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Abstract

Quark Gluon Plasma (QGP) is a new state of matter in which constituents of nucleon
(quarks and gluons) are deconfined. High energy heavy ion collision is a unique tool to
create and study QGP. Two important findings, jet suppression and strong elliptic flow,
have been reported from the experiments at RHIC. They are considered to be evidence of
QGP formation in high energy heavy ion collisions.

Heavy quarks (charms and bottoms) are clean probes to study characteristics of QGP
created in heavy ion collisions. Because of their large masses, heavy quarks are only
produced in the initial stage of heavy ion collisions. Therefore, heavy quark production is
sensitive to the initial gluon density. Moreover, the measurement of heavy quarks provide
an important baseline of quarkonium suppression which is a proposed signature of QGP
formation in heavy ion collisions.

The PHENIX experiment has measured transverse momentum spectra (0.4 < pT <
4.0 GeV/c) of single electrons from the semi-leptonic decays of heavy flavors as a function
of centrality in Au + Au collisions at

√
sNN = 200 GeV. Signal electrons from heavy flavor

decays are statistically extracted from large amount of photonic electron background which
comes from Dalitz decays of light neutral mesons and photon conversions. A thin (1.7% of
radiation length) photon converter has been installed to the PHENIX detector acceptance
during a part of the data taking period. The converter increases only photonic background
electrons by a fixed factor. Thus, by comparing the data sets with and without the
converter, the photonic component and the signal component are accurately separated.
After subtracting a small background of Ke3 and vector mesons decays, the remaining
contribution of electrons is the semi-leptonic decays of heavy flavors, mainly charms at
low pT.

The centrality dependence of the total charm production has been studied. For all
centralities, we found that the total charm production in Au + Au collisions is scaled by
the number of nucleon-nucleon collisions. This indicates that most of charm quarks are
produced in the initial stage of space time evolution in high energy heavy ion collisions.
For minimum bias Au + Au collisions, the total charm cross section per binary collision is
σcc̄ = 622 ± 57(stat) ± 160(sys) µb. The measured total charm cross section is consistent
with a next-to-leading-order perturbative quantum chromodynamics calculation within
the theoretical and the experimental uncertainties.
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Chapter 1

Introduction

One of the most important issues in natural science is to search for and study the fun-
damental constituents of matter. In the last half of the 20th century, it is realized that
quarks and gluons are the constituents of nucleon (the proton and the neutron). This
theory is experimentally confirmed by deep inelastic scattering of electron and proton [1].

Quantum Chromodynamics (QCD) describes the strong interaction of quarks and glu-
ons with color charge exchange and is a component of the standard model of particle
physics [27]. A feature of QCD is the momentum transfer (Q) dependence of the strong
coupling constant αs(Q) which is expressed as Eq. 1.1 [27]:

αs(Q) ≈ 12π

(33 − 2nf ) ln (Q2/Λ2
QCD)

. (1.1)

Here, nf is the number of active quark flavors with quark mass less than Q and ΛQCD is
the scale parameter of the strong interaction (ΛQCD ≈ 200 MeV). Figure 1.1 shows the
running αs(Q) as a function of the momentum transfer measured in several experiments.
The curve in Fig. 1.1 indicates the QCD prediction.

At a large momentum transfer (Q > ΛQCD) and equivalently at a short distance, αs(Q)
decreases logarithmically, and quarks and gluons behave almost freely. This is called as
“asymptotic freedom”. The feature of asymptotic freedom allows us to describe the strong
interaction at large Q2 in term of perturbation theory. In contrast, αs(Q) becomes large at
small momentum transfer (Q ≈ ΛQCD), at long distance. Thus, the perturbative approach
is not applicable. In this region, quarks strongly attract each other and form color neutral
state such as mesons (quark-antiquark pairs) and baryons (bound state of three quarks).
This phenomenon is called as “color confinement”. Because of this “confinement” feature
of QCD, a single colored-quark has never been observed.

1.1 Quark Gluon Plasma

According to asymptotic freedom of QCD, under extreme conditions such as high tempera-
ture and/or high density, the matter does not consist of normal hadrons, but of many-body
system of deconfined quarks and gluons. This state of matter is called as “Quark Gluon
Plasma” (QGP) [2, 3]. Based on a simple dimensional calculation, a phase transition from

1
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Figure 1.1: Running coupling constant αs of strong interaction as a function of the mo-
mentum transfer, Q. These values are measured in several experiments and are compared
to the QCD prediction.

hadronic matter to QGP would occur the critical temperature Tc ∼ 180 MeV, where the
strong coupling constant is order of unity. Thus, the perturbative description is suspicious.
Lattice QCD is a powerful tool to study the phase transition in such a strong coupling
regime. Lattice QCD predicts a phase transition to QGP [4]. Figure 1.2 shows the lat-
tice QCD prediction of the energy density/T 4 as a function of temperature. The energy
density rapidly increases around the critical temperature (Tc) and approach the arrows
shown at right side of the figure. The arrows represent the energy density εSB of “Stefan
Boltzmann” limit in the QGP phase. The predicted critical temperature is Tc ≈ 180 MeV
and the corresponding critical energy density is εc ≈ 1 GeV/fm3 which is roughly 10 times
larger than that of the normal nuclear matter (ε = 0.14 GeV/fm3).

If QGP is assumed as an ideal gas of massless quarks and gluons (“Stefan-Boltzmann”
limit), the energy density εSB is expressed as follows:

εSB =

{
7

8
dq + dg

}
π2

30
T 4 (1.2)

=

{
7

8
· 2f · 2s · 2q · 3c + 2s · 8c

}
π2

30
T 4 (1.3)

= 37 · π
2

30
T 4 (1.4)

where dq and dg stand for the degree of freedom of quarks and gluons in QGP and 7/8 is a
factor from which quark is fermion. The dq consists of flavor (2), spin (2), quark/antiquark
(2) and color (3) and the dg is spin(2) and color(8) degree of freedom, respectively. On
the other hand, for lower temperature, if hadronic matter were a ideal gas of massless
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Figure 1.2: The energy density / T 4 from the recent lattice QCD calculation as a function
of T/Tc [4]. The significant increase appears around T ≈ Tc.

pions, the degree of freedom of pion gas (dπ) is 3 and its energy density in the hadron gas
is 3 π2

30
T 4. The energy density in QGP is roughly ten times larger than that in hadron

matter. This is due to the explicit appearance of the color degree of freedom in QGP.

