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Chapter 1

Introduction

The physics of relativistic heavy ion collisions is currently one of the most

important reasearch areas of high energy physics both from theoretical and

experimental aspects. The main goal of such researches is the experimental

reproduction and identification of the new phase or maybe new phases of

the strongly interacting matter. One of the new phases predicted by many

theorists is the quark-gluon plasma (QGP), where the constituents of hadrons

(e.g. protons or neutrons) the quarks and gluons exist like quasi free particles

after breaking out from the confined state caused by the strong interaction.

Our Universe might also have existed in such a phase a few microseconds

right after the Big Bang. This cosmological connection may also be the

reason for the exceptional public interest for this research.

This expectetion is based on QCD, the quantum-field theory of strong

interactions predicts that the interactions among quarks is asymptotically

free. It means, the closer they get to each-other, the weaker the force between

them is, i.e. if the quarks get very close to each-other then they behave like

free particles. For the discovery of the asymptotic freedom of the strong

interactions, D. Gross, D. Politzer and F. Wilczek won the Nobel Prize in

Physics in 2004. In spite of such strong expectations, the evidence for a new

phase of the strongly interacting matter can be provided by experiments.

Therefore, it is highly important to describe and to interpret the experimental

results within a theoretical framework in this field of science.
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In experiments the largest nuclei are accelerated to the highest presently

available energies, so that they collide and large number of protons and neu-

trons (or their constituents the quarks and gluons) be pressed very close

to each-other. The technological development made it possible, that in

these heavy ion accelerators heavier ions with large mass number can be

accelerated even to the 99.99% of the speeed of light. Having these fast

heavy ions collide head on head extremely high energy and matter density

can be achieved. Under natural circumstances, such a phase could have

existed just a few seconds after the Big Bang. Namely, at the Relativis-

tic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in

frontal Au+Au collisions physicists can produce minimum an energy den-

sity of 5 GeV/fm3 about 1 fm/c in proper time after the reaction takes

place [Adc04, Ars04, Bac04, Ada05]. The latest estimations suggest that

10 GeV/fm3 is the realistic value [Csö07b]. It is much higher then the

1 GeV/fm3 energy density theoretically needed to make quarks liberated

from their hadronic prisons [Adc04, Ars04, Bac04, Ada05].

1.1 Experiments

Currently, there are two major international experimental research centers

involved in such projects: RHIC in the USA and the Large Hadron Col-

lider (LHC) at the European Organization for Nuclear Research (CERN) in

Geneva, Switzerland.

At RHIC, the center of mass energy of nucleon pairs reaches the value of
√

sNN = 200 GeV. This is more than ten times higher then the corresponding

energy of earlier, fixed target Pb+Pb experiments at CERN SPS. While

RHIC has been functioning since 2000, LHC is expected to start from 2007.

The planned 14 TeV center of mass energy in p + p collisions will probably

be reached in 2008. Also, Pb+Pb collisions of
√

sNN = 5.5 TeV energy in

the LHC accelerator complex are expected to start from 2008.
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1.2 Theories

Many scientists are surprised that the most successful interpretation of the

data of Au+Au collisions at RHIC sofar derives from hydrodynamical de-

scription. This is the basis of our statement in 2005: in these reactions, a

new type of phase is created, that behaves like a perfect fluid [Adc04, Ars04,

Bac04, Ada05]. The Buda-Lund hydrodynamical model [Csö95a], partially

developed at KFKI RMKI, Hungary, in a Swedish-Hungarian collaboration,

has proved to be able to get detailed information from the final states of

hadrons about the collective behaviour of the new matter created in high en-

ergy heavy ion collisions. For example, such information is the distribution

of the temperature within the reaction zone or how large the volume is in

space and time. The model gives predictions for the momentum distribution

of the hadrons that freeze-out from the hot matter. Also, it is able to calcu-

late their momentum correlations. All the predictions can be tested against

experimental data. From such comparisions we could determine the char-

acteristics of the new matter created in Au+Au collisions at RHIC. Such

analyses help us answer the question whether a new type of phase of the

strongly interacting matter, i.e. quark-gluon plasma has been created or not

or another new phase has appeared in the collisions [Rio06].
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Chapter 2

Experimental setup

2.1 Introduction to RHIC and PHENIX

2.1.1 Relativistic Heavy Ion Collider - RHIC

RHIC is located in Brookhaven National Laboratory, Upton, New York,

Fig. 2.1. It is capable of accelerating a wide variety of nuclei and ions from

protons to Au nuclei up to 200 GeV energy per nucleon pairs using two in-

dependent rings and colliding them at six interaction points. The design

luminosities are 2 x 1026cm−2sec−1 for Au beams and 2 x 1031cm−2sec−1 for

proton beams (2 x 1031cm−2sec−1 in an enhanced mode) at the top energy.

RHIC also has a capability of accelerating polarized protons.

In Table 2.1, a comprihensive overview is given about the historical per-

formance of the RHIC accelerator complex during the data taking runs.

Figure 2.1 shows an aerial view of the RHIC accelerator complex. The

route for the acceleration is shown on Fig. 2.2: starting from the source,

the ions or the protons are accelerated through Linac, Booster and AGS

then injected into both rings of RHIC, whose circumference is 3.834 km.

The ”Blue” ring runs clockwise and the ”Yellow” ring runs counterclockwise.

There are currently 120 bunch buckets in each ring whose interval is 106 nsec

(or 9.4 MHz frequency). Experiments are located at the interaction points

where two bunches in each ring collide head on. There are six interaction

points called 12, 2, 4, 6, 8, and 10 o’clock respectively starting from the north
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Figure 2.1: Location of the laboratory in Long Island and the RHIC accel-
erator complex

Figure 2.2: Elements of RHIC acceleration
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Table 2.1: Run1 - Run6 capsule history
Run Year Species

√
s GeV

∫

Ldt NTot p-p Equivalent Data Size

01 2000 Au+Au 130 1 µb−1 10M 0.04 pb−1 3 TB
02 2001/2002 Au+Au 200 24 µb−1 170M 1.0 pb−1 10 TB

p+p 200 0.15 pb−1 3.7G 0.15 pb−1 20 TB
03 2002/2003 d+Au 200 2.74 nb−1 5.5G 1.1 pb−1 46 TB

p+p 200 0.35 pb−1 6.6G 0.35 pb−1 35 TB
04 2003/2004 Au+Au 200 241 µb−1 1.5G 10.0 pb−1 270 TB

Au+Au 62 9 µb−1 58M 0.36 pb−1 10 TB
05 2004/2005 Cu+Cu 200 3 nb−1 8.6G 11.9 pb−1 173 TB

Cu+Cu 62 0.19 nb−1 0.4G 0.8 pb−1 48 TB
Cu+Cu 22.5 2.7 µb−1 9M 0.01 pb−1 1 TB

p+p 200 3.8 pb−1 85B 3.8 pb−1 262 TB
06 2006 p+p 200 10.7 pb−1 230B 10.7 pb−1 310 TB

p+p 62 0.1 pb−1 28B 0.1 pb−1 25 TB

and going clockwise. There are 4 experiments located at the interaction

points.

Each experiment has its unique feature. STAR and PHENIX are the

largest experiments at RHIC each with more than 400 collaborators. STAR

(Solenoid Tracker At RHIC) tracks and identifes charged particles with a

time projection chamber covering a large solid angle. PHENIX (Pioneering

High Energy Nuclear and Ion eXperiment) was designed to measure hadrons,

leptons and photons in both high multiplicity and high rate environments.

BRAHMS measures hadrons over wide ranges of rapidity and momentum

using two magnetic spectrometers. PHOBOS consists of a large number

of silicon detectors surrounding the interaction region to measure charged

particle multiplicities even in the most central Au+Au collisions. At the

present, BRAHMS and PHOBOS have finished their data taking program.

PHENIX and STAR keep on measuring rare penetrating probes and continue

their upgrading and data taking programs.

Common to all experiments at RHIC are two Zero Degree Calorimeters

(ZDC) positioned along the beam axis. The ZDCs measure the event rate

produced in RHIC. They also serve as event triggers for the experiments.

9



2.1.2 PHENIX Collaboration

Figure 2.3: PHENIX detector

PHENIX is one of the largest experiments at RHIC, located at the 8-

o’clock interaction region. Figure 2.3 shows a schematic view of the PHENIX

experiment. PHENIX was designed to measure leptons, photons and hadrons

in both high-multiplicity heavy-ion collisions and high event-rate p+p col-

lisions. There are two independent spectrometers in PHENIX which cover

different pseudo-rapidity regions. Two Central Arms, East and West Arms,

cover the pseudo-rapidity range of |η| < 0.35 with a quarter azimuth for each

Arm and measure electrons, photons and hadrons. Two Muon Arms, North

and South Arms, cover 1.2 < η < 2.4 and -2.2 < η < -1.2, respectively, with

a full azimuth and measure muons.
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There are three magnets in PHENIX. The Central Magnet provides an

axial magnetic field for the Central Arms while two Muon Magnets produce

a radial field for each Muon Arm.

The coordinate system in PHENIX is defined relative to the beam axis

which passes through the center called z. The xyz axes follow the right-hand

rule with the positive x axis pointing into the West arm and the positive

z axis pointing toward North. The origin in PHENIX is the event vertex

position which does not precisely coincide with the symmetry axis of the

central arm detectors.

Subdetectors of PHENIX

The detectors of the PHENIX collaboration are maintained and operated

by the representatives of the partcipant institutes. Their funcionalities are

explained as follows:

Central Arm Detectors

These detectors are all positioned radially about the collision axis, extending

from 2 m to 5 m.

Drift Chambers (DC)

They detect tracks of charged particles right after that traverse through the

central arms.

Pad Chambers (PC)

They measure the position of charged particles with high precision. They

are used in the global track reconstruction.

Ring Imaging Cherenkov Detector (RICH)

It identifes charged particles by Cherenkov radiation as they traverse the gas

of the detector.
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Time Expansion Chamber (TEC)

It measures the track positions of charged particles. It also identifies particles.

Time-of-Flight (TOF)

It is used for particle identification.

Electromagnetic Calorimeters (EMCal)

The measures the track positions and the energy of charged particles and

photons. They identifies the photons and the charged particles. There are

two types of the detectors: Lead scintillator (PbSc) and lead glass (PbGl).

The detectors are positioned about 5 meters from the collision axis.

Muon Arm Detectors

Muon Tracker (MuTr)

It measures the track positions and the momentum of muons.

Muon Identifier (MuID)

Identifies muons.

Event Characterization Detectors

Beam-Beam Counters (BBC)

Two Beam-beam counters are located 1.4 m far away on both sides from the

detector center along the beam axis. They detect charged particles produced

in collisions. They are used to determine collision position and centrality.

Starts the stopwatch for an event.

Zero Degree Calorimeters (ZDC)

Measures collision location and centrality.

Forward Calorimeters (FCal)

For deuteron+Au collisions, it can measure surviving neutrons and protons
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from the original deuteron.

Multiplicity Vertex Detector (MVD)

This detector measures the multiplicity of charged particles. It is positioned

close to the interaction point that allowis for measuring in broad pseudora-

pidity range. It helps measuring collision location.

Heavy Metal Detector

PHENIX Magnets

Bends charged particles so that their charge and momentum can be measured

in both the central arm and the muon arm detectors.

2.2 Introduction to PHENIX ZDC and SMD

detectors

2.2.1 The RHIC Zero Degree Calorimeter

The Zero Degree calorimeters (ZDC) are small transverse area hadron calorime-

ters located downstream of the DX dipole magnets in each of the Heavy Ion

Experiments at RHIC, Fig. 2.4. The detectors measure neutral energy within

a 2 mrad cone about the beam direction (since charged particles are swept

away by the DX magnet). The actual detector location is 18m from the in-

teraction point and the horizontal acceptance is to +/- 5cms. The design is

based on the requirements for Au-Au runs but the dettectors are also used in

p-p and d-Au runs. The detectors serve two roles: The energy measurement

basically counts the number of free ”spectator” neutrons. This is used for

event-by-event characterization(usually in conjuction with the BBC). Also

coincidence signals from detectors on either side of the interaction region are

used for luminosity monitoring. During 200 GeV Au-Au running (ie in Run

IV) the ZDC coincidence rate has an effective cross section of 10.4 barns

(with an uncertainty of about 5The energy scale of the ZDC is determined

from the inclusive spectrum obtained with RHIC data. You can usually make
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out the first few peaks (ie 1n and 2n, etc) in this spectrum which gives you

the best possible Energy calibration. However we try to ”dead-reckon” the

relative gains of the 3 PMT’s- each measuring successive depth segments in

the calorimeter- using cosmic ray data. Typically this has been succesful and

the width of the 1-n peak is about 20The ZDC timing resolution is 100 psec

depending on the electronics setup, empirical slewing corrections.. (in other

words depending on which experiment you’re in). Since you measure time

in 2 ZDC’s, on either side of the IR, you can derive 2 quantities from them-

the vertex position and the event time.

The first ZDC module was installed in the RHIC tunnel on March 19th

’99.

2.2.2 PHENIX ZDC Shower Maximum Detector

The PHENIX Shower Max Detectors(SMD) are layers of position sensitive

hodoscopes sandwiched between the first and second module of the ZDC’s.

Since a ZDC module is 2 hadronic interaction lengths deep, the actual ampli-

tude measured in the Shower Max detector will fluctuate from one shower to

another (but less so in a typical event with many neutrons). The purpose of

the SMD is to measure the centroid of showers in the ZDC in 2 coordinates-

x and y. The first SMD layer has 21 strips of 0.5 cm *0.5 cm scintillators

each with wavelength shifter fiber readout. Groups of 3 fibers are read out

by a single channel of a multi-anode PMT. So the total width of the SMD,

10.5 cms, is subdivided into 7 samples. In d-Au runs (Run-3) the horizontal

measurement accuracy of the centroid was about 0.1 to 0.2 mm and corre-

lated with accelerator instrumentation beam position. Similarly, the vertical

coordinate has 8 elements of 4 scintillator strips.

The ZDC’s are described in the following section that is based on the

NIM article [Adl00].

Some of the design considerations are based on the NA49 measurement

in which we tried to understand the role of free neutron measurement as

opposed the more traditional fixed target implementation.
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Figure 2.4: ZDC installed in the experimental area
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2.3 Design and construction of ZDC

2.3.1 Introduction

High Energy collisions of nuclei usually lead to the emission of evaporation

neutrons from both “beam” and “target” nuclei. At the RHIC heavy ion

collider with 100GeV/u beam energy, evaporation neutrons diverge by less

than 2 milliradians from the beam axis. Neutral beam fragments can be

detected downstream of RHIC ion collisions (and a large aperture Accelerator

dipole magnet) if θ ≤ 4 mr but charged fragments in the same angular

range are usually too close to the beam trajectory. In this ’zero degree’

region produced particles and other secondaries deposit negligible energy

when compared with that of beam fragmentation neutrons.

The purpose of the RHIC zero degree calorimeters (ZDC’s) is to detect

neutrons emitted within this cone along both beam directions and measure

their total energy (from which multiplicity can be calculated). The ZDC

coincidence of the 2 beam directions is a minimal bias selection of heavy ion

collisions. This makes it useful as an event trigger and a luminosity monitor

and for this reason identical detectors were built for all 4 RHIC experiments.

The neutron multiplicity is also known to be correlated with event geometry

and will be used to measure collision centrality in mutual beam interactions.

2.3.2 Design Goals

The RHIC ZDC’s are hadron calorimeters. Their longitudinal segmentation

(2 λI , 50X0) is determined by practical, mechanical considerations. Electro-

magnetic energy emission into this region is predicted to be negligible so

this measurement is not emphasized in the design. Since the spatial distri-

bution of neutrons emitted in the fragmentation region carries only limited

information about the collision, the calorimeters are built without transverse

segmentation.

The Forward Energy resolution goal was determined by the need to

cleanly resolve the single neutron peak in peripheral nuclear collisions. The

16



Figure 2.5: Plan view of the collision region and (section A-A) ”beam’s
eye” view of the zdc location indicating deflection of protons and charged
fragments ( with Z/A∼ 1 downstream of the ”DX” Dipole magnet.
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natural energy spread of emitted single neutrons being approximately 10% a

resolution ofσE

E
≤ 20% at En= 100 GeVappeared reasonable.

The limited available space between the RHIC beams at the ZDC location

imposes the most stringent constraint on the calorimeter design. As can be

seen from Figure 2.5, the total width of the calorimeters is only cannot exceed

10 cm (equal to 1 nuclear interaction length (ΛI) in tungsten). The ZDC’s

were designed to minimize the loss in energy resolution due to shower leakage,

which can cause fluctuation in measured shower energy through dependence

on position of impact and random fluctuations in shower development.

Finally, the ZDC’s are required to withstand a dose of ∼ 105 rad., which

is the expected exposure during several years of RHIC operation.

2.3.3 Simulations

Simulations were performed for shower development, light production and

transport in the optical components using Geant 3.21 for 2 basic sampling

calorimeter designs:

1. Pb absorber with scintillator sampling

2. Pb, Cu or W absorber, each with undoped fiber optical ribbons in the

sampling layer

The ZDC sampling technique which was adopted for this project, is sen-

sitive to Cherenkov light produced by charged shower secondaries in a com-

mercial, PMMA based communication grade optical fiber with characteris-

tics given in a single free parameter was used to match the (wavelength de-

pendent) optical fiber attenuation coefficient and photomultiplier quantum

efficiency to the observed signal from testbeam µ ’s. Hadronic shower simu-

lation is based on Geisha with a low energy cutoff of 0.5 MeV on electrons

and photons and 1 MeV on hadrons.

The fiber sampling layers, in all cases, consist of a single ribbon of 0.5mm

diameter fibers. An orientation of 45o relative to the incident beam direc-

tion was chosen which roughly coincides with the Cherenkov angle of β=1

18



Table 2.2: Mechanical parameters of the ZDC’s
Absorber Space for fibers Modules/Layers

Prototype W-ZDC Tungsten 1.0 mm 4(8λI;218X0)
(100x150x5 mm3) 27

Prototype Cu-ZDC Copper 1.0 mm 8(7.5λI;79X0)
(100x150x10 mm3) 10

Production ZDC Tungsten alloy 1.4 mm 3(5.1λI;149X0)
(100x187x5 mm3) 27

Table 2.3: Characteristics of the fiber ribbon material. NA = 0.50
Outer Diam Material/Index

Core 0.45 mm PMMA/1.49
Cladding 0.50 fluorine doped/1.40
Surface Prep 0.60 White Silicone Rubber/ EMA

particles in PMMA. PMMA fibers are readily available with a numerical

aperture(NA) of 0.5 (defined as the fractional solid angle which is transmit-

ted in the fiber). This aperture corresponds to a maximum angle of 30o.

