. Plant Cell 27: 2616-2636
- [0181] Fan J, Yan C, Xu C (2013) Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acidinduced cell death in growing tissues of *Arabidopsis*. Plant J 76: 930-942
- [0182] Feria Bourrellier A B, Valot B, Guillot A, Ambard-Bretteville F, Vidal J, Hodges M (2010) Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit. Proc Natl Acad Sci USA 107: 502-507
- [0183] Haslam R P, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier J A (2013) The modification of plant oil composition via metabolic engineering-better nutrition by design. Plant Biotechnology Journal 11: 157-168
- [0184] Hu Z H, Ren Z H, Lu C F (2012) The Phosphatidylcholine Diacylglycerol Cholinephosphotransferase Is Required for Efficient Hydroxy Fatty Acid Accumulation in Transgenic Arabidopsis. Plant Physiology 158: 1944-1954
- [0185] Keereetaweep J, Liu H, Zhai Z, Shanklin J (2018) Biotin Attachment Domain-Containing Proteins Irreversibly Inhibit Acetyl CoA Carboxylase. Plant Physiol 177: 208-215
- [0186] Kim H, Gardner H W, Hou C T (2000) Production of isomeric 9,10,13 (9,12,13)-trihydroxy-11E (10E)-octadecenoic acid from linoleic acid by *Pseudomonas aeruginosa* PR3. Journal of Industrial Microbiology & Biotechnology 25: 109-115
- [0187] Kim H U, Lee K R, Go Y S, Jung J H, Suh M C, Kim J B (2011) Endoplasmic Reticulum-Located PDAT1-2 from Castor Bean Enhances Hydroxy Fatty Acid Accumulation in Transgenic Plants. Plant and Cell Physiology 52: 983-993
- [0188] Kunst L T D, Underhill E W (1992) Fatty acid elongation in developing seeds of *Arabidopsis thaliana* Plant Physiol Biochem 30: 425-434
- [0189] Li M, Bahn S C, Guo L, Musgrave W, Berg H, Welti R, Wang X (2011) Patatin-related phospholipase pPLAIIIbeta-induced changes in lipid metabolism alter cellulose content and cell elongation in *Arabidopsis*. Plant Cell 23: 1107-1123
- [0190] Li R, Yu K, Wu Y, Tateno M, Hatanaka T, Hildebrand D F (2012) Vernonia DGATs can complement the disrupted oil and protein metabolism in epoxygenase-expressing soybean seeds. Metab Eng 14: 29-38
- [0191] Liu H, Zhai Z, Kuczynski K, Keereetaweep J, Schwender J, Shanklin J (2019) WRINKLED1 Regulates BIOTIN ATTACHMENT DOMAIN-CONTAINING Proteins that Inhibit Fatty Acid Synthesis. Plant Physiol 181: 55-62

- [0192] Lu C, Fulda M, Wallis J G, Browse J (2006) A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic *Arabidopsis*. Plant J 45: 847-856
- [0193] Lu C F, Xin Z G, Ren Z H, Miquel M, Browse J (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of *Arabidopsis*. Proceedings of the National Academy of Sciences of the United States of America 106: 18837-18842
- [0194] Lunn D, Smith G A, Wallis J G, Browse J (2018) Development Defects of Hydroxy-Fatty Acid-Accumulating Seeds Are Reduced by Castor Acyltransferases. Plant Physiol 177: 553-564
- [0195] Lunn D, Wallis J G, Browse J (2018) Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating Seeds. Plant Cell Physiol 59: 205-214
- [0196] Lunn D, Wallis J G, Browse J (2019) Tri-Hydroxy-Triacylglycerol Is Efficiently Produced by Position-Specific Castor Acyltransferases. Plant Physiol 179: 1050-1063
- [0197] Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of *Arabidopsis thaliana* binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60: 476-487
- [0198] Napier J A (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58: 295-319
- [0199] Nguyen et al. (2013) Plant Biotechnol J 11: 759-769)
- [0200] Pfaffl M W, Horgan G W, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36
- [0201] Salie M J, Zhang N, Lancikova V, Xu D, Thelen J J (2016) A Family of Negative Regulators Targets the Committed Step of de Novo Fatty Acid Biosynthesis. Plant Cell 28: 2312-2325
- [0202] Shivaiah K K, Ding G, Upton B, Nikolau B J (2020) Non-Catalytic Subunits Facilitate Quaternary Organization of Plastidic Acetyl-CoA Carboxylase. Plant Physiology 182: 756-775
- [0203] Snapp A R, Kang J, Qi X, Lu C (2014) A fatty acid condensing enzyme from *Physaria fendleri* increases hydroxy fatty acid accumulation in transgenic oilseeds of *Camelina sativa*. Planta 240: 599-610
- [0204] To A, Joubes J, Barthole G, Lecureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in *Arabidopsis*. Plant Cell 24: 5007-5023

- [0205] Tso T C (1964) Plant-Growth Inhibition by Some Fatty Acids and Their Analogues. Nature 202: 511-512
- [0206] van de Loo F J, Broun P, Turner S, Somerville C (1995) An oleate 12-hydroxylase from *Ricinus communis* L. is a fatty acyl desaturase homolog. Proc. Natl. Acad. Sci. USA 92: 6743-6747
- [0207] van Erp H, Bates P D, Burgal J, Shockey J, Browse J (2011) Castor phospholipid:diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic *Arabidopsis*. Plant Physiol 155: 683-693
- [0208] Vanhercke T, Wood C C, Stymne S, Singh S P, Green A G (2013) Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnology Journal 11: 197-210
- [0209] Wang X, Li L, Zheng Y, Zou H, Cao Y, Liu H, Liu W, Xian M (2012) Biosynthesis of long chain hydroxyfatty acids from glucose by engineered *Escherichia coli*. Bioresour Technol 114: 561-566
- [0210] Wu Y R, Llewellyn D J, Dennis E S (2002) A quick and easy method for isolating good-quality RNA from cotton (*Gossypium hirsutum* L.) tissues. Plant Molecular Biology Reporter 20: 213-218
- [0211] Yang Y, Munz J, Cass C, Zienkiewicz A, Kong Q, Ma W, Sanjaya, Sedbrook J, Benning C (2015) Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues. Plant Physiol 169: 1836-1847
- [0212] Ye Y, Fulcher Y G, Sliman D J, 2nd, Day M T, Schroeder M J, Koppisetti R K, Bates P D, Thelen J J, Van Doren S R (2020) The BADC and BCCP subunits of chloroplast acetyl-CoA carboxylase sense the pH changes of the light-dark cycle. J Biol Chem
- [0213] Yu X H, Prakash R R, Sweet M, Shanklin J (2014) Coexpressing *Escherichia coli* cyclopropane synthase with *Sterculia foetida* Lysophosphatidic acid acyltransferase enhances cyclopropane fatty acid accumulation. Plant Physiol 164: 455-465
- [0214] Each and every publication and patent mentioned in the above specification is herein incorporated by reference in its entirety for all purposes. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art and in fields related thereto are intended to be within the scope of the following claims.

SEQUENCE LISTING

<210> SEQ ID NO 1

<211> LENGTH: 281

<212> TYPE: PRT

<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 1

Met Ala Ser Ser Ala Ala Leu Gly Ser Leu His Gln Thr Leu Gly Ser 1 5 10 15
Ala Ile Asn Ser Gln Ser Glu Val His Ser Leu Ser Gly Asn Trp Ser 20 25 30
Ala Ser Gly Asn Ser Cys Val Pro Arg Trp Arg Leu Ser Asn Arg Asn 35 40 45
Ser Asn Tyr Arg Leu Val Leu Arg Ala Lys Ala Ala Lys Ser Ser Thr 50 55 60
Thr Thr Ile Ser Asp Gly Ser Ser Asp Ala Ser Val Ser Asp Gly Lys 65 70 75 80
Lys Thr Val Arg Arg Ile Thr Phe Pro Lys Glu Val Glu Ala Leu Val
His Glu Met Cys Asp Glu Thr Glu Val Ala Val Leu Gln Leu Lys Val
Gly Asp Phe Glu Met Asn Leu Lys Arg Lys Ile Gly Ala Ala Thr Asn 115 120 125
Pro Ile Pro Val Ala Asp Ile Ser Pro Thr Val Ala Pro Pro Ile Pro 130 135 140
Ser Glu Pro Met Asn Lys Ser Ala Ser Ser Ala Pro Ser Pro Ser Gln
Ala Lys Pro Ser Ser Glu Lys Val Ser Pro Phe Lys Asn Thr Ser Tyr
165 170 175 Gly Lys Pro Ala Lys Leu Ala Ala Leu Glu Ala Ser Gly Ser Thr Asn
180 185 190 Tyr Val Leu Val Thr Ser Pro Ala Val Gly Lys Phe Gln Arg Ser Arg
195 200 205 Thr Val Lys Gly Lys Lys Gln Ser Pro Ser Cys Lys Glu Gly Asp Ala
210 215 220 Ile Lys Glu Gly Gln Val Ile Gly Tyr Leu His Gln Leu Gly Thr Glu
225 230 235 240
Leu Pro Val Thr Ser Asp Val Ala Gly Glu Val Leu Lys Leu Leu Ser 245 250 255
Asp Asp Gly Asp Ser Val Gly Tyr Gly Asp Pro Leu Val Ala Val Leu 260 265 270
Pro Ser Phe His Asp Ile Asn Ile Gln 275 280
<210> SEQ ID NO 2 <211> LENGTH: 2613 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 2
acggaccgta gtgtagtagt agatgcggcg gacggagtta ccaaagaaga aggccgctca 60
aaataattaa atttgttcaa ccgtcatctt cttcaactga tcttagctca actaaccacc 120 tctttcttct tggcgtcaat tcaatcaacc aaaacctttt tctcctatct agctcacgct 180
ttettettet tecaatggeg tettetgeag eteteggate tetecategt gagtetettg 240
ctctctcact ctctgcgttt tacttattct gttgatttca tgaggatagg aaaactagaa 300
atggaggacc atgagtaaaa tttcggaaat gaaaggcata gattggagct atccgttagt 360
gacgttgttg cttcttagag tgtaatttag cgacttaatt aagtttcaat ctcggatctt 420

gtgtgtctaa tttgtatcaa gagatgtttc agctagaaaa agtgaatttt atttg	ttcca 480
ttttacagag actttagggt cagccattaa ttcacagagt gaggttcact cgctt	tctgg 540
aaactggtct gcctctggta attcatgtgt gccacggtgg agattatcca acagg	aacag 600
caactacagg ctcgtgttac gtgctaaggc cgctaaatct tcgacaacaa ccata	agtga 660
tggtgagttt atettecaea attettette atgtteattt tgetggttaa tgeet	ttttt 720
tactatcagg cttgtctcat cactttgcta atacgatcca ttggccaaag atggt	attaa 780
tetgttttge tettaaagga aetggaaetg aaattettag tetegtttge tetta	aagga 840
actagaaatg taactgtaag cctcggtctt ttaccagctg tcttggaacc aggag	ataca 900
gtgatgtgat attggaacat ttttctttta tttcctatga cttttgctta ttttt	ggctt 960
tgcaggttca tctgatgcta gtgtgtcaga cgggaagaaa acagttcgac ggata	acttt 1020
cccgaaagaa gtggaggttt cttccttgcc tttcatgggt cttagatatt aggtt	cttta 1080
atttataagt ttggtaggtg atgatatgac gatttcctca aatatgcact ttcta	gatcg 1140
tcaggatttt ggatgcataa cttcaggcaa tctactctta taatttttaa tcatg	acgta 1200
tggatgtacc tttctttata tgttgttaga tgaaatgttg caggcactgg ttcac	gagat 1260
gtgtgatgaa actgaggttg ctgtgctgca acttaaggca agtctctctg ccatt	agttt 1320
taacttcatt attattatta tttgtaaact ttctttgagg ctactacaaa gacga	gtgca 1380
ttttactcaa ccaacaatat ggggctaaat atcactgatt tgagataata gaatg	taggt 1440
tccaacaatt agactettet gaagetttet tttgetacag gttggagatt tegag	atgaa 1500
cctaaaacgg aagattggag cagccacaaa ccccattccc gtggcggata tatct	ccaac 1560
tgtagegeet eetatteett etgaacetat gaataaatet gettettegg eteet	agccc 1620
atctcaagca aagcetteet etgagaaagt gtetecattt aagaatacat catat	gggaa 1680
accagcaaag ttggctgctt tggaggcatc tggatccacc aactatgtgt tagtc	acatc 1740
tcccgcagta tgagatccat ttcctaatta gtggttgctt tcatatccct taatt	tctct 1800
gcagttttct tgtttgattt gatcttgttt cttctcttac caaaaggtgg gcaag	tttca 1860
gaggagcaga actgtaaaag gaaagaaaca atctcctagc tgcaaagagg taaac	gactc 1920
taaattottt tgoatotott agaacaaaag aacagaaata agatoaaaga gotaa	gtgaa 1980
aaaaactcct tagggtgatg caataaagga aggccaagtt attggatact tacat	cagtt 2040
gggaacagaa cttccagtga cggtaatatc ttaactaata tatccatctc ttctt	tgaaa 2100
ctatctaatc agactcatcg atcttgctat ttgtcgagca gtcagatgta gctgg	agaag 2160
teettaaget tettteagat gaeggaggta aacatttgag tatteaaace gttte	attta 2220
gtatgaacat tcagaaatta tataagtgaa ttgatatgaa ctcatgcttc gtgtg	caaac 2280
agacteegta ggttatggag ateetetggt tgeagtettg ceatetttee aegae	atcaa 2340
catccagtga tgatggtttc ttcagcccaa ttccatagca aatgaatagt ctttc	atccg 2400
gagactgtac tattcatctt ctcctgtgtt tgttcaatga agatttgtaa tctgt	ttagt 2460
tgcaaagagt ctactttgat cttgctctca tcatttgtca cgtaatgtgg atttt	ctgca 2520
ccagagaaaa aaaacaattg tggaattttt atagaaatga cgtggctatc ttatc	ttctc 2580
cgatcatcaa ataaaatcaa ggctcaaaaa ttc	2613