Strikingly speaking, the phase transition from hadronic matter to QGP at high tem-
perature and zero net baryon density is now considered to be a rapid cross over. Figure
1.3 shows a theoretical phase diagram of nuclear matter as a function of baryo-chemical
potential µ and temperature T [5]. In this figure, there are two kinds of phase transitions.
One is a transition to the QGP phase at high temperature and low density. The other is
a transition to a color superconductivity phase (2SC) of matter at low temperature and
high density. Such a condition of high temperature and low baryon density is considered
to have existed in the early Universe in the first 10−5 second after the Big Bang [2]. Since
it is difficult to study directly about the early Universe, high energy heavy ion collision
is an only possible tool to reproduce QGP in the laboratory. Therefore, the high energy
heavy ion collision provides a great opportunity to realize the QGP state.

Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL)
began to collide the Au nucleus in

√
sNN = 130 GeV in year 2000, then archived its full

energy of
√
sNN = 200 GeV in year 2001. A large set of experimental observations strongly

implies the formation of QGP [6]. Two most important observations are “suppression of
particle production at high transverse momentum (pT)” and “strong elliptic flow”. We
briefly review these observations.
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Figure 1.3: Theoretical phase diagram of nuclear matter [5]. The curves represent the
phase boundaries between these phases.

High pT Suppression

High pT particles are produced in point-like hard-scatterings of high energy partons, and
then fragmented into hadron jet. In nucleus-nucleus collisions (A+A), the scattered high
pT partons pass through the dense matter created in the collision. Therefore, these partons
may suffer an energy loss in the matter due to the parton-matter interactions, e.g. gluon
bremsstrahlung radiations [7, 8]. By contrast, if partons propagate through the matter
without any energy losses, the production of high pT particles should scale linearly with
the number of point-like parton scatterings.

In order to study the high pT particle production, “nuclear modification factor (RAA)”
is defined as follows:

RAA =
dNAA/dpT

〈TAA〉 dσpp/dpT

, (1.5)

where dNAA/dpT and dσpp/dpT are the invariant cross section as a function of pT for A+A
and p+ p collisions, respectively. 〈TAA〉 is the nuclear overlap function which is equivalent
to the N + N integrated luminosity in a A + A collision event. 〈TAA〉 depends on the
impact parameter of the collision event. 〈TAA〉 as a function of impact parameter (b) can
be calculated from geometrical overlap of the colliding nuclei. If RAA = 1, this indicates
that the particle production in A+A collisions is described by the simple superimposition
of the particle production in p+ p collisions (binary scaling).

PHENIX experiment reported the RAA of neutral pions in central and peripheral
Au + Au [9] and minimum bias d + Au collisions [10] at

√
sNN = 200 GeV shown in

Fig. 1.4. The central Au + Au collisions demonstrates the strong suppression of the factor
0.3 for π0 production compared to the peripheral Au + Au collisions which is consistent to
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for minimum bias d + Au collisions [10]. The boxes on the left and the right side of the
figure show the systematic errors for the Au + Au and the d+ Au points, respectively.

unity (RAA = 1). In contrast to Au + Au collisions, RdAu (RAA in d + Au) presents only
the contribution of the initial-state normal nuclear effect such as Cronin effect [66] and
gluon shadowing [70], since the small size of deuteron is not enough to produce hot-dense
matter. In Fig. 1.4, RdAu is larger than unity for pT > 2 GeV/c and it increases slightly
with increasing pT. This behavior of RdAu is consistent with the expectation based on
Cronin effect. By comparison with RAA and RdAu, it is obvious that the central Au + Au
collisions produce extremely dense matter.

Elliptic Flow

“Elliptic flow” is an azimuthal anisotropy of particle production. The strength of elliptic
flow is sensitive to the early stage of space-time evolution of the colliding system. In
non-central collisions, the overlap region of two colliding nuclei has an almond shape
at t = 0. This initial spatial anisotropy is transferred to the momentum anisotropy of
produced particles. In the case of that the mean free path (L) of partons in the system
is much smaller than the system size (L � R), the scatterings of the partons generate
the pressure gradient. The pressure gradient in short axis of the almond is steeper than
that in long axis. Then, the elliptic flow is developed. The collective expansion of the
system reduces the initial spatial anisotropy and the pressure gradient becomes small
with time. This indicates that the earlier thermalization of the system is required for the
stronger elliptic flow since the initial almond shape disappears gradually by the collective
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namical calculation [15].

expansion. Therefore, the strength of the elliptic flow provides an information about the
thermalization time of which the system reaches the thermal equilibration [11].

Experimentally, the azimuthal distribution of particle emissions is studied in term of
Fourier expansion expressed in Eq. 1.6:

E
d3N

d3p
=

d2N

2πpTdpTdy

(
1 + 2

∞∑
n=1

vn(pT) cos [n(φ− Ψr)]

)
, (1.6)

where φ is the azimuthal angle of the produced particle, Ψr is the azimuthal angle of the
reaction plane and vn(pT ) is the magnitude of the n th order harmonics. The reaction plane
is defined as the plane span by the direction of the impact parameter and the direction of
the beam axis. The second order harmonic v2 of Fourier expansion represents the strength
of the elliptic flow.

STAR experiment first reported the strong elliptic flow in relatively peripheral Au + Au
collisions at

√
sNN = 130 GeV [12]. The detailed measurements of v2 were continued by

the RHIC experiments in Au + Au collisions at
√
sNN = 200 GeV. Figure 1.5 shows the

elliptic flow strength (v2) of π, K and proton as a function of pT measured by PHENIX
[13]. The curves in Fig. 1.5 represent a hydrodynamical calculation including a first order
phase transition with a freeze-out temperature of 120 MeV [15]. The measured v2 has a
clear particle-mass dependence. This mass effect is a consequence of radial expansion in
which the heavier particles flow out to higher pT. The v2 of π, K and p are well reproduced
by the model calculation at lower pT (pT < 1.5 GeV/c). The strong v2 implies that the
system reaches the thermal equilibration quickly at τ ' 0.6 fm/c [2].