Quartz fibers generally have a smaller aperture.

In the simulations it was studied:

1. the effects of transverse shower leakage

2. energy resolution dependence on sampling frequency and photostatis-

tics

3. dependence on fiber orientation

A radius of 5 cm (the maximum space allowable at the RHIC loca-

tion) contains 75% of the shower signal in the case of a Pb/Scintillator

calorimeter with 10mm(Pb) and 2.5mm(Scint) layers. The same dimension

Pb calorimeter with Cherenkov sampling yields 91% containment. In general

the Cherenkov technique with Pb absorber achieves a given level of contain-

ment with a factor of 2 smaller radius than with scintillator.

Changing from Pb to W absorber yields almost another a factor of 2

reduction in containment radius. On the other hand, reducing the fiber
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numerical aperture in the sampling layer produces only a negligible change.

Cherenkov light Production and Capture

Because the optical fibers only transport Cherenkov light emitted nearly

aligned with the fiber axis, this detector is most sensitive to charged particles

which cross at approximately 45o to the fiber axis. The lower energy shower

component, which is more diffuse, is therefore suppressed.

This filtering effect is reduced by multiple coulomb scattering of electrons

and by the increased path length traversed by particles with less than 45o

angle to the fiber direction.

The multiple coulomb scattering has a significant effect on the response to

low energy electrons. The improved angular filtering that could be obtained

with lower NA fibers is largely offset by this effect and the lower light yield

which results from small aperture.

Relative response to electrons and hadrons

The response to beam energy (100 GeV) protons is a factor of 2 lower than

for electrons of the same energy. In this sense, the design is extremely non-

compensating. This lack of compensation is the dominant source of energy

resolution of the calorimeter for 100 GeV protons since the response changes

with fluctuations in the energy fraction carried by πo’s in the hadronic shower.

Linearity

In the application, where the calorimeter is used to count beam energy neu-

trons, linearity is not a design consideration. It is clear, while the response

to electrons is linear with energy, the hadron response is not. Response to

neutrons and protons approaches zero at low energies. Also, the response

to muons, which is energy independent up to ∼ 100 GeV/c at which point

radiative energy loss becomes significant. Cosmic ray and beam muons were

used for detector pre-calibration.
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Table 2.4: Calculated energy resolution of ZDC’s
Absorber PhEls “e/h” Stochastic Constant

per 100Gev ratio term(%) term(%)
W (2.5mm) 1036 1.79 69.6±7.9 10.1±0.7
W(5.0mm) 518 1.78 84.6±4.8 9.1±0.5
W(10mm) 256 1.78 92.4±8.2 8.8±0.6
Cu(10mm) 611 2.01 111.7±7.0 9.3±0.6
Pb(10mm) 422 1.80 91.0±8.9 9.5±0.6

Energy resolution

The role of the main components of the energy resolution is illustrated in

Table 3, where simulated calorimeter response was fitted to 50–800 GeV

proton induced showers to a stochastic plus a constant term. The results are

a poor fit to a quadratic sum.

If it was to increase the sampling frequency from 1/2 to twice the design

value of 1 per 5mm tungsten absorber there would be a negligible change in

resolution at 100 GeV. This configuration would reduce the stochastic term

due to photostatistics from 6 to 3% but leave the dominant resolution term,

due to non-compensation, unchanged.

2.3.4 Module Construction

For 10 cm wide modules with 5mm absorber plates, a convenient longitudinal

segmentation is 1 module per 2 nuclear interaction lengths of absorber. The

total fiber area matches that of a standard 2′′ PMT.

For the prototype W modules 2.5 mm thick cast plates were obtained

from a Russian manufacturer and bonded them in pairs. For the production

modules machined plates of tungsten alloy with threaded mounting holes

were obtained from a US manufacturer. The thickness uniformity of the

plates is ± 0.1mm.

The fiber ribbons were wound on a mandrill and then impregnated with

a low viscosity white silicone rubber glue. The glue covers the active region

of the fibers (200 mm) and protects the fiber surface in the region of the
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fiber/absorber sandwich. The light guide section of the remaining fibers is

treated with an extramural absorber to suppress cladding modes in the fiber.

The fiber ends closest to the PMT are collected into an acrylic compression

fitting and impregnated with epoxy (Bicron BC-600) . After the epoxy cured

the fiber bundle was polished using a diamond tipped cutting tool on a milling

machine.

The far end of the fibers were rough cut and left untreated. The optical

simulations assume no reflection at this end.

3 fibers were removed at random from the ribbons in each module and

coupled them to a single external optical connector for PMT gain monitoring.

This allowed for stable optical connections of all modules in the calorimeter

stack to a single light flasher and therefore reliable tracking of relative PMT

gain.

The fiber ribbons were trimmed to different lengths depending on their

positions along the module. Lengths were adjusted to compensate for the

difference in arrival time between the front and back of the module. The

length of the acrylic fibers was kept to a minimum because the disigners were

concerned about additional light production in fibers outside the absorber

region- primarilly due to shower leakage at the top of the calorimeter.

A 12-stage general purpose PMT (Hamamatsu R329-2) was selected and

mounted it with a 0.5mm air gap from the fiber bundles. PMT’s were se-

lected for < 6% photocathode non-uniformity over the 39mm diameter area

corresponding to the fiber bundle size. Linearity of the PMT/ voltage di-

vider combination is also an important criterion for this project since the

calorimeters will be used to measure up to 40 or so beam energy neutrons in

collisions of gold ions.

2.3.5 Precalibration

All modules were tested for relative light yield using cosmic muons incident

along the beam axis and a standard PMT with calibrated response. Very

little variation (< 10%) was observed among the 24 tungsten modules we
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eventually installed for this project.

During testbeam operation trigger counters were also installed to select

a small contamination of muons which were present in the proton beam.

Muons traversing the full calorimeter were used to adjust relative gains of

the 4 PMT’s in the prototype calorimeter.

2.3.6 Testbeam performance

The calorimeters were mounted on a table with remote x-y (transverse to

the beam) positioning in the CERN North area, downstream of experiment

NA49. The beam size and position was defined to ±1 cm using a 1cm square

scintillation counter directly upstream of the table.

The main purpose of the beam test was to study the response and reso-

lution of the calorimeter as a function of position.

The 100 and 160 GeV/c protons were selected using a beam Cherenkov

counter. The beam energy spread was typically 1%. PMT current pulses were

integrated and digitized using a standard commercial ADC (LRS 2249w).

2.3.7 Results

Figure 2.6 shows the measured lineshapes with 100 and 160 GeV incident

protons. The energy scale is normalized using the 100 GeV point. The

expected distributions based on Geant simulation. The distributions are

well represented by a gaussian resolution function and the response is linear

over this limited energy range.

The position scans show essentially uniform response to within 1cm of

the calorimeter edge along the horizontal direction -in good agreement with

simulation. In the vertical scans there is an abrupt increase in response near

the upper edge of the modules. The simulation reproduces this edge effect.

It can be traced to shower leakage into the fibers above the absorber.

In order to improve module uniformity in the “beam region” the height

of the module was increased in the final production design from 10 cm to

13.6 cm.
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Figure 2.6: Tungsten ZDC response linshapes for 100 and 160 GeV incident
protons.
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The tungsten calorimeter uniformity and energy resolution were essen-

tially unchanged when the energy deposited in the 4th module was neglected.

Typically 1–2% of the energy is seen in this module. The energy resolution

at 100 GeV changes from 17.6 to 19% when it is removed.

Part of the resolution of this calorimeter is due to the unequal response

to electrons and photons relative to hadrons. This introduces a limiting

resolution due to fluctuations in the shower composition (ie π0 vs charged

π).

The calorimeter is designed to measure beam energy neutrons incident at

the front face (45o to the fiber direction). A by-product of the directional

response of the calorimeter is that it is relatively insensitive to background

particles from “beam halo” and other sources. In order to demonstrate this

suppression, the calorimeter was inverted in the testbeam (135o to fiber di-

rection).

Radiation tolerance

PMMA is not a particularly radiation tolerant plastic. It is known to lose

transparency more readily than Polystyrene, for example. Earlier measure-

ments on acrylic fibers showed about a factor of 2 decrease in attenuation

length per 104 rad of gamma irradiation. Doses at the ZDC location in RHIC

have been estimated at 10krad/yr. This is confirmed by dosimetry studies

during RHIC commissioning.

The prototype modules were exposed to much higher integrated doses at a

reactor. Approximately 2/3 of the total dose was due to gamma rays and the

remainder was due to neutrons The module light output was measured using

cosmic ray muons before and after 3 successive exposures up to a maximum

of 700 krad (7000Gy).

2.3.8 Production Design Choices

The Copper and Tungsten modules both had adequate performance for the

application. The tungsten module yields 1-2% better energy resolution at

25



100 GeV and slightly better flatness of response over the calorimeter face. It

was chosen to proceed with the Tungsten module design primarily because of

the 2 × ΛI modularity and other aspects of the mechanical design. Also the

modules are more compact, which is an advantage given the limited space.

The module height was increased in the production design to reduce shower

leakage into the fiber bundles. Also the calorimeter depth was reduced from 8

to 6×λI since the shorter calorimeter gives essentially identical performance.

2.3.9 Discussion

Studies of the Cherenkov/fiber sampling technique with electrons and have

been reported elsewhere. One device was built and operated in a fixed target

experiment. Here, the first measurements iwere reported with a 45o design

hadron calorimeter and the first application of this method at a collider.

During the first colliding beam operation at RHIC, with Gold Ions accel-

erated to and stored at 65GeV/nucleon beam energy, the ZDC’s have been

used for beam tuning and as a trigger by the RHIC experiments. Figure

2.7 shows an online energy distribution from one of the calorimeters in the

PHENIX experiment. The single neutron peak, which is seen clearly in this

distribution, has been used to confirm the energy calibration of the calorime-

ters. For more details, see also refs.[Adl00, Chi02, Bal98, App98b].
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2.4 My contribution: ZDC GEANT simula-

tions for PHENIX

2.4.1 Introduction

Code for the Zero Degree Calorimeter detector has been implemented in the

GEANT [Gea93] based PHENIX Integrated Simulation Application (PISA)

software package. ZDC GEANT simulations aim at prediction of forward

going energy distribution to determine centrality of Au + Au and Cu + Cu

collisions at RHIC. The structure and the basic conceptions of the program

are overviewed. Simulation results are presented and discussed. A guide-

line how to run the program under different PHENIX experimental setup

conditions is provided.

2.4.2 The ZDC GEANT code

2.4.3 Construction of an ion fragmentation model

Based on a NA49 measurement specially setup for studying fragmentations

after heavy ion collisions [App98] an ion fragmentation model has been de-

veloped for the simulations. This is necessary, because ZDC normally detects

only neutral particles (mainly neutrons that do not participate in the reac-

tions). Charged particles are swept away by the bendig magnets in front

of them as show in Fig. 2.8. However, the neutrons associate with non-

participating protons which essentially influences the number of neutrons

penetrating the ZDC detector. Hence, the signal we detect strongly depend

on the fragmentation picture we apply. Collision events were generated by

a Hijing event generator code, whose output were modified in order to com-

pose ion fragments from the individual non-participating nucleons according

to the model.

The special model applied for the PHENIX ZDC detector simulations

composes deuterons first until the number of the non-participant protons

matches the number of ’extra’ non-participant neutrons. The hint how many

neutrons we should actually have reaching the ZDC can be obtained from
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the NA49 publication. If, as usually, it is lower then tritiums are combined

so that deuterons ’eat up’ the pairless ’extra’ non-participant neutrons. The

details of the method and the first results were presented in a talk at a

PHENIX Core Week 1999 December.

An additional trick had to be also applied in the method. Unfortunatelly,

Geant is unable to track ions in material. To solve this difficult problem the

particle bank with the composed fragments was modified so that deuterons

had the name proton with double mass, tritiums with triple mass and so on,

see Fig. 2.8..

2.4.4 Integration of the simulation code into PISA

Due to the large forward going energy the ZDC GEANT simulations had to

be separated from the rest of the detectors. Therefore, usually by default, the

ZDC code is switched off because it does not affect the signals of the other

detectors. In contrary, the the whole equipment along with the beam pipeline

may induce scattered secondary particles that might deposit their energies

in the ZDCs. Also, the volume of the ZDCs are far much larger, therefore,

tracking particles takes much more time. In summary: the large number of

forward going particles, the energy they carry and the large volume to track

particles make the detector simulations for the ZDCs extremely difficult (an

example is shown in Fig. 2.9). In case of central Au+Au collisions, about 10

thousand particles are generated per event whose typical processing time is

20-30 minuits per event for the ZDCs.

2.4.5 Results

Fig. 2.10 show the results of about 1000 Au+Au minimum bias collisions.

The ZDC signals were correlated with that of the BBC detector used also

for centrality determination.

Fig. 2.12 show the consecutive 5% centrality classes as obtained from the

GEANT simulations. This method is called the clockwise centrality selec-

tion. Other selections were also considered and are available for alternative
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Figure 2.8: Composing ion fragments from non-participant nucleons. The
figure shows how we get a deuteron. Na49 measurement data were used to
estimate and extrapolate the number of non-participant neutrons penetrating
the ZDC. Also, it is indicated how fragments were renamed so that their
tracking was possible in GEANT.
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Figure 2.9: Example for the showers of particles in the ZDC. In this particular
case one neutron with 100 GeV energy was shot to the detectror from the
center. The larger figure was streched vertically so that the huge number
of tracks are visible. In the left corner a proportional view of the PHENIX
detector with all the subdetectors is shown as GEANT sees it.
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analyses.

Further figures are show at the end of the next section where the usage

of the program and its parameteres are explained in detail.
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Figure 2.11: GEANT simulations of the ZDC. Below: centrality classes of
5% separated by colours according to the ZDC vs BBC detector response
correlation. Above: the same centrality classes are indicated in function of
the impact parameter ’b’. The impact parameters are provided by the event
generator ’Hijing’. This way, we can assosiate the detector data and the
frontality of the collisions.
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2.4.6 How to run ZDC simulation in PISA

To make an executable program from the latest version of PISA carry out

the following procedures and commands at your terminal prompt (>).

Downloading files

Download the latest version of PISA from the official site. Get your access

permission to PISA code:

> klog <username>

> password: <AFS user password>

Copy the the source and data files to your own directory. The example be-

low creates the directory simulation/pisa2000 in your current directory

into which a complete copy of the PISA file system will be transferred.

> cvs co simulation/pisa2000

Making executable

In the directory simulation/pisa2000 created above go into lib and give

the command gmake (like the example below) to compile and link the files

into one executable program.

> cd simulation/pisa2000/lib

> gmake -f pisa.mk

Before each run of the program set the enviroment variables, if not yet set.

For example:

> setenv CERNLIB /cern/pro/lib

> setenv DISPLAY rxterm.rhic.bnl.gov:0.0
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Running a simulation

Change to the working directory as shown below. Specify your computer

platform and the program name (linux and pisa in this case). Before start-

ing the program edit the input file (see in Appendix A) entries belonging to

ZDC. Set ’HBOO’ in pisa.kumac to get histograms like that in Appendix B

> cd simulation/pisa2000/wrk

> linux/pisa
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Inputs

Input file parameters to set for ZDC

Files listed in the subsection titles can be found in the working directory

pisa2000/wrk of PISA. Lines containing !!! comment indicate ZDC related

information.

gffgo.dat

This is the standard Geant input file for PISA. Change the 2nd parameter

of line ’GEOM’ to set the experimental hall definitions (2 means ZDC is

included). Set it to 0 if ZDC should be excluded from particle trackings (a

smaller hall will be defined).

GEOM 1 2 0 0 0 0 0 !!! INIT, ZDC, ....

AUTO 1 ! GEANT automatic TMED parameter

SWIT 5 0 1 0 0 0 0 0 0 ! Compressed output

pisa.kumac

This is the standard kumac file for PISA. The last line belongs to ZDC.

The example below shows a full setup configuration. Set any of the ON

parameters to OFF if the corresponding detector should not be defined in

Geant.

Set the ’HBOO’ parameter of ZDC to ’ ’ if hbooking is not required dur-

ing the simulation (PISA creates a separate hbook file gintphnx.hbk at the

end of run). The last parameter in the ZDC line defines the magnetic field of

the DX magnets in Tesla. Currently 1 fragmentation model is implemented

in the program that is represented by the value ’FRG1’ of the 6th parameter.
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* Random number seeds

*

RNDM 001 0

*

* Tracking thresholds

*

CUTS .001 .001 .010 .010 .010 .001 .001 1.e+4 1.e+4 .010 4.e-7

*

FOUT ’phnx.dat.cZ’ ! Name of output hits file

FPAR ’phnx.par’ ! Namelist parameter file for

geometry

STEE ’KINE’ ’HITS’ ’DIGI’ ’JXYZ’! Output data structure control

DOUT ’DIGI’ ! Output data structure control

MAGF ’QUAD’ 1.00 0001 0. 0. 0. ! Magnetic field map control

GEOP ’PIPE’

ANNI 1 ! GEANT for annihilation on

BREM 1 ! GEANT for bremsstrahlung on

COMP 1 ! GEANT for Compton scattering

on

LOSS 2 ! GEANT for Landau fluct. on

DRAY 0 ! GEANT for Delta no ray

HADR 4 ! GEANT for hadrons using FLUKA

MULS 1 ! GEANT for mult. scattering

on

PAIR 1 ! GEANT for pair production on

PHOT 1 ! GEANT for photoel. effect

on

***************************************************************************

*

* To install a detector turn the switch ’ON’

*

***************************************************************************

VER ’ON’ ’FULL’ ’P-ID’ ’FULL’ ’VCAL’ ’STCK’ ! MVD on with track

stack

BBC ’ON’ ’FULL’ ’ETOT’ ’FULL’ ’BCAL’ ’STCK’ ! BBC on with track

stack

ITR ’ON’ ’IT96’ ’ETOT’ ’FULL’ ’TRKS’ ! Latest Dch, PC1

vers.

CRK ’ON’ ’FULL’ ’P-PZ’ ’FULL’ ’CCAL’ ’CO2 ’ ! RICH with CO2 gas
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PAD ’ON’ ’PC98’ ’P-ID’ ’FULL’ ’PCAL’ ! Latest version of

PC2/PC3

TRD ’ON’ ’FULL’ ’P-ID’ ’FULL’ ’TCAL’ ! This is the TEC

TOF ’ON’ ’FULL’ ’P-ID’ ’FULL’ ’FCAL’ 0.0 0.0! Time of Flight

EMC ’ON’ ’FULL’ ’FULL’ ’FULL’ ’ECAL’ ’AUAU’ ! EMCal, H.I. with

Cerenkov

MUM ’ON’ ’FULL’ ’ETOT’ ’FULL’ ’MCAL’ 0. 0. 0. ’STCK’ ’NNEU’

!