<211> LENGTH: 1521 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEQUENCE: 3 atgacgtccg ttaacgttaa gctcctttac cgttacgtct taaccaactt tttcaacctc 60 tgtttgttcc cgttaacggc gttcctcgcc ggaaaagcct ctcggcttac cataaacgat 120 ctccacaact tcctttccta tctccaacac aaccttataa cagtaacttt actctttgct ttcactgttt tcggtttggt tctctacatc gtaacccgac ccaatccggt ttatctcgtt gactactcgt gttaccttcc accaccgcat ctcaaagtta gtgtctctaa agtcatggat attttctacc aaataagaaa agctgatact tcttcacgga acgtggcatg tgatgatccg 360 tcctcgctcg atttcctgag gaagattcaa gagcgttcag gtctaggtga tgagacgtac 420 agtectgagg gacteattea egtaceaeeg eggaagaett ttgeagegte aegtgaagag 480 acagagaagg ttatcatcgg tgcgctcgaa aatctattcg agaacaccaa agttaaccct 540 agagagattg gtatacttgt ggtgaactca agcatgttta atccaactcc ttcgctatcc 600 gctatggtcg ttaatacttt caagctccga agcaacatca aaagctttaa tctaggagga 660 atgggttgta gtgctggtgt tattgccatt gatttggcta aagacttgtt gcatgttcat 720 aaaaacactt atgetettgt ggtgageact gagaacatea cacaaggeat ttatgetgga 780 gaaaatagat caatgatggt tagcaattgc ttgtttcgtg ttggtggggc cgcgattttg 840 ctctctaaca agtcgggaga ccggagacgg tccaagtaca agctagttca cacggtccga 900 acgcatactg gagctgatga caagtctttt cgatgtgtgc aacaagaaga cgatgagagc 960 ggcaaaatcg gagtttgtct gtcaaaggac ataaccaatg ttgcggggac aacacttacg 1020 aaaaatatag caacattggg teegttgatt etteetttaa gegaaaagtt tetttttte 1080 gctaccttcg tcgccaagaa acttctaaag gataaaatca agcattacta tgttccggat 1140 ttcaagcttg ctgttgacca tttctgtatt catgccggag gcagagccgt gatcgatgag 1200 ctagagaaga acttaggact atcgccgatc gatgtggagg catctagatc aacgttacat 1260 agatttggga atacttcatc tagctcaatt tggtatgaat tagcatacat agaggcaaag 1320 ggaagaatga agaaagggaa taaagcttgg cagattgctt taggatcagg gtttaagtgt 1380 aatagtgcgg tttgggtggc tctacgcaat gtcaaggcat cggcaaatag tccttggcaa 1440 cattgcatcg atagatatcc ggttaaaatt gattctgatt tgtcaaagtc aaagactcat 1500 gtccaaaacg gtcggtccta a 1521 <210> SEQ ID NO 4 <211> LENGTH: 1164 <212> TYPE: DNA <213> ORGANISM: Ricinus communis <400> SEQUENCE: 4 atgggaggtg gtggtcgcat gtccactgtc ataaccagca acaacagtga gaagaaagga 60 ggaagcagcc accttaagcg agcgccgcac acgaagcctc ctttcacact tggtgacctc aagagageca teecaceeca ttgetetgaa egetettttg tgegeteatt eteetatgtt 180 geetatgatg tetgettaag tittettite tactegateg ceaceaacti etteeettae 240

atctcttctc	cgctctcgta	tgtcgcttgg	ctggtttact	ggctcttcca	aggctgcatt	300
ctcactggtc	tttgggtcat	cggccatgaa	tgtggccatc	atgcttttag	tgagtatcag	360
ctggctgatg	acattgttgg	cctaattgtc	cattctgcac	ttctggttcc	atattttca	420
tggaaatata	gccatcgccg	ccaccattct	aacataggat	ctctcgagcg	agacgaagtg	480
ttcgtcccga	aatcaaagtc	gaaaatttca	tggtattcta	agtacttaaa	caacccgcca	540
ggtcgagttt	tgacacttgc	tgccacgctc	ctccttggct	ggcctttata	cttagctttc	600
aatgtctctg	gtagacctta	cgatcgcttt	gcttgccatt	atgatcccta	tggcccaata	660
ttttccgaaa	gagaaaggct	tcagatttac	attgctgacc	tcggaatctt	tgccacaacg	720
tttgcgcttt	atcaggctac	aatggcaaaa	gggttggctt	gggtaatgcg	tatctatggg	780
gtgccattgc	ttattgttaa	ctgtttcctt	gttatgatca	catacttgca	gcacactcac	840
ccagctattc	cacgctatgg	ctcatcggaa	tgggattggc	teeggggage	aatggtgact	900
gtcgatagag	attatggggt	gttgaataaa	gtattccata	acattgcaga	cactcaggta	960
gctcatcatc	tctttgctac	agtgccacat	taccatgcaa	tggaggccac	taaagcaatc	1020
aagcctataa	tgggtgaata	ttaccggtat	gatggtaccc	cattttacaa	ggcattgtgg	1080
agggaggcaa	aggagtgctt	gttcgtcgag	ccagatgaag	gagctcctac	acaaggcgtt	1140
ttctggtacc	ggaacaagta	ttaa				1164

<210> SEQ ID NO 5 <211> LENGTH: 263 <212> TYPE: PRT

<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 5

Met Ala Ser Cys Ser Leu Gly Val Pro Lys Ile Lys Ile Ser Ala Val 1 $$ 5

Arg Ser Leu Leu Arg Gln Arg Pro Val Lys Tyr Leu Ser Leu Lys Thr 35 40 45

Thr Phe Gly Ser Val Lys Ala Val Gln Val Ser Thr Val Pro Thr Ala 50 60

Glu Thr Ser Ala Thr Ile Glu Val Lys Asp Ser Lys Glu Ile Lys Ser 65 70 75 80

Ser Arg Leu Asn Ala Gln Leu Val Pro Lys Pro Ser Glu Val Glu Ala

Leu Val Thr Glu Ile Cys Asp Ser Ser Ser Ile Ala Glu Phe Glu Leu
100 105 110

Lys Leu Gly Gly Phe Arg Leu Tyr Val Ala Arg Asn Ile Ala Asp Asn 115 120 125

Ser Ser Leu Gln Pro Pro Pro Thr Pro Ala Val Thr Ala Ser Asn Ala 130 135 140

Thr Thr Glu Ser Pro Glu Ser Asn Gly Ser Ala Ser Ser Thr Ser Leu 145 $$ 150 $$ 155 $$ 160

Ala Ile Ser Lys Pro Ala Ser Ser Ala Ala Asp Gln Gly Leu Met Ile 165 $$ 170 $$ 175

Leu Gln Ser Pro Lys Val Gly Phe Phe Arg Arg Ser Lys Thr Ile Lys \$180\$

Gly Lys Arg Leu Pro Ser Ser Cys Lys Glu Lys Asp Gln Val Lys Glu 195 200 205	
Gly Gln Ile Leu Cys Tyr Ile Glu Gln Leu Gly Gly Gln Phe Pro Ile 210 215 220	
Glu Ser Asp Val Thr Gly Glu Val Val Lys Ile Leu Arg Glu Asp Gly	
225 230 235 240	
Glu Pro Val Gly Tyr Asn Asp Ala Leu Ile Ser Ile Leu Pro Ser Phe 245 250 255	
Pro Gly Ile Lys Lys Leu Gln 260	
<210> SEQ ID NO 6 <211> LENGTH: 2698 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 6	
accactctgg ttgtatcgaa cgagcgaaac ccaaccaacg acgagcgttc acctcaaata	60
ttttgatttg atcaaatcat ctccacactc gccaaatcgt tgtgtcctcg ttcatatcgt	120
tategtatea geteaaaaat eteaatetet etteettaea ttettetgtt tetegaatee	180
ttgtctccct ccatggcttc ctgtaagttt ctctacctgt ctcttgttgt cttgcttgtt	240
ccagttttct tgggatcgta cactaaattg ggtttgtgtt tcctcattca aatttgaatg	300
ctttcgtagt tttctgctct catagaatca tattcatcga aaggttgtaa ctttggggat	360
tctgtttatt gagtgatagg aaaactcaga aagggactta actttgaaca attaggttga	420
ttttggtata aattagagat ctaaagttga agaatttgtc ttcagtatct gtttcaatgg	480
agatgagatt caagttactt catttgatat tgaattgcca agctaatcta attgatgagt	540
ttggcagtga taagttaatt tcataatttg tatctcttaa tatgaattac tcgacaacat	600
tacttaatct ttcactgttg agtatacgtg gagatcggtt aacgtgagtt tattctaaga	660
cattatattt tgaattactt aaaactttct ggagctatct tggattgagt gtataagatt	720
tgcttatgct caattttaaa aagtgaggga tcatattgaa gataagtgct tatttagtct	780
ttctttttga ctctgtcttg ttttggctga tttcccatat tgagaccttg gcgtatgacg	840
tatgttacag gtagcctagg agttcctaaa attaaaatct cggcagtaga ccttagtaga	900
gtaagatetg gaagettaet gataceatae aateaaagat cattgetteg acaaaggeea	960
gtgaagtact tgagtotgaa gacaacattt ggatotgtga aagotgtoca agtgtotact	1020
gtcccaactg cagaaacatc aggtacactt atctctatat gttttcttaa cttgaatatg	1080
ctcattttta ccgattttac tatcgatatg ttttgcacat cgagtgtgtt cacatgtggg	1140
ctgatgtgtt cctagaaagt ctcttttagt tttcctttaa tgctttctga tttattcttg	1200
ttatcaacag ctactataga agtaaaagat tctaaagaga tcaagtcatc tcgattaaac	1260
gctcagcttg ttcccaagcc ttctgaggtg ggttttgatt ttccatttaa tgttagaatg	1320
toaatttaag aactotggtt ottotooott attgtoaaat ggaagagaag aaatgtgttg	1380
tettgaggat taagtggaga atteaettgt tgeetgeaca ataaaaceat ttgagtetgt	1440
ttttttaatt ggatgcattc aatatgattt ctttttcgat cttttaggtg gaagcccttg	1500
taactgaaat atgcgattct tcatcaattg cagagtttga actgaaagta aggctctact	1560

caattgaatt gttgtcatgt tattgctctt ttgcagagtc atctcagcta agtttttgaa 1620

	ggt 1680							
ttccgactat atgtagcaag gaacatagct gacaatagta gtctacaacc tccgcca	act 1740							
cctgctgtga ctgcttcaaa tgcaactacc gagagtcctg agtcgaatgg atcagct	tcc 1800							
tetaetteae tggetatete aaaaceagea tegteageeg etgateaggg tttgate	jatt 1860							
ctccaatctc caaaagtaag agaccacaca actcaaaggc aaaatgtcat atactct	gtt 1920							
ggaaaatgct atattttata gtttcaatca gaaagttgat cccaatctaa atggtgt	gta 1980							
atatgtgcag gtagggttct tcaggagatc caaaaccata aagggtaaac gcctgcc	ttc 2040							
gtottgtaaa gaggtataac caatottott gaacagaaga gagtgtttga tttoatg	ggg 2100							
gaaaccactg actaatctct tatttgctct tgtttaatct gacagaaaga ccaagtg	jaaa 2160							
gaaggtcaaa ttctgtgcta cattgaacaa ctcggtggcc aatttccaat cgaggtt	aga 2220							
taatattoca ttttaattoo tgatttagta attactatoa ottgottoaa ocaacto	agt 2280							
taaattgett etetgtttat egateaatet tetagtetga tgttacegge gaggtag	jtca 2340							
agatacteeg agaagatgga ggcaagtete tegtettett taacetttet tegttt	tct 2400							
taaaacctcg gtgtaatgat ttttcttatc gttttctcat tcggaacaga gcctgta	ıgga 2460							
tacaatgatg ctctcatctc catcettcca tectteeetg ggatcaagaa getteag	jtaa 2520							
aaccaaattc gagctggttt tgagttatga cactgtgcct tgtgtatgct tttagat	aaa 2580							
gaaacttcat tcatatttgt atttgtcttt tgcttgtatg aaagttcttc tttaaga	actc 2640							
ttttattctg tatgcttttt cttatatata aaaacattat ggtatttttt tttaatc	g 2698							
<210> SEQ ID NO 7 <211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis								
<211> LENGTH: 387 <212> TYPE: PRT								
<211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis <400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Se	er							
<211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis <400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Se 1 5 10 15								
<211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis <400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Se								
<211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis <400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Se 1 5 10 15 Glu Lys Lys Gly Gly Ser Ser His Leu Lys Arg Ala Pro His Thr Ly	7S							
<pre><211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis <400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Se 1</pre>	78 78							
<pre><211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis <400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Se 1</pre>	rs ul							
<pre><211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis </pre> <pre><400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Ser 1</pre>	rs rs al							
<pre><211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis </pre> <pre><400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Ser 1</pre>	rs al rr							
<pre><211> LENGTH: 387 <212> TYPE: PRT <213> ORGANISM: Ricinus communis </pre> <pre><400> SEQUENCE: 7 Met Gly Gly Gly Gly Arg Met Ser Thr Val Ile Thr Ser Asn Asn Ser 10</pre>	rs rs il rr o e							

His Arg Arg His His Ser Asn Ile Gly Ser Leu Glu Arg Asp Glu Val 145 150 150 160

Phe Val Pro Lys Ser Lys Ser Lys Ile Ser Trp Tyr Ser Lys Tyr Leu

-continued	
165 170 175	
Asn Asn Pro Pro Gly Arg Val Leu Thr Leu Ala Ala Thr Leu Leu Leu 180 185 190	
Gly Trp Pro Leu Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp 195 200 205	
Arg Phe Ala Cys His Tyr Asp Pro Tyr Gly Pro Ile Phe Ser Glu Arg 210 215 220	
Glu Arg Leu Gln Ile Tyr Ile Ala Asp Leu Gly Ile Phe Ala Thr Thr 225 230 235 240	
Phe Ala Leu Tyr Gln Ala Thr Met Ala Lys Gly Leu Ala Trp Val Met 245 250 255	
Arg Ile Tyr Gly Val Pro Leu Leu Ile Val Asn Cys Phe Leu Val Met	
Ile Thr Tyr Leu Gln His Thr His Pro Ala Ile Pro Arg Tyr Gly Ser 275 280 285	
Ser Glu Trp Asp Trp Leu Arg Gly Ala Met Val Thr Val Asp Arg Asp	
Tyr Gly Val Leu Asn Lys Val Phe His Asn Ile Ala Asp Thr Gln Val	
Ala His His Leu Phe Ala Thr Val Pro His Tyr His Ala Met Glu Ala 325 330 335	
Thr Lys Ala Ile Lys Pro Ile Met Gly Glu Tyr Tyr Arg Tyr Asp Gly 340 345 350	
Thr Pro Phe Tyr Lys Ala Leu Trp Arg Glu Ala Lys Glu Cys Leu Phe	
Val Glu Pro Asp Glu Gly Ala Pro Thr Gln Gly Val Phe Trp Tyr Arg	
370 375 380 Asn Lys Tyr	
385	
<210> SEQ ID NO 8 <211> LENGTH: 831	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 8	
atggcgtctt ctgcagctct cggatctctt catcagactt tagggtcaca gagtgagctt	60
catttgcttt ctggaaactg gtctgcctct ggtacttctt gcgttccacg gtggagatta	120
tccaacagga gtagcaatta cacgcttgtg ttacgtgcaa aggcctctaa aacttcgaca	180
acaaccaaaa gcgatgattc atctgatgcg actgtgtcaa acgggaagaa atctgttcga	240
cggacaacct tcccgaaaga agtggaggca ctggttcacg agatgtgtga tgagactgag	300
gttgctgtcc tgaaacttaa ggttggagat ttcgagatga acctaaaacg gaagattgga	360
geggecacaa acceeattee tgtggaggat atateteeaa eegtageace teegatteet	420
totgagocca tggataaato tgtttottot gotoccagoo catotaaago aaaacogtot	480
gaaaaagtat ctccatttat gaatacatca tatgggaaac cagcgaagtt ggtagctttg	540
gaggcatctg gatcaaacaa ttatgttcta gtcaaatctc cctcagttgg cgagtttcac	600

agaagcagaa ctgtaaaagg aaagaaacta tctcctagct gcaaagaggg tgatgaaata

aaggaaggcc aagttattgg atacttacat cagttgggaa cagaacttcc agtgacgtcg gatgtagctg gggaagtcct caagcttctt tcagatgacg gagactccgt aggttatggt 780 gatectetgg ttgeggtett gecategtte caegatatea acatecagtg a <210> SEQ ID NO 9 <211> LENGTH: 276 <212> TYPE: PRT <213 > ORGANISM: Artificial Sequence <223 > OTHER INFORMATION: Synthetic <400> SEQUENCE: 9 Met Ala Ser Ser Ala Ala Leu Gly Ser Leu His Gln Thr Leu Gly Ser Gln Ser Glu Leu His Leu Leu Ser Gly Asn Trp Ser Ala Ser Gly Thr 20 25 Ser Cys Val Pro Arg Trp Arg Leu Ser Asn Arg Ser Ser Asn Tyr Thr 40 Leu Val Leu Arg Ala Lys Ala Ser Lys Thr Ser Thr Thr Thr Lys Ser 55 Asp Asp Ser Ser Asp Ala Thr Val Ser Asn Gly Lys Lys Ser Val Arg Arg Thr Thr Phe Pro Lys Glu Val Glu Ala Leu Val His Glu Met Cys 90 Asp Glu Thr Glu Val Ala Val Leu Lys Leu Lys Val Gly Asp Phe Glu 100 Met Asn Leu Lys Arg Lys Ile Gly Ala Ala Thr Asn Pro Ile Pro Val Glu Asp Ile Ser Pro Thr Val Ala Pro Pro Ile Pro Ser Glu Pro Met 135 Asp Lys Ser Val Ser Ser Ala Pro Ser Pro Ser Lys Ala Lys Pro Ser 150 Glu Lys Val Ser Pro Phe Met Asn Thr Ser Tyr Gly Lys Pro Ala Lys 170 Leu Val Ala Leu Glu Ala Ser Gly Ser Asn Asn Tyr Val Leu Val Lys Ser Pro Ser Val Gly Glu Phe His Arg Ser Arg Thr Val Lys Gly Lys Lys Leu Ser Pro Ser Cys Lys Glu Gly Asp Glu Ile Lys Glu Gly Gln Val Ile Gly Tyr Leu His Gln Leu Gly Thr Glu Leu Pro Val Thr Ser Asp Val Ala Gly Glu Val Leu Lys Leu Leu Ser Asp Asp Gly Asp Ser 250 Val Gly Tyr Gly Asp Pro Leu Val Ala Val Leu Pro Ser Phe His Asp Ile Asn Ile Gln 275 <210> SEQ ID NO 10 <211> LENGTH: 846 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE:

