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EVENT-DRIVEN READOUT SYSTEM WITH
NON-PRIORITY ARBITRATION FOR
MULTICHANNEL DATA SOURCES
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U.S. Provisional Application No. 63/175,625, filed Apr. 16,
2021, and U.S. Provisional Application No. 63/244,692,
filed Sep. 15, 2021, the disclosures of which are incorpo-
rated herein by reference in their entireties.

STATEMENT OF GOVERNMENT LICENSE
RIGHTS

[0002] This invention was made with Government support
under contract number DE-SC0012704 awarded by the U.S.
Department of Energy. The present invention was made with
Government support under NASA grant NNX16AC42G
awarded by the National Aeronautics and Space Adminis-
tration. The United States government may have certain
rights in this invention.

BACKGROUND

[0003] The disclosed embodiments generally relate to an
event-driven readout system with non-priority arbitration for
multichannel data sources.

SUMMARY

[0004] The disclosed embodiments relate to an event-
driven readout management system including non-priority
access arbitration of a plurality of channels. The system
includes an arbitration tree circuit, response circuit, in-
channel logic circuit, and output periphery circuit. The
arbitration tree circuit determines to which of the plurality of
channels to grant access to a common signal transfer
resource shared by the plurality of channels based on a
readout access request provided by at least one of the
plurality of channels. The arbitration tree circuit excludes
simultaneous occurrence of multiple readout access requests
from the determination, and the readout access request is
stored in the arbitration tree circuit until access is granted to
the common signal transfer resource by the arbitration tree
circuit. The arbitration tree circuit terminates a prior readout
transaction and commences a subsequent readout transac-
tion in response to a single edge of a clock signal. The
response circuit is operatively coupled to the arbitration tree
circuit, and a state of the clock signal represents an acknowl-
edge token. The acknowledge token is provided to the
arbitration tree circuit, which uses the acknowledge token to
grant access to the common signal transfer resource. The
in-channel logic circuit is operatively coupled to the arbi-
tration tree circuit, and generates the readout access request
and receives the acknowledge token. The in-channel logic
circuit terminates the prior readout transaction and com-
mences the subsequent readout transaction in response to
receiving the acknowledge token. The output periphery
circuit converts information received from the plurality of
channels into an output format on the common signal
transfer resource.

[0005] The common signal transfer resource may include
at least one of an analog signal transfer line and a digital
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signal transfer line, and the readout access request may be
generated in response to an event, wherein the event may
include activation of at least one of the plurality of channels
to generate transferrable data. The readout transaction may
include a plurality of readout phases, and at least one of the
plurality of readout phases may cause transfer of at least a
portion of information from one of the plurality of channels
to the common signal transfer resource. A duty cycle asso-
ciated with the clock signal may be selectable to maximize
settling time associated with the common signal transfer
resource, and the determination may include determining
which of a plurality of readout phases associated with the
readout transaction is assigned to the plurality of channels
independent of at least one of readout access requests stored
in the arbitration tree circuit, readout access requests
received, and a relative position of the plurality of channels
with respect to the arbitration tree circuit. A quantity of
edges associated with the clock signal may be equal to a
quantity of readout phases associated with the readout
transaction, and the arbitration tree circuit may operate
asynchronously with the plurality of channels. The arbitra-
tion tree circuit may operate synchronously with the output
periphery circuit, may operate synchronously with the in-
channel logic circuit, and the in-channel logic circuit may
operate asynchronously in generating the read access request
using the acknowledge token such that a duration of the
acknowledge token defines an acceptance time window
associated with the read access request.

[0006] A duty cycle of the acknowledge token signal may
be selectable to extend a minimum readout phase time. The
plurality of channels may provide information to the com-
mon signal transfer resource such that a transmission order
associated with concurrently requesting channels is inde-
pendent of arbitration tree positions associated with the
concurrently requesting channels. The readout request out-
put in each stage of arbitration tree may represent a logical
sum of request signals from a stage lower in the arbitration
tree or a logical sum of the result signals from arbitration
between requests or internal signals of the single arbitration
cell, in the case when the arbitration cell is performing
arbitration not only between the readout requests but also
between the readout requests and the state of the acknowl-
edge line. Thus, the acknowledge token is prevented from
being blocked even if there are still active readout access
requests when the read out is terminated.

[0007] The disclosed embodiments further relate to a
method of non-priority arbitration of a plurality of channels
using an event-driven readout management system. The
method includes determining, using an arbitration tree cir-
cuit, to which of the plurality of channels to grant access to
a common signal transfer resource shared by the plurality of
channels, wherein the determination is based on a readout
access request provided by at least one of the plurality of
channels; excluding, using the arbitration tree circuit, simul-
taneous occurrence of multiple readout access requests from
the determination; storing the readout access request in the
arbitration tree circuit until access is granted to the common
signal transfer resource by the arbitration tree circuit; ter-
minating, using the arbitration tree circuit, a prior readout
transaction and commencing a subsequent readout transac-
tion in response to a single edge of a clock signal; providing
an acknowledge token to the arbitration tree circuit, wherein
the arbitration tree circuit uses the acknowledge token to
grant access to the common signal transfer resource, and



US 2024/0193116 Al

wherein a state of the clock signal represents the acknowl-
edge token; generating, using an in-channel logic circuit, the
readout access request and receiving the acknowledge token,
wherein the in-channel logic circuit is operatively coupled to
the arbitration tree circuit; terminating, using the in-channel
logic circuit, the prior readout transaction and commencing
the subsequent readout transaction in response to receiving
the acknowledge token; and converting, using an output
periphery circuit, information received from the plurality of
channels into an output format on the common signal
transfer resource.

[0008] The disclosed embodiments yet further relate to a
computer-readable medium including instructions that,
when executed by a processing device, perform operations
including: determining, using an arbitration tree circuit, to
which of the plurality of channels to grant access to a
common signal transfer resource shared by the plurality of
channels, wherein the determination is based on a readout
access request provided by at least one of the plurality of
channels; excluding, using the arbitration tree circuit, simul-
taneous occurrence of multiple readout access requests from
the determination; storing the readout access request in the
arbitration tree circuit until access is granted to the common
signal transfer resource by the arbitration tree circuit; ter-
minating, using the arbitration tree circuit, a prior readout
transaction and commencing a subsequent readout transac-
tion in response to a single edge of a clock signal; providing
an acknowledge token to the arbitration tree circuit, wherein
the arbitration tree circuit uses the acknowledge token to
grant access to the common signal transfer resource, and
wherein a state of the clock signal represents the acknowl-
edge token; generating, using an in-channel logic circuit, the
readout access request and receiving the acknowledge token,
wherein the in-channel logic circuit is operatively coupled to
the arbitration tree circuit; terminating, using the in-channel
logic circuit, the prior readout transaction and commencing
the subsequent readout transaction in response to receiving
the acknowledge token; and converting, using an output
periphery circuit, information received from the plurality of
channels into an output format on the common signal
transfer resource.

[0009] Other embodiments will become apparent from the
following detailed description considered in conjunction
with the accompanying drawings. It is to be understood,
however, that the drawings are designed as an illustration
only and not as a definition of the limits of any of the
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The following drawings are provided by way of
example only and without limitation, wherein like reference
numerals (when used) indicate corresponding elements
throughout the several views, and wherein:

[0011] FIG. 1 shows a readout resources management
system with multiple sources of data requesting readouts
asynchronously, in which a common output bandwidth is
significantly smaller than a total bandwidth of channels
during simultaneous channel submissions;

[0012] FIG. 2A shows a block diagram of data-push
architecture;
[0013] FIG. 2B shows a block diagram of two-dimen-

sional data-push architecture;
[0014] FIG. 3 shows a block diagram of token ring archi-
tecture;
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[0015] FIG. 4A shows a block diagram of a readout system
with address-encoder and reset-decoder architecture;
[0016] FIG. 4B shows a block diagram of a readout system
with address-encoder and reset-decoder architecture and an
additional data bus;

[0017] FIG. 5 shows a block diagram illustrating commu-
nication based on address event representation architecture;
[0018] FIG. 6 shows a block diagram of an embodiment of
a readout management system;

[0019] FIG. 7 shows a block diagram of a first embodi-
ment of an asynchronous readout requester;

[0020] FIG. 8 shows a schematic diagram of a second
embodiment of the readout requester;

[0021] FIG. 9A shows a schematic diagram of a third
embodiment of the readout requester with different logic
states;

[0022] FIG. 9B shows a schematic diagram of the third
embodiment of the readout requester with an additional
signal that indicates activity of channel readout phases;
[0023] FIG. 10A shows a schematic diagram of a fourth
embodiment of the readout requester;

[0024] FIG. 10B shows a schematic diagram of a fifth
embodiment of the readout requester;

[0025] FIG. 11 shows a timing diagram showing readout
requester waveforms;

[0026] FIG. 12 shows a block diagram of an embodiment
of a synchronous readout requester;

[0027] FIG. 13 shows a schematic diagram of an embodi-
ment of the synchronous readout requester shown in FIG.
12;

[0028] FIG. 14A shows a block diagram of an embodi-

ment of an arbitration cell;

[0029] FIG. 14B shows a block diagram of an embodi-
ment of an arbitration cell shown in FIG. 14A of type O,
which is referred to herein as “arbitration cell type 0”;
[0030] FIG. 14C shows a block diagram of an embodi-
ment of an arbitration cell, which is referred to herein as
“arbitration cell type I”;

[0031] FIG. 14D shows a block diagram of an embodi-
ment of an arbitration cell, which is referred to herein as
“arbitration cell type I1I"”;

[0032] FIG. 14E shows a block diagram of an embodiment
of an arbitration cell, which is referred to herein as “arbi-
tration cell type 111”7

[0033] FIG. 15 shows a block diagram of an embodiment
of an address encoder;

[0034] FIGS. 16A-D show symbols representing arbitra-
tion cells depending on a type of arbitration cell and address
encoder inclusion;

[0035] FIGS. 17A-B show block diagrams of alternating
configurations of P-type stage and N-type stage arbitration
cells;

[0036] FIG. 18 shows a block diagram of an embodiment
of arbitration trees with address encoders;

[0037] FIG. 19A shows a Seitz arbiter;

[0038] FIG. 19B shows an embodiment of arbiter type I;
[0039] FIG. 19C shows an embodiment of arbiter type II;
[0040] FIG. 19D shows an embodiment of arbiter type II1

that may be subject to blockage;

[0041] FIG. 19E shows an embodiment of arbiter type II1
that is immune to blockage;

[0042] FIGS. 20A-B show an SR latch with NAND gates
and its truth table;
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[0043] FIGS. 21A-B show an SR latch with NOR gates
and its truth table;

[0044] FIGS. 22A-D show metastable filters implemented
using inverters and buffers;

[0045] FIGS. 23A-B show metastable filters implemented
using multiple input NOR and NAND gates;

[0046] FIGS. 23C-D show metastable filters implemented
using inverters with hysteresis;

[0047] FIGS. 23E-F show metastable filters implemented
using inverters with feedback;

[0048] FIGS. 24A-F show embodiments of a commutator
and truth tables;

[0049] FIGS. 25A-B show embodiments of an address
encoder implemented using tristate buffers;

[0050] FIGS. 26A-B show embodiments of an address
encoder implemented using tristate inverters;

[0051] FIG. 27 shows an embodiment of a response circuit
with asynchronous generation of acknowledge based on an
output request state;

[0052] FIG. 28 shows an embodiment of a response cir-
cuit;
[0053] FIG. 29 shows an embodiment of an output periph-
ery;
[0054] FIG. 30 shows a first embodiment of a serializer;
[0055] FIG. 31 shows a timing diagram of waveforms

illustrating operation of the first embodiment of the serial-
izer shown in FIG. 30;

[0056] FIG. 32 show a second embodiment of the serial-
izer in which pull-up/pull-down networks are not used on
data signals and settling time is maximized;

[0057] FIG. 33 shows a timing diagram of waveforms
illustrating operation of the second embodiment of the
serializer shown in FIG. 32;

[0058] FIG. 34 shows an embodiment including grouped
channels and a spatially distributed arbitration tree;

[0059] FIG. 35 shows an embodiment including grouped
channels including independent data busses and arbitrations
trees;

[0060] FIG. 36 shows an embodiment including an addi-
tional buffering stage on the data bus; and

[0061] FIG. 37 shows a block diagram of at least a portion
of an exemplary machine in the form of a computing system
that performs methods according to one or more embodi-
ments disclosed herein.