MUI ’ON’ ’FULL’ ’ETOT’ ’FULL’ ’NCAL’ 0. 0. 0. ’STCK’ ’NNEU’

!

ZDC ’ON’ ’FULL’ ’ETOT’ ’FULL’ ’ZCAL’ ’FRG1’ ’HBOO’ 42.7 !!!

event.par

This is the standard event parameter file for PISA. ZDC has introduced

line1 and 2 (b min, b max) to allow selection of impact parameter ranges (in

fm’s). Set parameter north south to 0 or 1, according to only north or both

directions are considered in the analysis. Rapidity, momentum, azimuthal

and tilte angles below are set to usual values. This is a typical set of param-

eters that allow for almost the whole momentum domain of the produced or

(event) generated particles.

$epar

b min = 0.0,

b max = 15.0,

y min = -1.e+20,

y max = +1.e+20,

p min = 0.03,

p max = +1.e+20,

pt min = 0.00,

pt max = +1.e+20,

the min =0.00,

the max =+180.00,

phi min =-180.00,
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phi max =+180.00,

xyz0 input = 0.0, 0.0, 0.0,

vrms = 0.025, 0.025, 0.0,

north south = 1,

nskip evt = 0,

t0cent = 0.0,

t0width = 0.0,

$end

**************************************************************************

*

* Lines below show how one "includes" only pions using GEANT IDs

*

* iincl = +3, (0 means all particles to include

* include = 8, 9, 7, 17*0,

*

**************************************************************************

Results

Output files of ZDC

The output files that are related to the ZDC detector are the standard ROOT

and HBOOK files of PISA (PISAEvent.root and gintphnx.hbk, respec-

tively). The .root file contains all the hit information that belong to an

event of a charged particle crossing a Cherenkov fiber, i.e., position, num-

ber of photoelectrons produced, momentum, time of flight, particle ID. The

figure below has been created by PAW from the HBOOK file gintphnx.hbk.

To correlate ZDC results to the ones of other detectors contact the person

responsible for the code of that detector.
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Chapter 3

Hydrodynamical modelling

3.1 Non-relativistic hydrodynamics

3.1.1 Introduction

The equations of hydrodynamics reflect the local conservation of charge,

momentum and energy. These equations are well suited to study prob-

lems related to flows in various fields ranging from evolution of galaxies in

astrophysics to heavy-ion and elementary-particle collisions in high-energy

physics. The finding of exact self-similar hydro solutions sometimes repre-

sents essential progress in physics, as the discovery of the Hubble flow of our

Universe or the Bjorken flow of ultrarelativistic heavy-ion collisions.

In this section we consider the case of a non-relativistic hydrodynamical

problem with ellipsoidal symmetry. Our goal is to demonstrate the influence

of initial conditions on the final state observables, utilizing an explicit, exact

and simple analytic solution of fireball hydrodynamics. In particular, we

attempt to understand the relationship between the initial conditions (the

ellipsoidal asymmetry and the tilt of the major axis) and the final observables.

This section is based on ref. [Csö01]

A self-similar solution of non-relativistic hydrodynamics with ideal gas

equation of state and a generalized (direction-dependent) Hubble flow, a

three-dimensional ellipsoidal Gaussian density profile and a homogeneous,

space-indepenent temperature profile has been found in ref. [Akk01]. This
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solution has many interesting properties, e.g. the partial differential equa-

tions of hydrodynamics are reduced to ordinary differential equations cor-

responding to a Hamiltonian motion of a massive particle in a non-central

repulsive potential. These results correspond to the generalization of ear-

lier, data motivated hydrodynamical parameterizations and/or solutions of

refs. [Bon78, Csö94b, Csi98, Csö98, Hel97, Csö95b, Csö95a, Jde78] to el-

lipsoidal symmetry and non-central heavy-ion collisions with homogeneous

temperature profile.

Below let us summarize the hydrodynamic solution of ref. [Akk01] for

some fairly wide family of thermodynamically consistent equations of state,

and calculate analytically all the observables of non-central collisions. It al-

lows, in principle, to solve an inverse problem, namely, given an (in general

non-ideal) equation of state, to restore the initial conditions from the observ-

ables. However, we do not aim here to apply directly the new hydro solution

to data fitting in high-energy heavy-ion physics. In order to reach the level

of data fitting, generalizations to relativistic flow patterns, more realistic

equations of state and temperature profiles are needed. Some of these gen-

eralizations seem to be straightforward and are in progress [Csö01b, Csö02],

and will be discussed in Section 3.2.

3.1.2 The equations of non-relativistic hydrodynamics

Consider the non-relativistic hydrodynamical problem, as given by the con-

tinuity, Euler and energy equations:

∂t n + ∇ · (nv) = 0 , (3.1)

∂t v + (v · ∇)v = −(∇p)/(mn) , (3.2)

∂t ε + ∇ · (εv) = −p∇ · v , (3.3)

where n denotes the particle number density, v stands for the non-relativistic

(NR) flow velocity field, ε for the NR energy density, p for the pressure and in

the following the temperature field is denoted by T . This set of equations are

closed by some equation of state (EoS). We have chosen analytically solvable
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generalization of NR ideal gas equations of state:

p = nT , ε = κ(T )nT, (3.4)

which allow to study the solutions of NR hydro equations for any temperature

dependent ratio of pressure to energy density, p/ε = 1/κ(T ). The EoS (3.4)

are thermodynamically consistent for any function κ(T ), as can be checked

by using the free energy density f(T, n) and the relations

p = n
∂f

∂n
− f , ε = f − T

∂f

∂T
. (3.5)

The function κ(T ) characterizes the p/ε ratio for a broad variety of mate-

rials: e.g. a non-relativistic ideal gas yields κ(T ) = 3/2. Note, that for

finite-size systems phase transition can occupy certain temperature interval

similar to a crossover. Then one can model such a change of the pressure

to energy density ratio at phase transition from deconfined quark matter to

hadronic one by means of smooth variations of the values of κ(T ) in certain

temperature domain. Note also that it is usual to introduce the speed of

sound as c2
s = dp/dε = 1/κ(T ), so we model the change in the equation of

state essentially with the help of a temperature dependent speed of sound.

Such a structure, a temperature dependent, but nearly chemical potential

independent κ(T ) is consistent with lattice QCD equation of state calcula-

tions [Aok06].

3.1.3 Ellipsoidal solutions

For reasons of convenience we choose n, v and T as the independent hydro-

dynamic variables. The NR hydro equations are solved refCso01, similarly as

it was done for the case of NR ideal gas EoS in ref. [Akk01], by the following

self-similar, ellipsoidally symmetric density and flow profiles:

n(t, r′) = n0
V0

V
exp

(

− r′ 2x

2X2
−

r′ 2y
2Y 2

− r′ 2z
2Z2

)

, (3.6)

v′(t, r′) =

(

Ẋ

X
r′x,

Ẏ

Y
r′y,

Ż

Z
r′z

)

, (3.7)
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where the variables are defined in a center of mass frame K ′, but with the axes

pointing to the principal directions of the expansion. The time dependent

scale parameters are denoted by (X, Y, Z) = (X(t), Y (t), Z(t)), the typical

volume of the expanding system is V = XY Z, and the initial temperature

and volume are T0 = T (t0) and V0 = V (t0), and n0 is a constant. The time

evolution of the radius parameters X, Y , Z and temperature T are governed

by the ordinary differential equations

ẌX = Ÿ Y = Z̈Z =
T

m
, (3.8)

Ṫ
d

dT
(κT ) + T

(

Ẋ

X
+

Ẏ

Y
+

Ż

Z

)

= 0 . (3.9)

Note that the equation for the time dependence of the temperature can be

integrated in a straigthforward manner to find

V0

V
= exp [κ(T ) − κ(T0)] exp

∫ T

T0

dT ′

T ′
κ(T ′) , (3.10)

and this equation further simplified, in the case of a temperature independent

κ, as

T = T0

(

V0

V

)1/κ

. (3.11)

3.1.4 Observables from the solutions

In order to evaluate the measurable quantities, any hydrodynamical solu-

tion has to be supplemented with an additional freeze-out criterion, that

specifies the end of the hydrodynamical evolution. Here we assume sudden

particle freeze-out at a constant temperature T (tf , r) = Tf where EoS corre-

sponds approximately to ideal gas (κ(Tf ) = 3/2). This freeze-out condition

is reached everywhere at the same time in the considered class of exact hy-

drodynamical solutions and it is motivated by the simplicity of the results.

Then, the emission function is proportional to

S(t, r′,k′) ∝ e
−

(xk
′
−mv

′)2

2mTf
−

r′ 2x

2X2
f

−
r′ 2y

2Y 2
f

−
r′ 2z

2Z2
f δ(t − tf ) . (3.12)
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3.1.5 Single particle spectrum

The single-particle spectrum and the two-particle correlation function can be

evaluated similarly to that of ref. [Csö94b, Csi98]:

E
d3n

dk′
∝ E exp

(

− k′ 2
x

2mT ′
x

−
k′ 2

y

2mT ′
y

− k′ 2
z

2mT ′
z

)

, (3.13)

T ′
x = Tf + mẊ2

f , (3.14)

T ′
y = Tf + mẎ 2

f , (3.15)

T ′
z = Tf + mŻ2

f . (3.16)

Here E = m + k′ 2/(2m) in the non-relativistic limit we are considering,

k′ = (k′
x, k

′
y, k

′
z) stands for the momentum vector in K ′, Xf = X(tf), etc. In

the spherically symmetric case of X = Y = Z = R, we recover the earlier

results [Csö94b, Csi98], with 〈u〉 = Ṙ and Teff = Tf + m〈u〉2.
The observables are determined in the center of mass frame of the col-

lision, K, where the rz axis points to the direction of the beam and the rx

axis to that of the impact parameter. In this frame, the coordinates and

the momenta are denoted by x and k. We assume that the initial state of

the hydrodynamic evolution corresponds to a rotated ellipsoid in K. The

tilt angle θ represents the rotation of the major (longitudinal) direction of

expansion, r′z from the beam axis rz. Hence the event plane is the (r′x, r
′
z)

plane, which is the same as the (rx, rz) plane. The (zenithal) angle between

directions rz and r′z is θ, while the (azimuthal) angle between the transverse

momentum kt and the event plane is φ .

The ellipsoidal spectrum of eq. (3.13) generates the following φ averaged

single-particle spectrum in the K frame:

d2n

2πktdktdkz
∝ exp

(

− k2
t

2mTeff
− k2

z

2mTz

)

f(v, w) , (3.17)

1

Tz
=

cos2 θ

T ′
z

+
sin2 θ

T ′
x

, (3.18)

1

Tx
=

cos2 θ

T ′
x

+
sin2 θ

T ′
z

, (3.19)
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1

Teff
=

1

2

(

1

Tx
+

1

T ′
y

)

, (3.20)

w =
k2

t

4m

(

1

T ′
y

− 1

Tx

)

, (3.21)

v = −ktkz

2m
sin(2θ)

(

1

T ′
x

− 1

T ′
z

)

, (3.22)

f(v, w) ≈ I0(w) +
v2

4
[I0(w) + I1(w)] , (3.23)

where f(v, w) is calculated for |v| � 1 and In(w) = 1
π

∫ π

0
dz cos(nz) exp[w cos(z)]

is the modified Bessel function of order n (n = 0, 1, ...). For small ellipsoidal

asymmetries, w � 1, I0(w) ' 1 and the effective temperature parameter in

the transverse direction is the harmonic mean of the temperature parameters

of the principal directions of expansion (projected to the transverse plane).

As T ′
z ≥ T ′

x ≥ T ′
y is expected from the initial conditions, we obtain Tx ≥ T ′

x

and Tz ≤ T ′
z .

The flow coefficients vn are defined as

d3n

dkzktdktdφ
=

d2n

2πdkzktdkt

[

1 + 2
∞
∑

n=1

vn cos(nφ)

]

. (3.24)

Here v1 is called the directed flow, v2 the elliptic flow and v3 the third flow.

The transverse- and longitudinal- momentum dependence of the vn flow com-

ponents can be written in terms of v and w. Assuming that the tilt angle

θ or the anisotropy is small, |v| � 1, the directed, elliptic and third flow

components are evaluated as

v1 =
v

2

[

1 +
I1(w)

I0(w)

]

, (3.25)

v2 =
I1(w)

I0(w)
+

v2

8

[

1 +
I2(w)

I0(w)
− 2

(

I1(w)

I0(w)

)2
]

, (3.26)

v3 =
v

2

I2(w) + I1(w)

I0(w)
. (3.27)

An angular tilt θ 6= 0 is evidenced by the rise of the directed and third flows

as a function of rapidity y = 0.5 ln[(E + kz)/(E − kz)] and by a minimum of

the elliptic flow at mid-rapidity, see Fig. 3.1.7. This and other features are
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in qualitative agreement with most of the data on intermediate- and high-

energy heavy-ion collisions [Dan01, Bäc99, Ack01, Cse99], suggesting that

in non-central collisions the dominant longitudinal direction of expansion is

perheps slightly deviating from the beam direction. A more straightforward

proof of the ellipsoidal nature of the flow can be obtained by determining

the mass dependence of the parameters T ′
x , T ′

y and T ′
z , cf. eqs. (3.14-3.16)

and Fig. 3.1.7. Note, that in the recent PHOBOS v2(η) measurements a

maximum is seen at midrapidity, which indicates the tilt angle (θ) is small,

nearly 0, and v2 = I1(w)/I0(w)

3.1.6 Two-particle correlations

The two-particle Bose-Einstein correlation function (BECF) is related to a

Fourier-transform of the emission (or source) function S(t, r′,k′) of eq. (3.12),

see e.g. refs. [Csö94b, Csi98, Hel97]. If the core-halo picture [Csö94a] is

valid, an effective intercept parameter λ ≡ λ(k) = [Nc(k)/N(k)]2 appears,

that measures the fraction of particles emitted directly from the core. The

two-particle BECF is diagonal in K ′, as

C(K′,q′) = 1 + λ exp
(

−q′ 2x R′ 2
x − q′ 2y R′ 2

y − q′ 2z R′ 2
z

)

, (3.28)

K′ = K′
12 = 0.5(k′

1 + k′
2) , (3.29)

q′ = q′
12 = k′

1 − k′
2 = (q′x , q′y , q′z) , (3.30)

R′ −2
x = X−2

f

(

1 +
m

Tf
Ẋ2

f

)

, (3.31)

R′ −2
y = Y −2

f

(

1 +
m

Tf
Ẏ 2

f

)

, (3.32)

R′ −2
z = Z−2

f

(

1 +
m

Tf

Ż2
f

)

. (3.33)

These radius parameters measure the lengths of homogeneity [Sin94]. They

are dominated by the shortest of the geometrical scales (Xf , Yf , Zf) and the

corresponding thermal scales defined by (XT , YT , ZT ) =
√

Tf

m
(

Xf

Ẋf
,

Zf

Żf
,

Zf

Żf
),

generalizing the results of refs. [Csö94b, Hel97, Csö95b, Csö95a] to ellipsoidal

flows. The geometrical scales characterize the spatial variation of the fugac-
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ity term µ(t, r′)/T (t, r′), while the thermal scales characterize the spatial

variations of the Boltzmann term E ′
loc(t, r

′)/T (t, r′), both of them evaluated

at the point of maximal emittivity. In the K ′ frame, cross-terms [Cha95]

vanish, R2
i6=j = 0, if the emission is sudden.

If the particle emission is gradual, but it happens in a narrow interval

∆t centered at tf , then the BECF can be evaluated using the replacement

δ(t − tf ) → (2π∆t2)−1/2 exp[−(t − tf)
2/2∆t2] in eq. (3.12), if ∆tẊf <<

Xf , etc. Hence all the previous radius components, including the cross-

terms, are extended with an additional term δR′ 2
ij = β ′

iβ
′
j∆t2, where β′ =

(k′
1 + k′

2)/(E ′
1 + E ′

2) is the velocity of the pair in K ′.

The BECF’s are usually given in the side-out-longitudinal or Bertsch-

Pratt (BP) parameterization. The longitudinal direction, rlong ≡ rl in BP

coincides with the beam direction. The plane orthogonal to the beam is

decomposed to a direction parallel to the mean transverse momentum of

the pair, rout ≡ ro , and the one perpendicular both to this and the beam

direction, rside = rs . The mean velocity of the particle pair can be written

in BP as β = (βo, 0, βl), where βo = βt . Let φ denote the angle of the event

plane and the mean transverse momentum of the measured pair. The result

is

C2(K,q) = 1 + λ exp

(

−
∑

i,j=s,o,l

qiqjR
2
ij

)

, (3.34)

R2
s = R′ 2

y cos2 φ + R2
x sin2 φ , (3.35)

R2
o = R2

x cos2 φ + R′ 2
y sin2 φ + β2

t ∆t2, (3.36)

R2
l = R′ 2

z cos2 θ + R′ 2
x sin2 θ + β2

l ∆t2, (3.37)

R2
ol = (R′ 2

x − R′ 2
z ) cos θ sin θ cos φ + βtβl∆t2, (3.38)

R2
os = (R2

x − R′ 2
y ) cos φ sin φ , (3.39)

R2
sl = (R′ 2

x − R′ 2
z ) cos θ sin θ sin φ , (3.40)

where an auxiliary quantity is introduced as

R2
x = R′ 2

x cos2 θ + R′ 2
z sin2 θ . (3.41)
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These results imply that all the radius parameters oscillate in the K frame.

In particular, a φ dependent oscillation appears in the radius parameters

indexed either by the side or the out direction, as illustrated in Fig. 3.1.7.

These oscillations are similar to those obtained in ref. [Wie98], corresponding

to θ = 0. We find that the radius parameters indexed by the longitudinal

direction depend also on the zenithal angle θ. A toy model for tilted (θ 6= 0)

ellipsoidal static pion sources was introduced in refs. [Lis00], to understand

the φ dependent oscillations of measured HBT radii at AGS energies. In our

case, the amplitude of the oscillations is reduced for heavier particles due to

the hydrodynamic expansion, which results in a decrease of the lengths of

homogeneity with increasing mass. The oscillations of the radius parameters

were not related before either to hydrodynamic flow with ellipsoidal sym-

metry and tilt of the major axis or connected to the initial conditions of a

hydrodynamic expansion.

A check of the applicability of our hydrodynamic solution is that the

BECF and the single particle spectrum become diagonal (after removing a

term of βiβj∆t2 from all the HBT radius parameters) in the same frame, see

eqs. (3.13,3.14-3.16) and eqs. (3.28,3.31-3.33). This frame is K ′, the natural

System of Ellipsoidal Expansion or SEE.