By contrast, the model calculation fails to reproduce the data at high pT, since hy-
drodynamical picture is not applicable in higher pT region. The quark coalescence model
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[16] is a possible scenario that can explain the scaling property of constituent-quark num-
ber. Figure 1.6 shows the quark number scaling [14]. Therefore, the result suggests QGP
formation since the strong elliptic flow is developed in the quark-level reaction.

1.2 Thesis Motivation

The property of the dense matter and its space-time evolution needs to be studied in more
detail, although it has been observed by previous measurements that the dense matter is
created in high energy heavy ion collisions. Heavy quarks (charms and bottoms) are clean
probes to observe initial stage of the dense matter. Heavy quarks are only produced in
point-like hard-scatterings in nucleon-nucleon and nucleus-nucleus collisions, since their
masses (MQ) are larger than the typical energy scale of QCD (ΛQCD). At the energy
scale of Q2 ∼ M2

Q, the strong coupling constant is αs ∼ 0.3 (see Fig. 1.1) which is small
enough to apply perturbative QCD calculation to the production of heavy quarks. In
high energy nucleon-nucleon collisions, the heavy quarks are primarily produced via gluon
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fusions (e.g. gg → cc̄). Therefore, the total yield of heavy quarks is sensitive to the initial
gluon density [17, 18]. Once heavy quarks are produced, they traverse the dense matter and
suffer an possible energy loss via parton-matter interactions, e.g. bremsstrahlung radiation
of gluons. But it is expected that the energy loss of heavy quarks is smaller than that of
lighter quarks since their heavy mass reduces the available phase space for gluon radiation
(“dead cone effect”)[19]. In addition, the cold nuclear effects such as “Cronin effect” [66]
and “nuclear shadowing”[70] could also modify the yield and pT distribution of heavy
quarks. Therefore, these effects need to be studied through the systematic measurements
of heavy quarks in p+ p, p+ A and A+ A.

In this thisis, we measured the centrality dependence of the total charm production
via a measurement of single electrons from their semi-leptonic decays. The PHENIX
experiment has an unique ability to measure electrons with wide pT range. During RHIC
year 2002 to 2004 (Run 2 to Run 4), the PHENIX detector collected the data in p+ p,
d + Au and Au + Au collisions at

√
sNN = 200 GeV. Using these data, the initial gluon

density via the total charm production is studied in this thesis.
This thesis is organized as follows. Chapter 2 introduces the theoretical and the ex-

perimental background of high energy heavy ion collisions and heavy flavor productions.
Chapter 3 explains the RHIC accelerator complex and the PHENIX detector. Chapter 4
describes the analysis method. Especially, the separation between the signal and the back-
ground is explained in detail. In chapter 5, the result of electron measurement is shown
and the interpretation is discussed. Chapter 6 is finally the conclusion of this thesis.



Chapter 2

Theoretical and Experimental
Overview

Heavy quarks (charms and bottoms) provide clean informations of property of dense matter
created in high energy heavy ion collisions. Since heavy quarks are mainly produced in
initial hard scattering, the total produced yield of heavy quarks is sensitive to initial gluon
density. As same as light quark, heavy quarks suffer energy losses when they propagate
through the dense matter, although their larger masses are expected to induce smaller
energy losses. At the beginning of this chapter, the theoretical and the experimental
approaches of heavy quark production are overviewed.

In latter part, the standard picture of high energy heavy ion collisions is introduced.
This describes space-time evolution of the dense matter created in the collisions. The
modification of heavy quark production in heavy ion collisions is reviewed.

2.1 Heavy Quark Measurement

There are two types of methods for heavy quark measurement, “direct” and “indirect”
method. In direct methods, heavy flavor mesons (D and B mesons) are reconstructed by
catching all decay products from their hadronic decays (e.g. D → Kπ). Because of the
limited acceptance of the PHENIX detector and the large amount of background hadrons
in heavy ion collisions, it is difficult to measure heavy quark production in PHENIX by
the direct methods. On the other hand, the measurement of single electrons from semi-
leptonic decays of heavy flavor hadrons is one of the most powerful methods in indirect
methods. These electrons are called as “heavy flavor electrons” in this thesis. Figure
2.1 shows a schematic view of heavy flavor measurement by the direct and the indirect
method.

The overall history from the heavy quark production to the electron measurement are
expressed as Eq.2.1:

p+ p (A+ A)
pQCD−→ c(b)

fragmentation−→ D(B)
weak decays−→ e. (2.1)

Here, “pQCD” denotes the heavy quark production which is calculable by perturbative
QCD, “fragmentation” is the fragmentation (hadronization) process of heavy quarks,
and “weakdecays” is the semi-leptonic decays into electrons (e).

9
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Figure 2.1: Schematic view of heavy flavor measurement.

In 1970’s, the indirect method was carried out in p+ p collisions at CERN Intersecting
Storage Ring (ISR) (

√
s = 30 − 63 GeV). Heavy flavor electrons were first measured in

e/π ratio (e/π ∼ 10−4 for pT > 1.3 GeV/c) [21, 22, 23, 24]. The measured large yield was
interpreted as evidence of charm production [25].

The difficulty of indirect method are large amount of background from internal (Dalitz)
and external conversions of photons from the hadron decays (e.g. π0 → γ + γ) which is
called as “photonic electrons”. In order to reduce background of photonic electrons from
photon conversions, the PHENIX detector is designed to minimize an amount of material
around the beam pipe. In addition, the external converter is used to determine photonic
electrons experimentally. These are explained in section 4

Each steps from the production to the measurement expressed in Eq. 2.1 are described
in following sections.