[0062] It is to be appreciated that elements in the figures
are illustrated for simplicity and clarity. Common but well-
understood elements that are useful or necessary in a com-
mercially feasible embodiment are not shown in order to
facilitate a less hindered view of the illustrated embodi-
ments.

DETAILED DESCRIPTION

[0063] Data readout and computer network systems that
either collect or transmit data strive for optimal usage of
available bandwidth associated with links. One category of
data transmission includes links that are permanently con-
figured to assure data streaming rates, which translates into
substantial reductions in latency and data loss at the cost of
reserving the link even when data is not being transferred.
Another category includes links configured upon receiving
transmission requests from sources of data or the sources of
data determine whether to occupy bandwidth of a link after
probing channel occupancy and constating that the link is
not used by another concurring source. The latter risks false
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detection of an idle state associated with the data link due to
finite channel propagation speed. This may occur when two
or more distant sources initiate transmission after detecting
that a channel is empty. However, transmissions from other
channels may still not reach distant sources to allow detec-
tion by these distant sources of a busy state. To handle such
situations without losing transmitted data, collision detect-
ing mechanisms are incorporated in the network systems,
such as that used in 10BASE5 and 10BASE2 Ethernet
standards in accordance with IEEE 802.3. Solving the
problem of transmission medium access by ordering a
source to send requests for transmission to a switch or data
concentrator and to receive access acknowledgements uti-
lizes a handshaking protocol. Execution of such a protocol
introduces latency, and thus inefficiency in the readout
system. Setting up private links to sources of data or
establishing handshaking protocols are costly and often
require non-optimal allocation of bandwidth, additional
hardware, and increased latency.

[0064] Addressing how to collect data efficiently from
spatially distributed sources poses similar challenges regard-
less of whether it concerns a distributed grid associated with
in-field deployed sensors, computers on a network, cells in
content addressable memories, channels in neuromorphic
chips, or elements in one-dimensional (line) or two-dimen-
sional (pixelated) radiation detectors. These facilities or
instruments typically share a common feature of concur-
rently reporting data by two or more sources of data, which
may be seen as asynchronous with respect to clocking
associated with a receiver. Although synchronizing sources
of data using data concentration is possible by distributing a
common time base, achieving this goal comes at a greater
cost. Additional links for distributing a clock signal results
in greater power dissipation. In particular, the clock is
widely distributed regardless of how sparse data is trans-
mitted since idle time between consecutive data transmis-
sion events are present.

[0065] As shown in FIG. 1, an efficient readout system 10
is disclosed for collecting sparse data originating from
multiple sources or channels 11, in which the channels 11
operate asynchronously. Each channel 11 optimally provides
data to a central data acquisition system 13 in such a way
that the order of channels 11 that transmit concurrently is
independent of their geographical positions. The protocol
and hardware architecture are developed for Application
Specific Integrated Circuits (ASICs) that are used, for
example, to read out one-dimensional or two-dimensional
multichannel radiation sensors, which are implemented
using, for example, micro-strip or pixelated radiation sen-
SOIS.

[0066] The readout system 10 provides an alternative to a
token-passing scheme, but does not exhibit deficiencies of
that scheme, such as a deterministic order of read out
channels and a varied delay in accessing these channels as
a function of the location of channels at a beginning or end
of a token passing route. The readout system 10 ensures that
there are no collisions and that no channel is starved for the
allocation of time slots to transmit data. That is, there is no
situation in which an access to the readout resources is
unfairly or perpetually denied to one or more of the chan-
nels. A characteristic feature of this readout system 10 is that
the common output bandwidth 12 of the data link is signifi-
cantly less than the total data bandwidths 14 of all channels
11 when transmitting simultaneously.
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[0067] Generally, readout resource management architec- [0071] (c) readout is not fully data-driven for two-
tures are classified in the following categories. dimensional arrays since channels with valid hit

[0068] (1) Data-Push Architecture (DPA) is a data
driven architecture that initiates readout cycles of valid
data from a channel without receiving an external
trigger. DPA can be found, inter alia, in simple multi-
channel application, such as that shown in FIG. 2A.
DPA receives asynchronous data, records a time-of-
arrival, and sequences the data on a common bus. These
operations take place as follows: after an event, such as
deposition of a particle, a high logic state is set on a hit
line corresponding to the channel in which the event
occurred. This information is then sent to a buffer 19 for
storage. The buffer 19 generates a channel reset (crst)
signal that resets an analog circuit inside the channel so
that the analog circuit is ready to detect a new event.
Information from the buffer 19 is strobed into a FIFO
20 by a system clock and subsequent operations are
thereafter synchronous as represented by lines 28,
whereas asynchronous data lines are represented by
line 30. A counter 18 value, which is interpreted as a
timestamp of the event, is strobed into its own FIFO 21
simultaneously. FIFOs 20, 21 reduce dead time, during
which a channel does not detect new events because the
channel is processing a previous event, while reducing
the probability of losing data. The oldest information
from the FIFO 21 is provided to a register 23. This data
is referred to as a current processed event and can
include information regarding multiple events if these
events occur with the same timestamp. To handle
multiple events, priority encoder, decoder, and single
bit reset functions in the register 23 are used. The first
of these functions finds an active bit in a logic vector,
stores the active bit in the register 23, and converts a
position of the most significant active bit to a binary
value. This value is then latched to an additional
register (not shown). From that register, the value is
transmitted, together with the timestamp, to the output
periphery 25 by a bus control 27. From there the value
is sent out to an external system. Output from the
register 23 is also decoded to one hot code, which is a
binary vector with an active bit in one position. Such a
representation of the address is used to clear a bit in the
register 23 so that the next hit address can be encoded
and sent out. If there are no more active bits, subse-
quent data is obtained from the FIFO 21. Synchroni-
zation with the system clock 17 occurs inside the buffer
register 19 or FIFOs 20, 21. The DPA can suffer from
metastable states, which result in invalid logic levels
due to asynchronous data from a channel changing near
an edge of the system clock 17. This can result in
invalid timestamp assignment and/or data loss. FIG. 2B
illustrates implementation of the DPA with a two-
dimensional input array that provides data to a readout
control and row logic block 31. A practical advantage
of DPA is that it does not require continuous distribu-
tion of a clock to the channels. However, DPA may
exhibit the following disadvantages:

[0069] (a) pipeline stages, such as buffers, FIFOs,
and registers introduce delays in outputting data;

[0070] (b) metastable states caused by triggering syn-
chronous readout and latching synchronous data
(e.g., time stamps) using asynchronous hit signals;

signals are found after columns are selected; and

[0072] (d) if multiple events occur, the events are
processed using a fixed priority that favors some
cells over other cells.

[0073] (2) Token Ring Architecture (TRA) 37 is a

readout polling architecture, as shown in FIG. 3. A
token is injected into a chain of channels and trans-
ferred from one cell to another cell until a cell con-
taining valid data is reached. The cell with valid data
retains the token for a sufficient amount of time to
output data. After readout of this cell is completed, the
cell releases the token to propagate further, as shown in
FIG. 3. Signals 36 show a path of the token until the
token finds a cell with valid data 38. Readout is then
initiated and another cell with valid data 41 waits for
the next cycle. If the token originates in the token logic
39, the channels located farther from the source of
tokens may experience a shortage of tokens during
times of high event intensity. Alternatively, if a token is
transferred from a channel after readout of that channel,
additional strobing is transmitted to all channels in the
ring. Thus, the length of the chain is important as this
length determines how much of the total readout time
slot is available for data settling since the token
requires time to reach its destination. This travel time
can be short or long. If the chain is too long, there is a
risk of timing failure. An additional clock that strobes
advancement of the token to successive cells can be
distributed across channels. However, presence of the
additional clock increases power consumption. In addi-
tion, the allocation of time to cover the travel time of
the token to the farthest cell in the chain and settling
time for the data results in suboptimal use of link
bandwidth in this token passing readout architecture.

[0074] (3) Address-Encoder and Reset-Decoder

(AERD) 42 is a form of data driven readout architec-
ture as shown in FIG. 4A. Reporting which channel
includes data to be read out and switching to the next
channel to report is achieved using an arbitration tree
44. The arbitration tree 44 is implemented using a
cascade of blocks with substantially identical functions.
Cascading is used to expand the quantity of arbitrated
channels. There are two types of input to the arbitration
tree 44. The first type of input includes channel STATE
signals 48 that indicate data present in the channels or
empty channels. The second type of input includes
SELECT signals 56 on the data acquisition side that are
decoded as a RESET 50 signal upon reaching the
destination channel. The arbitration tree 44 encodes an
address of the channel that is allowed to report during
propagation of the STATE signals 48 until a VALID
output signal 46 is obtained. The arbitration tree 44 also
decodes channels that receive the RESET 50 signal
during propagation of the SELECT signals 56 in the
opposite direction, that is, from the acquisition side to
the channel side. The SELECT signals 56 are generated
synchronously using the clock signal if the VALID
signal 46 is active. Priority encoders and reset decoders
in each block of the arbitration tree 44 are used to select
the channel having its address encoded and to what
channel the reset signal is sent in the event of simul-
taneous notifications of channel occupancies and their
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readiness to report. When the SELECT signal 56
reaches a channel and the RESET 50 signal changes its
state, a readout is initiated. Communication with a
channel is terminated after the RESET 50 signal returns
to its initial state. The STATE flag is then cleared and
the address is no longer available on the address bus 54.
Due to this double-edge scheme, dead time before
switching to the next channel is possible, which
reduces the available time for driving the bus. Timing
in a AERD cell may result in unwanted glitches on
more than one RESET input on the same edge of the
SELECT signal, and thus data loss.

[0075] In a standard, data driven AERD embodiment, the
corruption of data may occur if a higher priority channel
requests readout while a lower priority channel is perform-
ing readout. In this case, an additional strobe signal, which
is distributed across channels, is used to latch the state in all
channels before readout begins. However, in implementing
this feature, the architecture becomes synchronous rather
than event driven.

[0076] Adding extra in-channel logic 45 to the AERD
system provides the ability to read additional data from
channels as shown in FIG. 4B. This logic 45 drives the data
bus in response to a change on the RESET signal. After the
RESET signal returns to its initial state, buffers in the
channel are disabled. Effectively, data on the data bus is
available at the same time as an address on the address bus.