-concinded	
<223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 10	
atggcgtctt ctgcagctct cggatctctt catcagactt tagggtcaca gagtgagctt	60
cacttgcttt ctggaaattg gtctgcttct ggtacttctt gtgtaccacg gtggagatta	120
tccaacagga gcagcaatta cacgcttgtg ttacgtgcaa aggcctctaa aacttcgaca	180
acaaccaaaa gcgatgattc atctgatgcg actgtgtcaa acgggaagaa atctgttcga	240
cggacaactt tcccgaaaga agtggaggca ctggttcacg agatgtgtga tgagactgag	300
gttgctgtcc tgaaacttaa ggcaagttac tctggcgttg gagatttcga gatgaaccta	360
aaacggaaga ttgaagcggc cacaaacccc atteetgtgg aggatatate tecaaccgta	420
gcacctccga ttccttctga gcccatgaat caatcggttt cctctattcc tagcccatct	480
aaagcaaaac cttctgaaaa agtatctcca tttataaata catcatatgg gaaaccagca	540
aagttggcag ctttggaggc atctggatca aataattatg ttctagtcaa atctccctca	600
gttggcgagt ttcacagaag cagaactgta aaaggaaaga aactatctcc tagctgcaaa	660
gagggtgatg aaataaagga agggcaagtt attggatact tacatcagtt gggaacagaa	720
cttccagtga cgtcggatgt agctggggaa gtcctcaagc ttctttcaga tgacggagac	780
teegtaggtt atggtgatee tetggttgeg gtettgeeat egtteeaega tateaacate	840
cagtga	846
<210> SEQ ID NO 11 <211> LENGTH: 281 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 11	
Met Ala Ser Ser Ala Ala Leu Gly Ser Leu His Gln Thr Leu Gly Ser 1 5 10 15	
Gln Ser Glu Leu His Leu Leu Ser Gly Asn Trp Ser Ala Ser Gly Thr 20 25 30	
Ser Cys Val Pro Arg Trp Arg Leu Ser Asn Arg Ser Ser Asn Tyr Thr 35 40 45	
Leu Val Leu Arg Ala Lys Ala Ser Lys Thr Ser Thr Thr Thr Lys Ser 50 55 60	
Asp Asp Ser Ser Asp Ala Thr Val Ser Asn Gly Lys Lys Ser Val Arg 65 70 75 80	
Arg Thr Thr Phe Pro Lys Glu Val Glu Ala Leu Val His Glu Met Cys 85 90 95	
Asp Glu Thr Glu Val Ala Val Leu Lys Leu Lys Ala Ser Tyr Ser Gly	
Val Gly Asp Phe Glu Met Asn Leu Lys Arg Lys Ile Glu Ala Ala Thr	
Asn Pro Ile Pro Val Glu Asp Ile Ser Pro Thr Val Ala Pro Pro Ile	
Pro Ser Glu Pro Met Asn Gln Ser Val Ser Ser Ile Pro Ser Pro Ser	
145 150 155 160 Lys Ala Lys Pro Ser Glu Lys Val Ser Pro Phe Ile Asn Thr Ser Tyr	
165 170 175	

165 170 175

Gly Lys Pro Ala Lys Leu Ala Ala Leu Glu Ala Ser Gly Ser Asn Asn Tyr Val Leu Val Lys Ser Pro Ser Val Gly Glu Phe His Arg Ser Arg Thr Val Lys Gly Lys Lys Leu Ser Pro Ser Cys Lys Glu Gly Asp Glu 215 Ile Lys Glu Gly Gln Val Ile Gly Tyr Leu His Gln Leu Gly Thr Glu Leu Pro Val Thr Ser Asp Val Ala Gly Glu Val Leu Lys Leu Leu Ser Asp Asp Gly Asp Ser Val Gly Tyr Gly Asp Pro Leu Val Ala Val Leu Pro Ser Phe His Asp Ile Asn Ile Gln <210> SEQ ID NO 12 <211> LENGTH: 891 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEOUENCE: 12 Ala Thr Gly Gly Cys Gly Thr Cys Thr Thr Cys Thr Gly Cys Ala Gly 10 Cys Thr Cys Thr Cys Gly Gly Ala Thr Cys Thr Cys Thr Thr Cys Ala 25 Thr Cys Ala Thr Cys Cys Gly Ala Thr Cys Thr Thr Thr Thr Gly 40 Thr Gly Gly Cys Ala Ala Thr Thr Gly Gly Thr Thr Gly Thr Thr Gly Thr Gly Gly Thr Gly Ala Cys Thr Gly Ala Ala Thr Thr Ala Gly Ala Gly Ala Cys Thr Thr Thr Ala Gly Gly Gly Thr Cys Ala Cys Ala Gly Ala Gly Thr Gly Ala Gly Cys Thr Thr Cys Ala Cys Thr Thr Gly Cys Thr Thr Thr Cys Thr Gly Gly Ala Ala Ala Thr Thr Gly Gly Thr Cys Thr Gly Cys Thr Thr Cys Thr Gly Gly Thr Ala Cys Thr Thr Cys Thr Thr Gly Thr Gly Thr Ala Cys Cys Ala Cys Gly Gly Thr Gly Gly Ala 150 Gly Ala Thr Thr Ala Thr Cys Cys Ala Ala Cys Ala Gly Gly Ala Gly Cys Ala Gly Cys Ala Ala Thr Thr Ala Cys Ala Cys Gly Cys Thr Thr 185 Gly Thr Gly Thr Thr Ala Cys Gly Thr Gly Cys Ala Ala Ala Gly Gly Cys Cys Thr Cys Thr Ala Ala Ala Cys Thr Thr Cys Gly Ala Cys 215 220 Ala Ala Cys Ala Ala Cys Cys Ala Ala Ala Ala Gly Cys Gly Ala Thr 230 235

Gly	Ala	Thr	Thr	Cys 245	Ala	Thr	СЛа	Thr	Gly 250	Ala	Thr	Gly	Cys	Ala 255	Ala
СЛа	Thr	Gly	Thr 260	Gly	Thr	СЛа	Ala	Ala 265	Ala	СЛа	Gly	Gly	Gly 270	Ala	Ala
Gly	Ala	Ala 275	Ala	Thr	CÀa	Thr	Gly 280	Thr	Thr	СЛа	Gly	Ala 285	Ala	Gly	Gly
Ala	Сув 290	Ala	Ala	СЛа	Thr	Thr 295	Thr	Сув	Сла	Cys	Gly 300	Ala	Ala	Ala	Gly
Ala 305	Ala	Gly	Thr	Gly	Gly 310	Ala	Gly	Ala	СЛа	Ala 315	СЛа	Thr	Gly	Gly	Thr 320
Thr	Сув	Ala	Cys	Gly 325	Ala	Gly	Ala	Thr	Gly 330	Thr	Gly	Thr	Gly	Ala 335	Thr
Gly	Ala	Gly	Ala 340	Сув	Thr	Gly	Ala	Gly 345	Gly	Thr	Thr	Gly	Сув 350	Thr	Gly
Thr	Cys	Сув 355	Thr	Gly	Ala	Ala	Ala 360	Cys	Thr	Cys	Ala	Ala 365	Gly	Gly	CÀa
Ala	Ala 370	Gly	Ala	Thr	Ala	Сув 375	Thr	Cys	Thr	Gly	Gly 380	Сув	Gly	Thr	Thr
Gly 385	Gly	Ala	Gly	Ala	Thr 390	Thr	Thr	Cys	Gly	Ala 395	Gly	Ala	Thr	Gly	Ala 400
Ala	Cys	Cys	Thr	Ala 405	Ala	Ala	Ala	Cys	Gly 410	Gly	Ala	Ala	Gly	Ala 415	Thr
Thr	Gly	Gly	Ala 420	Gly	CAa	Thr	Ala	Cys 425	Сув	Ala	Сла	Ala	Ala 430	Ala	СЛа
Cys	Cys	Суs 435	Ala	Thr	Thr	Càa	Cys 440	Thr	Gly	Thr	Gly	Gly 445	Ala	Gly	Gly
Ala	Thr 450	Ala	Thr	Ala	Thr	Cys 455	Thr	Cys	Сув	Ala	Ala 460	CAa	Сув	Gly	Thr
Ala 465	Gly	Cys	Ala	Сув	Cys 470	Thr	Cys	Cys	Ala	Ala 475	Thr	Thr	Сув	Cys	Thr 480
Thr	Cys	Thr	Gly	Ala 485	Gly	CAa	Cys	Cys	Ala 490	Thr	Gly	Ala	Ala	Thr 495	CÀa
Ala	Ala	Thr	500	Gly	Gly	Thr	Thr	Thr 505	Cys	Cys	Thr	CAa	Thr 510	Gly	Cys
Thr	Сув	Сув 515	Сув	Ala	Gly	Cys	Сув 520	Сув	Ala	Thr	Сув	Thr 525	Ala	Сув	Ala
Gly	Сув 530	Ala	Ala	Ala	Ala	Сув 535	Сув	Gly	Thr	Cys	Thr 540	Gly	Ala	Ala	Ala
Ala 545	Ala	Gly	Thr	Ala	Thr 550	CAa	Thr	Cys	Сув	Ala 555	Thr	Thr	Thr	Ala	Thr 560
Gly	Ala	Ala	Thr	Ala 565	CAa	Ala	Thr	Cys	Ala 570	Thr	Ala	Thr	Gly	Gly 575	Gly
Ala	Ala	Ala	Cys 580	Cys	Ala	Gly	Cys	Ala 585	Ala	Ala	Gly	Thr	Thr 590	Gly	Gly
Сув	Ala	Gly 595	Сув	Thr	Thr	Thr	Gly 600	Gly	Ala	Gly	Gly	Сув 605	Ala	Thr	Cys
Thr	Gly 610	Gly	Ala	Thr	Cya	Ala 615	Ala	Ala	Сла	Ala	Ala 620	Thr	Thr	Ala	Thr
Gly 625	Thr	Thr	Cys	Thr	Ala 630	Gly	Thr	Cys	Ala	Ala 635	Ala	Thr	Cys	Thr	Cys 640

Thr	Сув	Ala	Сув 660	Ala	Gly	Ala	Ala	Gly 665	Сув	Ala	Gly	Ala	Ala 670	Сув	Thr
Gly	Thr	Ala 675	Ala	Ala	Ala	Gly	Gly 680	Ala	Ala	Ala	Gly	Ala 685	Ala	Ala	Cys
Thr	Ala 690	Thr	Cys	Thr	Cys	Cys 695	Thr	Ala	Gly	Сув	Thr 700	Gly	Cys	Ala	Ala
Ala 705	Gly	Ala	Gly	Gly	Gly 710	Thr	Gly	Ala	Thr	Gly 715	Ala	Ala	Ala	Thr	Ala 720
Ala	Ala	Gly	Gly	Ala 725	Ala	Gly	Gly	Cys	Сув 730	Ala	Ala	Gly	Thr	Gly 735	Ala
Thr	Thr	Gly	Gly 740	Ala	Thr	Ala	CÀa	Thr 745	Thr	Ala	CÀa	Ala	Thr 750	CÀa	Ala
Gly	Thr	Thr 755	Gly	Gly	Gly	Ala	Ala 760	Cys	Ala	Gly	Ala	Ala 765	Cya	Thr	Thr
CÀa	Сув 770	Ala	Gly	Thr	Gly	Ala 775	CÀa	Gly	Thr	Cya	Gly 780	Gly	Ala	Thr	Gly
Thr 785	Ala	Gly	CÀa	Thr	Gly 790	Gly	Gly	Gly	Ala	Ala 795	Gly	Thr	Cya	CÀa	Thr 800
Сув	Ala	Ala	Gly	Сув 805	Thr	Thr	Cys	Thr	Thr 810	Thr	Сув	Ala	Gly	Ala 815	Thr
Gly	Ala	Cys	Gly 820	Gly	Ala	Gly	Ala	Сув 825	Thr	Càa	Сув	Ala	Thr 830	Ala	Gly
Gly	Thr	Thr 835	Ala	Thr	Gly	Gly	Thr 840	Gly	Ala	Thr	Сув	Cys 845	Thr	Cha	Thr
Gly	Gly 850	Thr	Thr	Gly	CAa	Gly 855	Gly	Thr	Cys	Thr	Thr 860	Gly	Сув	Cha	Ala
Thr 865	Cys	Gly	Thr	Thr	Cys 870	Cys	Ala	Сув	Gly	Ala 875	Thr	Ala	Thr	Cys	Ala 880
Ala	Сув	Ala	Thr	Сув 885	САа	Ala	Gly	Thr	Gly 890	Ala					
<210 > SEQ ID NO 13 <211 > LENGTH: 296 <212 > TYPE: PRT <213 > ORGANISM: Artificial Sequence <220 > FEATURE: <223 > OTHER INFORMATION: Synthetic															
< 400)> SI	EQUE	ICE :	13											
Met 1	Ala	Ser	Ser	Ala 5	Ala	Leu	Gly	Ser	Leu 10	His	His	Pro	Ile	Phe 15	Leu
Trp	Gln	Leu	Val 20	Val	Val	Val	Thr	Glu 25	Leu	Glu	Thr	Leu	Gly 30	Ser	Gln
Ser	Glu	Leu 35	His	Leu	Leu	Ser	Gly 40	Asn	Trp	Ser	Ala	Ser 45	Gly	Thr	Ser
CÀa	Val 50	Pro	Arg	Trp	Arg	Leu 55	Ser	Asn	Arg	Ser	Ser 60	Asn	Tyr	Thr	Leu
Val 65	Leu	Arg	Ala	Lys	Ala 70	Ser	Lys	Thr	Ser	Thr 75	Thr	Thr	Lys	Ser	Asp 80
Asp	Ser	Ser	Asp	Ala 85	Thr	Val	Ser	Asn	Gly 90	Lys	Lys	Ser	Val	Arg 95	Arg