3.1.7 Connections of initial freez-out conditions in non-
relativistic hydrodynamics

Single-particle spectrum and the two-particle Bose-Einstein correlation func-

tion have analytically been evaluated for a self-similarly expanding, exact,

ellipsoidal solution of the non-relativistic hydrodynamical equations, assum-

ing a constant freeze-out temperature.

The parameters of the hydro solution at freeze-out time Tf , (Xf , Yf , Zf)

and (Ẋf , Ẏf , Żf), can be reconstructed from the measurement of the single

particle spectrum and the two-particle correlation functions. The direction

of the major axis of expansion in the center of mass frame of the collision

is characterized by the polar angles (θ, 0). With the exception of Rl, all the
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radius parameters oscillate as function of φ, while the radius parameters R2
l ,

R2
ol , R2

sl depend also on θ. All the radius parameters decrease with increasing

mass, including all the cross terms. If θ 6= 0, the effective temperature in

the transverse direction is increased by a contribution from the longitudinal

expansion.

The initially more compressed longitudinal and impact parameter direc-

tions (the rz and rx directions) expand more dynamically [Akk01, Csö01b],

that implies T ′
z ≥ T ′

x ≥ T ′
y . The initial time t0 can be identified from the

requirement that Ẏ (t0) = 0. The initial conditions for this hydrodynami-

cal system can be uniquely reconstructed from final state measurements, for a

given EoS. The function κ(T ) in the EoS influences only the time evolution of

the scales (X, Y, Z) and temperature T . So, for a given EoS, one can uniquely

reconstruct the initial conditions of hydrodynamic evolution from final ones.

However, it is also clear that the same FO conditions can be reached froma

large class of initial conditions, i.e. (Tf , Xf , Yf , Zf , Ẋf , Ẏf , Żf) is a functional

of the EoS, κ(T ) and the freez-out conditions (T0, X0, Y0, Z0, Ẋ0, Ẏ0, Ż0).

Hence, EoS and IC can be co-varied to yield exactly the same FO, hence,

exactly the same hadron observables. Therefore, it is not necessary to know

the initial conditions if we want to reconstruct the final state of high en-

ergy heavy ion collisions. But, once we know the EoS from independent

calculations the question can be answered.

We have deliberately chosen the presentation as simple as possible, which

limits the direct applicability of our results in high-energy heavy-ion col-

lisions only to sufficiently small transverse momentum, pt � m, at mid-

rapidity. But the scheme permits generalization in many points and still the

qualitative features of our results may survive even in the relativistic regime.

Generalizations to some relativistic flows have been described in ref. [Csö02].

Ref. [Csö01b] includes another extension to an arbitrary, inhomogeneous,

ellipsoidally symmetric initial temperature profile, which does not change

the time evolution of the scale parameters. It turns out that each of these

generalizations is essentially straightforward.
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Figure 3.1: The directed, elliptic and third flows v1, v2, v3 are illustrated,
respectively with solid, long-dashed and short-dashed lines, as a function of
rapidity, for m = 940 MeV, T ′

x = 200 MeV, T ′
y = 150 MeV, T ′

z = 700 MeV,
at a fixed kt = 500 MeV and θ = π/5, see eqs. (3.25-3.27).
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Figure 3.2: The linear mass dependence of the effective temperatures in the
transverse directions, T ′

x, T ′
y and their (harmonic) average Teff for non-central

heavy-ion collisions, if Tf = 120 MeV, Ẋ = 0.4, and Ẏ = 0.25 and θ = 0.
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3.2 Relativistic hydrodynamics

3.2.1 Introduction

Recently, new families of exact analytic solutions of relativistic hydrodynam-

ics have been found in a Hungarian-Brazilian collaboration. The simplest

case corresponds to the (1+1)-dimensional expansions [Csö02d]: it consists

of a class of 1-dimensional scaling flows with a proper-time dependent pres-

sure, but characterized with an arbitrary rapidity distribution and a tem-

perature field that is coupled to the rapidity distribution, thus overcoming

one of the shortcomings of the well-known Hwa-Bjorken solution [Bjo83],

which has a flat rapidity distribution. Physically, the situation described in

[Csö02d] may characterize e.g. soft collisions of hadrons at high bombard-

ing energies. These solutions are obtained for a broad class of equations of

state that may include massive particles and an arbitrary constant of propor-

tionality between the kinetic energy density and the pressure. The (1+1)-

dimensional solutions have been generalized to the case of cylindrical sym-

metry in ref. [Csö02d], describing a physical situation that may correspond

to central collisions of heavy ions at ultra-relativistic colliding energies, thus,

overcoming another shortcoming of Hwa-Bjorken solution, which contains no

transverse flow. These exact analytic solutions, reported in refs. [Csö02d],

are associated to each non-negative scaling function V(s) that satisfies the

normalization condition V(0) = 1, where the argument s is a scaling vari-

able that guarantees the self-similarity of the solutions. Here we present a

broader class of solutions belonging to this new family of exact solutions. In

particular, we shall describe two classes of ellipsoidally symmetric solutions of

relativistic hydrodynamics, that may be relevant for the study of non-central

collisions of heavy ions at relativistic bombarding energies.

Recently, new exact solutions were obtained with relativistic acceleration,

but their detailed discussion go beyond the scope of this PhD thesis. Let us

note, that acceleration implies work, and work leads to a factor of 2 correction

in the estimate of the initial energy density: the accelerationless Bjorken
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estimate yield ε0 = 5GeV/fm3, while the accelerating solutions fitted to

BRAHMS dn/dy data provide ε0 = 10GeV/fm3 in Au+Au collisions at

RHIC at τ0 ≈ 1fm/c

In general, exact analytic resolution of 3 dimensional relativistic hydro-

dynamics is a difficult task due to the highly non-linear nature of these equa-

tions. The complications are sometimes simplified by assuming idealized

boundary conditions and simplified equations of state (e.g. infinite bom-

barding energy and a massless relativistic gas in the case of Hwa-Bjorken’s

solution [Cse94]). A more realistic but analytically more complicated so-

lution had been found by Khalatnikov [Kha54], following Landau’s basic

ideas [Lan53], that gave rise to the hydrodynamical approach in high-energy

physics. Both of these solutions are frequently utilized as the basis for

estimations of various observables in ultra-relativistic nucleus-nucleus col-

lisions [Cse94].

Analytic solutions of relativistic hydrodynamics were also reported re-

cently in refs. [Bir00a, Bir00b]. However, these solutions are valid only at the

softest point of the equation of state. For more realistic situations, the (1+3)-

dimensional relativistic hydrodynamical equations are frequently solved using

various numerical methods, for example, recent solutions were obtained with

the help of smoothed-particle hydrodynamics in refs. [Agu01, Agu02].

The exact analytic solutions, reported here, are generalizations of the

results of refs. [Csö02d] to the case of 3-dimensional relativistic expansions

with less and less symmetry. However, we emphasize that these results also

correspond to generalizations of earlier analytic solutions of non-relativistic

hydrodynamics. The first solutions of this kind have been found by Zimányi,

Bondorf and Garpman (ZBG) in 1978 [Bon78]. The key aspect of the ZBG so-

lution is its self-similarity, this property is kept in all the subsequent general-

izations including cylindrical or ellipsoidal symmetries and relativistic flows.

The ZBG solution has been generalized to the case of spheroidally symmetric

expansions in ref. [Jde78], to spherically symmetric Gaussian expansions in

ref. [Csi98]. From the point of view of the relativistic generalizations, an im-
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portant stepping stone was made in ref. [Csö98] when a scaling function has

been introduced for the spherically symmetric non-relativistic solutions of hy-

drodynamics. This was the first case when a whole new family of solutions has

been found, that assigned an independent solution for every (differentiable

and integrable) scaling function that satisfied the requirement of positivity

T (s) > 0 and normalized as T (0) = 1. The ZBG and the spherical Gaussian

solutions appeared as special choices for the functional form of the scaling

function T (s). The Gaussian family of spherical solutions has been gener-

alized to Gaussian ellipsoidal expansions in refs. [Akk01, Csö01c]. Recently,

the whole family of self-similar ellipsoidally symmetric non-relativisitic so-

lutions of hydrodynamics has been found in ref. [Csö01b]. In the present

paper, we report on the generalization of this family of solutions to the case

of relativistic expansions with ellipsoidal symmetry and introduce new fami-

lies of relativistic solutions with even less than ellipsoidal symmetry. All the

solutions reported here have non-trivial non-relativistic limiting behaviour.

3.2.2 The equations of relativistic hydrodynamics

Let us adopt the following notational conventions: the coordinates are xµ =

(t, r) = (t, rx, ry, rz), xµ = (t,−rx,−ry,−rz) and the metric tensor is gµν =

gµν = diag(1,−1,−1,−1). The relativistic continuity and energy-momentum-

conservation equations are

∂µ(nuµ) = 0 , (3.42)

∂νT
µν = 0 , (3.43)

where n ≡ n(x) is the conserved number density, uµ ≡ uµ(x) = γ(1,v) is the

four-velocity, with uµuµ = 1, and T µν is the energy-momentum tensor. We

assume perfect fluid,

T µν = (ε + p)uµuν − pgµν, (3.44)

where ε stands for the relativistic energy density and p is the pressure.
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From general thermodynamical considerations and the perfectness of the

fluid one can show that the expansion is adiabatic,

∂µ(σuµ) = 0 , (3.45)

where σ stands for the entrophy density.

For the equations of state, we assume a gas that may contain massive

conserved quanta,

ε = mn + κp , (3.46)

p = nT. (3.47)

These equations have two free parameters, m and κ. Non-relativistic hy-

drodynamics of ideal gases corresponds to the limiting case of v2 � 1 and

κ = 3
2
. Our solutions, presented below, exist for all values of m ≥ 0 and

κ > 0 .

Using the continuity equation (3.42) and the equations of state (3.46,3.47),

the energy-momentum-conservation equations, (3.43) can be transformed to

the Euler and temperature equations,

uνu
µ∂µp + (ε + p)uµ∂µuν − ∂νp = 0 , (3.48)

uµ∂µT +
1

κ
T∂µu

µ = 0 . (3.49)

Expressing the energy density and the pressure in the 3 independent com-

ponents of the relativistic Euler equation in terms of n and T with the help

of the equations of state, (3.46,3.47), one obtains a closed system of 5 equa-

tions (the continuity, the Euler and the temperature equations) in terms of

5 variables, n, T and v = (vx, vy, vz).

3.2.3 Ellipsoidally symmetric solutions

We discuss self-similar solutions in which the isotherms at each instant are

ellipsoidal surfaces, where the number density is also constant. We do not

discuss here how the major axes of these ellipsoids may be rotated in the
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frame of observation. We describe the solution in the natural System of

Ellipsoidal Expansion (SEE) [Akk01, Csö01c], where the coordinate axes

point to the pricipal directions of the expansion, similarly to the previous

section on non-relativistic hydrodynamics. Let us now define the following

scaling variable

s =
r2
x

X2
+

r2
y

Y 2
+

r2
z

Z2
, (3.50)

where the scale parameters X = X(t), Y = Y (t) and Z = Z(t) are assumed

to depend only on the time variable t. The condition s = const., at each

instant t, defines the isotherms mentioned above. As these surfaces are ellip-

soids, the solutions belonging to this class will be characterized by ellipsoidal

symmetry. We assume a self-similar expansion of Hubble type, with possibly

different Hubble constants in all the pricipal directions of the expansion:

vx(t, r) =
Ẋ

X
rx, (3.51)

vy(t, r) =
Ẏ

Y
ry, (3.52)

vz(t, r) =
Ż

Z
rz. (3.53)

where Ȧ = dA(t)/dt stands for the derivative of the scale parameter A =

{X, Y, Z} with respect to time t.

As a straightforward generalization of the results derived in refs [Csö02d],

we find the following new family of ellipsoidally symmetric, exact analytic

solutions of relativistic hydrodynamics:

s =
r2
x

Ẋ2
0 t2

+
r2
y

Ẏ 2
0 t2

+
r2
z

Ż2
0 t

2
, (3.54)

v =
r

t
or uµ =

xµ

τ
, (3.55)

n(t, r) = n0

(τ0

τ

)3

V(s), (3.56)

p(t, r) = p0

(τ0

τ

)3+3/κ

, (3.57)

T (t, r) = T0

(τ0

τ

)3/κ 1

V(s)
, (3.58)
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where τ =
√

t2 − r2 , p0 = n0T0 , Ẋ0, Ẏ0, Ż0 are constants and V(s) is an

arbitrary positive, differentiable function of the scaling variable s normalized

such that V(0) = 1. The temperature distribution also depends on the

scaling variable s through a scaling function T (s) , which happens to be

T (s) = 1/V(s) . Note that the pressure p depends only on τ .

An interesting property of this solution is that the flow and the pressure

fields are spherically symmetric, however, the other thermodynamical quan-

tities such as the temperature or density distributions are characterized by

ellipsoidal symmetry.

The lack of acceleration is reflected by the equations

X = Ẋ0t , (3.59)

Y = Ẏ0t , (3.60)

Z = Ż0t . (3.61)

In this family of new solutions, the flow is three-dimensional, accelerationless

Hubble-type, uµ = xµ/τ , which gives

uµ∂µuν = 0. (3.62)

This property, together with the s-independence of pressure fields, guaran-

tees that the Euler equation be satisfied regardless of the mass m and the

value of κ. We have found new, self-similar, scaling solutions to the conti-

nuity and the temperature equations with ellipsoidal symmetry. Thus a new

hydrodynamical solution is assigned to each scaling function V(s) = 1/T (s),

similarly to the cases of the ellipsoidally symmetric, non-relativistic solutions

of ref. [Csö01b].

3.2.4 Phase transitions and freeze-out

The simplest case of the previously discussed new family of exact solutions

of relativistic hydrodynamics is given by the choice of V(s) = 1. In this case,

the temperature is constant on a hypersurface characterized by a constant

proper-time, and all the other thermodynamical parameters are constants on
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these surfaces as well. Thus these parameters depend on τ only, similarly to

the Hwa-Bjorken solution [Bjo83].

It is possible to generalize the equations of state, (3.46,3.47)to charac-

terize a new phase of matter and then describe the rehadronization of a

“Quark Matter” (QM) state to a Hadron gas (H) in a model similar to that

of Gyulassy and Matsui [Gyu84]. For simplicity, from now on we refer to

the the equations of state (3.46,3.47), describing massive, conserved quanta,

as that of a hadron gas and index the variables with subscript H . To phe-

nomenologically describe a new phase, which includes constituent quarks and

anti-quarks (Q), characterized by their mass and by a vacuum pressure, we

generalize the equations of state to

εQ = mQnQ + λεnQT + B, (3.63)

pQ = λpnQT − B, (3.64)

where λε and λp are constants. Let us introduce the notation κQ = λε/λp.

With this simple ansatz, the form of the relativistic Euler and temperature

equations does not change and we obtain the same form of the solutions for

n, T and v as before, however, with modified boundary conditions corre-

sponding to modified constants of integration. We may refer to this new

phase as a kind of quark matter, providing simple model equations of state

for massive quarks, and a bag constant corresponding to color deconfinement.

The gluons are assumed to be integrated out, providing mass for the quarks.

Such a picture is qualitatively supported by phenomenological fits to the lat-

tice QCD equation of state with quarks that pick up the constitutent mass

around Tc and gluons that carry big effective mass in the same temperature

domain [1].

Using the above ansatz for the equations of state, we obtain the following

solution for the pressure:

pQ = (p0,Q + B)
(τ0

τ

)3+3/κQ

− B. (3.65)

If we chose B > 0 and λp > 1, then at low temperatures the state consist-

ing of non-relativistic massive ideal gas will be stable, and at some critical
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temperature Tc the pressure of the two phases is balanced. However, at high

temperatures, the pressure of the new phase will be larger than that of the

hadronic matter, as λp > 1, hence at high temperatures this phase will be

the stable one.

The critical temperature, Tc is defined by

nHTc = λpnQTc − B. (3.66)

For the hydrodynamical description, the specification of nH and nQ as a

function of e.g. a temperature and chemical potential is not necessary, any

thermodinamically consistent form can be included into the hydro solutions

that we focus on. Hence the above equation may indicate, if nH and nQ are

expressed as a function of the temperature and the (baryo)chemical potential,

that the critical temperature may become density dependent.

One can show that the expansion is adiabatic if the matter consists of

only one of the phases. We may assume, that the expansion is adiabatic also

during the period of phase coexistence, and describe the phase transition with

the help of a Maxwell construction. This case is similar to the construction

discussed by Gyulassy and Matsui in case of a massless ideal gas [Gyu84].

Let us denote the entrophy density of the two phases by sQ and sH , and the

volume fraction of the two phases by fQ and fH = 1− fQ, respectively. The

proper-time dependence of the entrophy density is then given by

s(τ) = fQ(τ)sQ,c + (1 − fQ(τ))sH,c. (3.67)

At the beginning of the phase transition, at τ = τQ,c the whole system

consists of “Quark Matter”, that is fQ(τQ,c) = 1. By the time the phase

transition ends, one obtains fQ(τH,c) = 0. As the well known steps of the

Maxwell construction can be copied from the case without conserved charges,

for further details we simply refer to section 6.2.3 of ref. [Cse94].

Starting the hydrodynamical expansion from a quark matter initial state,

the form of our hydrodynamical solution becomes unmodified even during

the phase transition, and the coasting type of hydrodynamical evolution can
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be continued at a fixed Tc, from τQ,c to τH,c untill all matter is transformed to

hadronic matter. Then one can continue the same kind of coasting solution

untill the hadronic matter freezes out.

This expansion takes usually a long time, which is difficult to justify by

experimental evidences. However, the same kind of hydrodynamical solution

can be matched with a non-equilibrium type of phase transition, the sudden

rehadronization and a simultaneous freeze-out of hadrons from a supercooled

Quark Matter, as described in greater details in refs. [Csö94c, Cse95]. Then in

the same model one may reach a deeply supercooled Quark Matter state, and

the transition to the hadron gas may proceed via a mechanical instability,

associated with a negative pressure state, governed by the conservation of

matter, energy and momentum and the impossibility of an entrophy decrease

in a deflagration through a hypersurface with a time-like normal vector at

τ = τTD,

[T µνdfnν] = 0, (3.68)

[nuνdfnν] = 0, (3.69)

[suνdfnν] ≥ 0, (3.70)

where dfnν ≡ dσν is the normal-vector of the τ = τTD hypersurface. These

equations and inequality can be solved very similarly to ref. [Csö94c], that

discussed the case of a transition from a massless ideal quark-gluon plasma

(QGP) to a massless hadron gas. The lack of acceleration, and the invari-

ance of the equations of state for rescaling the temperature and for adding a

vacuum energy term are the essential reasons why earlier considerations that

discussed phase transitions for massless particles can be straigthforwardly

implemented to our new family of exact hydrodynamical solutions that de-

scribe the phase transitions and expansions of massive quanta.