[0077] (4) Address Event Representation (AER) 60 is a
data-driven architecture based on an asynchronous
arbitration tree 60 shown in FIG. 5. This architecture
primarily focuses on cell activity represented as its
address appearing on a data link. Each event inside a
channel generates a request. In response to this request,
an acknowledge is generated and an address of the
requesting cell is transmitted. One of the distinguishing
features of AER is that the acknowledge, which enables
outputting of the data from a channel or its address, is
generated automatically based on requests. Regardless
of the number of channels requesting communication,
only one of these channels is active at any given time
to avoid collisions on the link. Communication with an
external system is not synchronized by a clock and
requires a handshaking interface. These features render
AER suitable for only specific applications and limit
the use of more universal acquisition systems.

[0078] Embodiments of the readout system disclosed
herein are adapted for the efficient transmission of data from
a plurality of data sources, which can be arranged in
one-dimensional structures, two-dimensional structures,
and/or any other form. These embodiments possess
improvements and features that are advantageous for the
integrated readout of strip and pixel radiation detectors, as
well as building neuromorphic or other event-driven pro-
cessing circuits. These embodiments further enable sending
additional data, beyond merely the active channel address,
and providing a reliable mechanism that prevents the colli-
sion of channels accessing a common data bus. An interface
to a synchronous data acquisition system is also provided. A
block diagram of an embodiment of the readout system 70
is shown in FIG. 6. The readout system 70 can be used in a
variety of applications with different units inside the chan-
nels. A universal interface to these functional units is pro-
vided to adapt to different sources and types of input data.
The universal interface includes the following signals.
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[0079] (1) ain 72 represents an analog input in the form
of one or a plurality of connections to in-channel logic
76, which includes the result of processing from analog
units of the channel,

[0080] (2) din 74 represents digital data input in the
form of one or a plurality of connections to the in-
channel logic 76 with signal inputs, which include the
result of processing from digital units of the channel;

[0081] (3) cfg 78 represents configuration input in the
form of one or a plurality of connections that specify a
mode of operation of the in-channel logic 76; and

[0082] (4) rdy 80 represents a ready flag, which is set
after the channel units have finished processing the
data, following which a read request is transmitted
from the channel.

External sources of the clock (clk) 82 originate from acqui-
sition systems or on-chip clock resources. Output signals
include digital (dout) 84 and analog (aout) 100.

[0083] Functional blocks of the readout system 70 include
the following.

[0084] (1) An in-channel readout logic 76 is present in
every channel. The primary function of the in-channel
logic 76 is to issue requests to signal when data from a
channel requires a read out (e.g., when data is ready
after in-channel processing). Readout can include any
type of individual or combined analog or digital infor-
mation generated by a channel, such as an address
identifier of the read out channel, time-of-arrival of a
signal, amplitude of a signal, and/or any other result of
processing. Requesting the readout is achieved by
activating a req signal 86. After the readout request is
issued, the in-channel logic 76 waits for an acknowl-
edge token the arrival of which indicates permission to
use the data bus 88 has been granted. The acknowledge
token is detectable by the in-channel logic 76 as a
change on an ack line 90.

[0085] (2) An arbitration tree 92 determines to which
channel the acknowledge token is directed. The inter-
face to the in-channel logic 76 is located at the bottom
of the tree. At the top of the tree, the rqo signal, which
is a logical sum of all channel requests, is available.
The acknowledge input acki is also located on the top
of the tree. The arbitration tree 92 decision is made
based on new read requests and stored information
regarding the order in which these requests have
already arrived. Depending on the quantity of channels
in the system and their grouping, the arbitration tree 92
may include multiple stages, each of which may be
configured from multiple, two-input (for the readout
request) arbitration cells. Each arbitration cell monitors
its inputs and information concerning an origin of
requests. Subsequent requests wait until a prior request
has been withdrawn.

[0086] (3) A response circuit 94 generates the acki
signal and feeds these acknowledges to the arbitration
tree 92 for distribution to the channels that request to be
read out. In the subject architecture, the acknowledge
indicates that the logic state on the line changes from a
default state, which is the state after reset, to an active
state. The default state can be considered as a token
with a fixed lifetime that depends on a duty cycle of the
input clock clk. Delivery of the token to the channel
triggers an action. However, token management is
different from that in Token Ring Architecture. In TRA,
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the token is injected into the channel chain with a task
of finding the first requesting channel. However, in the
subject architecture, the token waits at the top of the
arbitration tree 92 until a path to the channel is set by
the arbitration tree 92. Then, the token is either dis-
tributed to the selected channel or, if no path is avail-
able during its lifetime, the token expires.

[0087] (4) An output periphery 96 is a synchronous
block that converts input data from the data bus and
address bus into an appropriate output format used by
the chip interface and control blocks for communicat-
ing with an external acquisition system. The format can
include a serial stream of bits. The data and address bus
can be separate or can be configured as one bus, onto
which data and/or addresses can be multiplexed.

[0088] (5) The data bus 88 is shared across a channel’s
digital line(s) driven in idle state by default using a
pull-up/pull-down network. These lines are used for
data transmission from a channel to the output periph-
ery 96. After readout from the selected channel begins,
tri-state buffers inside the channel override the data bus
idle state set by the pull-up/pull-down network with
data from the tri-state buffers.

[0089] (6) An analog bus 100 is shared across the
channel line(s). The analog bus 100 is used for analog
value transmission from channels to an analog process-
ing block (not shown).

[0090] (7) The address bus 98 is shared across the
channel digital line(s) using tristate buffers inside the
arbitration tree 92, in which an address of the channel
with an established acknowledge path is generated.
Alternatively, addresses of current readout channels are
formed and transmitted on the data bus directly from
the channel selected for read out. It is to be noted that
the address bus is optional.

[0091] (8) A pull-down/pull-up network 102 is used to
set a default value on the data bus 88 when none of the
tristate buffers driving the data bus during readout is
active due to, for example, read requests not being
issued by any channel or when a requesting channel
waits for an acknowledge token. The network 102 is
implemented using digital buffers or resistors con-
nected between the bus line and one of the power lines.
In both cases, buffers placed inside the channels are
designed to override the logical state set by the network
102. To override this logic state, buffers with a greater
drive strength are used.

[0092] The readout system 70 operates according to the
following scheme.

[0093] (1) Channels operate independently and are gen-
erally not synchronized. If any of the channels requires
use of a shared resource, that channel activates its ready
signal. The readout request flag inside the in-channel
logic is activated as a result. This operation can be
completely asynchronous, which means that the read-
out request flag can be set to active at any moment
regardless of the clock.

[0094] (2) The request is propagated up the arbitration
tree 92 through multiple stages inside the arbitration
tree 92 to the rqo output 110. During this process, the
path for directing the acknowledge signal is established
by logic inside each arbitration cell. If two readout
requests reach the same arbitration cell, a path for the
acknowledge signal is established for only one of the
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readout requests and this decision is based on the order
of the readout request arrivals. This action is referred to
as an arbitration process and is performed by a logic
block containing a cell that is referred to as the “Seitz
arbiter” in the arbitration cell. If this order is difficult to
determine as a result of substantially simultaneous
readout request signals, the arbitration decision may be
delayed for an indefinite time. After arbitration is
completed, the readout request is propagated to the next
stage.

[0095] (3) Information regarding a source of the request

104 that prevailed in the arbitration processes is
obtained from the arbitration tree 92 and is available to
read on the address bus 98, if used. In the variant with
no address bus, the address may be generated inside the
channel and transferred on the data bus

[0096] (4) In the meantime, a response circuit, which

functions independently of the arbitration process, gen-
erates acknowledge tokens based on the clock signal
clk 82. Tokens are synchronously available on the
acknowledge input of the arbitration tree 92 and have
a fixed duration. The time between tokens represents a
minimum guarantying time for buffers in a channel to
drive the data bus and transmit data to the output
periphery 96.

[0097] (5) As soon as the readout request arrives at the

top of the arbitration tree 92, the acknowledge path is
complete and the token, if available, is distributed back
to the requestor. If the token is not available, the
arbitration tree 92 waits for generation of a new token.

[0098] (6) When the token arrives back at the cell, the

readout process begins. Although every token has the
same initial duration at the top of the arbitration tree 92,
the duration of a single readout from a channel can
vary. This results from how tokens are generated and
how tokens are moved from one channel that ends its
access to the bus to another channel that obtains access
to the bus. This time is maximized when a path for a
token is already established before an actual token is
generated, and is minimized when a readout request
comes late. In the latter case, propagation of the readout
request through the arbitration tree 92 and setting up
the acknowledge path essentially races with an expira-
tion of the associated token. However, the cell readout
logic is sensitive to an event (e.g., arrival of the token)
rather than a logical level on the acknowledge line, and
thus varying the duration of the token is not an issue.

[0099] (7) The in-channel logic 76 may be configured to

handle at least one readout cycle in response to a single
readout request. This process is referred to as the
“readout phase” because it divides an entire readout
into consecutive readout phases. In each readout phase,
different data can be driven on the data bus. This allows
a width of the bus to be reduced or reconfiguration of
the bus to read out different data sets from the channel.
The latter is accomplished by various configurations
selected using configuration (cfg) bits. The configura-
tion is dynamically selectable during operation.

[0100] (8) The readout signal (rdo) inside the in-channel

logic 76 may be a single bit or multi-bit logic vector,
which is used to distinguish which readout phase is
active. One-hot encoding is used for this purpose,
which means that only one bit of the rdo logic vector is
active at a time. The first bit of rdo is set upon arrival
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of the first token after the request has been issued. This
bit is then used to enable a bank of tristate buffers
and/or transmission gate banks. As an alternative to
using banks of gates, a multiplexor can be added to
select between data to be sent onto previously activated
gates. The next set of data is sent with the next rdo bit
set. In this way, during each readout phase, different
data can be transmitted from the channel.

[0101] (9) The acknowledge path to the channel is not
detached until the last readout phase ends because the
readout request is held during this time. As a result,
each newly generated token is immediately still fed to
the same channel. A new readout phase is initiated after
each token arrives. After the last phase is processed, a
subsequent token initiates a reset procedure for the
in-channel logic and the request flag is cleared. This
process disconnects the path for the acknowledge.

[0102] (10) A new path is established as soon as all
necessary arbitrations are performed if there are any
pending requests from other channels. The token that
was previously used to reset the in-channel logic 76 of
the channel, if that token is still valid, can be reused and
sent to the new channel. This feature advantageously
prevents wasting time between read outs from different
channels.

[0103] (11) The pull-up/pull-down transistor network
102 is used to drive the data bus 88 and/or address bus
98 to the selected default values when there is no active
readout on any of the channels. The preferred technique
for selecting this default data pattern is to make the
default pattern different from any possible actual data.
Additionally, the default pattern should already provide
direct current (DC) balance in the event that data is
further transmitted serially and without DC balancing
encoding.

[0104] (12) Regardless of the source of data on the data
bus 88 or address bus 98, data is latched inside the
output periphery 96 by the clock signal clk 82. Latching
of the data synchronizes the readout with the data
acquisition system. Data is latched before generation of
each new token or as long as data is stable, thereby
yielding a new set of latched data for each token. Data
can be transmitted serially. The serialization clock is
used for generating readout tokens by appropriately
dividing the serialization clock.

[0105] (13) The division ratio is derived from the quan-
tity number of bits obtained in the output periphery 96
on the data bus 88 and address bus 98 in one shot and
the quantity of output serial links to match serialization
speed.