2.2 Heavy Quark Production

2.2.1 Heavy Quark in pQCD

The hard-scatterings of partons containing in the colliding protons can produce the heavy
quark pairs. The general perturbative expression of the partonic cross section for the
heavy quark production can be written by the following equation (Eq. 2.2) [20]:

σij(ŝ,m
2
Q, µ

2
R) =

α2
s(µ

2
R)

m2
Q

∞∑
k=0

(4παs(µ
2
R))k

k∑
l=0

f
(k,l)
ij (η) lnl

(
µ2

R

m2
Q

)
. (2.2)

Here, ŝ = x1x2s is the partonic energy squared in the center of mass. The index i and
j are the parton types (q,q̄,g) which interact in the particular Feynman diagrams. The

dimensionless scaling function f
(k,l)
ij represents the amplitude of a given partonic scattering

diagrams. The dimensionless parameter η = ŝ/4m2
Q −1 expresses the production threshold
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of the heavy quark. It means that total partonic energy ŝ must be at least larger than
2mQ to create a heavy quark pair. µR is the renormalization scale and µR = mQ is usually
used for the heavy quark production. The index k indicates the order of subprocess
diagrams. The k = 0 and k = 1 correspond to Leading Order (LO) and Next to Leading
Order diagram (NLO) which the cross section of LO and NLO is a function of α2

s and α3
s,

respectively. When k = 1 and l = 1, the logarithmic term ln (µ2
R/m

2
Q) appears. The LO

processes are “gluon fusion (gg → QQ̄)” and “q − q̄ annihilation (qq̄ → QQ̄)” shown in
Fig. 2.2 (a) and (b). The gluon fusion process dominates the qq̄ annihilation in high energy
collisions, since there are much large number of gluons in proton at small-x. The some
NLO processes are shown in Fig. 2.2 (c), (d) and (e). In general, the NLO processes are
smaller contribution than the LO processes. However, the logarithmic term are developed
in the NLO process for l = 1, so that this logarithmic term (ln

(
µ2

R/m
2
Q

)
) can make the

NLO process to be even larger contribution than the LO process.
Using the partonic cross section described above, the total cross section of heavy quark

production in p+ p collisions is formulated as following function (Eq. 2.3) [20]:

σpp(s,m
2
Q) =

∑
i,j=q,q̄,g

∫ 1

4m2
Q

s

dτ

∫ 1

τ

dx1

x1

fp
i (x1, µ

2
F )fp

j

(
τ

x1

, µ2
F

)
σij(τs,m

2
Q, µ

2
R). (2.3)

Here, fp
i (x1, µ

2
F ) is Parton Distribution Function (PDF) in a proton. PDF is a probability

density of partons in proton described in term of Bjorken variable (x) and momentum
transfer scale (µ2

F ), where x is the momentum fraction of proton carried by a parton and
µ2

F is called as factorization scale. The PDFs are experimentally determined by deep
inelastic lepton-nucleon scatterings (DIS) and hard scatterings in p+ p collisions with a
wide range of x and µ2

F . The DGLAP equation [27] can describe the PDF evolution with
respect to the momentum scale. The shape of PDF are derived from the comparison
of the theoretical calculation to the experimental measurement. Several theorist groups
published their own calculations of PDFs [29, 30, 31]. Fig. 2.3 shows the PDF published
by the CTEQ group [29].

There are 3 parameters for the perturbative calculation of the total cross section in
Eq. 2.3, mR, µR and µF . The variation of these parameters can make the uncertainty
of the calculation. Thus, the uncertainty is usually determined using these conditions :
1/2mQ < µR, µF < 2mQ, 1.2 < mc < 1.8 GeV and 4.5 < mb < 5.0 GeV.

In a recent work, Fixed-Order plus Next-to-Leading-Log calculation (FONLL) is per-
formed to evaluate the heavy quark production [32, 33]. The FONLL is based on purter-
bative QCD including the NLO fixed-order calculation (FO) and the resummation of the
logarithm of pT/mQ (αn

s (logk(pT/mQ))) with next-to-leading logarithmic accuracy (NLL).
The logarithmic term due to multiple gluon radiations can contribute the heavy quark
production at higher pT (pT > mQ). In order to compare with the experimental data
directly, the FONLL framework introduces additionally the non-purterbative information
in self-consistent way. The non-purtertative information related to the hadronization of
heavy quark into hadrons is determined by the experimental data in e+ + e− collisions at
LEP [34].

Figure 2.4 shows the pT spectrum of B hadrons measured in CDF compared with the
FONLL calculation in p + p̄ collisions at

√
s = 1960 GeV [37, 38, 34, 35]. Figure 2.5
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the CTEQ group [29].

(a) shows the differential invariant cross section of electrons from semi-leptonic decays of
heavy flavors compared with the FONLL calculations in p+ p collisions at

√
s = 200 GeV,

and Fig. 2.5 (b) is the ratio of the data and the calculation. The FONLL calculations for
both collision energies are in good agreement with the experimental data. The FONLL
predicts the total cross section in p+ p collisions at

√
s = 200 GeV for charm (σFONLL

cc̄ =
256+400

−146 µb) and bottom (σFONLL
bb̄

= 1.87+0.99
−0.67 µb) quarks, respectively.

2.2.2 Fragmentation Functions

Quarks produced in the hard scattering are not directly measured. The nature of asymp-
totic freedom in QCD prohibits the isolation of colored-quark. Therefore, quarks (q)
combine each other so that the colorless state of a hadron is formed. The bound state
of q (colored-q) and q̄ (anti-colored) is called meson, and the state of three quarks with
three different colors is baryon, respectively. The process that quarks are bound to form
colorless hadron is generally called as “Fragmentation” or “Hadronization”.

After quark and anti-quark pair is initially produced, the quark pair separates in op-
posite direction. When the distance between the pair exceeds about 1 fm, the potential
energy due to the color confinement (string) become so large that one or more q− q̄ pairs
are created. Eventually all the initial quark energy is converted into two jets of hadrons.