Recently, a new method has been proposed to evaluate particle emission

from hydrodynamically evolving, locally thermalized sources, that general-

izes the Cooper-Frye freeze-out conditions for systems with volume emis-

sion [Sin02, Gra95]. This method, based on the method of escaping proba-
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bilities, can also be applied to evaluate the particle spectra and correlation

functions from the new hydrodynamical solutions, as the non-relativistic form

of the solutions corresponds to the limiting behaviour that was discussed in

ref. [Sin02].

3.2.5 Factorized solutions

From the structure of the new family of solutions presented above, it is

obvious how to generate further new solutions of relativistic hydrodynamics.

Observe that a modified version of the scaling variable of eq. (3.54) can

be defined, and another family of the same kind of ellipsoidal solutions can

be generated by introducing

s′ =
r2
x

Ẋ2
0τ

2
+

r2
y

Ẏ 2
0 τ 2

+
r2
z

Ż2
0τ

2
, (3.71)

X ′ = Ẋ0τ, (3.72)

Y ′ = Ẏ0τ, (3.73)

Z ′ = Ż0τ, (3.74)

where the dots should be understood as derivatives with respect to τ . Mathe-

matically, the modified scaling variable solves the relativistic hydro equations,

because it also satisfies the requirement

uµ∂µs = uµ∂µs′ = 0 , (3.75)

if the flow is scaling. This condition can be considered also as the criterium

of a “good” scaling variable, and satisfied by the following independent sets

of variables:

sx =
r2
x

t2
, (3.76)

sy =
r2
y

t2
, (3.77)

sz =
r2
z

t2
, (3.78)
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or alternatively,

s′x =
r2
x

τ 2
, (3.79)

s′y =
r2
y

τ 2
, (3.80)

s′z =
r2
z

τ 2
. (3.81)

All of the 6 scale variables defined above satisfy eq. (3.75) if the flow profile

is of a 3-dimensional scaling type, uµ = xµ/τ .

As the relationship V(s) = 1/T (s) holds in the class of solutions we

present here, if we assume a factorized form for the scaling function of the

density, we automatically generate a factorized form for the scaling function

of the temperature, hence it becomes easy to generate further new solutions.

Let us define the scaling functions Vx(sx), Vy(sy) and Vz(sz) that are positive,

differentiable and satisfying Vx(0) = Vy(0) = Vz(0) = 1, otherwise being

abritrary and independent from each other. Then, a new type of hydro

solutions reads

v =
r

t
or uµ =

xµ

τ
, (3.82)

n(t, r) = n0

(τ0

τ

)3

Vx(sx)Vy(sy)Vz(sz) , (3.83)

(t, r) = p0

(τ0

τ

)3+3/κ

, (3.84)

T (t, r) = T0

(τ0

τ

)3/κ 1

Vx(sx)

1

Vy(sy)

1

Vz(sz)
. (3.85)

Note that this form of solution is invariant for a change of the scaling variables

and the scales as (sx, sy, sz) → (s′x, s
′
y, s

′
z) and (X, Y, Z) → (X ′, Y ′, Z ′), with

the time derivatives in the definitions of the Hubble flow field, eqs. (3.51-3.53)

understood as derivations with respect to τ as in eqs. (3.71-3.74).

3.2.6 General solutions

The key point in checking that the above factorized forms indeed solve the

equations of relativistic hydrodynamics is that the comoving derivatives of
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the scaling functions, uµ∂
µVi(si), are proportional to uµ∂µsi , hence vanish.

This is, together with uµ∂µuν = 0, the essential property of the scaling

solutions.

We find that the most general form of the scaling variable is

s = F (sx, sy, sz) ≡ G(s′x, s
′
y, s

′
z) , (3.86)

which means that any function of scaling variables (sx, sy, sz) or (s′x, s
′
y, s

′
z)

can be utilized as a new scaling variable. Indeed, we have

uµ∂
µF (sx, sy, sz) =

∑

i=x,y,z

∂F

∂si
uµ∂

µsi = 0 . (3.87)

which yields the generalized form of the new family of solutions of relativistic

hydrodynamics:

v =
r

t
or uµ =

xµ

τ
, (3.88)

n(t, r) = n0

(τ0

τ

)3

V(s) , (3.89)

p(t, r) = p0

(τ0

τ

)3+3/κ

, (3.90)

T (t, r) = T0

(τ0

τ

)3/κ 1

V(s)
, (3.91)

with the constraint that V(0) = 1. For example, if we choose s = sx +

sy + sz , we obtain solutions with ellipsoidal symmetry, however, one may

choose s = sx + sy − sz to obtain solutions where the isotherms are one-

sheeted hyperboloids, or s = −sx − sy + sz where the temperature and the

density are constants on two-sheeted hyperboloids. In fact the possibilities

are infinitely rich.

3.2.7 Non-relativistic limiting behaviour

As the considered equation of state contains mass as a free parameter, it is

possible to study the non-relativistic limiting case of these new relativistic

solutions. The local thermal motion is non-relativistic if m � T , the flow

is non-relativistic in the region of |r| � t, which implies τ ≈ t and relates
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the relativistic solutions with ellipsoidal symmetry to the asymptotic, large

time behaviour of the ellipsoidally symmetric, non-relativistic solutions of

refs. [Akk01, Csö01c, Csö01b]. Let us recapitulate here the general form of

the non-relativistic solutions of fireball hydrodynamics [Csö01b].

The definition of the scaling variable s coincides with that of eq. (3.50).

The solution for the flow field coincides with that of eqs. (3.51-3.53). The

scaling function for the temperature, T (s) is utilized to express the solution

for the NR density and temperature fields as

n = n0
X0Y0Z0

XY Z

1

T (s)
exp

[

−m(Ẋ2
as + Ẏ 2

as + Ż2
as)

T0

∫ s

0

du
1

T (u)

]

, (3.92)

T = T0

(

X0Y0Z0

XY Z

)1/κ

T (s) . (3.93)

The large time behaviour of these non-relativistic, self-similar, ellipsoidal so-

lutions of hydrodynamics is characterized by constant values of (Ẋas, Ẏas, Żas),

which implies that for asymptotically long times a scaling flow field develops

also in these non-relativistic solutions, v ≈ r/t. In the exponential factor

that appears in this non-relativisitic solution for n we may expand the in-

verse scaling function 1/T (u) as a polinomial in u. Keeping the leading

order terms, and performing the integration, we find that the exponential

factor will be approximately a Gaussian factor. However, the widths of the

Gaussians in all the directions will be proportional to the time. As we have

assumed that |r| � t, this exponential factor yields a factor of 1 +O(r2/t2),

hence we find the general asymptotic behaviour of the non-relativistic solu-

tions to be the same form as the general solution of the relativistic solution

of the hydrodynamical equations:

nas ≈ nas
t30
t3

1

T (s)
, (3.94)

Tas ≈ Tas

(

t0
t

)3/κ

T (s) . (3.95)

Due to the rescaling, the constants of normalization nas and Tas are different

from n0 and T0.
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3.2.8 Summary on exact results in 3d relativistic hy-
drodynamics

Recently found family of relativistic hydrodynamics solutions have been gen-

eralized to the case of expanding fireballs with ellipsoidal symmetry. The

solutions contain an arbitrary scaling function V(s), restricted only by non-

negativity and by the requirement of V(0) = 1, a very rich set of possible

scaling variabes s, and 5 important parameters, the mass m, the parameter

κ of the equation of state, the scale parameters Ẋ0, Ẏ0 and Ż0. Furthermore,

we generalized the equations of state to describe a phase transition from a

deconfined state consisting of massive (constituent) quarks and antiquarks

to a state consisting of massive hadrons. Based on the scaling properties

of the equations of state, as well as on the coasting nature of the expan-

sion, we have shown that both the usual adiabatic Maxwell construction as

well as the fast, non-equilibrium time-like deflagrations can be constructed

and described within the considered class of exact, parametric, relativistic,

hydrodynamical solutions.
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Chapter 4

The Buda-Lund
hydrodynamical model

4.1 Introduction

In this section analytic and numeric approximations are studied in detail for

a hydrodynamic parameterization of single-particle spectra and two-particle

correlation functions in high energy hadron-proton and heavy ion reactions.

Two very different sets of model parameters are shown to result in similarly

shaped correlation functions and single particle spectra in a rather large re-

gion of the momentum space. However, the absolute normalization of the

single-particle spectra is found to be highly sensitive to the choice of the

model parameters. For data fitting the analytic formulas are re-phrased in

terms of parameters of direct physical meaning, like mean transverse flow.

The difference between the analytic and numeric approximations are deter-

mined as an analytic function of source parameters.

In 1994-95, a series of papers were written by the Buda-Lund collabo-

ration on the study of particle correlations and single-particle spectra for

non-relativistic, three-dimensionally expanding as well as for relativistic,

one-dimensionally expanding or three-dimensionally expanding finite systems

[Csö94b, Csö95e, Csö95a]. In these papers, it has been emphasized for the

first time, that observation of the “true” sizes of particle sources is possible

only if the single-particle spectra and the two-particle correlation functions
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are simultaneously analyzed. The reason was also given: the HBT radii (ef-

fective sizes measured by correlation techniques) were found to be dominated

by the shorter of the geometrical and the thermally induced lenght-scales,

while the width of the rapidity distribution or the slope of the transverse mass

distribution is found to be dominated by the longer of the geometrical and

the thermal scales. The appearance of the thermal lenght-scales is related to

flow and temperature gradients, i.e. to the change of the mean momentum of

the emitted particles with changing the coordinates of the particle emission.

Within a thermal radius, these changes are not bigger than the width of the

local momentum distribution.

This important effect has been re-discovered by various other groups, as

a consequence of the emerging simultaneous analysis of particle correlations

and spectra, proposed first in 1994 by the Buda-Lund collaboration. The

question arizes: Is it possible to uniquely determine the geometrical source

radii (“true” source sizes) from a simultaneous analysis of particle corre-

lations and spectra? This question is basically the same as the analogous

question in the momentum space: Is it possible to uniquely determine the

freeze-out temperature and the transverse flow from a simultaneous analysis

of particle spectra and correlations?

We prove by an example that if the absolute normalization of particle

spectra is not given, then it may be impossible to select from among different

minima based only on the shape of the single-particle momentum-distribution

and on the two-particle correlation functions.

We perform the analysis with the help of an analytically as well as nu-

merically well studied model, the hydrodynamical parameterization of the

Buda-Lund collaboration [Csö95a]. The domain of applicability of the an-

alytical approximations is determined numerically in ref. [Csö95a] for this

model. In ref. [Aga97], this model is shown to describe the single-particle

spectra and the two-particle correlations at (π/K) + p reactions at CERN

SPS simultaneously.

The same model was tested in refs. [Csö95b, Csö95a] against the prelim-
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inary NA44 data on S + Pb reactions at CERN SPS, however, it was shown

there that it is difficult to find unique, reliable values of the fit parameters.

The sources of the difficulty are the lack of absolute normalization of spec-

tra and the experimental difficulty of proper estimate of systematic errors.

We know from earlier fitting of this model to spectra without absolute nor-

malization [Csö95a], that the final results are rather sensitive to errors and

normalizations. In fact, we compare here the two physically different min-

ima, found by fitting the Buda-Lund hydro model of ref. [Csö95a] to NA44

preliminary data on S + Pb central reactions at 200 AGeV. In ref. [Ste98]

results were reported on fitting simultaneously the recently obtained abso-

lutely normalized but still preliminary particle spectra and final correlations

data for the same reaction as analysed in ref. [Csö95a].

In the next section the hydrodynamic model is presented, along with a

new reparameterization of the basic formulas. An approximate analytic so-

lution to this model is formulated in a new manner. For a comparision,

a numerical approximation method is also schemed up. In the subsequent

section, radius parameters and single particle spectra are calculated using

the analytic and numeric methods. The transverse mass and the rapidity

dependence of the results are shown for a substantial range of momentum

space. The results are also used to make estimations to the systematic errors

introduced by the particular approximations. Finally, we summarize and em-

phasize the importance of the experimental determination of the absolutely

normalized single particle spectra.

4.2 The model and its re-parameterization

The hydrodynamic model of ref. [Csö95a] is briefly recapitulated below, in a

general form. The analytic results are then reformulated with new notation.

A numerical evaluation scheme is also summarized afterwards.
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4.2.1 The model

The Buda-Lund model [Csö95a] model makes a difference between the central

(core) and the outskirts (halo) regions of high energy reactions. The pions

that are emitted from the core consist of two types: a) They could be emitted

directly from the hadronization of wounded, string-like nucleons, rescattering

with a typical 1 fm/c scattering time as they flow outwards. b) Alternatively,

they could be produced from the decays of short-lived resonances such as ρ,

N∗, ∆ or K∗, whose decay time is also of the order of 1-2 fm/c. This

core region of the particle source is resolvable by Bose-Einstein correlation

measurements. In contrast, the halo region consists of decay products of long-

lived resonances such as the ω, η, η′ and K0
S, whose decay time is greater than

20 fm/c. This halo is not resolvable by Bose-Einstein measurements with

the present techniques, however, it is affecting the Bose-Einstein correlation

functions by suppressing their strength.

In general, the following emission function Sc(x, p) applies to a hydrody-

namically evolving core of particle source:

Sc(x, p) d4x =
g

(2π)3

d4Σµ(x)pµ

exp





uµ(x)pµ

T (x)
− µ(x)

T (x)



+ s

, (4.1)

where the subscript c refers to the core, the factor d4Σµ(x)pµ describes the

flux of particles through a finite, narrow layer of freeze-out hypersurfaces.

The statistics is encoded by s, Bose-Einstein statistics corresponds to s =

−1, Boltzmann approximation to s = 0 while the Fermi-Dirac statistics

corresponds to s = +1. The four-momentum reads as p = pµ = (Ep,p).

The four-coordinate vector reads as x = xµ = (t, rx, ry, rz). For cylindrically

symmetric, three-dimensionally expanding, finite systems it is assumed that

any of these layers can be labelled by a unique value of τ =
√

t2 − r2
z , and

the random variable τ is characterized by a probability distribution, such

that

d4Σµ(x)pµ = mt cosh[η − y] H(τ)dτ τ0dη drx dry. (4.2)

71



Here mt =
√

m2 + p2
x + p2

y stands for the transverse mass, the rapidity y and

the space-time rapidity η are defined as y = 0.5 log [(E + pz)/(E − pz)] and

η = 0.5 log [(t + rz)/(t − rz)] and the duration of particle emission is charac-

terized by H(τ) ∝ exp(−(τ − τ0)
2/(2∆τ 2)). Here τ0 is the mean emission

time, ∆τ is the duration of the emission in (proper) time. The four-velocity

and the local temperature and density profile of the expanding matter is

given by

uµ(x) =



cosh[η] cosh[ηt], sinh[ηt]
rx

rt

, sinh[ηt]
ry

rt

, sinh[η] cosh[ηt]



 ,

(4.3)

sinh[ηt] = b
rt

τ0

, rt =
√

r2
x + r2

y, (4.4)

assuming a linear transverse flow profile. The inverse temperature profile is

characterized by the central value and its variance in transverse and temporal

direction, and we assume a Gaussian shape of the local density distribution:

1

T (x)
=

1

T0



1 + a2 r2
t

2τ 2
0







1 + d2 (τ − τ0)
2

2τ 2
0



 , (4.5)

µ(x)

T (x)
=

µ0

T0

−
r2
x + r2

y

2R2
G

− (η − y0)
2

2∆η2
, (4.6)

where µ(x) is the chemical potential and T (x) is the local temperature char-

acterizing the particle emission.

4.2.2 Core/halo correction

The effective intercept parameter λ∗(y, mt) of the Bose-Einstein correlation

function measures the fraction of pions from the core versus the total number

of pions at a given value of p, when interpreted in the core/halo picture

[Bol93, Csö94a, Csö97]. With this factor the total invariant spectrum in y

rapidity and transverse mass mt follows as

d2n

dy dm2
t

=
1

√

λ∗

d2nc

dy dm2
t

=
1

π
√

λ∗

∫

Sc(x, p) d4x. (4.7)
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The momentum dependence of λ∗ parameter is to be measured by the experi-

mental collaborations. The experimental determination of λ∗(p) is very important

not only because it gives a measure of the contribution of the core to the total

number of particles at a given momentum, but also as it provides a measure

of the mean transverse flow and a new signal of partial UA(1) symmetry

restoration [Van98]. Therefore it is strongly recommended that experiments

report this λ∗(p) parameter of the Bose-Einstein correlation function and not

just present partial fit results, like the momentum dependence of the radius

parameters.

4.2.3 Re-parameterization

The original version of the core model contains 3 dimensionless parameters,

a, b and d, that control the transverse decrease of the temperature field, the

strength of the (linear) transverse flow profile and the temporal changes of

the temperature field, respectively, keeping only the mean and the variances

of the inverse temperature distributions. These are very useful in obtaining

simple formulas, however, they make the interpretation of the fit results less

transparent. Hence we re-express them with new parameters with more direct

physical meaning.

The surface temperature is introduced as Tr = T (rx = ry = RG, τ = τ0)

and the “post-freeze-out” temperature denotes the local temperature after

most of the freeze-out process is over, Tt = T (rx = ry = 0; τ = τ0 +
√

2∆τ).

Here RG stands for the transverse geometrical radius of the source, τ0 denotes

the mean freeze-out time, ∆τ is the duration of the particle emission and we

denote the temperature field by T (x). The central temperature at mean

freeze-out time is denoted by T0 = T (rx = ry = 0; τ = τ0).

Then the relative transverse and temporal temperature decrease can be

introduced as

〈∆T/T 〉r =
T0 − Tr

Tr

, (4.8)
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〈∆T/T 〉t =
T0 − Tt

Tt

, (4.9)

and it is worthwhile to introduce the mean transverse flow as the transverse

flow at the geometrical radius as

〈ut〉 = b
RG

τ0
. (4.10)

The dimensionless model parameters can thus be expressed with these new,

physically more straightforward parameters as

a2 =
τ 2
0

R2
G

〈∆T/T 〉r, (4.11)

b =
τ0

RG
〈ut〉, (4.12)

d2 =
τ 2
0

∆τ 2
〈∆T/T 〉t. (4.13)

Note, that eqs. (4.8) and (4.10) were introduced earlier in ref. [Aga97] also

to simplify the interpretation of data fitting. We present the complete re-

parameterization herewith, including egs. (4.9) and the re-parameterization

of both the radius parameters and single-particle spectra.