Cys Cys Thr Cys Ala Gly Thr Thr Gly Gly Cys Gly Ala Gly Thr Thr 645 650 655

aagcttcagt aa

-continued

Thr Thr Phe Pro Lys Glu Val Glu Thr Leu Val His Glu Met Cys Asp	
Glu Thr Glu Val Ala Val Leu Lys Leu Lys Ala Arg Tyr Ser Gly Val	
Gly Asp Phe Glu Met Asn Leu Lys Arg Lys Ile Gly Ala Thr Thr Asn 130 135 140	
Pro Ile Pro Val Glu Asp Ile Ser Pro Thr Val Ala Pro Pro Ile Pro 145 150 155 160	
Ser Glu Pro Met Asn Gln Ser Val Ser Ser Ala Pro Ser Pro Ser Thr	
Ala Lys Pro Ser Glu Lys Val Ser Pro Phe Met Asn Thr Ser Tyr Gly	
Lys Pro Ala Lys Leu Ala Ala Leu Glu Ala Ser Gly Ser Asn Asn Tyr	
195 200 205	
Val Leu Val Lys Ser Pro Ser Val Gly Glu Phe His Arg Ser Arg Thr 210 215 220	
Val Lys Gly Lys Lys Leu Ser Pro Ser Cys Lys Glu Gly Asp Glu Ile 225 230 235 240	
Lys Glu Gly Gln Val Ile Gly Tyr Leu His Gln Leu Gly Thr Glu Leu 245 250 255	
Pro Val Thr Ser Asp Val Ala Gly Glu Val Leu Lys Leu Leu Ser Asp 260 265 270	
Asp Gly Asp Ser Ile Gly Tyr Gly Asp Pro Leu Val Ala Val Leu Pro 275 280 285	
Ser Phe His Asp Ile Asn Ile Gln 290 295	
<210> SEQ ID NO 14 <211> LENGTH: 792 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 14	
atggetteet gtageetagg agtteetaaa attaaaatet eageagtaga eettagtaga	60
gtaagttetg gaagettaet gataceatte agecaaagat cattgettgg acaaaggeeg	120
gtgaagtact tgagteteag gaeaaetttt ggatetgtga aagetgteea agtatetaet	180
gtcccaaccg cagaaacatc agctactata gaagtagaag attctgaaga aaccaagtca	240
totocattga acgotoagot agttocoaag coatotgagg tggaagotot tgtoactgaa	300
atatgcgatt cetcatcaat tgcagagttt gaattgaaac tggggggttt cegectatat	360
gtagcaaggg atctaactga caaaagtagt cegcageete atceagttee tgetgtgget	420
gctgccagtg aaactaccaa gagtcctgat tcgaatggat caactccttc tacttcattg	480
gctatcacaa gaccagcatc ctcagctgct gatcacggtt tgatgattct ccaatctcca	540
aaagtagggt tetteaggag atecaaaact ataaagggta aaegeatgee ttegteatgt	600
aaagagaaag accaagtgaa agaaggtcaa attctgtgct acattgaaca actcggtggc	660
caatteecaa tagagtetga tgteagegge gaggttgtea aaataeteeg agaagatgga	720
gageetgtag gatacaatga tgeteteate tegateette eetettteee tgggateaag	780

792

60

```
<210> SEQ ID NO 15
<211> LENGTH: 263
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 15
Met Ala Ser Cys Ser Leu Gly Val Pro Lys Ile Lys Ile Ser Ala Val
Arg Ser Leu Leu Gly Gln Arg Pro Val Lys Tyr Leu Ser Leu Arg Thr
Thr Phe Gly Ser Val Lys Ala Val Gln Val Ser Thr Val Pro Thr Ala
Glu Thr Ser Ala Thr Ile Glu Val Glu Asp Ser Glu Glu Thr Lys Ser 65 70 75 80
Ser Pro Leu Asn Ala Gln Leu Val Pro Lys Pro Ser Glu Val Glu Ala
Leu Val Thr Glu Ile Cys Asp Ser Ser Ser Ile Ala Glu Phe Glu Leu
Lys Leu Gly Gly Phe Arg Leu Tyr Val Ala Arg Asp Leu Thr Asp Lys
Ser Ser Pro Gln Pro His Pro Val Pro Ala Val Ala Ala Ala Ser Glu
                                        140
               135
Thr Thr Lys Ser Pro Asp Ser Asn Gly Ser Thr Pro Ser Thr Ser Leu
                 150
                                     155
Ala Ile Thr Arg Pro Ala Ser Ser Ala Ala Asp His Gly Leu Met Ile
Leu Gln Ser Pro Lys Val Gly Phe Phe Arg Arg Ser Lys Thr Ile Lys
                              185
Gly Lys Arg Met Pro Ser Ser Cys Lys Glu Lys Asp Gln Val Lys Glu
Gly Gln Ile Leu Cys Tyr Ile Glu Gln Leu Gly Gly Gln Phe Pro Ile
Glu Ser Asp Val Ser Gly Glu Val Val Lys Ile Leu Arg Glu Asp Gly
Glu Pro Val Gly Tyr Asn Asp Ala Leu Ile Ser Ile Leu Pro Ser Phe
Pro Gly Ile Lys Lys Leu Gln
          260
<210> SEQ ID NO 16
<211> LENGTH: 792
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 16
atggcatcct gtagcctagg agttcctaaa attaaaatct cagcagtaga ccttagtaga
gtaagttetg gaagettaet gataceatte agteaaagat cattgettgg acaaaggeeg
```

-continued	
gtgaagtact tgagtctgag gacaactttt ggatctgtga aagctgtaca agtatcta	ct 180
gtcccagctg cagaaacatc agctactgta ggagtagaag attctgaaga aaccaagt	ca 240
tccccattga acgctcagct agttcccaag cgatctgagg tggaagctct tgtcactg	aa 300
atatgcgact cctcatcaat tgcagagttt gaactgaaac tggggggttt ccgcctat	at 360
gtagcaaggg atctagctga caaaagtagt ccgcagcctc atccaattcc tgctgtgg	ct 420
gctgcaagtg aaactaccaa gagtcctgat tcgaatggat caacaccttc tacttcat	tg 480
gctatcacaa gaccagcatc ttcagctgct gatcagggtt tgatgattct ccaatctc	ca 540
aaagtagggt tetttaggag ateeaaaace ataaagggta aaegeatgee ttegteat	gt 600
aaagagaaag accaagtgaa agaaggtcaa attctgtgct acattgaaca actcggtg	gc 660
caattcccaa tagagtctga tgtcagcggt gaggttgtca aaatactccg cgaagatg	ga 720
gaacetgtag gatacaatga tgeteteate tegateette cetettteee tgggatea	ag 780
aagcttcagt aa	792
<210> SEQ ID NO 17 <211> LENGTH: 263 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 17	
Met Ala Ser Cys Ser Leu Gly Val Pro Lys Ile Lys Ile Ser Ala Val 1 5 10 15	
Asp Leu Ser Arg Val Ser Ser Gly Ser Leu Leu Ile Pro Phe Ser Gln 20 25 30	
Arg Ser Leu Leu Gly Gln Arg Pro Val Lys Tyr Leu Ser Leu Arg Thr	
Thr Phe Gly Ser Val Lys Ala Val Gln Val Ser Thr Val Pro Ala Ala 50 55 60	
Glu Thr Ser Ala Thr Val Gly Val Glu Asp Ser Glu Glu Thr Lys Ser 65 70 75 80	
Ser Pro Leu Asn Ala Gln Leu Val Pro Lys Arg Ser Glu Val Glu Ala	
85 90 95	
Leu Val Thr Glu Ile Cys Asp Ser Ser Ser Ile Ala Glu Phe Glu Leu 100 105 110	
Lys Leu Gly Gly Phe Arg Leu Tyr Val Ala Arg Asp Leu Ala Asp Lys 115 120 125	
Ser Ser Pro Gln Pro His Pro Ile Pro Ala Val Ala Ala Ala Ser Glu 130 135 140	
Thr Thr Lys Ser Pro Asp Ser Asn Gly Ser Thr Pro Ser Thr Ser Leu 145 150 155 160	
Ala Ile Thr Arg Pro Ala Ser Ser Ala Ala Asp Gln Gly Leu Met Ile 165 170 175	
Leu Gln Ser Pro Lys Val Gly Phe Phe Arg Arg Ser Lys Thr Ile Lys	
180 185 190	
Gly Lys Arg Met Pro Ser Ser Cys Lys Glu Lys Asp Gln Val Lys Glu 195 200 205	

Gly Gln Ile Leu Cys Tyr Ile Glu Gln Leu Gly Gly Gln Phe Pro Ile 210 215 220

```
Glu Ser Asp Val Ser Gly Glu Val Val Lys Ile Leu Arg Glu Asp Gly
                    230
Glu Pro Val Gly Tyr Asn Asp Ala Leu Ile Ser Ile Leu Pro Ser Phe
                                    250
Pro Gly Ile Lys Lys Leu Gln
            260
<210> SEQ ID NO 18
<211> LENGTH: 1005
<212> TYPE: DNA
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 18
tgcttcqctq tacaaaqacc actctqqttq tatcqaacaq aqcqaaccca accaacqacq
agogttaacc tcaatttgat catctccaca ctcqtcaaat ctttqqtqtc ctcctcctc
                                                                      120
togttogtat ogttatogta toagotoaca aatotoatto tottoottao attottotto
                                                                      180
ttctgcttct cgaatcctcc tttgtctccc tccatggctt cctgtagcct aggagttcct
                                                                      240
aaaattaaaa totoagoagt agacottagt agagtaagtt otggaagott gotggtacca
                                                                      300
ttcagtcaaa gatcattgct tggacaaagg acggtgaagt acttgagtct gaggaaaact
                                                                      360
tttggatctg tgaaagctgt acaactatct actgtcccag ctgcagaaac atcagctact
                                                                      420
gtaggagtag aagattetga agaaaccaag teateteeat tgaaegetea getagtteee
                                                                      480
aatccatctg aggtggaagc tcttgtcact gaaatatgcg actcctcatc aattgcagag
                                                                      540
tttgaactga aactgggggg tttccgccta tatgtagcaa gggatctagc tgacaaaagt
                                                                      600
agtccgcagc ctcatccaat tectgetgtg getgetgeaa gtgaaactae caagagteet
                                                                      660
gattegaatg gateaacace ttetaettea ttggetatea caagaceage atetteaget
                                                                      720
gctgatcagg gtttgatgat tctccaatct ccaaaagtag ggttctttag gagatccaaa
                                                                      780
accataaagg gtaaacgcat gccttcgtca tgtaaagaga aagaccaagt gaaagaaggt
                                                                      840
caaattetgt getacattga acaacteggt ggecaattee caatagagte tgatgteage
                                                                      900
                                                                      960
ggcgaggttg tcaaaatact ccgagaagat ggagagcctg tagggtacaa tgatgctctc
atctcgatcc ttccctcttt ccctgggatc aagaagcttc agtaa
                                                                     1005
<210> SEQ ID NO 19
<211> LENGTH: 263
<212> TYPE: PRT
<213 > ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 19
Met Ala Ser Cys Ser Leu Gly Val Pro Lys Ile Lys Ile Ser Ala Val
Asp Leu Ser Arg Val Ser Ser Gly Ser Leu Leu Val Pro Phe Ser Gln
                                25
Arg Ser Leu Leu Gly Gln Arg Thr Val Lys Tyr Leu Ser Leu Arg Lys
Thr Phe Gly Ser Val Lys Ala Val Gln Leu Ser Thr Val Pro Ala Ala
                        55
Glu Thr Ser Ala Thr Val Gly Val Glu Asp Ser Glu Glu Thr Lys Ser
```

-concinued	
65 70 75 80	
Ser Pro Leu Asn Ala Gln Leu Val Pro Asn Pro Ser Glu Val Glu Ala 85 90 95	
Leu Val Thr Glu Ile Cys Asp Ser Ser Ser Ile Ala Glu Phe Glu Leu 100 105 110	
Lys Leu Gly Gly Phe Arg Leu Tyr Val Ala Arg Asp Leu Ala Asp Lys 115 120 125	
Ser Ser Pro Gln Pro His Pro Ile Pro Ala Val Ala Ala Ala Ser Glu 130 135 140	
Thr Thr Lys Ser Pro Asp Ser Asn Gly Ser Thr Pro Ser Thr Ser Leu 145 150 155 160	
Ala Ile Thr Arg Pro Ala Ser Ser Ala Ala Asp Gln Gly Leu Met Ile 165 170 175	
Leu Gln Ser Pro Lys Val Gly Phe Phe Arg Arg Ser Lys Thr Ile Lys	
Gly Lys Arg Met Pro Ser Ser Cys Lys Glu Lys Asp Gln Val Lys Glu 195 200 205	
Gly Gln Ile Leu Cys Tyr Ile Glu Gln Leu Gly Gly Gln Phe Pro Ile	
210 215 220 Glu Ser Asp Val Ser Gly Glu Val Val Lys Ile Leu Arg Glu Asp Gly	
225 230 235 240 Glu Pro Val Gly Tyr Asn Asp Ala Leu Ile Ser Ile Leu Pro Ser Phe	
245 250 255 Pro Gly Ile Lys Lys Leu Gln 260	
<pre><210> SEQ ID NO 20 <211> LENGTH: 1521 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic</pre>	
<400> SEQUENCE: 20	60
atgacgtccg ttaacgttaa gctcctttac cgttacgtct taaccaactt tttcaacctc tgtttgttcc cgttaacggc gttcctcgcc ggaaaagcct ctcggcttac cataaacgat	120
ctccacaact teettteeta tetecaacae aaeettataa eagtaaettt aetetttget	180
ttcactgttt tcggtttggt tctctacatc gtaacccgac ccaatccggt ttatctcgtt	240
gactactcgt gttaccttcc accaccgcat ctcaaagtta gtgtctctaa agtcatggat	300
attttctacc aaataagaaa agctgatact tcttcacgga acgtggcatg tgatgatccg	360
tectegeteg atttectgag gaagatteaa gagegtteag gtetaggtga tgagaegtae	420
agteetgagg gaeteattea egtaceaeeg eggaagaett ttgeagegte aegtgaagag	480
acagagaagg ttatcatcgg tgcgctcgaa aatctattcg agaacaccaa agttaaccct	540
agagagattg gtatacttgt ggtgaactca agcatgttta atccaactcc ttcgctatcc	600
gctatggtcg ttaatacttt caagctccga agcaacatca aaagctttaa tctaggagga	660
atgggttgta gtgctggtgt tattgccatt gatttggcta aagacttgtt gcatgttcat	720
aaaaacactt atgctcttgt ggtgagcact gagaacatca cacaaggcat ttatgctgga	780