The fragmentation of a quark into hadrons are described by the fragmentation function
Dh

q (z), which is the probability that a parton (q) is fragmented into a particular hadron
(h) with z. Here, z ≡ Eh/Eq is a fraction of the initial quark (q) energy carried by the
hadron. The Dh

q (z) satisfies the momentum and probability conservation (Eq 2.4).
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∑ ∫
zDh

q (z, µ2) dz = 1 (2.4)

Based on “factorization theorem”, the differential cross section of the heavy flavor hadrons
can be written as follows:

dσH

dpT

=

∫
dp̂T dz

dσQ

dp̂T

DH
Q (z) δ(pT − zp̂T), (2.5)

where pT and p̂T are the transverse momenta of heavy flavor hadrons and heavy quarks.
The dσQ / dp̂T is the differential cross section of heavy quarks, and the DH

Q is the frag-
mentation function of heavy flavors.

A heavy flavor meson retains a large fraction of the momentum of the primordial heavy
quark [40]. The heavy quark has large mass so that the energy of the heavy flavor meson
is less affected by the fragmentation with the light quark. Therefore, the fragmentation
function of heavy quarks is much harder than that of light quarks.

The heavy quark fragmentation function Dh
Q(z, µ2) needs to be described by phe-

nomenological (non-perturbative) models including the perturbative calculation of the
DGLAP evolution equation. The most popular parameterizations of Dh

Q(z, µ2) are listed
as follows:

Peterson et al . [41] : D(z) ∝ 1

z

(
1 − 1

z
− ε

1 − z

)−2

, (2.6)

Kartvelishvili et al . [42] : D(z) ∝ zα (1 − z) , (2.7)

Collins&Spiller [43] : D(z) ∝
(

1 − z

z
+

(2 − z)εC
1 − z

)
×

(
1 + z2

)(
1 − 1

z
− εC

1 − z

)−2

, (2.8)

Colangelo&Nason [44] : D(z) ∝ (1 − z)α zβ, (2.9)

Bowler [45] : D(z) ∝ (1 − z)a

z−(1+bm2
T )

exp

(
−bm

2
T

z

)
, (2.10)

Braaten et al . [46] : (see Eq. (31), (32) in [46]). (2.11)

where ε, εC , a, bm2
T , α and β are non-perturbative parameters depending on the heavy

flavor hadron. In general, the non-perturbative parameters in these formulae do not have
an absolute meaning. These parameters are determined by the experimental results in the
e+ +e− collisions, since the fragmentation function is independent of the type of the initial
hard scattering processes.

In PYTHIA [28] (a widely used pQCD event generator) with the default setting of the
parameters, the Bowler fragmentation function (2.10) is used. The default parameters in
PYTHIA are a = 0.3 and b = 0.58 GeV−2. The peterson fragmentation function (Eq. 2.6)
is most popular for heavy flavor hadrons. The ε parameter in the Eq. 2.6 was obtained for
charms and bottoms in [47], for example, the εc ≈ 0.05 and the εb ≈ 0.006 in the case
of using the leading-logarithmic approximation in the perturbative calculation. The most
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Figure 2.6: (a) Inclusive cross section measurement for the production of D0 and D∗+

in e+ + e− collisions in the CLEO and BELLE as a function of xp = p/pmax which is
approximately z [49, 50]. (b) Fragmentation function of b quarks into B hadrons as a
function of xB = z measured in ALEPH, OPAL and SLD [51, 52, 53].

accurate approach to derive the fragmentation function is to use the Mellin transform of
the DH

Q and determine the moment of the Mellin transform from the experimental result
[48].

Experimental studies of the heavy quark fragmentation function have been performed.
Figure 2.6 (a) shows the inclusive cross-section of D0 and D∗ times branching ratios as a
function of xp measured in e+ + e− collisions at the CLEO and the BELLE experiment
[49, 50]. The variable xp approximates the z. Figure 2.6 (b) shows the fragmentation
function of the b quarks into B hadrons measured in the ALEPH and the CLEO at LEP
and the SLD at SLAC [51, 52, 53].

2.2.3 Semi-Leptonic Decays

We measure electrons from the semi-leptonic decays of hadrons containing charm (c) and
bottom (b) quarks. The semi-leptonic decays shown in Figure 2.7 are simply explained in
the standard technique, “spectator model”. In the spectator model, the light antiquark
(q̄) which accompany the heavy quark Q in the hadron is assumed to play no role in the
decay [54, 55]. Therefore, the decay of Q can be treated in same way as the leptonic decay
of a free muon.

The semi-leptonic decay width in the model can be written as follows:

Γ
(Q)
sl =

mQ

28π3

∫
dx dy θ(x+ y − xm)θ(xm − x− y + xy) ×

∑
|M (Q)|2 (2.12)

where x and y are the rescaled energies of the charged and neutral leptons, x = 2Ee/mQ,
y = 2Eν/mQ, in the heavy quark rest frame. xm = 1 − (mq/mQ)2 is the kinematic limit
of energy transfer. The mq/mQ is equal to ms/mc for c decay and mc/mb for b decay.
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Figure 2.7: Semi-leptonic decay diagram of the D and B meson in “spectator model”.

The matrix elements for c and b decay are :∑
|M c|2 = 64G2

F |Vcs|2 c · e+ s · ν, (2.13)∑
|M b|2 = 64G2

F |Vcb|2 b · ν c · e−, (2.14)

where b, c, s, ν, ν, ν, e+ and e− are the four-momenta of the decay particles. Vcs and Vcb are
elements of Cabibbo-Kobayashi-Maskawa (CKM) matrix. GF = 1.16632 × 10−5(GeV−2)
is Fermi constant, the coupling constant of weak interaction.

The differential decay width for charms and bottoms can be calculated from Eq. 2.12
as follow:

dΓ
(c)
sl

dx
= |Vcs|2 Γ0(mc)

[
12x2(xm − x)2

(1 − x)

]
, (2.15)

dΓ
(b)
sl

dx
= |Vcb|2 Γ0(mb)

[
2x2(xm − x)2

(1 − x)3

]
(6 − 6x+ xxm + 2x2 − 3xm), (2.16)

where Γ0 is the rescaled muon decay width

Γ0(mQ) =
G2

Fm
5
Q

192π3
.