Note:

1

τ0

= Hl, (4.14)

〈ut〉
RG

= Ht. (4.15)

This way the longitudinal and transverse Hubble constants can be intro-

duced, but they are not used in this chapter.

4.2.4 Analytic approximations

In Ref. [Csö95a], the Boltzmann approximation to the above emission func-

tion was evaluated in an analytical manner, applying approximations around

the saddle point of the emission function. The resulting formulas express the

Invariant Momentum Distribution (IMD) and the Bose-Einstein correlation
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function (BECF). Now we re-express the formulas given in ref. [Csö95a] with

the help of our new parameters.

The particle spectra can be expressed in the following simple form:

N(p) =
g

(2π)3
E V C exp



−p · u(x) − µ(x)

T (x)



 , (4.16)

E = mt cosh(η), (4.17)

V = (2π)(3/2) R‖ R⊥
2 ∆τ

∆τ
, (4.18)

C =
1

√

λ∗

exp





∆η
2

2



 . (4.19)

Here the quantity x stands for the average value of the space-time four-vector

parameterized by (τ , η, rx, ry), denoting longitudinal proper-time, space-time

rapidity and transverse directions. These values are given as

τ = τ0, (4.20)

η =
y0 − y

1 + ∆η2 mt

T0

, (4.21)

rx = 〈ut〉RG
pt

T0 + E (〈ut〉 + 〈 ∆T/T 〉r)
, (4.22)

ry = 0. (4.23)

E denotes the energy of a particle from the center of particle emission, mea-

sured in the Longitudinal Center of Mass System (LCMS) frame. The effec-

tive volume is denoted by V , see below for details, and the correction factor

C takes into account the effects of long-lived resonances and the deviation

of the saddle-point result from the more possible naive expectation, which

would be the same expression with C = 1. The notation a denotes an invari-

ant quantity a, that depends on y − y0, mt, T and the other parameters of

the model in a boost-invariant manner. In ref. [Csö95a] this was denoted by

a∗, for example, ∆η in the present paper was denoted by ∆η∗. The average
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invariant volume of particle emission in eqs. (4.16,4.18) is given by V that

is in our case the product of the average (momentum-dependent) transverse

area (2πR⊥
2
), the average (momentum-dependent) longitudinal source size

(2π)1/2R‖. The averaging of the size of the effective volume over the duration

of particle emission is expressed by the factor
∆τ

∆τ
. These quantities read as

∆τ
2

=
∆τ 2

1 + 〈∆T/T 〉r
E

T0

, (4.24)

∆η
2

=
∆η2

1 + ∆η2 E

T0

, (4.25)

R‖
2

= τ 2 ∆η
2
, (4.26)

R⊥
2

=
R2

G

1 +
(

〈ut〉2 + 〈∆T/T 〉r
) E

T0

. (4.27)

(4.28)

This completes the specification of the shape of particle spectrum. These

results correspond to the equations given in ref. [Csö95a] although they are

re-expressed with new combination of the variables. Please note that the

Boltzmann-factor can be expressed approximately as

exp



−p · u(x) − µ(x)

T (x)



 ' exp





µ0

T0

− (y − y0)
2

2(∆η2 + T0/mt)



 exp



− mt

T0



×

× exp





〈ut〉2(m2
t − m2)

2T0

[

T0 + mt(〈ut〉2 + 〈∆T/T 〉r)
]



 .

(4.29)

The HBT radius parameters were evaluated in ref. [Csö95a] in the following

way: the space-time rapidity ηs was defined as the solution of the equation

∂S(ηs)

∂η
= 0. (4.30)
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The Longitudinal Saddle Point System (LSPS) was introduced as the frame

where ηs = 0. At the so-called saddle-point one has

∂S

∂τ
=

∂S

∂η
=

∂S

∂rx
=

∂S

∂ry
= 0. (4.31)

This resulted in a set of transcendental equations for the position of the

saddle-point. These equations for the positions were solved approximatelly

with the help of an expansion of the transcendental equation in terms of

small parameters, like the deviation of ηs from the mean rapidity of the pair.

The calculation resulted in the following value for ηs:

ηs = y +
y0 − y

1 + ∆η2(
mt

T0
− 1)

. (4.32)

Hence the relative rapidity of the LSPS frame as compared to the LCMS

frame is

ηL
s =

y0 − y

1 + ∆η2(
mt

T0
− 1)

. (4.33)

Note that LCMS is the frame where the rapidity belonging to the mean

momentum of the pair vanishes, y = 0 [Csö91]. In ref. [Csö95a] this quantity

was denoted by the slightly more complicated notation ηLCMS
s = ηL

s , and

the maximum of the Boltzmann factor, which in our present notation reads

as η = ηs and stands for a modified saddle-point, used for the calculation

of the particle spectra in ref. [Csö95a]. Note that ηL
s may deviate from η

substantially at low values of mt, especially if T > m.

This frame, defined by the maximum of the Boltzmann factor, given by

η in the LCMS, plays a key role in the calculations. Hence this frame,

introduced in ref. [Csö95a] without a name, deserves a name. We suggest

Longitudinal Boltzmann Center System (LBCS). In general, this LBCS frame

is defined by the solution of the

∂fB(η)

∂η
= 0 (4.34)

equation, where fB = exp (−[pu(x) − µ(x)]/T (x)) stands for the Boltzmann

factor only, but does not include the Cooper-Frye flux term.
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In ref. [Csö95a] the spectrum was evaluated in the LBCS frame, while

the correlation functions in the LSPS frame. Let us recapitulate the results

for the two-particle correlation functions: The mean momentum is denoted

by K = (p1 + p2)/2, its components are (K0, KL, Kt, 0) in the (t, rz, rx, ry)

reference frame. The transverse velocity βt reads as

βt =
Kt

K0
=

Kt

Mt

1

cosh(y)
=

Vt

cosh(y)
. (4.35)

The effective source parameters are obtained as

1

∆η2
∗

=
1

∆η
2
(η → ηL

s )
− 1

cosh2(ηL
s )

, (4.36)

R2
‖ = τ 2

s ∆η2
∗ = τ 2

s ∆η
2
(η → ηL

s ), (4.37)

R2
⊥ = R2

∗ = R⊥
2
(η → ηL

s ), (4.38)

R2
τ = ∆τ 2

∗ = ∆τ
2
(η → ηL

s ). (4.39)

The modified position of the maximal emissivity is given in the LCMS frame

by (τs, ηs, rx,s, 0), where

rx,s = rx(η → ηL
s ), (4.40)

τs = τ = τ0. (4.41)

This notation means that, for example, ∆η∗ corresponds to the function

∆η when the variable η is replaced by the quantity ηL
s . Note, that ∆η∗

corresponds to the effective space-time rapidity width of the particle emission

function in an LSPS calculation, while ∆η corresponds to the width of the

Boltzmann-factor only in the LBCS frame. Similar relations hold for R and

R∗, ∆τ and ∆τ∗. The Bose-Einstein correlation functions can be written in

the so-called Bertsch-Pratt side-out-long ref. frame as

C(∆k, K) = 1 + λ∗ exp
(

−R2
sideQ

2
side − R2

outQ
2
out − R2

LQ2
L

)

×
× exp

(

−R2
out,LQLQout

)

, (4.42)

(4.43)

R2
side = R2

⊥ = R2
∗, (4.44)

78



R2
out = R2

side + δR2
out, (4.45)

δR2
out =

V 2
t

cosh2(y)

[

cosh2(ηs)R
2
τ + sinh2(ηs)R

2
‖

]

, (4.46)

R2
L =

1

cosh2(y)

[

cosh2(ηL
s )R2

‖ + sinh2(ηL
s )R2

τ

]

, (4.47)

R2
out,L = − Vt

cosh2(y)

[

cosh(ηs) sinh(ηL
s )R2

τ + sinh(ηs) cosh(ηL
s )R2

‖

]

.

(4.48)

Here we have utilized the form of equations given in ref. [Csö95a] and the

transformation of KL to Mt cosh(y) as introduced in ref. [Vol96].

Although the two-particle Bose-Einstein correlation function is manifestly

covariant [Vol96], its Bertsch-Pratt parameterization is frame-dependent. A

possible covariant parameterization [Yan78, Pod83], was applied to the par-

ticle interferometry by the Regensburg group [Cha95b, Wu98]. We find that

the simplest possible covariant generalization is not exactly the YKP pa-

rameterization, but the formulation given by the Buda-Lund collaboration

in ref. [Csö95a], see especially eqs. (44) and (21-26) of ref. [Csö95a]. Here we

repeat only the results after Gaussian approximation to the source function:

C(∆k, K) = 1 + λ∗ exp(−Q2
τR

2
τ − Q2

ηR
2
‖ − Q2

t R
2
∗), (4.49)

Q2
t = Q2

side + Q2
out, (4.50)

Qτ = Q · n(xL
s ) = Q0 cosh(ηL

s ) − Qz sinh(ηL
s ), (4.51)

Qη =
√

Q · Q − (Q · n(xL
s ))2 − Q2

t = Q0 sinh(ηL
s ) − Qz cosh(ηL

s ).

(4.52)

where n(xL
s ) = (cosh(ηL

s ), 0, 0, sinh(ηL
s )) is a normal-vector at xs in LCMS.

Note, that this formulation is equivalent with the YKP formulation, however

the correlation function is given by a simple purely quadratic form in the

present formulation, in contrast to the YKP expression, where the invariant

relative momentum combination Qη is written out explicitely in terms of its

non-invariant components.
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4.2.5 Numeric approximations

Approximate single particle spectra and Bose-Einstein correlation functions

can be calculated by numerical integration of equation (1), as well, expressing

the means and the variances of the hydrodynamically evolving core of par-

ticle emission. The original method of ’means and variances’ was proposed

first by the Regensburg group in ref. [Cha95]. We shall utilize herewith the

core/halo corrected version of these relations as given recently in ref. [Nic97].

The limitation of these approximations is discussed in refs. [Csö95a, Nic97].

For example, possible double-Gaussian structures or non-Gaussian features

are neglected in this approximation. The analytic approximation yields

Gaussian functions in proper time τ and space-time rapidity η, hence includes

a deviation from Gaussian shape in t and z. The numerical approximation

assumes Gaussian forms in t and z that is not so well suited to the kine-

matics of ultra-relativistic reactions as Gaussians in τ and η. The spectra

and the HBT radius parameters are defined in the Gaussian core/halo model

approximation as follows:

C(K,∆k) = 1 + λ∗(K) exp
(

−R2
i,j(K)∆ki∆kj

)

, (4.53)

λ∗(K) = [Nc(K)/N(K)]2, (4.54)

R2
i,j(K) = 〈(xi − βit)(xj − βjt)〉c − 〈(xi − βit)〉c〈(xj − βjt)〉c ,(4.55)

〈f(x,K)〉c =

∫

d4xf(x,K)Sc(x,K), (4.56)

where i, j = side, out or long as before, and Sc(x,K) is the emission function

that characterizes the central core, as given by eq. 4.1. The mean momentum

is defined as K = 0.5(p1 + p2), the relative momentum is given by ∆k =

p1 − p2. The spectra of all the bosons and the spectra of the bosons from

the core described as

N(p) = 〈1〉 =

∫

d4x [Sc(x,p) + Shalo(x,p)] , (4.57)

N(p)c = 〈1〉c =

∫

d4xSc(x,p). (4.58)
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In this picture, the reduction of the intercept parameter is the only effect on

the correlation function that stems from the halo, the variances of the core

correspond to the Gaussian core/halo model radii of the measured correlation

function. Although the above expressions are formally similar to the original

version of Gaussian model-independent radii of ref. [Cha95], they cannot be

obtained with an expansion around Q = 0, as they correspond to a large Q

expansion of the Bose-Einstein correlation function [Mis96, Nic97].

4.3 Calculating observables

Both analytic and numeric approximations were used to calculate and show

the momentum dependence of the observables from the hydrodynamical

model of ref. [Csö95a]. These observables are the effective radius param-

eters (HBT radii), the shape and the slope of the single-particle spectra.

Figures are drawn for two very different sets of source parameters (or model

parameters). To recall, the particle source is characterized by the means and

the variances of the density distribution, the inverse temperature distribu-

tion and a linear flow. This yields 9 free parameters, µ0, T0, τ0, RG, ∆τ , ∆η,

〈∆T/T 〉r, 〈ut〉, 〈∆T/T 〉t, respectively.

The examined momentum space is divided into 40x40 sub-intervals in mt

and y dimensions, respectively, that allowed for fine resolution of the dis-

tributions. As a drawback, with such a resolution the numeric integration

version takes much longer time than the analytic one. In the presented case

generation of data took 10 hours for one run. Scales on the pictures are kept

the same for the same kind of distributions except for the average emisson

rate that differs remarkably for the two sets of model parameters. The actual

parameter set values (with µ0 = 0) used in the particular calculations are

indicated below each drawing and they are denoted by names Source Param-

eters Set 1 and Source Parameter Set 2. Parameter Set 1 was obtained from

a ref. [Ste98] , fitting absolutely normalized spectra in the NA44 acceptance,

while Parameter Set 2 was obtanined in ref. [Csö95a], fitting unnormalized

preliminary particle spectra together with correlation data. Note that one
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can distinguish between different model parameters only if the value of µ0 is

known from other observations than the ones already exploited in the present

analysis.

4.3.1 Analytic results

The two model parameter sets mentioned above were applied to the ana-

lytic expressions formulated in the previous section by eqs. (4.16) to (4.48).

See Figs. 4.1 and 4.2 for details of the momentum space distributions of the

observables. Notice the substantial difference of the particle spectra for Pa-

rameter Set 1 and Parameter Set 2. Also notice the deviations of the radius

parameters at small mt and at large relative rapidities to midrapidity for the

two different source parameter sets. Along with the comparision to the nu-

meric results later this reflects the limitations of this kind of approximation.

4.3.2 Numeric results

The numerically evaluated HBT radius parameters and single particle spectra

are obtained from the eqs. (4.53,4.55,4.57,4.58), utilizing the Boltzmann

approximation to the source function of eq. (4.1). Note that this scheme is

not an exact calculation, but an approximation in a different way than the

analytic approach, therefore it is suitable to estimate the systematic errors

of the model parameters and to cross-check the uniqueness of the minimum

in fitting the model to experimental data. See Figs. 4.3 and 4.4 for details of

HBT radius parameter distributions as well as single particle spectra in this

approximation scheme.

4.3.3 Differencies between the analytic and the nu-
meric results

The differencies between the observables as calculated from the two sorts of

model approximations are presented on Figs. 4.5 and 4.6. From these draw-

ings one can learn the critical ranges where the two approximation schemes

differ from each other beyond a given tolerance level.
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Figs. 4.5 and 4.6 show the rapidity and transverse mass dependence of

the relative deviations between the analytic and the numeric approximations.

For example, let us consider the top left panel of Figs. 4.5. On this panel,

the relative deviation of the numerical and analytic approximations for the

side radius component is evaluated in the following manner: The analytical

result for a (y, mt) bin i is denoted by ai, the numerical result is denoted by

ni. Then the relative deviation between the two approximation schemes is

defined as
δ2ai

a2
i

=
(ai − ni)

2

a2
i

, (4.59)

which is plotted on the top left panel for the side radius parameter and in

subsequent panels for the out, long and cross term, the spectra and the slope

of the spectra on the subsequent panels. This quantity will be understood

and estimated in the next subsection as a function of some small expansion

parameters, that are analytically obtainable for any set of source parame-

ters. In turn, this result can be utilized to improve the fits of the analytic

expressions to measured data.

4.3.4 Estimating systematic errors of approximations

The aim of the present subsection is to analytically understand the systematic

errors on the analytic approximations that we utilize to evaluate the spectra

and the HBT radius parameters.

In a fit with the analytic approximations, the χ2 of the fit is given as

χ2
a =

∑

i

(di − ai)
2

e2
i

, (4.60)

where di denotes the measured data point at a given bin, for example,

Rside(yi, mt,i), and the experimental error on this quantity is given by ei.

A numeric fit to the same data minimizes the following

χ2
n =

∑

i

(di − ni)
2

e2
i

(4.61)
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numeric χ2
n distribution. This may have different minima for the model

parameters from the minima of χ2
a. However, the χ2

n distribution can be

approximately reconstructed from an analytic fit, as follows:

χ2
n ' χ2

a + δχ2
a, (4.62)

δχ2
a =

∑

i

δ2ai

e2
i

=
∑

i

δ2Ai
a2

i

e2
i

, (4.63)

where δ2ai = (ai − ni)
2 is the difference between the analytic and numeric

result, and can be regarded as the systematic error of the analytic approx-

imation, while the relative systematic error of the analytic calculation is

δ2Ai = δ2ai

a2
i

. (Keep in mind that ai can be any of the analytically evaluated

radius parameters or analytic result for the particle spectra). Our purpose is

to obtain approximate analytical expressions for the relative error of the ana-

lytical approximations, δ2Ai. These quantities are shown in Figs. 4.5 and 4.6.

Figs. 4.1 and 4.2 indicate large relative errors in certain regions of the

(y, mt) plane. These regions coincide with the regions where the so called

small expansion parameters [Csö95a] of the model start to reach values close

to 1. The analytic expressions for the observables (HBT radius parameters

and single-particle spectra) were obtained in ref. [Csö95a] under the condition

that the parameters (ηL
s , ∆η∗, rx,s/τ0) are all much less than 1. This was

due to the approximate nature of the solution of the saddle-point equations,

and the expansion of the transcendental equations in terms of these small

parameters. Figs. 4.7 and 4.8 show the (y, mt) dependence of these small

parameters and their squares. We observe the expected similarities to the

distributions of the relative errors δ2Ai, Figs. 4.5 and 4.6. The different small

parameters become large in well separated domains of the momentum space

(typically below 100MeV and above 1 GeV), e.g. ηL
s at small mt and large

|y−y0|, ∆η∗ at small mt and small |y−y0|, rx,s/τ0 at large mt independently

of y. As a consequence, the relative errors of the analytic approximations for

any radius parameter or momentum distribution can be parameterized as a
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linear combination of the squared small parameters:

δ2A = cA
1 (ηL

s )2 + cA
2 ∆η2

∗ + cA
3 (rx,s/τ0)

2. (4.64)

The three constants (cA
1 , cA

2 , cA
3 ) are determined for the observables A = Rside,

Rout, Rlong, R2
out−long, N(p), Teff(y, mt) . Since the small parameters are

expressed as a function of the model parameters or “true” source parameters,

eqs. (4.37-4.39), the desired analytical formula for all the systematic errors

of the evaluation of all these 6 observables is given in the form of eq. (4.64).

Note that the region, where the analytic expressions are most precise,

corresponds to a curved region in the (y, mt) plane, that at low mt starts

off-mid-rapidity and at high mt shifts to mid-rapidity, in case of pions. This

region almost exactly coincides with NA44 acceptance for pions. For heavier

particles all the 3 small parameters decrease substancially. The analytic

calculation is thus more precise for heavier particles than for pions.