gaaaatagat caatgatggt tagcaattgc ttgtttcgtg ttggtggggc cgcgattttg

ctctctaaca agtcgggaga ccggagacgg tccaagtaca agctagttca cacggtccga	900
acgcatactg gagctgatga caagtctttt cgatgtgtgc aacaagaaga cgatgagagc	960
ggcaaaatcg gagtttgtct gtcaaaggac ataaccaatg ttgcggggac aacacttacg	1020
aaaaatatag caacattggg teegttgatt etteetttaa gegaaaagtt tetttttte	1080
gctaccttcg tcgccaagaa acttctaaag gataaaatca agcattacta tgttccggat	1140
ttcaagcttg ctgttgacca tttctgtatt catgccggag gcagagccgt gatcgatgag	1200
ctagagaaga acttaggact atcgccgatc gatgtggagg catctagatc aacgttacat	1260
agatttggga atacttcatc tagctcaatt tggtatgaat tagcatacat agaggcaaag	1320
ggaagaatga agaaagggaa taaagcttgg cagattgctt taggatcagg gtttaagtgt	1380
aatagtgegg tttgggtgge tetacgeaat gteaaggeat eggeaaatag teettggeaa	1440
cattgcatcg atagatatcc ggttaaaatt gattctgatt tgtcaaagtc aaagactcat	1500
gtccaaaacg gtcggtccta a	1521
<210> SEQ ID NO 21 <211> LENGTH: 506 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 21	
Met Thr Ser Val Asn Val Lys Leu Leu Tyr Arg Tyr Val Leu Thr Asn 1 5 10 15	
Phe Phe Asn Leu Cys Leu Phe Pro Leu Thr Ala Phe Leu Ala Gly Lys 20 25 30	
Ala Ser Arg Leu Thr Ile Asn Asp Leu His Asn Phe Leu Ser Tyr Leu 35 40 45	
Gln His Asn Leu Ile Thr Val Thr Leu Leu Phe Ala Phe Thr Val Phe 50 55 60	
Gly Leu Val Leu Tyr Ile Val Thr Arg Pro Asn Pro Val Tyr Leu Val 65 70 75 80	
Asp Tyr Ser Cys Tyr Leu Pro Pro Pro His Leu Lys Val Ser Val Ser 85 90 95	
Lys Val Met Asp Ile Phe Tyr Gln Ile Arg Lys Ala Asp Thr Ser Ser	
100 105 110	
Arg Asn Val Ala Cys Asp Asp Pro Ser Ser Leu Asp Phe Leu Arg Lys 115 120 125	
Ile Gln Glu Arg Ser Gly Leu Gly Asp Glu Thr Tyr Ser Pro Glu Gly 130 135 140	
Leu Ile His Val Pro Pro Arg Lys Thr Phe Ala Ala Ser Arg Glu Glu 145 150 155 160	
Thr Glu Lys Val Ile Ile Gly Ala Leu Glu Asn Leu Phe Glu Asn Thr 165 170 175	
Lys Val Asn Pro Arg Glu Ile Gly Ile Leu Val Val Asn Ser Ser Met 180 185 190	
Phe Asn Pro Thr Pro Ser Leu Ser Ala Met Val Val Asn Thr Phe Lys 195 200 205	

Leu Arg Ser Asn Ile Lys Ser Phe Asn Leu Gly Gly Met Gly Cys Ser 210 215 220

Lys Asn Thr Tyr Ala Leu	ı Val Val Ser Thr	Glu Asn Ile Thr Gln Gly
245	250	255
Ile Tyr Ala Gly Glu Asr 260	a Arg Ser Met Met 265	Val Ser Asn Cys Leu Phe 270
Arg Val Gly Gly Ala Ala	ı Ile Leu Leu Ser	Asn Lys Ser Gly Asp Arg
275	280	285
Arg Arg Ser Lys Tyr Lys 290	Leu Val His Thr 295	Val Arg Thr His Thr Gly 300
Ala Asp Asp Lys Ser Phe		Gln Glu Asp Asp Glu Ser 315 320
Gly Lys Ile Gly Val Cys	s Leu Ser Lys Asp	Ile Thr Asn Val Ala Gly
325	330	335
Thr Thr Leu Thr Lys Asr	n Ile Ala Thr Leu	Gly Pro Leu Ile Leu Pro
340	345	350
Leu Ser Glu Lys Phe Leu	Phe Phe Ala Thr	Phe Val Ala Lys Lys Leu
355	360	365
Leu Lys Asp Lys Ile Lys	His Tyr Tyr Val	Pro Asp Phe Lys Leu Ala
370	375	380
Val Asp His Phe Cys Ile 385 390		Arg Ala Val Ile Asp Glu 395 400
Leu Glu Lys Asn Leu Gly	Leu Ser Pro Ile	Asp Val Glu Ala Ser Arg
405	410	415
Ser Thr Leu His Arg Phe	e Gly Asn Thr Ser	Ser Ser Ser Ile Trp Tyr
420	425	430
Glu Leu Ala Tyr Ile Glu	Ala Lys Gly Arg	Met Lys Lys Gly Asn Lys
435	440	445
Ala Trp Gln Ile Ala Leu	Gly Ser Gly Phe	Lys Cys Asn Ser Ala Val
450	455	460
Trp Val Ala Leu Arg Asr 465 470		Ala Asn Ser Pro Trp Gln 475 480
His Cys Ile Asp Arg Tyr	Pro Val Lys Ile	Asp Ser Asp Leu Ser Lys
485	490	495
Ser Lys Thr His Val Glr 500	n Asn Gly Arg Ser 505	
<210> SEQ ID NO 22 <211> LENGTH: 1152 <212> TYPE: PRT <213> ORGANISM: Artific <220> FEATURE: <223> OTHER INFORMATION	-	
<400> SEQUENCE: 22		
Ala Thr Gly Gly Gly Thr	Gly Cys Ala Gly	Gly Thr Gly Gly Ala Ala
1 5	10	15
Gly Ala Ala Thr Gly Cys	Cys Gly Gly Thr 25	Thr Cys Cys Thr Ala Cys 30
Thr Thr Cys Thr Thr Cys	Cys Ala Ala Gly 40	Ala Ala Thr Cys Gly 45
Gly Ala Ala Ala Cys Cys	Gly Ala Cys Ala	Cys Cys Ala Cys Ala Ala
50	55	60

Ala Gly Val Ile Ala Ile Asp Leu Ala Lys Asp Leu Leu His Val His 225 230 235 240

Ala 65	Gly	Cys	Gly	Thr	Gly 70	Thr	Gly	Cha	Cha	Gly 75	Thr	Gly	Cha	Gly	Ala 80
Gly	Ala	Ala	Ala	Сув 85	Cys	Gly	Cys	Cys	Thr 90	Thr	Thr	Cys	Thr	Суs 95	Gly
Gly	Thr	Gly	Gly 100	Gly	Ala	Gly	Ala	Thr 105	Cys	Thr	Gly	Ala	Ala 110	Gly	Ala
Ala	Ala	Gly 115	Cys	Ala	Ala	Thr	Cys 120	Cys	Cys	Gly	Суз	Cys 125	Gly	Cys	Ala
Thr	Thr 130	Gly	Thr	Thr	Thr	Cys 135	Ala	Ala	Ala	Cys	Gly 140	CAa	Thr	Cys	Ala
Ala 145	Thr	Сув	Cys	Сув	Thr 150	Cys	Gly	Cys	Thr	Cys 155	Thr	Thr	Thr	Cys	Thr 160
Cys	Сув	Thr	Ala	Cys 165	CÀa	Thr	Thr	Ala	Thr 170	Cys	Ala	Gly	Thr	Gly 175	Ala
Cys	Ala	Thr	Cys 180	Ala	Thr	Thr	Ala	Thr 185	Ala	Gly	Cys	CAa	Thr 190	Cys	Ala
Thr	Gly	Cys 195	Thr	Thr	GÀa	Thr	Ala 200	Cys	Thr	Ala	CÀa	Gly 205	Thr	CÀa	Gly
CÀa	Cys 210	Ala	СЛа	CÀa	Ala	Ala 215	Thr	Thr	Ala	СЛа	Thr 220	Thr	Сла	Thr	Cys
Thr 225	Cys	Thr	Cys	СЛв	Thr 230	Cys	Cys	Cys	Thr	Сув 235	Ala	Gly	Cys	Cys	Thr 240
Cys	Thr	Сув	Thr	Cys 245	Thr	Thr	Ala	Cys	Thr 250	Thr	Gly	Gly	Cys	Thr 255	Thr
Gly	Gly	Cys	Cys 260	Ala	CAa	Thr	Cys	Thr 265	Ala	Thr	Thr	Gly	Gly 270	Gly	Cys
Cys	Thr	Gly 275	Thr	СЛв	Ala	Ala	Gly 280	Gly	Cys	Thr	Gly	Thr 285	Gly	Thr	Cys
Сув	Thr 290	Ala	Ala	Сув	Thr	Gly 295	Gly	Thr	Ala	Thr	Cys	Thr	Gly	Gly	Gly
Thr 305	Сув	Ala	Thr	Ala	Gly 310	Cys	Сув	Сув	Ala	Cys 315	Gly	Ala	Ala	Thr	Gly 320
Cys	Gly	Gly	Thr	Сув 325	Ala	Cys	Cys	Ala	330 Cys	Gly	Cys	Ala	Thr	Thr 335	Cys
Ala	Gly	Сла	Gly 340	Ala	CAa	Thr	Ala	Сув 345	Cys	Ala	Ala	Thr	Gly 350	Gly	Cys
Thr	Gly	Gly 355	Ala	Thr	Gly	Ala	360 Cys	Ala	Cys	Ala	Gly	Thr 365	Thr	Gly	Gly
Thr	Cys 370	Thr	Thr	Ala	Thr	Сув 375	Thr	Thr	Cys	Cys	Ala 380	Thr	Thr	Cys	CÀa
Thr 385	Thr	Cya	CÀa	Thr	3	CAa	Thr	Cys	Gly	Thr 395	CÀa	CÀa	CÀa	Thr	Thr 400
Ala	Сув	Thr	Thr	Cys 405	Thr	СЛа	Cys	Thr	Gly 410	Gly	Ala	Ala	Gly	Thr 415	Ala
Thr	Ala	Gly	Thr 420	Сув	Ala	Thr	Сув	Gly 425	Сув	Сув	Gly	Thr	Cys 430	Ala	СЛа
Cys	Ala	Thr 435	Thr	Сув	Cys	Ala	Ala 440	Сув	Ala	Сув	Thr	Gly 445	Gly	Ala	Thr
CÀa	Cys 450	Сла	Thr	Cya	Gly	Ala 455	Ala	Ala	Gly	Ala	Gly 460	Ala	Thr	Gly	Ala
Ala	Gly	Thr	Ala	Thr	Thr	Thr	Gly	Thr	Cys	Cys	CAa	Ala	Ala	Ala	Gly

_															
465					470					475					480
Cys	Ala	Gly	Ala	Ala 485	Ala	Thr	Сув	Ala	Gly 490	Сув	Ala	Ala	Thr	Сув 495	Ala
Ala	Gly	Thr	Gly 500	Gly	Thr	Ala	СЛв	Gly 505	Gly	Gly	Ala	Ala	Ala 510	Thr	Ala
Cys	Cys	Thr 515	CAa	Ala	Ala	CAa	Ala 520	Ala	Cys	Cys	CAa	Thr 525	Cys	Thr	Thr
Gly	Gly 530	Ala	Cys	Gly	CAa	Ala 535	Thr	Cys	Ala	Thr	Gly 540	Ala	Thr	Gly	Thr
Thr 545	Ala	Ala	Cys	Cys	Gly 550	Thr	Cys	Cys	Ala	Gly 555	Thr	Thr	Thr	Gly	Thr 560
Cys	Cys	Thr	Cys	Gly 565	Gly	Gly	Thr	Gly	Gly 570	CAa	CAa	CAa	Thr	Thr 575	Gly
Thr	Ala	Сла	Thr 580	Thr	Ala	Gly	Cys	Cys 585	Thr	Thr	Thr	Ala	Ala 590	СЛа	Gly
Thr	Cys	Thr 595	CÀa	Thr	Gly	Gly	Cys	Ala	Gly	Ala	CÀa	Cys	Gly	Thr	Ala
Thr	Gly 610	Ala	Cys	Gly	Gly	Gly 615	Thr	Thr	Cys	Gly	Cys 620	Thr	Thr	Gly	CÀa
Сув 625	Ala	Thr	Thr	Thr	630	Thr	Thr	Cys	Cys	Cys 635	CAa	Ala	Ala	CÀa	Gly 640
Cys	Thr	CAa	Cya	Cys 645	Ala	Thr	Cys	Thr	Ala 650	CAa	Ala	Ala	Thr	Gly 655	Ala
Cys	Cys	Gly	Ala 660	Gly	Ala	Ala	Cys	Gly 665	Cys	CAa	Thr	CAa	Сув 670	Ala	Gly
Ala	Thr	Ala 675	Thr	Ala	CAa	CÀa	Thr 680	Сув	Thr	Сув	Thr	Gly 685	Ala	Thr	Gly
Cys	Gly 690	Gly	Gly	Thr	Ala	Thr 695	Thr	СЛа	Thr	Ala	Gly 700	CÀa	CÀa	Gly	Thr
Сув 705	Thr	Gly	Thr	Thr	Thr 710	Thr	Gly	Gly	Thr	Суs 715	Thr	Thr	Thr	Ala	Cys 720
Cya	Gly	Thr	Thr	Ala 725	CAa	Gly	Сув	Thr	Gly 730	Cys	Thr	Gly	Сув	Ala 735	Cys
Ala	Ala	Gly	Gly 740	Gly	Ala	Thr	Gly	Gly 745	Cys	Cys	Thr	CAa	Gly 750	Ala	Thr
Gly	Ala	Thr 755	Cys	Thr	Gly	Cys	Cys 760	Thr	Cys	Thr	Ala	Сув 765	Gly	Gly	Ala
Gly	Thr 770	Ala	Cys	CAa	Gly	Сув 775	Thr	Thr	Cys	Thr	Gly 780	Ala	Thr	Ala	Gly
Thr 785	Gly	Ala	Ala	Thr	Gly 790	CAa	Gly	Thr	Thr	Сув 795	Cys	Thr	Cys	Gly	Thr 800
Cya	Thr	Thr	Gly	Ala 805	Thr	CAa	Ala	Cys	Thr 810	Thr	Ala	CAa	Thr	Thr 815	Gly
Cya	Ala	Gly	Cys 820	Ala	CAa	Ala	Cys	Thr 825	Cys	Ala	Thr	Cys	630	Cys	Thr
Cys	Gly	Thr 835	Thr	Gly	Cys	Cys	Thr 840	Cys	Ala	Cys	Thr	Ala 845	Cys	Gly	Ala
Thr	Thr 850	Сув	Ala	Thr	Сув	Ala 855	Gly	Ala	Gly	Thr	Gly 860	Gly	Gly	Ala	СЛа
Thr 865	Gly	Gly	Сув	Thr	Cys 870	Ala	Gly	Gly	Gly	Gly 875	Ala	Gly	Сув	Thr	Thr 880