The resulting electron spectra for charm and bottom decays are shown in Fig. 2.8. In
this figure, both the electron spectra from CKM favored (b → c and c → s) and CKM
disfavored (b→ u and c→ d) decay mode are included. The CKM disfavored spectra are
harder than the CKM favored spectra. But the contribution from CKM disfavored mode
is small and negligible (e.g. |Vub|/|Vcb| = 0.08 ± 0.02).

If Mc = 1.4 GeV, the theoretical estimate of the decay width is Γsl(D) = 1.1 ×
10−10 MeV. On the other hand, using the measured branching ratios (e.g. 17.2% for D+)
and the lifetimes (e.g. 1051 × 10−15(s)) of D mesons [27], the experimental decay width
is calculated as Γsl(D

+) = (1.07 ± 0.13) × 10−10 MeV. These two values are consistent
each other. Therefore, the theoretical model can describe nicely the semi-leptonic decays
of heavy flavors.
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Figure 2.8: The normalized decay width spectra for charms (left panel) and bottoms (right
panel) as a function of the relative momentum of electrons (2Ee/me). Both CKM favored
and disfavored spectra are plotted.

2.3 High Energy Heavy Ion Collisions

High-energy heavy-ion collision is a possible way to realize a high temperature and a high
energy density condition in the laboratory, where quark-gluon plasma (QGP) is expected
to form. In heavy ion collisions, two Lorentz-contracted nuclei pass through each other
and a lot of nucleon-nucleon collisions take place in the overlap region of the colliding
nuclei. Their deposited energies generate the high energy density object spread in the
space, like a fire ball which produces many secondary hadrons at a later time.

The experimental investigations had started at Bevalac (1975 - 1985) of the Lawrence
Berkeley National Laboratory (LBL), and continued at Alternating Gradient Synchrotron
(AGS) (1987 - 1995) of the Brookhaven National Laboratory (BNL), Super Proton Syn-
chrotron (SPS) (1987 - present) of the European Organization for Nuclear Research
(CERN) and Relativistic Heavy Ion Collider (RHIC) of the BNL. However the fixed tar-
get experiments at Bevalac, AGS and SPS could not observe the clear evidence of QGP
formation. The first collider experiment at RHIC finally confirmed the existence of QGP.

2.3.1 Space Time Evolution

The phenomenon of the high-energy heavy-ion collision is very complicated since the mat-
ter produced in the collision undergoes several phase from the initial hard scattering to
the final hadron emission. J.D.Bjorken illustrated space-time evolution of high energy
heavy ion collision based on hydrodynamic [56]. In the Bjorken’s picture assuming “cen-
tral plateau” (high energy limit), the space-time evolution can be separated into four
individual phases characterized by a proper time τ =

√
t2 + z2. Figure 2.9 shows a light-
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Figure 2.9: A light-cone diagram of space-time evolution in high energy heavy ion colli-
sions. The values of time and temperature for various phases are taken from [57]. The
mixed phase exists if the phase transition is first order.

cone diagram of the space-time evolution in heavy ion collision. The proper times for each
phases are defined as a hyper-surface in Fig. 2.9. The value of the proper times τ in
Fig. 2.9 are described in [57].

We consider that the two Lorentz contracted “disks” along the longitudinal (z) axis
collides head-on at z = 0 and time t = 0 in the center of mass frame. The thickness of
the disk represents R/γ ≈ 1 fm where γ is the Lorentz factor. After the collision, the
disk carrying a large amount of baryon number recedes from the overlap region. In the
overlap region, the hard scatterings between partons, quarks and gluons, occur which can
be described by perturbative QCD following parton cascade, and a huge amount of energy
is deposited in the matter. This initial phase is named as pre-equilibrium phase.

The multiple scatterings of partons continue and these partons spread their momenta
for shorter time, so that the matter would reach the local thermal equilibrium, and the
QGP phase is formed. The time to form the QGP phase is called as “thermalization
time” τ0 which is expected to be 0.6 fm/s [57]. Once the local equilibration is archived,
the QGP matter would expand hydrodynamically until the matter cools down to the
critical temperature Tc of the QGP phase transition (Tc ≈ 180MeV).

At Tc, the QGP matter begins to hadronize so that quarks and gluons are confined
into color singlet hadrons. If the phase transition between the QGP to the hadron phase
is the first order phase transition, a mixture of QGP and hadronic matter would appear
during the transition (mixed phase). In the mixed phase, the volume fraction of hadronic
matter in the QGP phase increases gradually with expansion. The temperature in the
system stays at Tc because hadronic matter releases latent heat of the transition. Even
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though the phase transition from hadronic matter to QGP is now considered to be a rapid
cross over at zero baryon density.

After the system completes to hadronize at τ ≈ 8 fm, the produced hadrons interact
with each other in the hadronic matter. This is called as “hadron gas phase”. The hadronic
matter keeps the collective expansion until the system temperature drops to freeze-out
temperature (TF ≈ 100MeV) where the system size is still larger than the mean free path
of the interacting hadrons. Finally the hadrons freely move away from the hadronic matter
under TF and those are detected in our measurement at approximately infinite distance.

2.3.2 Energy Density

The formation of QGP requires a sufficiently large energy density. The density is expected
to be on the order of 1 GeV/fm3 which is about 10 times larger than that in normal
nucleus (≈ 0.14 MeV/fm3). It is interesting how much energy density can be reached at
the formation time (τ0) of QGP in high energy heavy ion collisions.

In Bjorken’s picture, the expansion of the system is one dimensional along with z and
is cylindrically symmetry until the time reaches τ0. The volume of the system at τ0 is
written as ∆V = πR2dz where R is a radius of the colliding nucleus. Energy (E) in the
volume is written as follow:

E = 〈mT〉
dN

dy
δy =

dET

dy
δy, (2.17)

where 〈mT〉 =
√
p2

T +m2 is a transverse energy of the produced hadrons (transverse mass),
dN/dy is the rapidity density of particle multiplicity and y is rapidity defined as follows:

y =
1

2
ln

(
t+ z

t− z

)
. (2.18)

The transverse energy of the produced hadrons can contribute to the energy density
of the initial system.