For determining the numerical coefficients cA
i , the distributions of the

differencies on Figs. 4.5 and 4.6 the CERN optimizing package MINUIT

was used [Min92]. MINUIT finds the minimum value of a multi-parameter

function and it analyzes the shape of the function around the minimum.

The fitted error distributions in terms of the small parameters are shown on

Figs. 4.9 to 4.12 together with the best estimates of the systematic errors

with the help of eq. 4.64. The coefficients cA
i of the parameterized systematic

error distributions along with their errors are shown in Tables 4.1 and 4.2.

Note that the coefficients cA
i are found to be only weakly dependent on

the source parameter sets for most of the cases, they are all smaller then

the coefficents for Parameter Set 1 multiplied by 2. On Fig. 4.11, the fit

of (δN(p)/N(p))2 reflects the effect that above 0.5 MeV the calculation was

forced to take the amplitudes with low weight due to the fact that the abso-

lute values of N(p) are very small in this range.
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4.4 Results on the precision evaluation of an-

alytic and numeric calculations

The first combined HBT and spectrum analysis, reported by the Buda-Lund

collaboration in 1994-95, is re-visited here for the purpose of a systematic

numerical and analytical evaluation of the model. We identified the regions

in the rapidity - transverse mass plane where the analytic approximations

and the numerical ones deviate from each other. These regions were found

to coincide with the regions where the small expansion parameters of the

analytic approximation start to grow significantly. The deviation between

the analytical and the numerical results is characterized by positive definite

quadratic polinomials built up from the small parameters. We find that the

NA44 acceptance is ideally suited for the precise evaluation of the Buda-Lund

model.

As a by-product we find that the parameters of the Bose-Einstein corre-

lation functions as well as the shape and the slope parameters of the double

differential invariant momentum distribution are similar within 10% for two

physically very different model parameter value sets in the momentum space

domain where the approximations are valid. However, these sets result in a

factor of 7 - 10 difference in the absolute normalization of the single-particle

spectra. Hence, it is strongly recommended to publish the experimentally

measured single-particle spectra with their absolute normalization for future

CERN and RHIC heavy ion experiments, for as many type of particles as

possible, as a two-dimentional function of y, mt. Figs. 4.1 and 4.4 illustrate

that the y and the mt dependence of N(y, mt) can not be factorized.

Of course, our example of two physically different parameter sets resulting

in similar correlations and unnormalized spectra does not imply that such

similarity is achieved for any two different parameter sets. The role of each

parameter can be investigated, for instance, analytically like in ref. [Csö95a].

The typical behaviour that one expects is that for different values of the

model parameters the particle correlations and spectra are different. We
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would like to remind the readers that the existence of certain scaling limiting

cases was pointed out also in ref. [Csö95a], where the dependence of the HBT

radii on some of the model parameters was analytically shown to vanish in

certain domains of the parameter space.

Note that the intercept parameter of the correlation function is included

in the core/halo correction factor, hence it is also strongly recommended

to publish the experimental HBT results including a momentum-dependent

determination of λ∗, too.
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δ2A cA
1 cA

2 cA
3

(δRside/Rside)
2 0.015 ± 0.001 0.003 ± 0.001 0.002 ± 0.001

(δRout/Rout)
2 0.013 ± 0.001 0.001 ± 0.001 0.039 ± 0.001

(δRlong/Rlong)
2 0.027 ± 0.001 0.014 ± 0.001 0.032 ± 0.001

(δR2
outl/R

2
outl)

2 0.130 ± 0.001 0.208 ± 0.001 0.001 ± 0.001
(δN(p)/N(p))2 0.014 ± 0.001 0.044 ± 0.001 0.015 ± 0.001
(δTeff/Teff)

2 0.006 ± 0.001 0.042 ± 0.001 0.001 ± 0.001

Table 4.1: Coefficients cA
i of the parameterized systematic error distributions

for Source Parameter Set 1.

δ2A cA
1 cA

2 cA
3

(δRside/Rside)
2 0.001 ± 0.001 0.007 ± 0.001 0.003 ± 0.001

(δRout/Rout)
2 0.008 ± 0.001 0.002 ± 0.001 0.001 ± 0.001

(δRlong/Rlong)
2 0.018 ± 0.001 0.024 ± 0.001 0.031 ± 0.001

(δR2
outl/R

2
outl)

2 0.154 ± 0.003 0.398 ± 0.002 0.001 ± 0.001
(δN(p)/N(p))2 0.035 ± 0.001 0.052 ± 0.001 0.001 ± 0.001
(δTeff/Teff)

2 0.012 ± 0.001 0.042 ± 0.001 0.001 ± 0.001

Table 4.2: Coefficients cA
i of the parameterized systematic error distributions

for Source Parameter Set 2.
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Figure 4.1: Simultaneous results for particle spectra and HBT radius param-
eters. The analytic approximations were utilized to evaluate the model for
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Chapter 5

Application to CERN SPS
energies

5.1 Introduction

In this chapter it is shown that the final state of Pb+Pb reactions at CERN

SPS can be reconstructed with the Buda-Lund hydro model, by performing

a simultaneous fit to NA49, NA44 and WA98 data on particle correlations

and spectra. This chapter is based on my work of Ref. [Ste99b]

In refs. [Csö95a, Csö95b] it was observed, for the first time, that the

parameters of particle emitting sources can be determined only if a simul-

taneous analysis of the momentum distributions and two-particle correlation

functions is performed. Simultaneous fitting of particle correlations and spec-

tra were reported in refs. [Csö95b, Csö96b, Ste99, Cha98, Aga97, App98].

Here, we determine the reconstructed space-time picture of particle emission

in Pb + Pb collisions at CERN SPS by fitting simultaneously the NA44

and NA49 published data [App99, Bea97] on two-particle correlations and

single-particle spectra at Pb + Pb 158 AGeV central reactions at CERN

SPS. Preliminary data [Ros98] from WA98 experiment are also used to check

the reliability and the consistency of the fit results.
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5.2 Buda-Lund hydrodynamic model

The Buda-Lund hydro parameterization characterizes with means and vari-

ances the local temperature, flow and chemical potential distributions of

a cylindrically symmetric, finite hydrodynamically expanding system. The

four-velocity uµ(x) of the expanding matter is given by a scaling longitudi-

nal Bjorken flow appended with a linear transverse flow, characterized by its

mean value, 〈ut〉. A Gaussian shape of the local density distribution is as-

sumed both in the transverse plane and in space-time rapidity. The changes

of the inverse temperature are characterized with means and variances. The

freeze-out hypersurface is characterized by a mean freeze-out (proper)time

τ0 and a duration parameter ∆τ , the variance of the freeze-out propertime

distribution. The model was reviewed in Chapter 4.

5.3 Fitting NA49, NA44 and WA98 Pb + Pb

data

The kinematic parameters of the Buda-Lund model are fitted simultaneously

to IMD and HBT radii measured by the CERN NA49, NA44 and WA98

experiments in central Pb+Pb collisions at 158 AGeV. Core/halo correction

∝ 1/
√

λ∗ is applied and the corresponding errors are propagated properly.

Due to the these conditions unique minima are found, a good χ2/NDF is

obtained for all reactions, and the strongly coupled, normalization sensitive

〈∆T
T
〉t and ∆τ parameters are determined. On Figs. 5.1 and 5.2, the fits to

measured data are shown together with the published data. Note that the

first 5 points of the NA44 pion spectrum were contaminated [Bea97] and

were not included in the fit.

Fits to preliminary data of WA98 experiment provide source parameter

values and errors similar to those obtained by NA49 and NA44. The nor-

malizations of the NA44 pion spectrum and the WA98 h−spectrum had to

be fixed manually to that of NA49.

The hypothesis that pions, kaons and protons are emitted from the same
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Figure 5.1: Simultaneous fits to NA49 particle spectra and HBT radius pa-
rameters.

hydrodynamical source is in a good agreement with all the fitted data. The

fit parameters are summarized in Table 1, shown with statistical errors, only.

The reconsructed space-time emission function S(x) (which is the source

function S(x, p) integrated over the momentum p) is shown on Figure 3 and

4.

5.4 Summary of fit parameters

We find that the NA49, NA44 and WA98 data on single particle spectra of

h−, identified π, K and p as well as detailed rapidity and mt dependent HBT

radius parameters are consistent with each other. The final state of central

Pb + Pb collisions at CERN SPS corresponds to a cylindrically symmetric,

large (RG = 7.1 ± 0.2 fm) and homogenous (T0 = 139 ± 6 MeV) fireball,
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Figure 5.2: Simultaneous fits to NA44 particle spectra and HBT radius pa-
rameters.

expanding three-dimensionally with 〈ut〉 = 0.55± 0.06. A large mean freeze-

out time, τ0 = 5.9 ± 0.6 is found with a short duration of emission.
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Table 5.1: Source parameters from simultaneous fitting of NA49, NA44 and
preliminary WA98 particle spectra and HBT radius parameters with the
Buda-Lund hydrodynamical model. These characterize the hadronic freeze-
out. The time dependence of these source parameters depends on the EoS.

NA49 NA44 WA98 Averaged
Parameter Value Error Value Error Value Error Value Error
T0 [MeV] 134 ± 3 145 ± 3 139 ± 5 139 ± 6
〈ut〉 0.61 ± 0.05 0.57 ± 0.12 0.50 ± 0.09 0.55 ± 0.06
RG [fm] 7.3 ± 0.3 6.9 ± 1.1 6.9 ± 0.4 7.1 ± 0.2
τ0 [fm/c] 6.1 ± 0.2 6.1 ± 0.9 5.2 ± 0.3 5.9 ± 0.6
∆τ [fm/c] 2.8 ± 0.4 0.01 ± 2.2 2.0 ± 1.9 1.6 ± 1.5
∆η 2.1 ± 0.2 2.4 ± 1.6 1.7 ± 0.1 2.1 ± 0.4
〈∆T

T
〉r 0.07 ± 0.02 0.08 ± 0.08 0.01 ± 0.02 0.06 ± 0.05

〈∆T
T
〉t 0.16 ± 0.05 0.87 ± 0.72 0.74 ± 0.08 0.59 ± 0.38

χ2/NDF 163/98 = 1.66 63/71 = 0.89 115/108 = 1.06 1.20
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Pb + Pb at CERN SPS
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Figure 5.3: The reconstructed source function S(t, z, x = 0, y = 0) in the
(t, z) plane.
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Pb + Pb at CERN SPS
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Figure 5.4: The reconstructed source function S(x, y) at the mean freeze-out
time.
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Chapter 6

Application to RHIC energies

6.1 Introduction

In this chapter, the Buda-Lund hydro model fits are compared to BRAHMS,

PHENIX, PHOBOS and STAR data on identified particle spectra, two-

particle Bose-Einstein or HBT correlations, charged particle pseudorapid-

ity distributions and pseudorapidity as well as pt dependent elliptic flow in
√

sNN = 130 and 200 GeV Au+Au collisions at RHIC. Preliminary results

indicate that 7/8-th of the particle emitting volume is rather cold, with sur-

face temperature of 105 MeV, but the temperature has a distribution and

the most central 1/8-th of the volume is superheated to T (x) > Tc = 172± 3

MeV [Fod02, Fod04].

The Buda-Lund hydro model [Csö95a] is successful in describing the

BRAHMS, PHENIX, PHOBOS and STAR data on identified single parti-

cle spectra and the transverse mass dependent Bose-Einstein or HBT radii

as well as the pseudorapidity distribution of charged particles in Au + Au col-

lisions both at
√

sNN = 130 GeV [Csa04a] and at
√

sNN = 200 GeV [Csa04c].

Recently, Fodor and Katz calculated the phase diagram of lattice QCD at fi-

nite net baryon density [Fod02]. Their results, obtained with light quark

masses four times heavier than the physical value, indicated that in the

0 ≤ µB ≤ 300 MeV region the transition from confined to deconfined matter

is not a first or second order phase-transition, but a cross-over with a nearly
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constant critical temperature, Tc = 172±3 MeV. The result of the Buda-Lund

fits to Au+Au data, both at
√

sNN = 130 and 200 GeV, indicate the existence

of a very hot region. The temperature distribution T (x) of this region is char-

acterized with a central temperature T0, found to be greater than the critical

value calculated from lattice QCD: T0 > Tc [Csa03b]. The Buda-Lund fits

thus indicate quark deconfinement in Au + Au collisions at RHIC. The ob-

servation of a superheated center in Au+Au collisions at RHIC is confirmed

by the analysis of pt and η dependence of the elliptic flow [Csa03b], measured

by the PHENIX [Adl03a] and PHOBOS collaborations [Bac02, Man02]. A

similar analysis of Pb+Pb collisions at CERN SPS energies yields central

temperatures lower than the critical value, T0 < Tc [Ste99, Csö02].

Here we summarize the Buda-Lund fit results as detailed in refs. [Csa04a,

Csa04c, Csa03b, Ste99]. See these papers for definitions and discussion of

the results as well as more detailed references.

6.2 Buda-Lund fit results to central Au+Au

data at
√

sNN = 130 and 200 GeV

Analyzing the fit parameters (Table 1) we find that T0 > Tc by more than

5σ in case of the 0− 5(6)% most central Au+Au data at
√

sNN = 130 GeV.

We interpret this as an indication of quark deconfinement. In case of the

less central (0 − 30%) Au+Au data at
√

sNN = 200 GeV, with an improved

analysis we find T0 > Tc by 2σ, not a significant difference. We interpret this

as a possible hint for quark deconfinement. In both cases, the flow profile

within errors coincides with the three-dimensional Hubble flow, uµ = xµ/τ .

For details, see refs. [Csö02, Csö04]. For similar results, see refs. [Ret03,

Bro01, Bro02].
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6.3 Buda-Lund results for the elliptic flow in

Au+Au data at RHIC

The model is evaluated in all panels with the following parameters: T0 =

210 MeV, Ts = 105 MeV, Xf = 8.6 fm, Yf = 10.5 fm, Zf = 17.5 fm, Ẋf =

0.57, Ẏf = 0.45, Żf = 2.4, τ0 = 7 fm/c, ϑ = 0.09, µ0,π = 70 MeV, µ0,K =

210 MeV and µ0,p = 315 MeV. T0 is the temperature of the center, while

Ts is that of the surface, (Xf , Yf , Zf) are the principal axes and (Ẋf , Ẏf , Żf)

the principal expansion rates of the ellipsoid at the freeze-out proper-time

τ0. For more details, see pages 3-6 of ref. [Csa03b].

Table 1, Figures 1 and 2 indicate that the Buda-Lund hydro model works

well at both RHIC energies: it gives a good quality description of the trans-

verse mass dependence of the HBT radii as well as identified particle spectra

and elliptic flow, see refs. [Csö95a, Csö02b, Csö02c, Csö03] for further details.

The temperature was estimated to be above Tc in the most central 1/8th

of the expanding ellipsoid [Csa03b], similarly to a fireball that is heated from

inside. We interpret this result as a confirmation of the quark deconfinement

and the cross-over like transition found in Buda-Lund fits to central Au+Au

collisions at
√

sNN = 130 and 200 GeV.
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Buda-Lund parameter Au+Au 130 GeV Au+Au 200 GeV

T0 [MeV] 214 ± 7 196 ± 13
Te [MeV] 102 ± 11 117 ± 12
µB [MeV] 77 ± 38 61 ± 52
RG [fm] 28.0 ± 5.5 13.5 ± 1.7
Rs [fm] 8.6 ± 0.4 12.4 ± 1.6
〈u′

t〉 1.0 ± 0.1 1.6 ± 0.2
τ0 [fm/c] 6.0 ± 0.2 5.8 ± 0.3
∆τ [fm/c] 0.3 ± 1.2 0.9 ± 1.2
∆η 2.4 ± 0.1 3.1 ± 0.1
χ2/NDF 158.2 / 180 114 / 208

Table 6.1: Buda-Lund hydro model v1.5 source parameters, corresponding
to Figs. 1 and 2. The errors on the parameters are preliminary, as point-
to-point and normalization errors are added in quadrature when evaluating
χ2.
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Figure 6.1: The upper four panels show a simultaneous Buda-Lund fit to 0-

5(6) % central Au+Au data at
√

sNN = 130 GeV, refs. [Bea01, Adc01a, Adc02a,

Bac01, Adl01a]. The lower four panels show similar fits to 0-30 % central Au+Au

data at
√

sNN = 200 GeV, refs. [Bea02, Adl03b, Adl04a]. The fit parameters are

summarized in Table 1.
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GeV [Adl03a] and PHOBOS v2(η) data at 130 and 200 GeV [Bac02, Man02].
On the top right panel, we added a constant non-flow parameter of 0.02 to
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precise v2 fits are reported elsewhere in Ref. [Csa05]
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6.4 RHIC vs CERN SPS results - a compar-

ision using the Buda-Lund model

6.4.1 Introduction

In this section the space-time evolution of colliding systems are compared

at energies of SPS and RHIC experiments. Previously, the Buda-Lund hy-

drodynamical model was able to reconstruct the final states of h+p, A+A

reactions. Now, we use these hydro results, together with preliminary ones

obtained from RHIC p+p collisions, to calculate the particle emission func-

tions. Their shapes and the parameters characterizing the source of emission

are shown and discussed in detail. The comparison gives that at RHIC

energies we are above the critical temperature (Tc = 172±3 MeV ) of decon-

finement. Moreover, we can see fairly different types of emission dynamics

in case of hadron-hadron and heavy ion reactions.

In this section we compare the the different reactions via the particle

emission probabilities for which we use the Buda-Lund hydrodinamical model

parameters extracted from the final data of the above experiments. In this

analyses we have included our earlier hydro results we obtained fitting data

of CERN SPS experiments of Pb+Pb and h+p collisions, as well [Aga97,

Ste99b]. Our preliminary hydro results on p + p collisions at
√

sNN = 200

GeV of PHENIX and STAR were also used, as an addition. However, we have

made the first attempt to fit d+Au data, as well, this time those results are

not part of the study because such sort of collisions represent an asymmetric

case. Currently, the model describes axially or ellipsoidally symmetric cases.