[0106] (14) Analog values, if provided by a channel, are
sampled for further processing at the analog output
periphery (e.g., for analog-to-digital conversion) or
buffered in preparation for being sent to an external
processing system in parallel to the latched digital data.

[0107] Based on the above description, features of the
disclosed system include the following.

[0108] (1) In comparison with DPA, there is no or
substantially no risk of a metastability state occurrence,
which can corrupt data. Rather than latching asynchro-
nous data using a system clock, as is done in DPA, there
is effectively a clock gating structure in the form of the
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arbitration tree 92. This ensures that latching is per-
formed if the data is already stable due to the order of
actions being performed.

[0109] (2) There is no or substantially no delay intro-
duced by pipeline stages. Data stored in a channel have
a direct path to the output periphery after permission to
use the shared data bus is granted. The arbitration
process is also fully asynchronous such that signals
flowing from stage to stage do not require additional
buffering, and construction of the arbitration tree 92
ensures that distance, counted as a quantity of gates,
from the top of the tree 92 to each channel is the same.

[0110] (3) direct synchronization is not performed using
a distributed clock in the channel, which saves space
and power. Synchronization is based on fixed token
duration that is generated synchronously to create time
widows for data. The time between expiration of a prior
token and generation of a subsequent token is used to
ensure a sufficient duration of time for fetching data
from the channel. During this time, data settling time is
guaranteed and the data is safely latched when the next
token is about to be generated.

[0111] (4) There is no polling and read requests are
triggered by registration of events in the channels,
thereby making the system event driven.

[0112] (5) Variations in the delay time of receiving the
acknowledge token by a channel is minimized due to
the binary tree topology of the arbitration tree 92.

[0113] (6) Arisk of missing time slots, when at least one
channel is requesting readout, but default data is sent,
is eliminated as tokens can wait for a propagated
request at the top of the tree 92. There are rare situa-
tions in which the acknowledge token seen by the cell
is too short to be able to trigger a readout because the
request was sent too late relative to an active token.
However, such a situation does not disturb operation of
the system. The channel waits for the next available
token and synchronization is preserved by sending the
default data to the acquisition system.

[0114] (7) Racing between incoming new read requests
and an active channel readout is eliminated due to the
arbitration tree 92 that determines which request was
first and stores this information. This is substantially
more advantageous in comparison to the AERD archi-
tecture, in which memory blocks are not allocated for
arbitration.

[0115] (8) There is no prioritization since requests are
ordered by their arrival time to the each arbitration tree
92 and, only once the request is satisfied, the next
request reroutes the acknowledge path

[0116] (9) Once established, the acknowledge path per-
sists until the corresponding request is cleared. This
feature, in conjunction with continuous generation of
new tokens, facilitates a readout phasing -circuit
because multiple tokens can be fed to a channel in
response to only one request

[0117] (10) Since the generation of tokens is strictly
connected with the acquisition clock, there is no need
for additional synchronization, and thus the system can
operate based on a single clock signal provided by, for
example, an external system. All periods of this clock
are used for transmission.

[0118] A readout cycle begins in a cell, in which the ready
signal 80 is set, following an operation being performed. The
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ready signal 80 is activated and fed to the in-channel logic
76 together with the resulting data (digital 74 and/or analog
72). The readout cycle is completed once data from channel
are latched in output periphery. The primary block in the
in-channel logic 76 is a readout requester 112, which is
shown in greater detail in FIG. 7.

[0119] The ready (rdy) signal triggers a controller, which
then issues a readout request 86. This request is held until the
done (dne) 122 signal is no longer active. This feature
enables multiple acknowledge tokens to be distributed to the
readout requester one-by-one. Simultaneously, an active
(act) 116 flag is set, and as a result, the readout phaser 118
transitions from an initial state to an arm state. In this new
state, the readout phaser 118 is sensitive to changes on the
ack line 90. The controller can also be disabled by using one
of the configurations (cfg) bits. In this case, no request is
issued, which effectively blocks readout from the channel.
When the token arrives at the channel, a first readout phase
is initiated by setting one of the bits in the readout (rdo)
vector 108 by the readout phaser 118. Each new token
arriving at the readout requester 112 causes the position of
an active bit of the rdo logic vector 108 to be shifted by one
until its position, which is set by the configuration, is
reached. Then, an end flag 120 is set and the done indicator
block is armed. The readout requester 112 waits for one
more token to trigger the done (dne) signal 122, which is
then fed back to the controller 114, and the req signal 86 and
act signal 116 are deactivated. After the request is cleared,
the acknowledge path to the channel is detached. The
readout phaser 118 enters an initial state in response to the
act signal 116 being reset, in which state there is no active
bit on the readout vector 108.

[0120] Generally, the process from receiving the token to
detaching the acknowledge path is much shorter than the
token duration and thus, when the process ends, the token is
still active and can be redistributed to another cell. This
allows two operations to take place during the lifetime of the
token, neither of which is adversely affected by simultane-
ous operations.

[0121] Thus, two functions performed by the readout
requester 112 following distribution of the active token to
the readout requester 112 include the following.

[0122] (1) A readout phase initiation, in which the
arriving token initiates a new readout phase that lasts
until a new token appears.

[0123] (2) A reset initiation, in which no new readout is
started. The reset operation is performed immediately
to allow as much time as possible to redistribute the still
valid token to another requesting channel, if any.

[0124] An embodiment of the readout requester 124 is
shown in FIG. 8, in which an additional rst signal 91 is used
as a global reset signal. An active request is indicated by a
high logic state on the req signal 86. The token is active
when the logic state of the ack 90 is low and the bit of rdo
signal 108 is active when that bit is low. As some applica-
tions use different active logic states, an alternative embodi-
ment 126 of the readout requester is implemented as shown
in FIG. 9. In this case, active logic states for the rqo, ack, and
rdo signals are low, high, and high, respectively.

[0125] A maximum quantity of readout phases is adjusted
by increasing or decreasing the quantity of flip-flops in a
chain inside the readout phaser 118. Accordingly, a quantity
of flip-flops 130 and gates 132 shown in FIG. 9A can be
increased or decreased as shown in FIGS. 10A-B. A mode of
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operation is illustrated using example waveforms shown in
FIG. 11 based on the following assumptions:

[0126] (1) acki, ack, req and rdo are active when their
logic level is high;

[0127] (2) dne is active when its logic level is low;

[0128] (3) there are a maximum of two (2) readout
phases and the configuration bit cgfl is used to select
between one of two phases; and

[0129] (4) two channels are observed.

[0130] Based on the waveforms shown in FIG. 11, the
following features are illustrated:

[0131] (1) An action in the in-channel logic is triggered
when the active token reaches the channel. The active
token at the top of the arbitration tree is represented by
one of the logic states on the acki line. In the example
shown, the active token is the high state. The arrival of
a token on a channel is represented by a state change on
the channel’s ack input, and this event triggers an
action in the in-channel logic, which is illustrated by a
sequence of arrows 1-1A-1B, 2-2A-2B, 3-3A-3B,
3-3D-3E, 4-4A-4B shown in FIG. 11 by arrows 131;

[0132] (2) based on the acki duty cycle, flip-flop delay,
and arbitration tree propagation time, a minimum read-
out phase time is determined; and

[0133] (3) after the reset state, the active token is
redistributed to another channel as illustrated by a
sequence of arrows 3-3A-3B-3C-3D-3E shown in FIG.
11 by arrows 131.

[0134] In one or more of the disclosed embodiments, the
duty cycle of the acki signal is selectable to maximally
extend readout phase time. As a result, redistribution based
on feature (3) directly above occurs without risking a
collision on the data bus. Conventional architectures require
that two edges of the acknowledge signal be provided to the
arbitration tree. For example, a channel is selected on a
falling edge of the acknowledge signal and disabled on the
rising edge. Such behavior of the readout system may limit,
in advance, the settling time of the data on the data bus by
the duration of the high state of the acknowledge signal.
These implementations also impose further restrictions on
the minimum duty cycle of the acknowledge signal, and thus
the ratio between the high logic state and low logic state,
since the duration of the high state is required to be long
enough to perform additional functions.

[0135] From the readout requestor block, additional rda
(readout any) signals are derived as outputs from a first
flip-flop in the readout phaser, as shown in FIG. 9B. The rda
signals 135, 133 are used as an indicator that readout from
the channel is occurring no matter which readout phase is
currently active. The rda signal is effectively a logical sum
of all readout signals without the need for adding additional
logic structures.

[0136] An advantage of the disclosed embodiments is
further illustrated by the synchronous readout requester with
a distributed clock 130 shown in FIGS. 12 and 13, in which
a clk signal 132 is added. The clk signal 132 has the same
source as the acki signal from the top of the arbitration tree,
but in those embodiments, it is distributed directly to chan-
nels, thereby omitting the arbitration tree. In this embodi-
ment 130, the acknowledge signal does not have the two
functions, which means that the reset is not initiated by a
token, but rather the clk signal 132 is used to initiate the reset
phase. In addition, the request signal 134 is set on the edge
of the clk signal 132. These modifications make the rdo
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signals 136 at the top of the arbitration tree synchronous
with respect to the acki signal. Thus, a distinction between
empty data and valid data can be made based on the rdo
signals 136 rather than by using the pull-up/pull-down
network. However, clock distribution needs to be performed,
which adds complexity to the routing process and results in
greater power consumption. Using the clk signal 132 as a
trigger, rather than signals having determinate timing rela-
tions, can also introduce metastability. This embodiment 130
represents a break from an event-driven paradigm since
synchronization is made on an in-channel logic level, which
is not the case in the asynchronous readout requestor
described above.

[0137] In addition to the readout requester, the in-channel
logic includes transmission gates and/or tristate buffers that
are used in conjunction with multiplexers. As a result, two
techniques for selecting data to drive a data bus are as
follows:

[0138] (1) using multiple banks of tristate buffers/trans-
mission gates, each bank of which is connected to the
data and/or analog bus, only one or neither of the banks
are active at a given time, and activation is performed
by using the rdo 136 vector bits; and

[0139] (2) using one bank of tristate buffers/transmis-
sion gates and multiplexers, in which a multiplexer is
controlled by the rdo vector 136 between the input data
from the cell and the buffers that selects data sent at a
given time.

[0140] After the request signal 134 is activated, the asso-
ciated request is provided to the arbitration tree, following
which the arbitration process occurs. This allows the token
to be distributed to the channel. The arbitration tree is
implemented using blocks referred to as arbitration cells, as
shown in FIG. 14A. Specifically, a simple arbitration cell,
which is referred to herein as “arbitration cell type 0” in FIG.
14B, upon receiving (read) request signals 152, selects one
of the request signals and routes an acknowledge signal 160
that reaches this cell from the cell above in the arbitration
tree, which is farther down the arbitration tree in the
direction from which the accepted request came. Routing is
performed by essentially gating the acknowledge signal (i.e.,
acknowledge gating). This create a continuous path for
acknowledge token from the top of the tree to the bottom of
the tree where the requesting channel is located. The
acknowledge gating is performed in a logic block referred to
herein as the commutator 158 and is performed using grant
signals 154 (e.g., gnt0, gntl) generated inside the arbitration
cell 150. These grant signals are generated by an arbiter 156.

[0141] The arbitration cell 150 includes two blocks as
follows.
[0142] (1) A Seitz arbiter 156 determines which of the

req (request) signals 152 arrived first and activates the
corresponding gnt (grant) signal 154, which are mutu-
ally exclusive. That is, only one of the gnt (grant)
signals 154 is active at any time.

