Subgap Density of States in Ultrathin Superconductor-Normal Metal Bilayers

Zhenyi Long, Michael Stewart, Taejoon Kouh, and Jim Valles

Subgap States in SN Bilayers

• Quest for a metallic state in 2D

• Is there a superconductor to metal transition in superconductor-normal metal bilayers?

• We observe subgap states that give the tunneling density of states a hybrid superconductor/metal appearance
 - The subgap quasiparticles are weakly coupled to the superconductor or quasi-trapped in the N layer
 - The fraction of subgap quasiparticles grows as T_c decreases
Mike, Zhenyi, Por, TJ

Subgap DOS in Pb/Ag Bilayers

Brown University
SC Grain Embedded in Metal

- $R_N \rightarrow \infty$
 - $R_S > \xi_s$ then SC
 - $R_S < \xi_s$ then normal
 (DeGennes)

- Quantum fluctuations in order parameter
 (Spivak)

Subgap DOS in Pb/Ag Bilayers

Brown University
Superconductor to Metal*

\[T_{co} = 0 \]

\[T_{co} > 0 \]

\(N_{sc} < N_{sc}^* \)
Anomalous MR
Pseudogap in DOS

\(N_{sc} > N_{sc}^* \)
Anomalous \(H_c \)
QP’s in ground state

Ultrathin Pb/Ag Bilayers

Subgap DOS in Pb/Ag Bilayers
Quench Condensed Pb/Ag Films

- $1.5 \text{ nm} < d_{\text{Pb}} < 6 \text{ nm}$
- $d_{\text{Ag}} < 20 \text{ nm}$
- $\xi > 60 \text{ nm}$
- Measure \textit{in situ}

For tunneling:

Subgap DOS in Pb/Ag Bilayers
SIT compared to SMT

Homogeneous film SIT

Pb/Ag bilayer films SMT(?)

Subgap DOS in Pb/Ag Bilayers

Brown University
Proximity Effect Theory: Cooper Limit

(Cooper, Degennes, Usadel)

\[T_c = T_o \exp\left(-\frac{1}{\lambda_{eff}}\right) \]

\[\Rightarrow T_c \propto \exp(-\alpha d_N) \]

e\(^{-}\)'s Andreev scatter from interface many times in
\[\frac{h}{k_B T_c} \]

Volume average the coupling constant

\[\lambda_{eff} = \lambda_s \left[\frac{d_S}{d_S + \beta d_N} \right] \]

Subgap DOS in Pb/Ag Bilayers

Brown University
Reduction of T_{co}

Agreement with MFT
- thickest Pb film
- over a decade

Deviations from MFT
- in thinner Pb films
- at low T_{co}
- tend toward metal

Lines: $T_{co} = T_o \exp[-(d_{pb} + \beta d_{Ag})/\left(\lambda_{pb} d_{pb} + \beta \lambda_{Ag} d_{Ag}\right)]$

$\lambda_{pb} = 0.757$, $\lambda_{Ag} = -0.017$, $\beta = 0.366$, and $T_o = 21.5K$, 27.6K, 30.1K for $d_{pb} = 1.5$, 2.2, and 3.0 nm, respectively.

Subgap DOS in Pb/Ag Bilayers

Brown University
Tunneling Density of States

Junction conductance $\propto N(eV-E_F)$ at low T

Subgap DOS in Pb/Ag Bilayers

$N_s(E) = \frac{E}{\sqrt{E^2 - \Delta^2}}$

Brown University
DOS in the Cooper Limit

(Cooper, Degennes, Usadel)

\[\Delta_0 \propto \exp(-\alpha d_N) \]

Subgap DOS in Pb/Ag Bilayers

\[N_s(E) = \frac{E}{\sqrt{E^2 - \Delta^2}} \]

Brown University
$d_{\text{Pb}} = 4.1 \text{ nm}, \quad d_{\text{Ag}} = 4.2$

Subgap DOS in Pb/Ag Bilayers

Brown University
Subgap DOS in Pb/Ag Bilayers

\[d_{\text{Pb}} = 4.1 \text{ nm}, \quad d_{\text{Ag}} = 4.2, 6.7, 9.1, 12.4, 15.6, 19.3 \text{ nm} \]
Peaks are too broad

Subgap DOS in Pb/Ag Bilayers
Subgap DOS in Pb/Ag Bilayers

Subgap States!
Gap Fills as $T_c \to 0$
$2\Delta /kT_c < 3.5$!
Subgap DOS in Pb/Ag Bilayers