Thr Gly Gly Cys Thr Ala Cys Cys Gly Thr Ala Gly Ala Cys Ala Gly 890 Ala Gly Ala Cys Thr Ala Cys Gly Gly Ala Ala Thr Cys Thr Thr Gly Ala Ala Cys Ala Ala Gly Gly Thr Gly Thr Thr Cys Cys Ala Cys Ala Ala Cys Ala Thr Thr Ala Cys Ala Gly Ala Cys Ala Cys Ala Cys Ala Cys Gly Thr Gly Gly Cys Thr Cys Ala Thr Cys Ala Cys Cys Thr Gly 945 950 955 960 Thr Thr Cys Thr Cys Gly Ala Cys Ala Ala Thr Gly Cys Cys Gly Cys Ala Thr Thr Ala Thr Ala Ala Cys Gly Cys Ala Ala Thr Gly Gly Ala 985 Ala Gly Cys Thr Ala Cys Ala Ala Ala Gly Gly Cys Gly Ala Thr Ala 1000 Ala Ala Gly Cys Cys Ala Ala Thr Thr Cys Thr Gly Gly Ala 1015 Gly Ala Cys Thr Ala Thr Thr Ala Cys Cys Ala Gly Thr Thr Cys 1030 1035 Gly Ala Thr Gly Gly Ala Ala Cys Ala Cys Cys Gly Thr Gly Gly 1045 Thr Ala Thr Gly Thr Ala Gly Cys Gly Ala Thr Gly Thr Ala Thr 1060 Ala Gly Gly Gly Ala Gly Gly Cys Ala Ala Ala Gly Gly Ala Gly 1070 \$1075\$Thr Gly Thr Ala Thr Cys Thr Ala Thr Gly Thr Ala Gly Ala Ala 1095 1090 Cys Cys Gly Gly Ala Cys Ala Gly Gly Gly Ala Ala Gly Gly Thr 1105 Gly Ala Cys Ala Ala Gly Ala Ala Gly Gly Thr Gly Thr Gly 1120 Thr Ala Cys Thr Gly Gly Thr Ala Cys Ala Ala Cys Ala Ala Thr Ala Ala Gly Thr Thr Ala Thr Gly Ala <210> SEQ ID NO 23 <211> LENGTH: 383 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEQUENCE: 23 Met Gly Ala Gly Gly Arg Met Pro Val Pro Thr Ser Ser Lys Lys Ser 10 15 Glu Thr Asp Thr Thr Lys Arg Val Pro Cys Glu Lys Pro Pro Phe Ser 25 Val Gly Asp Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser 40 Ile Pro Arg Ser Phe Ser Tyr Leu Ile Ser Asp Ile Ile Ile Ala Ser

60

180

Cys	Phe	Tyr	Tyr	Val	Ala 70	Thr	Asn	Tyr	Phe	Ser 75	Leu	Leu	Pro	Gln	Pro 80
Leu	Ser	Tyr	Leu	Ala 85	Trp	Pro	Leu	Tyr	Trp 90	Ala	CAa	Gln	Gly	Сув 95	Val
Leu	Thr	Gly	Ile 100	Trp	Val	Ile	Ala	His 105	Glu	СЛа	Gly	His	His 110	Ala	Phe
Ser	Asp	Tyr 115	Gln	Trp	Leu	Asp	Asp 120	Thr	Val	Gly	Leu	Ile 125	Phe	His	Ser
Phe	Leu 130	Leu	Val	Pro	Tyr	Phe 135	Ser	Trp	Lys	Tyr	Ser 140	His	Arg	Arg	His
His 145	Ser	Asn	Thr	Gly	Ser 150	Leu	Glu	Arg	Asp	Glu 155	Val	Phe	Val	Pro	Lys 160
Gln	Lys	Ser	Ala	Ile 165	Lys	Trp	Tyr	Gly	Lys 170	Tyr	Leu	Asn	Asn	Pro 175	Leu
Gly	Arg	Ile	Met 180	Met	Leu	Thr	Val	Gln 185	Phe	Val	Leu	Gly	Trp 190	Pro	Leu
Tyr	Leu	Ala 195	Phe	Asn	Val	Ser	Gly 200	Arg	Pro	Tyr	Asp	Gly 205	Phe	Ala	Cys
His	Phe 210	Phe	Pro	Asn	Ala	Pro 215	Ile	Tyr	Asn	Asp	Arg 220	Glu	Arg	Leu	Gln
Ile 225	Tyr	Leu	Ser	Asp	Ala 230	Gly	Ile	Leu	Ala	Val 235	CÀa	Phe	Gly	Leu	Tyr 240
Arg	Tyr	Ala	Ala	Ala 245	Gln	Gly	Met	Ala	Ser 250	Met	Ile	Сув	Leu	Tyr 255	Gly
Val	Pro	Leu	Leu 260	Ile	Val	Asn	Ala	Phe 265	Leu	Val	Leu	Ile	Thr 270	Tyr	Leu
Gln	His	Thr 275	His	Pro	Ser	Leu	Pro 280	His	Tyr	Asp	Ser	Ser 285	Glu	Trp	Asp
Trp	Leu 290	Arg	Gly	Ala	Leu	Ala 295	Thr	Val	Asp	Arg	300 3sp	Tyr	Gly	Ile	Leu
Asn 305	ГÀа	Val	Phe	His	Asn 310	Ile	Thr	Asp	Thr	His 315	Val	Ala	His	His	Leu 320
Phe	Ser	Thr	Met	Pro 325	His	Tyr	Asn	Ala	Met 330	Glu	Ala	Thr	ГЛа	Ala 335	Ile
Lys	Pro	Ile	Leu 340	Gly	Asp	Tyr	Tyr	Gln 345	Phe	Asp	Gly	Thr	Pro 350	Trp	Tyr
Val	Ala	Met 355	Tyr	Arg	Glu	Ala	360	Glu	Cys	Ile	Tyr	Val 365	Glu	Pro	Asp
Arg	Glu 370	Gly	Asp	Lys	Lys	Gly 375	Val	Tyr	Trp	Tyr	Asn 380	Asn	Lys	Leu	
<213 <213 <213 <220	<210> SEQ ID NO 24 <211> LENGTH: 1161 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic														
	<400> SEQUENCE: 24 atggttgttg ctatggacca acgcaccaat gtgaacggag atcccggcgc cggagaccgg														
															ataagg

geggegatte etaageactg ttgggttaag agteetttga gateaatgag ttaegtegte

agagacatta	tegeegtege	ggctttggcc	atcgctgccg	tgtatgttga	tagctggttc	240
ctttggcctc	tttattgggc	cgcccaagga	acacttttct	gggccatctt	tgttctcggc	300
cacgactgtg	gacatgggag	tttctcagac	attcctctac	tgaatagtgt	ggttggtcac	360
attcttcatt	ctttcatcct	cgttccttac	catggttgga	gaataagcca	ccggacacac	420
caccagaacc	atggccatgt	tgaaaacgac	gagtcatggg	ttccgttacc	agaaagggtg	480
tacaagaaat	tgccccacag	tactcggatg	ctcagataca	ctgtccctct	ccccatgctc	540
gcatatcctc	tctatttgtg	ctacagaagt	cctggaaaag	aaggatcaca	ttttaaccca	600
tacagtagtt	tatttgctcc	aagcgagaga	aagcttattg	caacttcaac	tacttgttgg	660
tccataatgt	tcgtcagtct	tatcgctcta	tctttcgtct	teggtecact	cgcggttctt	720
aaagtctacg	gtgtaccgta	cattatcttt	gtgatgtggt	tggatgctgt	cacgtatttg	780
catcatcatg	gtcacgatga	gaagttgcct	tggtatagag	gcaaggaatg	gagttatcta	840
cgtggaggat	taacaacaat	tgatagagat	tacggaatct	ttaacaacat	tcatcacgac	900
attggaactc	acgtgatcca	tcatctcttc	ccacaaatcc	ctcactatca	cttggtcgac	960
gccacgaaag	cagctaaaca	tgtgttggga	agatactaca	gagaaccaaa	gacgtcagga	1020
gcaataccga	tccacttggt	ggagagtttg	gtcgcaagta	ttaagaaaga	tcattacgtc	1080
agcgacactg	gtgatattgt	cttctacgag	acagatccag	atctctacgt	ttacgcttct	1140
gacaaatcta	aaatcaatta	a				1161

```
<210> SEQ ID NO 25
```

<400> SEQUENCE: 25

Met Val Val Ala Met Asp Gln Arg Thr Asn Val Asn Gly Asp Pro Gly 1 $$ 5 $$ 10 $$ 15

Ala Gly Asp Arg Lys Lys Glu Glu Arg Phe Asp Pro Ser Ala Gln Pro 20 25 30

Pro Phe Lys Ile Gly Asp Ile Arg Ala Ala Ile Pro Lys His Cys Trp $_{\rm 35}$ $_{\rm 40}$ $_{\rm 45}$

Val Lys Ser Pro Leu Arg Ser Met Ser Tyr Val Val Arg Asp Ile Ile 50 $\,$ 60 $\,$

Ala Val Ala Ala Leu Ala Ile Ala Ala Val Tyr Val Asp Ser Trp Phe 65 70 75 80

Leu Trp Pro Leu Tyr Trp Ala Ala Gln Gly Thr Leu Phe Trp Ala Ile 85 90 95

Phe Val Leu Gly His Asp Cys Gly His Gly Ser Phe Ser Asp Ile Pro \$100\$ 100 105 110

Pro Tyr His Gly Trp Arg Ile Ser His Arg Thr His His Gln Asn His 130 135 140

Gly His Val Glu Asn Asp Glu Ser Trp Val Pro Leu Pro Glu Arg Val 145 $$ 150 $$ 155 $$ 160

Tyr Lys Lys Leu Pro His Ser Thr Arg Met Leu Arg Tyr Thr Val Pro

<211> LENGTH: 386

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic

-continued
165 170 175
Leu Pro Met Leu Ala Tyr Pro Leu Tyr Leu Cys Tyr Arg Ser Pro Gly 180 185 190
Lys Glu Gly Ser His Phe Asn Pro Tyr Ser Ser Leu Phe Ala Pro Ser 195 200 205
Glu Arg Lys Leu Ile Ala Thr Ser Thr Thr Cys Trp Ser Ile Met Phe 210 215 220
Val Ser Leu Ile Ala Leu Ser Phe Val Phe Gly Pro Leu Ala Val Leu 225 230 235 240
Lys Val Tyr Gly Val Pro Tyr Ile Ile Phe Val Met Trp Leu Asp Ala 245 250 255
Val Thr Tyr Leu His His Gly His Asp Glu Lys Leu Pro Trp Tyr 260 265 270
Arg Gly Lys Glu Trp Ser Tyr Leu Arg Gly Gly Leu Thr Thr Ile Asp 275 280 285
Arg Asp Tyr Gly Ile Phe Asn Asn Ile His His Asp Ile Gly Thr His 290 295 300
Val Ile His His Leu Phe Pro Gln Ile Pro His Tyr His Leu Val Asp 305 310 315 320
Ala Thr Lys Ala Ala Lys His Val Leu Gly Arg Tyr Tyr Arg Glu Pro
Lys Thr Ser Gly Ala Ile Pro Ile His Leu Val Glu Ser Leu Val Ala 340 345 350
Ser Ile Lys Lys Asp His Tyr Val Ser Asp Thr Gly Asp Ile Val Phe 355 360 365
Tyr Glu Thr Asp Pro Asp Leu Tyr Val Tyr Ala Ser Asp Lys Ser Lys 370 375 380
Ile Asn 385
<210> SEQ ID NO 26 <211> LENGTH: 1521 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEQUENCE: 26
atgacgtccg ttaacgttaa gctcctttac cgttacgtct taaccaactt tttcaacctc 60
tgtttgttcc cgttaacggc gttcctcgcc ggaaaagcct ctcggcttac cataaacgat 120
ctccacaact tcctttccta tctccaacac aaccttataa cagtaacttt actctttgct 180
tteactgttt teggtttggt tetetacate gtaaceegae ecaateeggt ttatetegtt 240
gactactcgt gttaccttcc accaccgcat ctcaaagtta gtgtctctaa agtcatggat 300
attttctacc aaataagaaa agctgatact tcttcacgga acgtggcatg tgatgatccg 360
teetegeteg attteetgag gaagatteaa gagegtteag gtetaggtga tgagaegtae 420
agtcctgagg gactcattca cgtaccaccg cggaagactt ttgcagcgtc acgtgaagag 480
acagagaagg ttatcatcgg tgcgctcgaa aatctattcg agaacaccaa agttaaccct 540
agagagattg gtatacttgt ggtgaactca agcatgttta atccaactcc ttcgctatcc 600

gctatggtcg ttaatacttt caagctccga agcaacatca aaagctttaa tctaggagga

atgggttgta gtg	gctggtgt tattgccat	t gatttggcta	aagacttgtt gcatgttcat	720
aaaaacactt ato	getettgt ggtgageae	t gagaacatca	cacaaggcat ttatgctgga	780
gaaaatagat caa	atgatggt tagcaattg	c ttgtttcgtg	ttggtggggc cgcgattttg	840
ctctctaaca ag	tegggaga eeggagaeg	g tccaagtaca	agctagttca cacggtccga	900
acgcatactg gaq	gctgatga caagtcttt	t cgatgtgtgc	aacaagaaga cgatgagagc	960
ggcaaaatcg gaq	gtttgtct gtcaaagga	c ataaccaatg	ttgcggggac aacacttacg	1020
aaaaatatag caa	acattggg teegttgat	t cttcctttaa	gcgaaaagtt tcttttttc	1080
gctaccttcg tcg	gccaagaa acttctaaa	g gataaaatca	agcattacta tgttccggat	1140
ttcaagcttg cto	gttgacca tttctgtat	t catgccggag	gcagagccgt gatcgatgag	1200
ctagagaaga act	ttaggact atcgccgat	c gatgtggagg	catctagatc aacgttacat	1260
agatttggga ata	acttcatc tagctcaat	t tggtatgaat	tagcatacat agaggcaaag	1320
ggaagaatga aga	aaagggaa taaagcttg	g cagattgctt	taggatcagg gtttaagtgt	1380
aatagtgcgg tt	tgagtggc tctacgcaa	t gtcaaggcat	cggcaaatag tccttggcaa	1440
cattgcatcg ata	agatatcc ggttaaaat	t gattctgatt	tgtcaaagtc aaagactcat	1500
gtccaaaacg gto	cggtccta a			1521
<220> FEATURE	464 RT M: Artificial Sequ			
<400> SEQUENCI	E: 27			
Met Thr Ser Va	al Asn Val Lys Leu 5	Leu Tyr Arg	Tyr Val Leu Thr Asn 15	
Phe Phe Asn Le	-	Leu Thr Ala 25	Phe Leu Ala Gly Lys	
Ala Ser Arg Le	eu Thr Ile Asn Asp 40	Leu His Asn	Phe Leu Ser Tyr Leu 45	
Gln His Asn Le 50	eu Ile Thr Val Thr 55	Leu Leu Phe	Ala Phe Thr Val Phe	
Gly Leu Val Le 65	eu Tyr Ile Val Thr 70	Arg Pro Asn 75	Pro Val Tyr Leu Val 80	
Asp Tyr Ser Cy	ys Tyr Leu Pro Pro 85	Pro His Leu 90	Lys Val Ser Val Ser 95	
-	sp Ile Phe Tyr Gln 00	Ile Arg Lys 105	Ala Asp Thr Ser Ser 110	
Arg Asn Val A	la Cys Asp Asp Pro 120	Ser Ser Leu	Asp Phe Leu Arg Lys 125	
Ile Gln Glu An	rg Ser Gly Leu Gly 135	Asp Glu Thr	Tyr Ser Pro Glu Gly 140	
Leu Ile His Va				