Using both the volume ∆V and the energy (E), the energy density (εBj) of the system
at τ0 can be expressed as:

εBj =
E

∆V
, (2.19)

=
〈mT〉
πR2

dN(τ0)

dz
=

〈mT〉
πR2 τ0

dN(τ0)

dy
, (2.20)

=
1

πR2 τ0

dET(τ0)

dy
, (2.21)

where ET is the total energy and dz = τdy at central rapidity (y = 0). We equated
〈mT〉dN

dy
= dET

dy
. This energy density εBj is generally referred as “Bjorken energy density”

[56].
Although τ0 is not well known, the energy density εBj was evaluated for the AGS,

SPS and RHIC experiments using the measured value of dET/dy and the normally used
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value of τ0 = 1 fm/c. These εBj are summarized in Tab. 2.1. The energy density εBj in
RHIC low energy (

√
sNN = 19.6 GeV) is compared to the recalculated εBj in SPS energy

(
√
sNN = 17.2 GeV), and found to be consistent [62]. There is a factor of 2.6 increase of

the εBj between RHIC low energy and highest energy (
√
sNN = 200 GeV).

Table 2.1: The summary of Bjorken energy density εBj for several collision systems and
energies.

Accelerator Colliding Nucleus
√
sNN (GeV) εBj (GeV/fm3)

AGS Au + Au 5 1.5 [58]
SPS Pb + Pb 17 2.9 [59, 60]

RHIC Au + Au 19.6 2.2 [62]
Au + Au 130 4.7 [61, 62]
Au + Au 200 5.4 [62]

2.3.3 Collision Geometry

The geometrical aspect of high energy heavy ion collisions has an important role in collision
dynamics. Two colliding nuclei only interact in the region of the geometrical overlap
as shown in Fig 2.10. The region is characterized by impact parameter b which is the
distance between the centers of the colliding nuclei. The nucleons in the colliding nuclei
are separated into 2 groups, “participant” and “spectator” illustrated in Fig. 2.10. The
participant is the nucleons in the overlap region where nucleon-nucleon collisions take
place. On the other hand, the spectator passes away into longitudinal direction with little
interaction. This geometrical treatment of the collision is known as “Participant-Spectator
model”.

In experiment, high energy heavy ion collision is characterized by “centrality” to study
the matter produced in the collision systematically, since impact parameter can not directly
measured. Centrality represents a percentile of total cross section of inelastic nucleus
nucleus collision.

The Glauber model [63] is used to associate b with centrality and to evaluate the
geometric parameters such as b, the number of participants (Npart), the number of nucleon-
nucleon collisions (Ncoll) and the nuclear overlap function (TAB(b)). In the Glauber model,
the nucleus-nucleus collisions are treated as multiple nucleon interactions. Nucleon of
colliding nucleus is assumed to travel in a straight line and not to deflect after the collision.

The nuclear thickness function of nucleus A is defined as follow [2, 64]:

TA(s) =

∫
dzρA(z, s), (2.22)

where ρA is the mass number density normalized by its mass number and TA(s) is the
number of nucleons per unit area along with z axis at the point from the center of the
nucleus represented by a 2D vector s. The vector s is in the transverse plane with respect
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Figure 2.10: Participant-spectator model of high energy heavy ion collision. Two colliding
nuclei approach with impact parameter b before the collision. After the collision, the
spectator nucleons pass away into the longitudinal direction.

to z. Using TA(s) and b, the nuclear overlap function of nucleus A and B is defined as
follow:

TAB(b) =

∫
d2s TA(s) TB(s − b), (2.23)

where d2s = 2πsds is the 2 dimensional area element. Eq. 2.23 means that the nucleon
in nucleus A has a chance of a collision with the nucleon in nucleus B at the same 2
dimensional position. Therefore, Ncoll is defined as follows:

Ncoll(b) =

∫
d2s σin

NN TA(b)TB(s − b) = σin
NN · TAB(b), (2.24)

where σin
NN is the inelastic cross section of the nucleon-nucleon interaction.

In order to evaluate these geometrical parameters described above, Monte Carlo calcu-
lations of the Glauber model are performed. The Woods-Saxon parameterization is used
for a realistic nuclear mass density ρA(r) as follows:

ρA(r) =
ρ0

1 + exp ( r−RA

a
)
, (2.25)

where RA is the radius of the nucleus and a is the diffusion parameter. When the distance
between the nucleons becomes less than

√
σin

NN/π in the calculation, we consider a collision
between these two nucleons take places. The result of the Glauber model calculation is
summarized in section 4.2.3.
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2.4 Heavy Quarks in Nucleus-Nucleus Collisions

2.4.1 Initial Production

The production of heavy quarks in p+ p collisions can be calculated in pQCD formal-
ism, since their large masses requires hard-scatterings with large momentum transfer, as
discussed in the previous section. Heavy quarks are produced via initial hard-scatterings
in Nucleus-Nucleus (A + A) collisions. Therefore, it is expected that the yield of heavy
quarks is proportional to the number of nucleon-nucleon hard-scatterings. This can be
expressed in terms of the nuclear overlap function, TAA:

NHQ
AA = TAA · σHQ

pp , (2.26)

whereNHQ
AA is the invariant yield of heavy quarks in A+A collisions and σHQ

pp is the invariant
cross section in p+ p collisions. Here, we neglect the initial and final state effects in A+A
collisions. These initial and final state effects can modify the heavy quark production and
are discussed in the next sections.

2.4.2 Pre-equilibrium Production

In addition to the initial production, it is predicted [18] that there are the pre-equilibrium
production and the thermal production.

In the pre-equilibrium stage of the space-time evolution, secondary parton scatterings
in the dense matter could lead to heavy quark production. The yield of heavy quarks
produced in the pre-equilibrium stage could be approximately proportional to the ther-
malization time of the dense matter. If the pre-equilibrium production is separated from
the initial production, we can measure the thermalization time.