Reversing the Trend

add S atop SN layer

Peaks move out
Peaks sharpen
$G_j(0)$ decreases
Subgap DOS in Pb/Ag Bilayers

Subgap DOS Grows as T_c decreases
- Linear E dependence
- Finite DOS @ E_F

Deviation from BCS

Broad Peaks
- Broader as T_c decreases
- Shorter as T_c decreases

Voltage (mV)
-0.6 -0.3 0.0 0.3 0.6

G_j
0.0 0.1 0.2 0.3

Voltage (mV)
-1.0 -0.5 0.0 0.5 1.0

G_j
0 1 2

$T = 0.06 \text{ K}$
Broadened Peaks

\[
\Delta \propto \Delta_0 \exp \left(-a \frac{d_N}{d_S} \right)
\]

\[\Delta \propto \Delta_0 \exp \left(-a \frac{d_N}{d_S} \right)\]

Gap Distribution

DOS with log normal distribution of \(\Delta\)

\[
\tilde{N}_s^\sigma (E) = \frac{1}{\sqrt{2\pi}k\sigma} \int_0^{\Delta_0} \tilde{N}_s^{BCS} (E, \Delta) \exp \left(-\frac{(\ln(\Delta/\Delta))^2}{2(k\sigma)^2} \right) \frac{d\Delta}{\Delta}
\]

Subgap DOS in Pb/Ag Bilayers

Brown University
Fitting the DOS

Peaks fit broadened BCS

(∼10-20% thickness variation)

Subgap States not fit by broadened BCS

Subgap DOS in Pb/Ag Bilayers

Brown University
Fitting the DOS

Peaks fit broadened BCS

(~10-20% thickness variation)

Subgap DOS requires

\[N_{\text{subgap}}(E) = \alpha E + \beta \]
Subgap Quasiparticle Origins

• Proximity Effect Theories:

Subgap states for \(\tau_{AS} > \frac{h}{k_B T_c} \)

• Need \(d_N < \xi \) or “trapped” quasiparticles

Bilayers too thin

Billiard Models
Induced superconductivity distinguishes chaotic from integrable billiards

J. A. Melsen, P. W. Brouwer, K. M. Frahm and C. W. J. Beenakker

Instituut-Lorentz, University of Leiden
P.O. Box 9506, 2300 RA Leiden, The Netherlands

(received 6 May 1996; accepted 17 May 1996)

PACS. 05.45+b – Theory and models of chaotic systems.
PACS. 74.50+r – Proximity effects, weak links, tunneling phenomena, and Josephson effects.
PACS. 74.80Fp – Point contacts; SN and SNS junctions.

Abstract. – Random matrix theory is used to show that the proximity to a superconductor opens a gap in the excitation spectrum of an electron gas confined to a billiard with a chaotic classical dynamics. In contrast, a gapless spectrum is obtained for a non-chaotic rectangular billiard, and it is argued that this is generic for integrable systems.
Soft Gap Prediction

Chaotic billiard

Chaotic, untrapped trajectories

Hard gap

Rectangular billiard

Integrable trapped trajectories

Subgap DOS

Subgap DOS in Pb/Ag Bilayers

Brown University
Linear Subgap DOS!

Rectangular billiard

\[N_{\text{subgap}}(E) \sim \frac{E}{E_{\text{Th}}} \]

where \(E_{\text{Th}} \) is the Thouless energy

Mixed Integrable and Chaotic Phase Space

\[N_{\text{subgap}}(E) \sim \frac{E}{E_{\text{Th}}} + \beta \]

where \(\beta \) is a constant (Schomerus and Beenakker)

Subgap DOS in Pb/Ag Bilayers

Brown University
Linear Subgap DOS

Experiment
\[\alpha \sim d_N^3 \]

Theory
\[\alpha \sim E_{Th}^{-1} \sim d_N^2 \]

Difference due to a \(T_c \) dependence?

Subgap DOS in Pb/Ag Bilayers

Brown University
SN Bilayers = Mixed Phase Space

 qp’s with nearly integrable trajectories
 Trapped in N layer

 qp’s on chaotic trajectories
 Visit both S and N layers

Subgap DOS in Pb/Ag Bilayers
• Subgap states give DOS a hybrid metal-superconductor appearance
• DOS becomes more metallic as T_c decreases
 – Sign of an approaching SMT?

• Growing fraction of qp’s decouple from superconductor as T_c decreases –
 – *is this spontaneous phase separation?*

• Route to a gapless superconductor without time reversal symmetry breaking