[0143] (2) A commutator 158 establishes a path for the
acknowledge token by directing the acki (acknowl-
edge) signal 160 to the output ack (acknowledge) signal
162 corresponding to the active gnt signal 154. The
commutator 158 also indicates if any of the gnt signals
154 is active and, if so, sends a request to the next
arbitration stage by activating the rqo (request output)
signal 162. For each arbitration cell 150, an address
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encoder 170, as shown in FIG. 15, can be added to

obtain an address of the cell to which the acknowledge

path is established.
[0144] Due to the structure of the arbitration tree, which is
divided into multiple stages that include multiple arbitration
cells, each stage can provide one bit of the address and this
bit is provided by one of the cells in the stage. To satisfy this
requirement, the adr signal 171 drives one line of the address
bus using a tristate buffer. The adr output is enabled when
any of the gnt signals is active, and the driven value depends
on which of the gnt signals is active. When none of the gnt
signals is active, the adr output is in a high-impedance state.
[0145] The logic state, which is considered to be active or
inactive, depends on the physical implementation. To mini-
mize the quantity of transistors used during implementation,
two types of blocks that differ in logic polarity, P-type 180,
182 and N-type 184, 186, are used, as shown in FIGS.
16A-D. Blocks 182, 186 include an address encoder and
blocks 180, 184 do not include the address encoder. A circle
at any port indicates that the corresponding signal is con-
sidered to be active when its logic state is low.
[0146] The arbitration tree is configured as a structure
including M=[log, N]| stages, in which N represents a
quantity of cells to be read out. Each stage includes n(m)
=n(m+1)x2 arbitration cells where m&[1, MM] and n(M)=1.
The quantity of transistors is minimized by configuring
stages using alternating types of arbitration cell as illustrated
in FIGS. 17A-B. Based on the cell type, two types of stages
are used, P-type 200, 206 and N-type 202, 204. Connections
between stages 200, 202, 204, 206 are also shown in FIGS.
17A-B. One benefit of using alternating stage types is that
there is no additional logic required between stages. Further,
it does not matter which stage type is used first, and the
selection of stage type can be made based on logic states of
other signals in the system. If address encoders are used, the
arbitration tree 210 is configured as shown in FIG. 18.
[0147] The arbitration cell includes an arbiter that decides
which one of the two (read) request signals is to be selected.
While the arbiter does not have a preference for which one
of'the two (read) request signals is selected for routing to the
output, only one of the two read request signals is selected.
This selection is a function of the arrival time, that is, the
first request signal to be received dominates, and is thus
selected. Switching from the selected request signal to
another request signal is not permitted for the entire length
of time during which the selected request signal is active.
When two request signals arrive simultaneously, one of the
request signals is selected. This selection is random and does
not generate ambiguous intermediate steps at the output of
the arbiter. Transition from selection of one request signal
does not include any time when both signals are selected or
switching back and forth between selected request signals
are eliminated.
[0148] The selected request signal generates a correspond-
ing grant signal 154, which then gates routing of the
acknowledge signal. Blocking of the acknowledge paths
results in no activity being sent to the channel that issues its
read request signal. Conversely, unblocking this path,
enables sending an acknowledge token down the acknowl-
edge path to activate or deactivate a channel for starting and
stopping transmission of data by the channel on the common
data bus. A token is an active state on the acknowledge path
with an assigned expiration time. After this expiration time,
the acknowledge signal changes its state back to being
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inactive. This functionality is achieved by using a digital
clock to generate the acknowledge signal. This clock
includes alternating logic states, high and low, that repeat at
a given frequency. The ratio of the duration of the high and
low states is referred to as a duty cycle. The logic state of a
digital clock can be associated with the activity of a token,
and this association depends on the blocks used to build the
arbitration tree and their polarity. The duty cycle and fre-
quency of this digital clock signal is selectable or program-
mable over a broad range or latitude.

[0149] The simple arbitration cell 150 shown in FIG. 14B
utilizes a single Seitz arbiter 156, which can accept request
signals at any time, regardless of the current level of the
acknowledge signal. Switching to read out, a new channel
occurs immediately after finishing a current readout. For
example, the Seitz arbiter 156 switches to the second chan-
nel after the first request signal is deactivated, which cor-
responds to completion of reading of the first channel, in the
case of two request signals being activated simultaneously.
In such a situation, an active state of one output of the Seitz
arbiter 156 is deactivated and the second output is activated.
However, such a smooth transition is only possible if the
request output from the arbitration cell is kept active during
the entire described process. Otherwise, an undesirable
situation may occur, in which a cell that is located higher up
in the arbitration tree identifies a change, even a short one,
on the request output line and interprets this change. as no
active requests. In the result, it disconnects the acknowl-
edgement path. Under these conditions, a short phenomenon
on the acknowledge line may occur that reaches the second
channel and triggers a readout even if the acknowledge line
changes back to the inactive state. Thus, the arbitration cell
shown in FIG. 14B is not suitable for some applications.

[0150] The request signal that leaves the arbitration cell is
generated in the commutator 158 logic block as a logic sum
of the incoming request signals (i.e., it is activated when at
least one of the input request signals is active) The inputs to
this sum can be taken from the grant outputs of the arbiter
as shown in FIG. 14C, directly from the inputs to the
arbitration cell as shown in FIG. 14D, or can be generated
by additional logic inside an arbiter as shown in FIG. 14E.
The apostrophe characters shown in FIGS. 14C and 14E
indicate that mixing different commutator and arbiter
embodiments may vary the functionality of the arbitration
cell. Accordingly, both the commutator and the arbiter are
typically configured as a matched pair.

[0151] The core of the arbitration cell includes the Seitz
arbiter 220, an embodiment of which is shown in FIG. 19A.
The Seitz arbiter 220 includes an SR latch 222 and a
metastability filter 224. The SR latch 222 is a bistable
multivibrator that stores state information. The SR latch 222
includes two inputs (S and R) and two outputs (Q and ~Q).
The mode of operation is as follows

[0152] (1) In an idle state, inputs S and R are inactive,
which results in both outputs Q and ~Q being inactive
as well. Some studies refer to this state as a forbidden
state, but this applies to standard logic circuits, in
which ~Q is a negated version of Q. However, this does
not apply to the subject arbiters.

[0153] (2) A set operation occurs when, during the idle
state, S becomes active, which causes a transition of the
Q output to the active state.
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[0154] (3) A reset operation occurs when, during the
idle state, R becomes active, which causes a transition
of the ~Q output to the active state.

[0155] (4) In a hold state, both inputs are active, but
only one output is active. The active output is related to
the most recent set/reset operation.

[0156] Different types of the SR latch 222 may be imple-
mented depending on the logic state of the inputs and
outputs in the idle state. Two of these types can be imple-
mented using two gates with cross-connected outputs to
inputs. For example, FIGS. 20A-B show an embodiment
230 of the SR latch using NAND gates and its corresponding
truth table, in which inputs are low and outputs are high
during the idle state. FIGS. 21 A-B show an embodiment 240
of'the SR latch using NOR gates and its corresponding truth
table, in which inputs are high and outputs are low during the
idle state.

[0157] Since the input signals of the SR latch in the arbiter
are asynchronous, a situation can occur in which both inputs
transition to an active state at the same or almost the same
time. This situation creates a race condition, and the SR latch
must resolve this condition and switch to the hold state with
an active output that represents a result of this arbitration
process. The disclosed embodiments of the SR latch perform
this process, but may take an indefinite amount of time,
during which both outputs are in a metastable state that is
neither a high nor a low logic state. Physically, this process
is manifested as a voltage level between a logic supply
voltage and ground. Metastability in a circuit can lead to
errors in operation. Metastability can also propagate to other
logic blocks or be mistakenly transformed into a valid logic
state. In the arbitration tree, the latter possibility is undesir-
able as this can break the mutual exclusivity requirement if
both outputs are in the active state, which may result in
collision on the data bus. For this reason, a metastability
filter after the SR latch 222 is implemented. This metasta-
bility filter 224 does not allow metastability to propagate to
other blocks and forces outputs of the Seitz arbiter 220 to
stay in an inactive state until the arbitration process has
ended.

[0158] Implementation of the metastable filter 224 is dif-
ferent for NAND and NOR SR latch configurations, how-
ever, both configurations can use the same quantity of
transistors. Embodiments of pairs of metastable filters are as
follows.

[0159] (1) Embodiments of a standard filter 250, 252,
254, 256 are shown at the gate and transistor level in
FIGS. 22A-E and implemented using two cross-con-
nected (between an input and one of the power lines)
inverters and buffers at the output. During the idle state,
both outputs are freely connected to the power lines
corresponding to the inactive state regardless of the
presence of the cross-connection. When one of the
inputs changes (the SR latch outputs are inputs for the
metastable filters) the second input is used as a supply
voltage for an active state. When both inputs change, a
maximum output voltage cannot be higher than a
metastable voltage and is attenuated by another input
with a metastable voltage level, which cannot fully
open the driving transistor. As a result, both filter output
voltage levels are less than a maximum metastable
voltage and these levels are continuously treated as
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being inactive by successive buffers until the inputs
transition from the metastable state to two final and
opposing states.

[0160] (2) Embodiments of a filter 260, 262 shown in
FIG. 23A-B are based on a standard logic cell imple-
mented using multi-input NOR/NAND that, when all
inputs are connected together, can effectively be seen as
an inverter, in which the transition threshold is shifted
toward the value of one of the supply lines. The shift is
created by the difference in driving strengths of the
transistors implementing the gate for different states at
the output. In contrast to the standard filter described
directly above, there is no attenuation element and the
certainty of mutual exclusion is obtained by checking
that a maximum metastable voltage level remains lower
than a toggle level of the skewed inverters. An advan-
tage of this embodiment is that it can be implemented
automatically using a standard cell library with place
and route tools.

[0161] (3) Embodiments of a filter shown in FIG.
23C-D are based on an inverter with hysteresis on the
transition characteristic. These embodiments follow
operating principles similar to those based on multi-
input gates, which include shifting the transition thresh-
old of the inverter. However, rather than operating on
transistor driving strengths, these embodiments intro-
duce positive feedback from output to input, and thus
additional voltage above the nominal transition needs
to be used to force the output to change its state. There
is no need for switching feedback in both directions, as
there is a risk of a metastable state only when transi-
tioning from inactive to active states at the SR latch
output. This second feedback would make the hyster-
esis loop wider and is undesirable because it increases
a probability that both filter outputs are in the active
state as a result of fluctuations at the inputs. As a result,
the embodiments shown in FIGS. 23E-F with active
feedback in only one direction, can be used.

[0162] The filters described the above include an inverting
function, so that the output active state is inverted. Based on
arbitration cell logic polarity in different types of arbitration
cell, a NAND SR latch with a P-type metastability filter is
used to implement an arbitration cell type P 250, 252, 260
and a NOR SR latch with an N-type metastability filer 254,
256, 262 is used to implement an arbitration cell type N.