												COII		<u> </u>						
Phe	Asn	Pro 195	Thr	Pro	Ser	Leu	Ser 200	Ala	Met	Val	Val	Asn 205	Thr	Phe	Lys					
Leu	Arg 210	Ser	Asn	Ile	Lys	Ser 215	Phe	Asn	Leu	Gly	Gly 220	Met	Gly	CAa	Ser					
Ala 225	Gly	Val	Ile	Ala	Ile 230	Asp	Leu	Ala	Lys	Asp 235	Leu	Leu	His	Val	His 240					
Lys	Asn	Thr	Tyr	Ala 245	Leu	Val	Val	Ser	Thr 250	Glu	Asn	Ile	Thr	Gln 255	Gly					
Ile	Tyr	Ala	Gly 260	Glu	Asn	Arg	Ser	Met 265	Met	Val	Ser	Asn	Cys 270	Leu	Phe					
Arg	Val	Gly 275		Ala	Ala	Ile	Leu 280	Leu	Ser	Asn	Lys	Ser 285	Gly	Asp	Arg					
Arg	Arg 290	Ser	Lys	Tyr	ГÀа	Leu 295	Val	His	Thr	Val	Arg 300	Thr	His	Thr	Gly					
Ala 305	Asp	Asp	Lys	Ser	Phe	Arg	CAa	Val	Gln	Gln 315	Glu	Asp	Asp	Glu	Ser 320					
Gly	Lys	Ile	Gly	Val 325	Cys	Leu	Ser	Lys	Asp 330		Thr	Asn	Val	Ala 335						
Thr	Thr	Leu	Thr			Ile	Ala	Thr		Gly	Pro	Leu	Ile 350		Pro					
Leu	Ser	Glu 355		Phe	Leu	Phe	Phe		Thr	Phe	Val	Ala 365		ГХа	Leu					
Leu	Lys 370		Lys	Ile	Lys	His		Tyr	Val	Pro	Asp		Lys	Leu	Ala					
Val 385		His	Phe	CAa	Ile 390		Ala	Gly	Gly	Arg 395	Ala	Val	Ile	Asp	Glu 400					
	Glu	Lys	Asn	Leu 405		Leu	Ser	Pro	Ile 410		Val	Glu	Ala	Ser 415						
Ser	Thr	Leu	His			Gly		Thr		Ser	Ser	Ser	Ile 430		Tyr					
Glu	Leu	Ala 435		Ile		Ala				Met	Lys	Lys 445		Asn	Lys					
Ala	Trp 450		Ile	Ala			Ser			Lys	Cys 460		Ser	Ala	Val					
<211 <212	0> SI L> LI 2> T	EQ II ENGTI YPE: RGAN:	H: 1: DNA	149	heri															
<400)> SI	EQUEI	NCE:	28																
atga	agtto	cat o	gtgt	tata	ga a	gaag	tcag	gta	accg	gatg	aca	actg	gta	ccgta	atcgcc	61	0			
aacç	gaatt	tac t	ttag	ccgt	gc c	ggta	tagc	c att	caaco	ggtt	ctg	cccc	ggc (ggata	attcgt	12	0			
															ggcgaa	18				
						_		_			_				gtctta	24				
															geegge	30				
															cattac	36) 42)				
															tgeget	42				
Lact	-yyaa	aay a	acyco	Jac	ua t	crag.	uatC	- yc	Leage	ayy	cya	aget	cad i	aatga	atttgt	481	•			

540

gaaaaattgc agttaaaacc agggatgcgc gtactggata ttggctgcgg ctggggcgga

ctggcac	act a	acato	ggcat	c ta	aatta	atgad	gta	aagco	gtgg	tggg	gegt	cac	cattt	ctgcc	600
gaacagc	aaa a	aaato	ggcto	a go	gaac	gctgt	gaa	aggco	tgg	atgt	caco	cat	tttgo	tgcaa	660
gattatc	gtg a	accto	gaaco	ga co	cagtt	tgat	: cgt	atto	jttt	ctgt	gggg	gat	gttcg	gagcac	720
gtcggac	cga a	aaaat	taco	ga ta	accta	atttt	geg	ggtgg	gtgg	atco	gtaat	tt	gaaad	eeggaa	780
ggcatati	tcc 1	tgcto	ccata	ac ta	atcgo	gtteg	g aaa	aaaa	accg	atct	gaat	gt	tgato	ecctgg	840
attaata	aat a	atatt	tttc	ec ga	aacgo	gttgo	ctg	geeet	ctg	taco	gccaç	gat	tgcto	cagtcc	900
agcgaac	ccc a	acttt	gtga	at go	gaaga	actgo	g cat	aact	tcg	gtg	ctgat	ta	cgata	actacg	960
ttgatgg	cgt (ggtat	gaad	g at	tcct	cgcc	gca	atggo	cag	aaat	tgc	gga	taact	atagt	1020
gaacgcti	tta a	aacga	atgt	t ta	accta	attat	cto	gaato	gcct	gtgo	caggt	gc	tttco	egegee	1080
cgtgata	ttc a	agcto	tggd	a go	gtcgt	gtto	t tca	acgc	ggtg	ttga	aaaa	gg	cctto	gagtg	1140
gctcgcta	aa														1149
<210 > SI <211 > LI <212 > T' <213 > OI	ENGTI YPE :	H: 38	32	nerio	chia	coli	L								
<400> S	EQUEI	NCE :	29												
Met Ser 1	Ser	Ser	Cya	Ile	Glu	Glu	Val	Ser 10	Val	Pro	Asp	Asp	Asn 15	Trp	
Tyr Arg	Ile	Ala 20	Asn	Glu	Leu	Leu	Ser 25	Arg	Ala	Gly	Ile	Ala 30	Ile	Asn	
Gly Ser	Ala 35	Pro	Ala	Asp	Ile	Arg 40	Val	Lys	Asn	Pro	Asp 45	Phe	Phe	Lys	
Arg Val 50	Leu	Gln	Glu	Gly	Ser 55	Leu	Gly	Leu	Gly	Glu 60	Ser	Tyr	Met	Asp	
Gly Trp 65	Trp	Glu	Cya	Asp 70	Arg	Leu	Asp	Met	Phe 75	Phe	Ser	ГÀз	Val	Leu 80	
Arg Ala	Gly	Leu	Glu 85	Asn	Gln	Leu	Pro	His 90	His	Phe	Lys	Asp	Thr 95	Leu	
Arg Ile	Ala	Gly 100	Ala	Arg	Leu	Phe	Asn 105	Leu	Gln	Ser	ГÀа	Lys 110	Arg	Ala	
Trp Ile	Val 115	Gly	Lys	Glu	His	Tyr 120	Asp	Leu	Gly	Asn	Asp 125	Leu	Phe	Ser	
Arg Met 130	Leu	Asp	Pro	Phe	Met 135	Gln	Tyr	Ser	СЛа	Ala 140	Tyr	Trp	Lys	Asp	
Ala Asp 145	Asn	Leu	Glu	Ser 150	Ala	Gln	Gln	Ala	Lys 155	Leu	ГЛа	Met	Ile	Cys	
Glu Lys	Leu	Gln	Leu 165	Lys	Pro	Gly	Met	Arg 170	Val	Leu	Asp	Ile	Gly 175	GÀa	
Gly Trp	Gly	Gly 180	Leu	Ala	His	Tyr	Met 185	Ala	Ser	Asn	Tyr	Asp 190		Ser	
Val Val	Gly 195	Val	Thr	Ile	Ser	Ala 200	Glu	Gln	Gln	Lys	Met 205	Ala	Gln	Glu	
Arg Cys 210	Glu	Gly	Leu	Asp	Val 215	Thr	Ile	Leu	Leu	Gln 220	Asp	Tyr	Arg	Asp	

Leu Asn Asp Gln Phe Asp Arg Ile Val Ser Val Gly Met Phe Glu His 225 230235235240

Val Gly Pro Lys Asn Tyr Asp Thr Tyr Phe Ala Val Val Asp Arg Asn Leu Lys Pro Glu Gly Ile Phe Leu Leu His Thr Ile Gly Ser Lys Lys Thr Asp Leu Asn Val Asp Pro Trp Ile Asn Lys Tyr Ile Phe Pro Asn Gly Cys Leu Pro Ser Val Arg Gln Ile Ala Gln Ser Ser Glu Pro His Phe Val Met Glu Asp Trp His Asn Phe Gly Ala Asp Tyr Asp Thr Thr Leu Met Ala Trp Tyr Glu Arg Phe Leu Ala Ala Trp Pro Glu Ile Ala Asp Asn Tyr Ser Glu Arg Phe Lys Arg Met Phe Thr Tyr Tyr Leu Asn Ala Cys Ala Gly Ala Phe Arg Ala Arg Asp Ile Gln Leu Trp Gln Val Val Phe Ser Arg Gly Val Glu Asn Gly Leu Arg Val Ala Arg <210> SEO ID NO 30 <211> LENGTH: 1125 <212> TYPE: DNA <213> ORGANISM: Crepis palaestina <400> SEQUENCE: 30 atgggtgccg gcggtcgtgg tcggacatcg gaaaaatcgg tcatggaacg tgtctcagtt 60 gatccagtaa ccttctcact gagtgaattg aagcaagcaa tccctcccca ttgcttccag 120 agatetgtaa teegeteate ttaetatgtt gtteaagate teattattge etaeatette 180 tacttecttg ccaacacata tatecetaet ettectaeta gtetageeta ettagettgg 240 cccgtttact ggttctgtca agctagcgtc ctcactggct tatggatcct cggccacgaa 300 tgtggtcacc atgcctttag caactacaca tggtttgacg acactgtggg cttcatcctc 360 cactcatttc tcctcacccc gtatttctct tggaaattca gtcaccggaa tcaccattcc 420 aacacaagtt cgattgataa cgatgaagtt tacattccga aaagcaagtc caaactcgcg 480 cgtatctata aacttettaa caacceaect ggteggetgt tggttttgat tateatgtte accctaggat ttcctttata cctcttgaca aatatttccg gcaagaaata cgacaggttt gccaaccact tcgaccccat gagtccaatt ttcaaagaac gtgagcggtt tcaggtcttc ctttcggatc ttggtcttct tgccgtgttt tatggaatta aagttgctgt agcaaataaa ggagctgctt gggtagcgtg catgtatgga gttccggtat taggcgtatt tacctttttc 780 840 qatqtqatca ccttcttqca ccacacccat caqtcqtcqc ctcattatqa ttcaactqaa tggaactgga tcagaggggc cttgtcagca atcgataggg actttggatt cctgaatagt 900 gttttccatg atgttacaca cactcatgtc atgcatcatt tgttttcata cattccacac tatcatgcaa aggaggcaag ggatgcaatc aagccaatct tgggcgactt ttatatgatc 1020 gacaggactc caattttaaa agcaatgtgg agagagggca gggagtgcat gtacatcgag 1080 1125 cctgatagca agctcaaagg tgtttattgg tatcataaat tgtga

<210> SEQ ID NO 31

<211> LENGTH: 374

<212> TYPE: PRT <213> ORGANISM: Crepis palaestina <400> SEQUENCE: 31 Met Gly Ala Gly Gly Arg Gly Arg Thr Ser Glu Lys Ser Val Met Glu Arg Val Ser Val Asp Pro Val Thr Phe Ser Leu Ser Glu Leu Lys Gln Ala Ile Pro Pro His Cys Phe Gln Arg Ser Val Ile Arg Ser Ser Tyr Tyr Val Val Gln Asp Leu Ile Ile Ala Tyr Ile Phe Tyr Phe Leu Ala Asn Thr Tyr Ile Pro Thr Leu Pro Thr Ser Leu Ala Tyr Leu Ala Trp Pro Val Tyr Trp Phe Cys Gln Ala Ser Val Leu Thr Gly Leu Trp Ile Leu Gly His Glu Cys Gly His His Ala Phe Ser Asn Tyr Thr Trp Phe 105 Asp Asp Thr Val Gly Phe Ile Leu His Ser Phe Leu Leu Thr Pro Tyr 120 Phe Ser Trp Lys Phe Ser His Arg Asn His His Ser Asn Thr Ser Ser 135 Ile Asp Asn Asp Glu Val Tyr Ile Pro Lys Ser Lys Ser Lys Leu Ala 150 155 Arg Ile Tyr Lys Leu Leu Asn Asn Pro Pro Gly Arg Leu Leu Val Leu 170 Ile Ile Met Phe Thr Leu Gly Phe Pro Leu Tyr Leu Leu Thr Asn Ile 185 Ser Gly Lys Lys Tyr Asp Arg Phe Ala Asn His Phe Asp Pro Met Ser Pro Ile Phe Lys Glu Arg Glu Arg Phe Gln Val Phe Leu Ser Asp Leu 215 Gly Leu Leu Ala Val Phe Tyr Gly Ile Lys Val Ala Val Ala Asn Lys Gly Ala Ala Trp Val Ala Cys Met Tyr Gly Val Pro Val Leu Gly Val Phe Thr Phe Phe Asp Val Ile Thr Phe Leu His His Thr His Gln Ser Ser Pro His Tyr Asp Ser Thr Glu Trp Asn Trp Ile Arg Gly Ala Leu Ser Ala Ile Asp Arg Asp Phe Gly Phe Leu Asn Ser Val Phe His Asp Val Thr His Thr His Val Met His His Leu Phe Ser Tyr Ile Pro His 310 Tyr His Ala Lys Glu Ala Arg Asp Ala Ile Lys Pro Ile Leu Gly Asp 330 Phe Tyr Met Ile Asp Arg Thr Pro Ile Leu Lys Ala Met Trp Arg Glu 345 Gly Arg Glu Cys Met Tyr Ile Glu Pro Asp Ser Lys Leu Lys Gly Val 360 Tyr Trp Tyr His Lys Leu

```
<210> SEQ ID NO 32
<211> LENGTH: 1131
<212> TYPE: DNA
<213 > ORGANISM: Crepis alpina
<400> SEQUENCE: 32
aagatgggtg geggtggeeg tggteggaet tegeaaaaac eecteatgga aegtgtetea
gttgatccac ccttcaccgt gagtgatctc aagcaagcaa tccctcccca ttgcttcaag
cgatctgtaa tccgttcctc ttactacata gtccacgatg ctattatcgc ctacatcttc
tacttocttg cogacaaata cattoogatt ctocotgooc ctotagoota cotogottgg
cccctttact ggttctgtca agctagcatc ctcaccggct tatgggtcat cggtcacgaa
tgcqqtcacc atqccttcaq cqactaccaq tqqqttqacq acactqtqqq cttcatcctc
                                                                     360
cacteqtttc teatqaceec qtatttetec tqqaaataca qeeaceqqaa ceaceatqee
                                                                     420
aacacaaatt cgcttgacaa cgatgaagtt tacatcccca aaagcaaggc caaagtcgcg
                                                                     480
ctttactata aagttctcaa ccaccacct ggccgactgt tgattatgtt catcaccttc
                                                                     540
accetagget tecetetata cetetttace aatattteeg geaagaagta tgaaaggttt
                                                                     600
gccaaccatt tcgaccccat gagtccgatt ttcaaagagc gtgagcggtt tcaggtcttg
                                                                     660
ctatcggatc ttggccttct tgctgtgctt tacggagtta aacttgcggt agcagcgaaa
                                                                     720
ggcgccgctt gggtgacgtg catttacgga attccagttt taggcgtgtt tatctttttc
                                                                     780
gatatcatca cctacttgca ccacacccat ctgtcgttgc ctcattatga ttcatctgaa
                                                                     840
tggaactggc tcagaggggc tttgtcaaca atcgataggg actttgggtt cctgaatagt
                                                                     900
gtgctccatg atgttacaca cactcacgtt atgcatcatc tgttttcata cattccacac
                                                                     960
tatcatgega aggaggeaag ggatgeaate aacaeagtet tgggegaett ttataagate
                                                                    1020
gataggactc caattetgaa agcaatgtgg agagaggeca aggaatgeat etteategag
                                                                    1080
cctgaaaaag gtagggagtc caagggtgta tattggtaca ataaattctg a
                                                                    1131
<210> SEQ ID NO 33
<211> LENGTH: 375
<212> TYPE: PRT
<213> ORGANISM: Crepis alpina
<400> SEQUENCE: 33
Met Gly Gly Gly Arg Gly Arg Thr Ser Gln Lys Pro Leu Met Glu
Arg Val Ser Val Asp Pro Pro Phe Thr Val Ser Asp Leu Lys Gln Ala
Ile Pro Pro His Cys Phe Lys Arg Ser Val Ile Arg Ser Ser Tyr Tyr
Ile Val His Asp Ala Ile Ile Ala Tyr Ile Phe Tyr Phe Leu Ala Asp
Lys Tyr Ile Pro Ile Leu Pro Ala Pro Leu Ala Tyr Leu Ala Trp Pro
                    70
Leu Tyr Trp Phe Cys Gln Ala Ser Ile Leu Thr Gly Leu Trp Val Ile
Gly His Glu Cys Gly His His Ala Phe Ser Asp Tyr Gln Trp Val Asp
                                105
```