6.4.2 Emission function in the Buda-Lund hydro model

The Buda-Lund hydro model was introduced in refs. [Csö95a, Csö95b]. This

model was defined in terms of its emission function S(x, k), for axial symme-

try, corresponding to central collisions of symmetric nuclei. The observables

are calculated analytically, see refs. [Csa04a, Csö02] for details and key fea-

tures.
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Note, that different combinations (as new fit parameters) may also be

used to measure the flow, temperature and fugacity profiles [Csö95a, Csö02]:

Ht ≡ b/τ0 = 〈ut〉/RG = 〈u′
t〉/Rs , Hl ≡ γt/τ0, where γt =

√

1 + H2
t r2

t is

evaluated at the point of maximal emittivity, and

1

R2
s

=
a2

τ 2
0

= 〈∆T

T
〉r

1

R2
G

=
T0 − Ts

Ts

1

R2
G

, (6.1)

1

∆τ 2
s

=
d2

τ 2
0

= 〈∆T

T
〉s

1

∆τ 2
=

T0 − Te

Te

1

∆τ 2
. (6.2)

6.4.3 Emission functions of SPS and RHIC collisions

In this analyses this emission functions are calculated for CERN SPS Pb+Pb

and h+p collisions, along with RHIC experiments BRAHMS, PHENIX, PHO-

BOS and STAR. All SPS and RHIC datapoints were fitted simultaneously,

using the analytic expressions and the CERN Minuit fitting package. The

fitting package used in this analysis is version 1.5, made public at [Csö04].

Table 6.2 shows the collected source parameters obtained from Buda-Lund

hydrodynamical analysis of the data quoted. Where it was applicable, some

old source parameters of SPS data have been transformed to new ones, like Rs

where the temperature drops to half and the evaporation temperature (Te).

The emission probabilities S(x, y) and S(z, t) shown in Figs. 6.3, 6.4, 6.5, 6.6, 6.7

were calculated by equations defined in the previuos section using the the

source parameters collected in Table 6.2.

The figures give comprehensive quantitative and qualitative picture about

the nature of the nuclear processes in question. In general, small size systems

can be characterized by ring of fire type particle emission, while in heavy ion

collisions fireball like evolution takes place. The two types of behaviour is

a result of two competing processes: whether the collective motion (flow) of

particles is fast enough to overcome the pressure caused by the temperature

gradient. Consult the corresponding radii and temperature components in

the table of source parameters and the figures to recognize such relations.
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NA22 (pi/K) + p at CERN SPS
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Figure 6.3: The emission function of h+p reactions at SPS. The left panel
shows the value of S in plane (x,y), while the right one shows it in plane
(t,z). The strong temperature gradient drives out particles in waves from
the center of the emission.
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Figure 6.4: The emission function of Pb+Pb reactions at SPS. The left panel
shows the value of S in plane (x,y), while the right one shows it in plane (t,z).
The temperature gradient competes with the the strengh of the particle flow
which results in fireball type of emission.
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p + p @ RHIC
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Figure 6.5: The emission function of p+p reactions at RHIC. The left panel
shows the value of S in plane (x,y), while the right one shows it in plane (t,z).
The very strong temperature gradient drives out particles from the emission
center.
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Figure 6.6: The emission function of Au+Au 130 GeV reactions at SPS. The
left panel shows the value of S in plane (x,y), while the right one shows it
in plane (t,z). The temperature gradient competes with the strengh of the
particle flow which results in fireball type of emission.
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Buda-Lund SPS SPS RHIC p+p RHIC Au+Au RHIC Au+Au
parameter h+p Pb+Pb 200 GeV 130 GeV 200 GeV
T0 [MeV] 140 ± 3 139 ± 6 289 ± 8 214 ± 7 196 ± 13
Te [MeV] - 87 ± 24 90 ± 42 102 ± 11 117 ± 12
µB [MeV] 0 fixed 0 fixed 8 ± 76 77 ± 38 61 ± 52
RG [fm] 0.88 ± 0.13 7.1 ± 0.2 1.2 ± 0.3 28.0 ± 5.5 13.5 ± 1.7
Rs [fm] 1.4 ± 0.3 28 ± 21 1.13 ± 0.16 8.6 ± 0.4 12.4 ± 1.6
〈u′

t〉 0.2 ± 0.07 0.55 ± 0.06 0.04 ± 0.26 1.0 ± 0.1 1.6 ± 0.2
τ0 [fm/c] 1.4 ± 0.1 5.9 ± 0.6 1.1 ± 0.2 6.0 ± 0.2 5.8 ± 0.3
∆τ [fm/c] 1.3 ± 0.3 1.6 ± 1.5 0.1 ± 0.5 0.3 ± 1.2 0.9 ± 1.2
∆η 1.36 ± 0.02 2.1 ± 0.4 3.0 fixed 2.4 ± 0.1 3.1 ± 0.1
χ2/NDF 642 / 683 342 / 277 89 / 71 158 / 180 114 / 208

Table 6.2: Buda-Lund hydro model v1.5 source parameters, corresponding to
fits to BRAHMS, PHENIX, PHOBOS and STAR data for Au+Au collisions
at

√
sNN = 130 GeV and

√
sNN = 200 GeV shown in ref. [Csa04a], as well

as, to preliminary PHENIX and STAR single particle spectra and HBT radii
data for p+p collisions at

√
sNN = 200 GeV. Pb+Pb data were fitted in

ref. [Ste99b], while h+p data at CERN SPS in ref. [Aga97]. In the latter
case the parameters that were not calculated at the time of publication are
left out or transformed to the new ones.

6.4.4 Summmary of comparisions

It was shown that the Buda-Lund hydrodynamical model describes single

particle distributions, rapidity distributions, HBT correlation function radii

without puzzle in experiments of h+p and Pb+Pb at SPS, p+p and Au+Au

at RHIC.

We have calculated the emission functions of the reactions that show rings

of fire in case of h+p at SPS and p+p at RHIC, whereas, for Pb+Pb at SPS

and Au+Au at RHIC their space-time dependence show fireballs.

The quantitative comparison of the parameters of the emission sources

extracted by Buda-Lund hydrodynamical model calculations has revealed

that the freeze-out temperature in the center of the reaction zone is lower

then the critical temperature of deconfinement of quarks (T < Tc = 172

± 3 MeV) both in h+p and in Pb+Pb reactions at SPS. But, it is always

higher then that (T > Tc) by more or about 3 standard deviations at RHIC,
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Au + Au at RHIC 200 GeV
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Figure 6.7: The emission function of Au+Au 200 GeV reactions at SPS. The
left panel shows the value of S in plane (x,y), while the right one shows it
in plane (t,z). The temperature gradient competes with the strengh of the
particle flow which results in fireball type of emission.

both in p+p and in Au+Au collisions.
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Chapter 7

Summary of theses

1. I have performed GEANT detector simulations of the Zero Degree Calorime-

ter (ZDC) for the RHIC PHENIX Au+Au experiments. I have created a co-

alescence model based on data of NA49 for the description of the distribution

of the spectator fragments (p, n, d, He, ...) that do not participate in the

collisions [Ste00] in order to estimate the ZDS signal in the simulations. I

have shown by the simulations that the reactions produce large volume of for-

ward going particle showers whose large fraction produce background noise

in the ZDC. I have calculated the magnitude of the effect, for which I have

found that in most of the cases it does not exceed 2% of the expected ZDC

signal. I have shown that such an effect does not cause relevant errors (<

1%) in determination of the centrality classes. I have given a procedure for

the possible corrections. I have participated in defining the centrality classes

[Adc00]. I have determined the standar deviation of the energies deposited

in the ZDC during the data taking period (RUN). I have used this value for

studying the ZDC time stability. I have shown that the equipment was sta-

ble during the data taking periods. Selecting Au+Au collisions by centrality

classes, we have published numerous articles in journals with highest impact

factors [Adc00, Adc01a, Adc01b, Adc02b, Adl03c]

2. I have performed the GEANT detector simulations of the Zero Degree

Calorimeter (ZDC) for the RHIC PHENIX Cu+Cu experiments. My calcu-
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lations have shown that there are differencies between the ZDC signals in

the Au+Au and the Cu+Cu reactions, i.e. the standard deviations of the

energies deposited in the ZDC depend on the reaction type. I have shown

that it may be necessary to apply the GEANT corrections to the detector

data which was not necessary in case of Au+Au collisions. The first results

of PHENIX from Cu+Cu collisions were published in [Ada06]

3. I have reconstructed the final state of the CERN SPS Pb+Pb
√

sNN

= 17.3 GeV reactions using the Buda-Lund hydrodynamical model. I have

given, on the scale of 10−15 m és 10−23 sec, how the flow profile looks like when

the hadrons are created, i.e. what the distributions of uµ(x), T (x) and µ(x)

are like, and what the distribution of H(τ) that describes the creation time

of the hadrons is like. I have performed the analysis in such a way that I have

simulatneously fitted the distributions predicted by the model to data of par-

ticle correlations and spectra of the NA44, NA49 and WA93 experiments. I

have found that the analyses of the data of the three different measurements

provide results that are consistent with each-other. The averaged figures

show that the final state of central Pb+Pb collisions at the CERN SPS cor-

responds to axially symmetric, large (R = 7.1± 0.2 fm) and nearly homogen

(T = 139 ± 6 MeV) fireball that rapidly expands in each three dimensions.

The average tranvers four-velocity reaches the value of < u >= 0.55± 0.06c.

It takes surprisingly short time until the particles ”freeze-out” compared to

earlier estimations based on first-order transition that sometimes exceed the

value of 10 fm/c: τf = 5.9 ± 0.6 fm/c. The duration of the emission time is

even shorter, ∆τ = 1.5 ± 1.6 fm/c. [Ste99, Csö99, Ste99b]

4. I have found indications that the quarks are deconfined from their bound

states in the nucleons in Au+Au collisions at RHIC and they behave like

independent strongly interacting particles characterizable by an average life-

time of 6 fm/c. For the investigation, I have used data of published single

particle spectra and two particle correlations of 4 collaborations of BRAHMS,
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PHENIX, PHOBOS, and STAR that were measured in central collisions of

energy
√

sNN = 130 GeV. I have applied the Buda-Lund hydrodynamical

model for the description of the data. This model works well both at RHIC

and at CERN SPS, i.e. it gives good quality descriptions for the transvers

mass dependence of the correlation fuction radii. It is remarkable achiev-

ment, because in the literature there are about 50 theoretical articles that

are unable to interpret these data within errors. According to my results the

Buda-Lind model predictions agree the best with the data when the temper-

ature of the innermost 1/8 of the reaction zone reaches T = 214±7 MeV that

is substantioanally higher than the critacal temperature of the phase tranzi-

tion obtained from lattice QCD calculation, Tc ' 170 MeV [Csö02b, Csa04a] .

5. I have analysed the data of RHIC Au+Au collisions at higher energy of
√

sNN = 200 GeV, too. For the analysis, I have used data of single particle

spectra, two particle correlations and pseudorapidity distributions of charged

particles measured by the collaborations BRAHMS and PHENIX. Since the

correlation measurements cover the 0-30% centrality class I have averaged

the single particle spectra meausured in finer centrality classes to this cen-

trality class. Afterwards, applying the Buda-Lund hydrodynamical model I

have fitted the data simultaneously. This way, I have determined the hydro-

dynamical characteristics of the reactions with high confidence level [a-10].

I have determined, that in the middle of the reaction zone the temperature

took the value of T = 200 ± 9 MeV that is 3 sigma higher than the char-

acteristical Tc ' 170 MeV value of lattice QCD calculations (assuming zero

bariochemical potential and a continueos transition similar to the Mott one).

In addition, I have determined that the average value of the bario-chemical

potential is low, µB = 61± 40 MeV. This means, we are well below the level

of µB ≈ 300 MeV where the critical temperature can by considered nearly

flat according to lattice QCD calculations [Fod04]. This is also an indicative

result since for the the existance of the new phase I have concluded from

comparisions to lattice QCD calculation rather than directly from the data.
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I have shown that the space-time rapidity width is 30% bigger than at the

lower RHIC energy, but in case of other parameters the characteristics of the

final states of the hadron creation do not show significant difference [Csa04b].

6. I have justified that at the RHIC Au+Au experiments of the two dif-

ferent energies the characteristics of the observed particle flow agree with

the 3 dimentional Hubble flow within errors, i.e. uµ ' xµ/τ . Replacing

the flow profile in the Buda-Lund model calculations with the Hubble one I

could have reproduced the earlier results. It was predicted by the modef if

the Hubble flow becomes independent of directions then the transvers mass

dependence of the two particle correlation function (HBT) radii, the slope

of this dependence will be the same in each direction. I have shown that

within errors this condition was fulfilled for the transvers radii components

at both RHIC energies. I have shown this by extrapolating the transvers

mass dependence of the inverse HBT radii squares 1/R2 to the mt = 0 point.

I have calculated that the above condition for the longitudinal component

is partially fulfilled, therefore the rapidity dependence of the sigle particle

spectra is still relevant [Csa04b, Csa04c].

7. I have analysed the data of p + p reactions of 200 GeV center of mass

energy at RHIC. I have simultaneously fitted Buda-Lund model predictions

to single particle spectra and two particle correlation data measured by the

STAR collaboration. I have compared the results to the ones I obtained

from the analyses of Au+Au reactions and to the values I obtained from

the analyses of CERN SPS Pb+Pb collisions and to those calculated by the

NA22 collaboration analysing hadron+p reactions. I have determined that

the central temperature in p + p collisions of 200 GeV at RHIC is far the

highest, T = 289 ± 8 MeV. But its value rapidly drops in space and time,

already from R = 1.2 fm és τ = 1.1 fm/c [Csö04b]
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[Csö96b] T. Csörgő and B. Lörstad, Heavy Ion Physics 4, 221 (1996).
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hep-ph/0108067.
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Összefoglaló

1. Kidolgoztam és végrehajtottam a RHIC PHENIX Au+Au ḱısérletei szá-
mára a Zero Degree Calorimeter (ZDC) GEANT detektor szimulációit. Ki-
dolgoztam egy koaleszcencia modellt, NA49 adatok alapján, az ütközésekben
részt nem vevő, spektátor fragmentumok (p, n, d, He, ..) koaleszcenciájának
léırására [Ste00], ami a ZDC jelének megjóslásához szükséges. Az Au+Au
ütközések centralitás osztályokba sorolását alkalmazva, számos PHENIX cik-
ket publikáltunk a szakma nagy impakt faktorú folyóirataiban [Adc00, Adc01a,
Adc01b, Adc02b, Adl03c].
2. Kidolgoztam és végrehajtottam a RHIC PHENIX Cu+Cu ḱısérletei szá-
mára a Zero Degree Calorimeter (ZDC) GEANT detektor szimulációit. A
Cu+Cu ütközések első PHENIX eredményeit az [Ada06] publikáció közli.
3. Rekonstruáltam a CERN SPS Pb+Pb

√
sNN = 17.3 GeV reakcióinak

végállapotát a Buda-Lund hidrodinamikai modell seǵıtségével. Megadtam
10−15 m és 10−23 sec skálán, hogy a hadronok keletkezéskor milyen a folyási
kép, azaz az uµ(x), a T (x) és a µ(x) eloszlás, valamint milyen a hadronok
keletkezési idejét léıró H(τ) eloszlás [Ste99,Csö99,Ste99b].
4. Indikációt találtam arra nézve, hogy a RHIC Au+Au ütközésekben a
kvarkok kiszabadulnak a nukleonokban kötött állapotukból és 6 fm/c-vel
jellemezhető átlagos élettartamig erősen kölcsönható önálló részecskékként
viselkednek [Csö02b,Csa04a]].
5. Megvizsgáltam a RHIC Au+Au ütközések adatait magasabb,

√
sNN =

200 GeV energián is. Megállaṕıtottam, hogy a középpontban a hőmérséklet
T = 200± 9 MeV értéket ért el, ami 3 szigma értékkel nagyobb, mint a rács
QCD számolásokból kiolvasható Tc ' 170 MeV-es jellemző értéke (nulla bar-
iokémiai potenciálnál, és a Mott átmenethez hasonló folytonos átalakulásnál)
[Csa04b].
6. Bebizonýıtottam, hogy a két különböző energiájú RHIC Au + Au kisérlet-
ben a megfigyelt kollekt́ıv részecske áram jellege hibán belül egyezik a 3 di-
menziós Hubble folyással, azaz uµ ' xµ/τ [Csa04b,Csa04c].
7. Analizáltam a RHIC 200 GeV tömegközépponti energiájú p+p reakciók
adatait. Megállaṕıtottam, hogy a középponti hőmérséklet ezekben a RHIC
200 GeV-es p+p ütközésekben a legmagasabb, T = 289 ± 8 MeV. Értéke
azonban gyorsan esik térben és időben, már R = 1.2 fm és τ = 1.1 fm/c
értékektől [Csö04b].



Summary

1. I have performed GEANT detector simulations of the Zero Degree Calori-
meter (ZDC) for the RHIC PHENIX Au+Au experiments. I have created a
coalescence model based on data of NA49 for the description of the distribu-
tion of the spectator fragments (p, n, d, He, ...) that do not participate in
the collisions [Ste00] in order to estimate the ZDS signal in the simulations.
Selecting Au+Au collisions by centrality classes, we have published numer-
ous articles in journals with highest impact factors [Adc00, Adc01a, Adc01b,
Adc02b, Adl03c].
2. I have performed the GEANT detector simulations of the Zero Degree
Calorimeter (ZDC) for the RHIC PHENIX Cu+Cu experiments. The first
results of PHENIX from Cu+Cu collisions were published in [Ada06].
3. I have reconstructed the final state of the CERN SPS Pb+Pb

√
sNN

= 17.3 GeV reactions using the Buda-Lund hydrodynamical model. I have
given, on the scale of 10−15 m és 10−23 sec, how the flow profile looks like
when the hadrons are created, i.e. what the distributions of uµ(x), T (x) and
µ(x) are like, and what the distribution of H(τ) that describes the creation
time of the hadrons is like [Ste99,Csö99,Ste99b].
4. I have found indications that the quarks are deconfined from their bound
states in the nucleons in Au+Au collisions at RHIC and they behave like
independent strongly interacting particles characterizable by an average life-
time of 6 fm/c [Csö02b,Csa04a].
5. I have analysed the data of RHIC Au+Au collisions at higher energy of√

sNN = 200 GeV, too. I have determined, that in the middle of the reaction
zone the temperature took the value of T = 200 ± 9 MeV that is 3 sigma
higher than the characteristical Tc ' 170 MeV value of lattice QCD calcu-
lations (assuming zero bariochemical potential and a continueos transition
similar to the Mott one) [Csa04b].
6. I have justified that at the RHIC Au+Au experiments of the two differ-
ent energies the characteristics of the observed particle flow agree with the 3
dimentional Hubble flow within errors, i.e. uµ ' xµ/τ [Csa04b,Csa04c].
7. I have analysed the data of p+p reactions of 200 GeV center of mass
energy at RHIC. I have determined that the central temperature in p+p col-
lisions of 200 GeV at RHIC is far the highest, T = 289 ± 8 MeV. But its
value rapidly drops in space and time, already from R = 1.2 fm és τ = 1.1
fm/c [Csö04b].