[0163] A commutator is the next block used to implement
the arbitration cell. The function of the commutator is to
merge information regarding activity on the Seitz arbiter
outputs into one signal, which is equivalent to generating a
logic sum of the signals, which is then provided to the next
arbitration stage. Based on signals from the Seitz arbiter, the
commutator also creates a logic path for the acki signal.
After this path is created, the state of the acki signal, based
on the commutator input, is transferred to one of the ack
outputs, which corresponds to the active arbiter output. If
both arbiter outputs are inactive, the state of the acki signal
is not transferred. Two complementary embodiments of the
commutator 270, 280 with corresponding truth tables are
shown in FIGS. 24A-D. These embodiments use the same
quantity of transistors, and are used in arbitration cell types
P and N, respectively. States 272, 282 in the corresponding
truth tables are forbidden states that should not appear since
both gnt signals should not be active at the same time.
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[0164] In the arbitration cell type I shown in FIG. 14C, the
logical sum is not sensitive to a short-lived phenomenon that
occurs when the arbiter cell toggles the selection between
the two inputs and when it is expected that acknowledge
should be relayed from one cell output to another. This
relaying may not occur correctly as a result of a short
moment, during which both outputs of the Seitz arbiter are
not active while transitioning from one state to another state.
This is the problem that was described for arbitration cell

type 0

[0165] Thus, the inputs to the logical sum taken from the
inputs of the Seitz arbiter cell should be free of this short-
lived phenomenon. The gating of the acknowledge signal
(i.e., acknowledge gating) and logical summing of request
signals may be implemented using logic circuits including
NAND and/or NOR gates, depending on a desired active
logic polarity of the signals in the arbitration cells on a given
level of the arbitration tree. The active logic polarity deter-
mines the voltage level corresponding to the digital value of
the signals, and can be different for different signals. The
logic polarity can be toggled from one stage of the arbitra-
tion tree to another stage of the arbitration tree to simplify
the logic design, or can be kept the same, which may require
more logic gates.

[0166] Two embodiments of the Seitz arbiter and commu-
tator include the P type and the N type. These embodiments
are generally implemented to work optimally with both
positive and negative active polarities of the signals. For
ease of understanding and presentation, the embodiments
disclosed herein use the terms, arbiter, Seitz arbiter, com-
mutator, arbitration cell, OR block, and/or AND block,
which are not specified as to the polarity of these features.
Nevertheless, the actual implementation of these features as
P type and/or N type would be understood by one skilled in
the art as described herein in view of DeMorgan’s laws.
[0167] The arbitration cell type 0 can be used in readout
systems, in which new read request signals do not arrive
during times when the acknowledge signal, which is sent
down the arbitration tree, is active. Should this condition not
be met, using one Seitz arbiter in the arbitration cell is
insufficient for accurate arbitration. The active acknowledge
token is defined as that token that propagates down the
arbitration tree, is gated through all the arbitrations cells on
this propagation route, reaches a channel that requested an
output of data, and causes either starting or stopping of data
communication from the requesting channel. Each time
gating of the acknowledge token occurs, an arbitration cell
in the arbitration tree, and thus a channel at the end of the
route, encounters a transition or edge. Transitions essentially
cause actions in the channels with respect to data transmis-
sion, such as commencement of data outputting, moving
from one readout phase to another, ending data outputting,
and the like.

[0168] Ifitis possible to assure that all read request signals
arrive or be accumulated during the inactive state of the
acknowledge signals, readout systems can use the arbitration
cell type O for the readout management on all the levels of
the arbitration tree. However, if this condition cannot be
guaranteed, the simple arbitration cell type O can be used on
a top level of the arbitration tree, since arbitration cell type
0 does not propagate its output request further, but arbitra-
tion cells positioned below the top level of the arbitration
tree must be different. These lower-level arbitrations cells
should not only decide which of the two read request signals
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can be serviced, but should also include new read request
signals that arrive during the active level of the acknowledge
signal in this arbitration. The latter goal presents a need for
arbitrating between the read request signals and the
acknowledge signals. This leads to the general concept of
the readout control system with arbitration that is operated
without distributing any system clock to channels. Channels
may send readout requests asynchronously and any possible
collisions are resolved at the arbitration-tree level regardless
of when the readout request was sent.

[0169] Further, in a preferred embodiment, there are two
options for a more complete arbitration that may be utilized.
The first option uses the arbiter type I shown in FIG. 19B
and the commutator type 0 shown in FIG. 24E, which is a
logically equivalent embodiment of the commutator type O
that is compatible with the arbiter type 1. Together, these
functions form the arbitration cell type 1. The arbiter type I
first arbitrates between the two request signals keeping the
result internally, and the winning request signal is arbitrated
with the acknowledge signal.

[0170] The second option is implemented either as the
arbitration cell type II with the arbiter type II shown in FIG.
19C, or as the arbitration cell type III with the arbiter type
IIT shown in FIG. 19D and FIG. 19E. Both types utilize the
same commutator type Il shown in FIG. 24, which is a
logically equivalent embodiment of the commutator type 11
that is compatible with the arbiter type III. These arbiters,
that is, types II and III, reverse the operations relative to
arbiter type I, thereby first realizing arbitration of each
individual request signal with the acknowledge signal, fol-
lowed by arbitrating the results of these two arbitrations,
which results in a gating signal that enables further undis-
turbed propagation of the acknowledge signal down the
arbitration tree. Both solutions use the same quantity of
electronic components, or add buffers, and effectively allow-
ing readout in the event of accumulated read request signals
without dead-time. The buffers may be added to handle
additional capacitive loads or to provide a desired active
logic level, but the buffers may typically be considered as
optional elements and may be added in a standard procedure
of digital implementation with timing enclosure.

[0171] The arbitration cell type II does not exhibit any
issues that can lead to errors in arbitrating between the
channels. Nevertheless, arbitration cell type Il may exhibit a
dead time during readout, which can be measured as a
skipped acknowledge time slot. This situation can occur
when one of the arbitration cells, and consequently the entire
arbitration tree, is blocked until the current token expires,
rather than being able to accept new data to be transferred.
This situation also occurs when there is a second request sent
at the same time while there is an acknowledge token present
in the cell that has been received due to an earlier request
sent to the same cell. Such a blockage occurs because a
request output is not gated by an acknowledge input in any
way, and thus the acknowledge input can be activated even
when the full arbitration process is not able to be conducted
inside the arbiter. That is, the token remains in the arbitration
cell because the next stage is informed that there is still a
request from the preceding stage of the tree, but that token
cannot be used or redirected from one acknowledge output
to the second acknowledge output because the path to the
second acknowledge output cannot be established, and as a
result, there is no active grant signal. The same blocking
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phenomenon is observed in arbitration cell type 111, which is
based on an embodiment of arbiter type III shown in FIG.
19D.

[0172] The problem of arbitration tree blockage in arbi-
tration cell type III is addressed by generating a request
output as a logical sum of signals after the first process of
arbitration, thereby using so-called “ferried requests” (freq0,
freql) wherein, if at least one of the ferried requests is
active, then the request output is active. By using this
technique, a token is not blocked in the arbitration cell and
can be withdrawn from an arbitration cell even if the request
was sent while the token was still active in the arbitration
cell. This allows the token to be transferred to the other
requesting channel without waiting for the token to expire.
An embodiment of an arbiter type III that implements the
above technique is shown in FIG. 19E.

[0173] The difference between the two versions, that is,
type 1 versus type Il or III of the arbitration cell, manifests
in how high up the arbitration tree disconnection of the
acknowledge path propagates when switching from servic-
ing one channel to servicing another channel. This results in
different orders of reading out the channels when the opera-
tion of the readout tree with the type 1 version of the
generalized arbitration cell is compared with the operation
of the readout tree with the type II or III version of the
generalized arbitration cell. For the readout tree with the
type | arbitration tree, the disconnection of the acknowledge
path occurs up to the top cell even when two neighboring
channels that send their read request signals to the arbitra-
tion cell, are to be read out (i.e., a domino effect). For the
readout tree with type IVIIl of the arbitration cell, the
acknowledge path is disconnected only up to the next level
of the arbitration tree, where one of the two read request
signals is active. In the case of two read request signals in
the same arbitration cell, there is no disconnection of the
acknowledge path that occurs for the case of the type II/III
circuit.

[0174] Thus, the blocking phenomenon and method of
resolving the blocking phenomenon render the arbitration
cell type 111, which includes the embodiment of the arbiter
shown in FIG. 19E, a preferred arbitration method when the
acknowledge path should only be disconnected from the
nearest level of the arbitration tree.

[0175] Another element used to implement the arbitration
cell is the address encoder. The address encoder is imple-
mented in two complementary embodiments 290, 294
shown in FIGS. 25A-B for use in different arbitration cell
types. Alternatively, rather than tristate buffers, embodi-
ments 298, 304 having tristate inverters can be used as
shown in FIGS. 26A-B.

[0176] Abandonment of the priority encoder found in
AERD and AER architectures in favor of the Seitz arbiter is
advantageous in readout systems since doing so introduces
asynchronous memory elements while eliminating glitches
during arbitration and distribution of the acknowledge. An
embodiment using the Seitz arbiter, which is asynchronous
and generates acknowledge tokens based on requests is
implemented in accordance with the disclosed embodiments
using a response circuit 308, such as that shown in FIG. 27.
However, this embodiment 308 is not able to generate
multiple tokens that can be used by in-channel logic to
provide multiple readout phases or initiate request resets.
For these reasons, an embodiment of the response circuit
312 shown in FIG. 28 is used. In this embodiment 312,
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tokens are generated based on a clock, which is provided by
an external acquisition system directly or derived from the
external acquisition system using an on-chip clock manage-
ment circuit. Since decisions regarding sending in of tokens
are not made based on requests, but rather tokens are
generated as time windows expire synchronously, time
frames for a readout are also precisely defined.

[0177] FIG. 29 shows an embodiment of an output periph-
ery block 313 that includes a system serializer 314 and clock
divider 316. An external clock 318 is fed to the clock divider
316 and divided by a factor of M. The original clock 318 and
divided clock 320 are fed to the serializer 314 as a fast (fclk)
320 and slow (sclk) clock 318, respectively. The slow clock
318 is used to latch the parallel on-chip data bus 322 and/or
analog bus 324 (pin) and the fast clock 320 is used to transfer
that data in series using a serial output (sout). The slow clock
318 is also fed to the response circuit as a source of tokens.
This relationship (i.e., using the same source clock to latch
data and activate/deactivate in-channel readout) synchro-
nizes the readout process and eliminates potential metasta-
bility issues. The quantity of serial output lines that are
present and/or used is not limited and additional serial
output lines can be used in parallel to transmit more data at
the same time. In general, the quantity of bits latched in
serializer during a readout cycle from the channel is equal to
the product of a serialization factor and a quantity of outputs.

[0178] An embodiment of the serializer 340 is shown in
FIG. 30, in which a quantity of flip-flops in a ring counter
block 342 and data FF block 344, and buffers in a tristate
buffer block 346 depend on the quantity of data lines. In
general, both of these numbers are equal unless additional
functionality is implemented, such as a serial-parallel trans-
mission of data. A clock synchronization block 348 syn-
chronizes edges of the fast clock 320 and slow clock 318 and
initiates the serialization process. A source select block is
used to send synchronization patterns to the external acqui-
sition system following reset. This operation is used to
define the first bit of data frame in an output bitstream. The
ring counter 342 stores an actual position of a bit to be
transmitted. This position is stored as a vector with one
active bit at given time. The ring counter 342 is initialized
using the set(S)/reset(R) pins of flip-flops included in the
ring counter 342. The data FF block 344 includes a set of
flip-flops that are used to latch values from the data bus 322.
The tristate buffers 346 drive serial output lines using bit
values corresponding to a position pointed to by the ring
counter 342.