Asp Thr Val Gly Phe Ile Leu His Ser Phe Leu Met Thr Pro Tyr Phe 115 120 125
Ser Trp Lys Tyr Ser His Arg Asn His His Ala Asn Thr Asn Ser Leu 130 135 140
Asp Asn Asp Glu Val Tyr Ile Pro Lys Ser Lys Ala Lys Val Ala Leu 145 150 155 160
Tyr Tyr Lys Val Leu Asn His Pro Pro Gly Arg Leu Leu Ile Met Phe 165 170 175
Ile Thr Phe Thr Leu Gly Phe Pro Leu Tyr Leu Phe Thr Asn Ile Ser 180 185 190
Gly Lys Lys Tyr Glu Arg Phe Ala Asn His Phe Asp Pro Met Ser Pro 195 200 205
Ile Phe Lys Glu Arg Glu Arg Phe Gln Val Leu Leu Ser Asp Leu Gly 210 215 220
Leu Leu Ala Val Leu Tyr Gly Val Lys Leu Ala Val Ala Ala Lys Gly 225 230 235 240
Ala Ala Trp Val Thr Cys Ile Tyr Gly Ile Pro Val Leu Gly Val Phe 245 250 255
Ile Phe Phe Asp Ile Ile Thr Tyr Leu His His Thr His Leu Ser Leu 260 265 270
Pro His Tyr Asp Ser Ser Glu Trp Asn Trp Leu Arg Gly Ala Leu Ser 275 280 285
Thr Ile Asp Arg Asp Phe Gly Phe Leu Asn Ser Val Leu His Asp Val 290 295 300
Thr His Thr His Val Met His His Leu Phe Ser Tyr Ile Pro His Tyr 305 310 315 320
His Ala Lys Glu Ala Arg Asp Ala Ile Asn Thr Val Leu Gly Asp Phe 325 330 335
Tyr Lys Ile Asp Arg Thr Pro Ile Leu Lys Ala Met Trp Arg Glu Ala 340 345 350
Lys Glu Cys Ile Phe Ile Glu Pro Glu Lys Gly Arg Glu Ser Lys Gly 355 360 365
Val Tyr Trp Tyr Asn Lys Phe 370 375
<210> SEQ ID NO 34 <211> LENGTH: 1297 <212> TYPE: DNA <213> ORGANISM: Momordica charantia
<400> SEQUENCE: 34
aataaattag cttcttttt taagtgagtg aagggagatc tggaggcaat ggggggcaga 60
ggagctattg gagtactgag gaacggtggc ggcccaaaaa agaaaatggg gccggggcag 120
gggctggggc cggggggagcg cattacacat gccaggcctc ccttcagcat cagccagatc 180
aagaaggcca ttccccccca ctgctttcag cgatccctcc gccgctcttt ttcctacctt 240
ctttccgaca ttgccctcgt ctctgccttt tattacgttg ccgacaccta cttccaccgc 300
ctgccccacc ccctactcca ctacctggcc tggcccgttt actggttctg tcagggcgcc 360
gtactcaccg gcatgtgggg catcgctcac gactgcggcc accacgcctt cagcgactac 420
caattggtag acgacgtggt tgggttcctc atccactctt tggtttttgt cccttacttc 480

teetteaaga teageeaceg eegeeaceae teeaacaeet eateegtgga eegggaegag

gtgt	tegt	cc ·	ccaa	geega	ıa g	gccaa	aaatg	1 000	ctggt	act	tcaa	agtad	ett (gacaa	acccg	600
cccc	gccaç	199	tctt	catta	it ti	tttat	cacg	cto	cacto	ctcg	ggt	ggcca	aat	gtaco	tgacc	660
ttca	acat	ct	ccgg	ccggt	a ct	tacg	geege	, tt	cacca	agcc	actt	cgad	ecc ·	gaaca	agcccc	720
atat	tcag	gee .	caaa	ggago	g c	gttct	cgtt	cat	catc	cca	acgo	ctggg	gct	tgtgg	gcgacc	780
gggt	attt	gc	tgta	cagga	ıt c	gcaat	ggcg	, aaq	39999	gtgg	ggt	ggttg	gat	ccgct	tgtac	840
ggag	jtgc	gc ·	tgat	cgttt	t aa	aacgo	gtgc	gta	agtto	ctga	tcad	cage	gct	gcago	cacacc	900
cacc	ctto	gt	tccc	gtatt	a co	gacto	cgace	gaa	atgg	gatt	ggct	gaga	agg	gaato	tggtg	960
acgo	jtgga	aca (gagat	ttaco	ia a	cctat	aatg	, aat	agaç	gtgt	ttca	atcad	cat	aacgo	gacacg	1020
caco	ıtggt	tc.	accat	ttgt	t to	cctt	gatg	l ccá	gcact	caca	acg	ggaaa	aga	ggcga	acggtt	1080
gcag	gcaaa	agc (gaata	actgo	g a	gagta	actac	caç	gttt	gatg	ggad	ccca	aat	ttgga	aggcg	1140
gcct	ggag	ggg .	aatt	cagaç	ja gi	tgcgt	ttat	gta	agago	ccag	acga	aagao	cga	tgggg	gccact	1200
tccg	gata	cca (gtagi	taagg	g t	gttt	cetge	j tad	ccaca	aaca	agct	cctga	aat	tcaat	aatat	1260
cctc	tttc	cac	ctct	ctttt	t ca	ataaa	aaaaa	aaa	aaaa	a						1297
<211 <212 <213	.> LE !> T? !> OF	ENGT PE: RGAN	D NO H: 39 PRT ISM: NCE:	99 Momo	ordio	ca cl	naran	ıtia								
Met 1	Gly	Gly	Arg	Gly 5	Ala	Ile	Gly	Val	Leu 10	Arg	Asn	Gly	Gly	Gly 15	Pro	
Lys	Lys	Lys	Met 20	Gly	Pro	Gly	Gln	Gly 25	Leu	Gly	Pro	Gly	Glu 30	Arg	Ile	
Thr	His	Ala 35	Arg	Pro	Pro	Phe	Ser 40	Ile	Ser	Gln	Ile	Lys 45	Lys	Ala	Ile	
Pro	Pro 50	His	Cys	Phe	Gln	Arg 55	Ser	Leu	Arg	Arg	Ser 60	Phe	Ser	Tyr	Leu	
Leu 65	Ser	Asp	Ile	Ala	Leu 70	Val	Ser	Ala	Phe	Tyr 75	Tyr	Val	Ala	Asp	Thr 80	
Tyr	Phe	His	Arg	Leu 85	Pro	His	Pro	Leu	Leu 90	His	Tyr	Leu	Ala	Trp 95	Pro	
Val	Tyr	Trp	Phe 100	Cys	Gln	Gly	Ala	Val 105	Leu	Thr	Gly	Met	Trp 110	Gly	Ile	
Ala	His	Asp 115	Cys	Gly	His	His	Ala 120	Phe	Ser	Asp	Tyr	Gln 125	Leu	Val	Asp	
Asp	Val 130	Val	Gly	Phe	Leu	Ile 135	His	Ser	Leu	Val	Phe 140	Val	Pro	Tyr	Phe	
Ser 145	Phe	Lys	Ile	Ser	His 150	Arg	Arg	His	His	Ser 155	Asn	Thr	Ser	Ser	Val 160	
Asp	Arg	Asp	Glu	Val 165	Phe	Val	Pro	Lys	Pro 170	Lys	Ala	Lys	Met	Pro 175	Trp	
Tyr	Phe	ГÀа	Tyr 180	Leu	Thr	Asn	Pro	Pro 185	Ala	Arg	Val	Phe	Ile 190	Ile	Phe	
Ile	Thr	Leu 195	Thr	Leu	Gly	Trp	Pro 200	Met	Tyr	Leu	Thr	Phe	Asn	Ile	Ser	

Gly Arg Tyr Tyr Gly Arg Phe Thr Ser His Phe Asp Pro Asn Ser Pro 210 215 220

Ile Phe Ser Pro Lys Glu Arg Val Leu Val His Ile Ser Asn Ala Gly 225 230 235 240	
Leu Val Ala Thr Gly Tyr Leu Leu Tyr Arg Ile Ala Met Ala Lys Gly 245 250 255	
Val Gly Trp Leu Ile Arg Leu Tyr Gly Val Pro Leu Ile Val Leu Asn 260 265 270	
Ala Cys Val Val Leu Ile Thr Ala Leu Gln His Thr His Pro Ser Phe 275 280 285	
Pro Tyr Tyr Asp Ser Thr Glu Trp Asp Trp Leu Arg Gly Asn Leu Val 290 295 300	
Thr Val Asp Arg Asp Tyr Gly Pro Ile Met Asn Arg Val Phe His His 305 310 315 320	
Ile Thr Asp Thr His Val Val His His Leu Phe Pro Ser Met Pro His 325 330 335	
Tyr Asn Gly Lys Glu Ala Thr Val Ala Ala Lys Arg Ile Leu Gly Glu 340 345 350	
Tyr Tyr Gln Phe Asp Gly Thr Pro Ile Trp Lys Ala Ala Trp Arg Glu 355 360 365	
Phe Arg Glu Cys Val Tyr Val Glu Pro Asp Glu Asp Asp Gly Ala Thr 370 375 380	
Ser Gly Ser Ser Ser Lys Gly Val Phe Trp Tyr His Asn Lys Leu 385 390 395	
<210> SEQ ID NO 36 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEQUENCE: 36	
catgagtttg agtatacaca tgtcta	26
<210> SEQ ID NO 37 <211> LENGTH: 31 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 37	
aaagaaatca tgtaaaccta aatagaaacg c	31
<210> SEQ ID NO 38 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 38	
gtgatcgatg agctagagaa gaac	24
<210> SEQ ID NO 39 <211> LENGTH: 41 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	

<223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 39	
caaggactat ttgccgatgc cttgacattg cgtagagcga c	41
<210> SEQ ID NO 40 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 40	
aatatagcca tegeegeeac catt	24
<pre><210> SEQ ID NO 41 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEQUENCE: 41</pre>	
tggcaagcaa agcgatcgta aggt	24
<210> SEQ ID NO 42 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 42	
accatcactt tggaggtgga	20
<pre><210> SEQ ID NO 43 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEQUENCE: 43</pre>	
gtcaatggtg tcggagcttt	20
<210> SEQ ID NO 44 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic	
<400> SEQUENCE: 44	
cggtggagat tatccaacag	20
<pre><210> SEQ ID NO 45 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic <400> SEQUENCE: 45</pre>	
32202.02. 10	

ttatggtgat cctctggttg 20

<210> SEQ ID NO 46
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic

<400> SEQUENCE: 46

aaaattaaaa tctcagcagt 20

- 1. A transgenic plant or part thereof that comprises:
- a) a genomic mutation selected from the group consisting of a mutation of fad2, fad3, and fae1, or any combination of such mutations,
- b) the reduced expression of one or both endogenous BADC1 and BADC3 genes, and
- c) one or more transgenes that alter metabolism of a target fatty acid.
- 2. The transgenic plant or part thereof of claim 1, wherein said transgenic plant part comprises wild type BADC1 gene and reduced expression of said endogenous BADC3 gene.
- 3. The transgenic plant or part thereof of claim 1, wherein said transgenic plant part comprises reduced expression of said endogenous BADC1 gene and BADC3 gene.
- **4.** The transgenic plant or part thereof of claim **1**, wherein said plant is *Camelina sativa*, *Brassica napus* or *Glycine max*.
- 5. The transgenic plant or part thereof of claim 1, wherein said genomic mutation is fad2/fae1 or fad3/fae1.
- **6**. The transgenic plant or part thereof of claim **1**, wherein said one or more transgenes encode *Ricinus* fatty acid hydroxylase (FAI H), *E. coli* cyclopropane fatty acid synthase, *Crepis palaestina* delta 12 fatty acid epoxygenase, *Crepis alpina* delta-12 fatty acid acetylenase, or *Momordica charantia* Conjugase (FadX).
- 7. The transgenic plant or part thereof of claim 1, wherein said one or more transgenes are under control of a seed-specific promoter.
- 8. The transgenic plant or part thereof of claim 1, wherein said target fatty acid comprises one or more of hydroxyl fatty acids, medium-chain fatty acids, very-long-chain fatty

- acids (VLCFAs), monounsaturated fatty acids (MUFAs), γ -linolenic acid, stearidonic acids, α -eleostearic acid, conjugated fatty acids, epoxy fatty acids, cyclic fatty acids and acetylenic fatty acids.
- **9**. The transgenic plant or part thereof of claim **1**, wherein said transgenic plant part is from *Camelina sativa*, *Brassica napus* or *Glycine max*, said genomic mutation is fad3 fae1, and said transgene encodes acetylanase, conjugase, epoxygenase or any combinations thereof.
- 10. The transgenic plant or part thereof of claim 1, wherein said transgenic plant part is from *Camelina sativa*, *Brassica napus* or *Glycine max*, said genomic mutation is fad2/fae1, and said transgene encodes *Ricinus* fatty acid hydroxylase.
- 11. The transgenic plant or part thereof of claim 1, wherein said transgenic plant part is from *Camelina sativa*, *Brassica napus* or *Glycine max*, said genomic mutation is fae1, and said transgene encodes *Ricinus* fatty acid hydroxylase.
- 12. The transgenic plant or part of claim 1, wherein said reduced expression comprises complete silencing.
- 13. The transgenic plant or part of claim 2, wherein said reduced expression comprises complete silencing.
- 14. The transgenic plant or part of claim 3, wherein said reduced expression comprises complete silencing.
 - 15. A progeny plant of the transgenic plant of claim 1.
- 16. A transgenic seed that produces the transgenic plant of claim 1.
- 17. A method of producing the target fatty acid using the transgenic plant part of claim ${\bf 1}$.

* * * * *