[0179] The waveforms shown in FIG. 31 illustrate opera-
tions performed by the serializer. These waveforms illustrate
serializer operation cycles following reset (low level on the
rst line) as well as cause-effect dependencies between indi-
vidual signals. Data appearing on the din* bus, is provided
for example only and, in fact, depends on the activity of the
channels. The outputting of the “synch—SYNCH” value is
forced by an active state of the synch_data signal 325. Data
from the data bus 322 is latched between the falling edge of
the slow clock 318, which corresponds to the token expira-
tion and the last moment before the readout phase is trig-
gered, and the next rising edge, which corresponds to the end
of the readout phase or communication with a channel and
the beginning of a new readout phase, if needed. An addi-
tional quantity of flip-flops, located at the end of the set of
flip-flops, which use a different trigger source, may be used
to ensure that data is stable when a selected buffer is enabled.
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[0180] When there is no active readout from any channel
performed, the state of the data bus is set by a pull-up/pull-
down network. As a result, this state, which is referred to as
the “default” or “empty” state, is latched in the serializer.
[0181] To save power required to override the default state
of the data bus during readout, another alternative approach
is introduced. Rather than using a pull-up/pull-down net-
work on all lines included in the data bus, an additional
signal 352 and multiplexer 354 are added, as shown in the
modified embodiment 350 of FIG. 32. This additional signal
352 is used to indicate that a readout from a channel is being
performed. A pull-up resistor (not shown) on the additional
signal 352 is used and a high state is overridden during
readout by a buffer inside a corresponding channel. Based on
the state of this additional signal 152, the multiplexer 354
selects the source of data to be processed. This can be either
a fixed value that represents empty data or data on the data
bus driven by buffers inside one of the channels, from which
the readout is being performed.

[0182] There is one additional difference between embodi-
ment 350 and embodiment 340. In the embodiment 340, the
data settling time on the data bus is not maximized because
the data latching is performed at least one fast clock cycle
before the rising edge of the slow clock, and the slow clock
is responsible for generating the acknowledge tokens. In
contrast, in embodiment 350, the settling time is maximized
because the rising edge of slow clock is latching data
directly. As a result, a different initialization pattern, which
includes the reset and set inputs, for the ring counter 342 is
used to ensure that bits are transmitted in the correct order,
that is, from the least significant bit to the most significant
bit. In general, latching may even occur after the slow clock
edge, if that data has not changed

[0183] The waveforms shown in FIG. 33 illustrate opera-
tion of the serializer in embodiment 350. The waveform of
the additional selector din[n] 352, for example, depends on
activity of the channels. The waveform of the rqo signal
from the arbitration tree corresponding to the signal din[n]
154 is also shown.

[0184] In a chip or system, the arbitration tree is spatially
distributed according to the channel configuration, which
can be grouped, for example, into columns or smaller arrays.
Such an embodiment 400 is shown in FIG. 34. One or more
outputs, which are used to transfer data to the outside of the
chip, are used depending on a serialization factor, data bus
width, and/or a quantity of readout phases. Since the quan-
tity of readout phases may be dynamically reconfigured,
some outputs can be physically present, yet remain unused
in a given configuration. For example, a single output mode
with multiple readout phases or a single-phase mode readout
with multiple outputs can be implemented and configured.
[0185] Managing a chip and/or system that includes larger
quantities of channels may require additional considerations.
Buffers connected to a shared line add extra capacitance to
that shared line. This capacitance is primarily added in the
form of buffer output capacitance, but also includes the
capacitance of additional wire connections. If the overall
capacitance is too large, data may be not able to fully settle
in the required time on the data bus, which may result in
timing violations and data corruption. Increasing the buffer
strength on channels can be a solution, but this not only
consumes additional area and power, but also presents
limitations, such as larger buffers having larger output
capacitance. Another approach includes dividing channels
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into groups, each having a dedicated data bus. However, this
consumes a larger routing area, and thus may be appropriate
for systems having narrower busses. Another advantage of
this technique is higher data rates, as each data bus can be
treated as an independent link so that multiple channels can
be read out in parallel during the same time interval. In this
case the entire system can have multiple outputs (i.e., one or
more for each group) or a high-speed output with time
division multiplexing. Such an embodiment 402 is shown in
FIG. 35.

[0186] In general, a combination of both techniques can be
implemented in a system by creating a group hierarchy.
Downstream groups can share a single data bus and be
bundled in a higher upstream group, in which different
groups have their own dedicated data bus. It can also be
substantially advantageous to introduce additional stages of
buffering in each group. These buffers are preferably tristate
buffers activated by a logical sum of buffer enable signals
associated with a lower hierarchical priority. Such an
embodiment 404 is shown in FIG. 36.

[0187] The disclosed embodiments include well-specified
yet flexible architectures. There is no restriction on data
types that are transferred during the readout phase. One of
the most useful techniques using the disclosed embodiments
is sending information from adjacent cells regarding a
shared event, such as a particle hit on a sensor and its
associated charge sharing effect.

[0188] It is to be noted that embodiments disclosed herein
may be implemented using MOSFETs or bipolar transistors
while remaining within the scope of the intended disclosure.
[0189] One or more embodiments disclosed herein, or a
portion thereof, may make use of software running on a
computer or workstation. By way of example, only and
without limitation, FIG. 37 is a block diagram of an embodi-
ment of a machine in the form of a computing system 900,
within which is a set of instructions 902 that, when executed,
cause the machine to perform any one or more of the
methodologies according to embodiments of the invention.
In one or more embodiments, the machine operates as a
standalone device; in one or more other embodiments, the
machine is connected (e.g., via a network 922) to other
machines. In a networked implementation, the machine
operates in the capacity of a server or a client user machine
in a server-client user network environment. Exemplary
implementations of the machine as contemplated by
embodiments of the invention include, but are not limited to,
a server computer, client user computer, personal computer
(PC), tablet PC, personal digital assistant (PDA), cellular
telephone, mobile device, palmtop computer, laptop com-
puter, desktop computer, communication device, personal
trusted device, web appliance, network router, switch or
bridge, or any machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be taken by that machine.

[0190] The computing system 900 includes a processing
device(s) 904 (e.g., a central processing unit (CPU), a
graphics processing unit (GPU), or both), program memory
device(s) 906, and data memory device(s) 908, which com-
municate with each other via a bus 910. The computing
system 900 further includes display device(s) 912 (e.g.,
liquid crystal display (LCD), flat panel, solid state display,
or cathode ray tube (CRT)). The computing system 900
includes input device(s) 914 (e.g., a keyboard), cursor
control device(s) 916 (e.g., a mouse), disk drive unit(s) 918,
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signal generation device(s) 920 (e.g., a speaker or remote
control), and network interface device(s) 924, operatively
coupled together, and/or with other functional blocks, via
bus 910.

[0191] The disk drive unit(s) 918 includes machine-read-
able medium(s) 926, on which is stored one or more sets of
instructions 902 (e.g., software) embodying any one or more
of the methodologies or functions herein, including those
methods illustrated herein. The instructions 902 may also
reside, completely or at least partially, within the program
memory device(s) 906, the data memory device(s) 908,
and/or the processing device(s) 904 during execution thereof
by the computing system 900. The program memory device
(s) 906 and the processing device(s) 904 also constitute
machine-readable media. Dedicated hardware implementa-
tions such as, but not limited to, ASICs, programmable logic
arrays, and other hardware devices can likewise be con-
structed to implement methods described herein. Applica-
tions that include the apparatus and systems of various
embodiments broadly comprise a variety of electronic and
computer systems. Some embodiments implement functions
in two or more specific interconnected hardware modules or
devices with related control and data signals communicated
between and through the modules, or as portions of an ASIC.
Thus, the example system is applicable to software, firm-
ware, and/or hardware implementations.

[0192] The term “processing device” as used herein is
intended to include any processor, such as, for example, one
that includes a CPU (central processing unit) and/or other
forms of processing circuitry. Further, the term “processing
device” may refer to more than one individual processor.
The term “memory” is intended to include memory associ-
ated with a processor or CPU, such as, for example, RAM
(random access memory), ROM (read only memory), a fixed
memory device (for example, hard drive), a removable
memory device (for example, diskette), a flash memory and
the like. In addition, the display device(s) 912, input device
(s) 914, cursor control device(s) 916, signal generation
device(s) 920, etc., can be collectively referred to as an
“input/output interface,” and is intended to include one or
more mechanisms for inputting data to the processing device
(s) 904, and one or more mechanisms for providing results
associated with the processing device(s). Input/output or I/O
devices (including, but not limited to, keyboards (e.g.,
alpha-numeric input device(s) 914, display device(s) 912,
and the like) can be coupled to the system either directly
(such as via bus 910) or through intervening input/output
controllers (omitted for clarity).

[0193] In an integrated circuit implementation of one or
more embodiments, multiple identical dies are typically
fabricated in a repeated pattern on a surface of a semicon-
ductor wafer. Each such die may include a device described
herein and may include other structures and/or circuits. The
individual dies are cut or diced from the wafer, then pack-
aged as integrated circuits. One skilled in the art would
know how to dice wafers and package die to produce
integrated circuits. Any of the exemplary circuits or method
illustrated in the accompanying figures, or portions thereof,
may be part of an integrated circuit. Integrated circuits so
manufactured are considered part of this invention.

[0194] In accordance with various embodiments, the
methods, functions, or logic described herein is imple-
mented as one or more software programs running on a
computer processor. Dedicated hardware implementations
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including, but not limited to, application specific integrated
circuits, programmable logic arrays and other hardware
devices can likewise be constructed to implement the meth-
ods described herein. Further, alternative software imple-
mentations including, but not limited to, distributed process-
ing or component/object distributed processing, parallel
processing, or virtual machine processing can also be con-
structed to implement the methods, functions or logic
described herein.

[0195] The embodiment contemplates a machine-readable
medium or computer-readable medium including instruc-
tions 902, or that which receives and executes instructions
902 from a propagated signal so that a device connected to
a network environment 922 can send or receive voice, video,
or data, and to communicate over the network 922 using the
instructions 902. The instructions 902 are further transmitted
or received over the network 922 via the network interface
device(s) 924. The machine-readable medium also contains
a data structure for storing data useful in providing a
functional relationship between the data and a machine or
computer in an illustrative embodiment of the systems and
methods herein.

[0196] While the machine-readable medium 902 is shown
in an example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” shall also be taken to include
any medium that is capable of storing, encoding, or carrying
a set of instructions for execution by the machine and that
cause the machine to perform anyone or more of the
methodologies of the embodiment. The term “machine-
readable medium” shall accordingly be taken to include, but
not be limited to: solid-state memory (e.g., solid-state drive
(SSD), flash memory, etc.); read-only memory (ROM), or
other non-volatile memory; random access memory (RAM),
or other re-writable (volatile) memory; magneto-optical or
optical medium, such as a disk or tape; and/or a digital file
attachment to e-mail or other self-contained information
archive or set of archives is considered a distribution
medium equivalent to a tangible storage medium. Accord-
ingly, the embodiment is considered to include anyone or
more of a tangible machine-readable medium or a tangible
distribution medium, as listed herein and including art-
recognized equivalents and successor media, in which the
software implementations herein are stored.

[0197] It should also be noted that software, which imple-
ments the methods, functions and/or logic herein, are option-
ally stored on a tangible storage medium, such as: a mag-
netic medium, such as a disk or tape; a magneto-optical or
optical medium, such as a disk; or a solid state medium, such
as a memory automobile or other package that houses one or
more read-only (non-volatile) memories, random access
memories, or other re-writable (volatile) memories. A digital
file attachment to e-mail or other self-contained information
archive or set of archives is considered a distribution
medium equivalent to a tangible storage medium. Accord-
ingly, the disclosure is considered to include a tangible
storage medium or distribution medium as listed herein and
other equivalents and successor media, in which the soft-
ware implementations herein are stored.

[0198] Although the specification describes components
and functions implemented in the embodiments with refer-
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ence to particular standards and protocols, the embodiments
are not limited to such standards and protocols.

[0199] The illustrations of embodiments described herein
are intended to provide a general understanding of the
structure of various embodiments, and they are not intended
to serve as a complete description of all the elements and
features of apparatus and systems that might make use of the
structures described herein. Many other embodiments will
be apparent to those of skill in the art upon reviewing the
above description. Other embodiments are utilized and
derived therefrom, such that structural and logical substitu-
tions and changes are made without departing from the
scope of this disclosure. Figures are also merely represen-
tational and are not drawn to scale. Certain proportions
thereof are exaggerated, while others are decreased. Accord-
ingly, the specification and drawings are to be regarded in an
illustrative rather than a restrictive sense.

[0200] Such embodiments are referred to herein, individu-
ally and/or collectively, by the term “embodiment” merely
for convenience and without intending to voluntarily limit
the scope of this application to any single embodiment or
inventive concept if more than one is in fact shown. Thus,
although specific embodiments have been illustrated and
described herein, it should be appreciated that any arrange-
ment calculated to achieve the same purpose are substituted
for the specific embodiments shown. This disclosure is
intended to cover any and all adaptations or variations of
various embodiments. Combinations of the above embodi-
ments, and other embodiments not specifically described
herein, will be apparent to those of skill in the art upon
reviewing the above description.

[0201] In the foregoing description of the embodiments,
various features are grouped together in a single embodi-
ment for the purpose of streamlining the disclosure. This
method of disclosure is not to be interpreted as reflecting that
the claimed embodiments have more features than are
expressly recited in each claim. Rather, as the following
claims reflect, inventive subject matter lies in less than all
features of a single embodiment. Thus, the following claims
are hereby incorporated into the detailed description, with
each claim standing on its own as a separate example
embodiment.

[0202] The abstract is provided to comply with 37 C.F.R.
§ 1.72(b), which requires an abstract that will allow the
reader to quickly ascertain the nature of the technical dis-
closure. It is submitted with the understanding that it will not
be used to interpret or limit the scope or meaning of the
claims. In addition, in the foregoing Detailed Description, it
can be seen that various features are grouped together in a
single embodiment for the purpose of streamlining the
disclosure. This method of disclosure is not to be interpreted
as reflecting an intention that the claimed embodiments
require more features than are expressly recited in each
claim. Rather, as the following claims reflect, inventive
subject matter lies in less than all features of a single
embodiment. Thus, the following claims are hereby incor-
porated into the Detailed Description, with each claim
standing on its own as separately claimed subject matter.
[0203] Although specific example embodiments have
been described, it will be evident that various modifications
and changes are made to these embodiments without depart-
ing from the broader scope of the inventive subject matter
described herein. Accordingly, the specification and draw-
ings are to be regarded in an illustrative rather than a
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restrictive sense. The accompanying drawings that form a
part hereof, show by way of illustration, and without limi-
tation, specific embodiments in which the subject matter are
practiced. The embodiments illustrated are described in
sufficient detail to enable those skilled in the art to practice
the teachings herein. Other embodiments are utilized and
derived therefrom, such that structural and logical substitu-
tions and changes are made without departing from the
scope of this disclosure. This Detailed Description, there-
fore, is not to be taken in a limiting sense, and the scope of
various embodiments is defined only by the appended
claims, along with the full range of equivalents to which
such claims are entitled.

[0204] Given the teachings provided herein, one of ordi-
nary skill in the art will be able to contemplate other
implementations and applications of the techniques of the
disclosed embodiments. Although illustrative embodiments
have been described herein with reference to the accompa-
nying drawings, it is to be understood that these embodi-
ments are not limited to the disclosed embodiments, and that
various other changes and modifications are made therein by
one skilled in the art without departing from the scope of the
appended claims.

1. An event-driven readout management system compris-
ing non-priority access arbitration of a plurality of channels,
the system comprising:

an arbitration tree circuit, the arbitration tree circuit
determining to which of the plurality of channels to
grant access to a common signal transfer resource
shared by the plurality of channels, the determination
being based on a readout access request provided by at
least one of the plurality of channels, the arbitration tree
circuit excluding simultaneous occurrence of multiple
readout access requests from the determination, the
readout access request being received by the arbitration
tree circuit and stored in the arbitration tree circuit until
access is granted to the common signal transfer
resource by the arbitration tree circuit, the arbitration
tree circuit terminating a prior readout transaction and
commencing a subsequent readout transaction in
response to a single edge of a clock signal;

a response circuit, the response circuit operatively
coupled to the arbitration tree circuit, a state of the
clock signal representing an acknowledge token, the
acknowledge token being provided to the arbitration
tree circuit, the arbitration tree circuit using the
acknowledge token to grant access to the common
signal transfer resource;

an in-channel logic circuit, the in-channel logic circuit
operatively coupled to the arbitration tree circuit, the
in-channel logic circuit generating the readout access
request and receiving the acknowledge token, the in-
channel logic circuit terminating the prior readout
transaction and commencing the subsequent readout
transaction in response to receiving the acknowledge
token; and
an output periphery circuit, the output periphery circuit
converting information received from the plurality of
channels into an output format on the common signal
transfer resource.
2. The system, as defined by claim 1, wherein the common
signal transfer resource comprises at least one of an analog
signal transfer line, a digital signal transfer line.
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3. The system, as defined by claim 1, wherein the readout
access request is generated in response to an event, the event
comprising activation of at least one of the plurality of
channels to generate transferrable data.

4. The system, as defined by claim 1, wherein the readout
transaction comprises a plurality of readout phases, at least
one of the plurality of readout phases causing transfer of at
least a portion of information from one of the plurality of
channels to the common signal transfer resource.

5. The system, as defined by claim 1, wherein a duty cycle
associated with the clock signal is selectable to define an
acceptance time associated with the readout access request
and to assure settling time associated with the common
signal transfer resource.

6. The system, as defined by claim 1, wherein the deter-
mination further comprises determining, with a plurality of
readout phases associated with the readout transaction,
which channel of the plurality of channels is granted access
to the common signal transfer resource independent of at
least one of readout access requests stored in the arbitration
tree circuit, readout access requests received, a relative
position of the plurality of channels with respect to the
arbitration tree circuit.

7. The system, as defined by claim 1, wherein a quantity
of edges associated with the clock signal is equal to a
quantity of readout phases associated with the readout
transaction from one channel.

8. The system, as defined by claim 1, wherein the arbi-
tration tree circuit operates asynchronously with the plural-
ity of channels.

9. The system, as defined by claim 1, wherein the arbi-
tration tree circuit operates synchronously with the output
periphery circuit.

10. The system, as defined by claim 1, wherein the
arbitration tree circuit operates synchronously with the in-
channel logic circuit, the in-channel logic circuit operating
asynchronously in generating the read access request, the
duration of the acknowledge token defining an acceptance
time window associated with the read access request for
outputting data from at least one of the plurality of channels.

11. The system, as defined by claim 1, wherein a duty
cycle of the acknowledge token signal is selectable to
provide data settling time after granting access to the com-
mon signal transfer resource.

12. The system, as defined by claim 1, wherein the
plurality of channels provides information to the common
signal transfer resource such that a transmission order asso-
ciated with concurrently requesting channels is independent
of positions associated with the concurrently requesting
channels within the arbitration tree circuit.

13. The system, as defined by claim 1, wherein the clock
signal comprises a first state and a second state, the first state
being defined as active and comprising an acknowledge
token that enables new read access requests to be accepted,
the second state disabling acceptance of a new read access
request to avoid starting data transmission with insufficient
data settling time after access is granted to the common
signal transfer resource in response to acceptance of the new
read access request if the acknowledge token is to be routed
to a new channel.

14. The system, as defined by claim 1, wherein the readout
access requests processed by the arbitration tree circuit
comprise logical sums of readout access requests associated
with at least one lower stage in the arbitration tree circuit.
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15. The system, as defined by claim 1, wherein the readout
access requests processed by the arbitration tree circuit
comprise logical sums of result signals from arbitration
between readout access requests.

16. The system, as defined by claim 1, wherein the readout
access requests processed by the arbitration tree circuit
comprise logical sums of result signals from arbitration
between results of arbitration between readout access
requests, entering arbitration cells, and the clock signal
comprising acknowledge tokens in the arbitration cells.

17. The system, as defined by claim 1, wherein the readout
access requests processed by the arbitration tree circuit
comprise logical sums of result signals from arbitration
between readout access requests, entering arbitration cells,
and the clock signal comprising acknowledge tokens in the
arbitration cells.

18. A method of non-priority arbitration of a plurality of
channels using an event-driven readout management system,
the method comprising:

determining, using an arbitration tree circuit, to which of

the plurality of channels to grant access to a common
signal transfer resource shared by the plurality of
channels, the determination based on a readout access
request provided by at least one of the plurality of
channels;

excluding, using the arbitration tree circuit, simultaneous

occurrence of multiple readout access requests from the
determination;

receiving and storing the readout access requests in the

arbitration tree circuit until access is granted to the
common signal transfer resource by the arbitration tree
circuit;

terminating, using the arbitration tree circuit, a prior

readout transaction and commencing a subsequent
readout transaction in response to a single edge of a
clock signal;

providing an acknowledge token to the arbitration tree

circuit, the arbitration tree circuit using the acknowl-
edge token to grant access to the common signal
transfer resource, a state of the clock signal represent-
ing the acknowledge token;

generating, using an in-channel logic circuit, the readout

access request and receiving the acknowledge token,
the in-channel logic circuit operatively coupled to the
arbitration tree circuit;
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terminating, using the in-channel logic circuit, the prior
readout transaction and commencing the subsequent
readout transaction in response to receiving the
acknowledge token; and

converting, using an output periphery circuit, information

received from the plurality of channels into an output
format on the common signal transfer resource.

19. A computer-readable medium comprising instructions
that, when executed by a processing device, perform opera-
tions comprising:

determining, using an arbitration tree circuit, to which of

the plurality of channels to grant access to a common
signal transfer resource shared by the plurality of
channels, the determination based on a readout access
request provided by at least one of the plurality of
channels;

excluding, using the arbitration tree circuit, simultaneous

occurrence of multiple readout access requests from the
determination;

receiving and storing the readout access requests in the

arbitration tree circuit until access is granted to the
common signal transfer resource by the arbitration tree
circuit;

terminating, using the arbitration tree circuit, a prior

readout transaction and commencing a subsequent
readout transaction in response to a single edge of a
clock signal;

providing an acknowledge token to the arbitration tree

circuit, the arbitration tree circuit using the acknowl-
edge token to grant access to the common signal
transfer resource, a state of the clock signal represent-
ing the acknowledge token;

generating, using an in-channel logic circuit, the readout

access request and receiving the acknowledge token,
the in-channel logic circuit operatively coupled to the
arbitration tree circuit;

terminating, using the in-channel logic circuit, the prior

readout transaction and commencing the subsequent
readout transaction in response to receiving the
acknowledge token; and

converting, using an output periphery circuit, information

received from the plurality of channels into an output
format on the common signal transfer resource.
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