In the thermal stage, the heavy quark production is treated in the same way as the
thermal production of light quarks (u, d, s). The heavy quark in the thermal stage is
produced through gluon fusion gg → QQ and quark-antiquark annihilation qq̂ → QQ.
However their large mass suppress the thermal production of heavy quarks relative to that
of light quarks. If a reasonable temperature is assumed (T ∼ 200−400 MeV), the thermal
production is far below the initial production.

Figure 2.11 shows calculated pT distributions of charm quarks produced in the initial,
pre-equilibrium and thermal stage in central Au + Au collisions at

√
sNN = 200 GeV [65].

The pre-equilibrium production is about 10% compared with the initial production. On
the other hand, the thermal production is negligibly small.

2.4.3 Cold Nuclear Effects

There are some known effects in normal nuclear matter which can affect the yield and pT

spectra of produced particles. They are generally called as “cold nuclear matter effect”
or “initial state effect”. In order to study the property of the matter created in the high
energy heavy ion collisions, it is necessary to take these nuclear effects into account. The
cold nuclear effects, “Cronin effect” and “nuclear shadowing effect”, are described in this
section.
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Figure 2.11: A theoretical calculation of charm quark production as a function of pT

in central Au + Au collisions at
√
sNN = 200 GeV. The initial (solid), pre-equilibrium

(dot-dashed) and thermal production (dashed) are plotted, respectively [65].

Cronin Effect

Cronin effect [66] is an enhancement of the particle production in proton + nucleus (p +
A) collisions compared to the number of nucleon-nucleon collisions scaling (Ncoll). The
enhancement is explained that the incident parton undergoes the multiple scatterings
in the target nucleus before hard-collision, so that its momentum become broad [67].
Therefore, the Cronin enhancement depends on the nuclear thickness or the number of
collision. The cross section in p+ A collisions is expressed as follows:

E
d3σ

d3p
(pT, A) = E

d3σ

d3p
(pT, p = 1) × Aα(pT), (2.27)

where α(pT) represents a parameter of the modification compared to Ncoll scaling. If the
α(pT) = 1, the cross section in (p+A) is consistent with Ncoll scaling. From the identified
charged hadron measurement in PHENIX experiment, the α(pT) > 1 is observed for
pT > 1.5 GeV/c in d+ Au collisions at

√
sNN = 200 GeV [68].

Nuclear Shadowing Effect

The fact that the structure function F2 per nucleon in nucleus is significantly different
from that of a free nucleon is a well known nuclear effect. This was discovered in the
measurement of a deep inelastic muon scattering by the European Muon Collaboration
(EMC) in 1982 [70]. The modification of the nuclear structure function is illustrated by
the ratio of FA

2 and FD
2 as a function of Bjorken x shown in Fig 2.12 [71]. The ratio can be

subdivided by four regions with respect to x. For x < 0.05, “shadowing” where the ratio
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Figure 2.12: Modification of nuclear structure function per nucleon. (top) a phenomeno-
logical curve. (bottom) a set of experimental results [71].

is smaller than unity. For 0.05 < x < 0.15, “anti-shadowing” where the ratio is slightly
larger than unity. For 0.15 < x < 0.6, the EMC effect where the ratio is a fall increasing
x. For 0.6 < x, the ratio rises by Fermi motion.

This modification of the structure function affects the particle production in the colli-
sion. The relevant x region in the RHIC energy can be estimated using Eq. 2.28 and pT

of the produced parton in the mid-rapidity.

x =
2 pT√
s

(2.28)

For the parton with 1 < pT < 10, the x region corresponds to 0.01 < x < 0.1 where the
shadowing effect can appear.

The EKS98 model [73] parameterizes the nuclear modification of parton distribution in
nucleus. A cross section of heavy quarks in p+A and A+A collisions is calculated using
the EKS98 model [72]. Figure 2.13 shows the ratio of the cross-sections for charm (left)
and bottom (right) at mid-rapidity in p + A and A + A collisions. At the RHIC energy,
as shown in Figure 2.13, the charm production is not much modified since the nuclear
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Figure 2.13: The ratio of the cross section for the cc̄ (left) and the bb̄ (right) in p+A and
A+A collisions. The nuclear effect of the PDF’s are calculated using the EKS98 nuclear
weight functions [72].

shadowing at the x region relevant for charm production in the EKS98 model is small. By
contrast, the bottom production is slightly enhanced by the anti-shadowing effect.

2.4.4 Final State Effects in QGP

Medium Modification

When an energetic parton passes through the dense matter created in heavy ion collisions,
the parton suffers the energy loss due to parton-matter interaction, e.g. gluon radiation.
We can see a similar process in electromagnetics. A high-energy charged particle traversing
charged matter lose its energy by “bremsstrahlung” which is photon radiation due to
interaction of the particle with the matter. The bremsstrahlung is described using the
electromagnetic potential from the moving charged particle, so called Liénard−Wiechert
potential.

It is predicted that the radiative energy loss of heavy quarks is smaller than that of light
quarks, since its larger mass reduces the available phase space for gluon radiation (dead
cone effect [19]). A similar mass dependence of energy loss can be seen in electromagnetics.
The energy loss of muons by bremsstrahlung is much smaller than that of electrons.

There are two theoretical calculations to treat the energy loss process quantitatively
for light and heavy quarks. One is the BDMPS model [75] in which the radiated gluons
suffer the final state interaction (non-abelian effects) in the colored-dense matter. The
total energy loss in the BDMPS model is described in terms of transport coefficient q̂ and
is proportional to L2 as follows:

δE ∝ q̂L2

(
q̂ ≡ 〈q2

T〉
λ

)
, (2.29)
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where q̂ means the average squared transverse momentum (qT) transfered from the matter
to the parton per mean free path (λ). The L is the path length of the parton in the matter.

The other is the GLV (DGLV) model [76, 77, 78] in which the radiative energy loss is
characterized by the gluon density (dNg/dy) in the dense matter. The energy loss in the
GLV model can be analytically calculated for the limit of the thin matter. The fractional
energy loss of a fast parton with energy E is expressed as follow [79]:

dE

E
∝ 1

A⊥

dNg

dy
L log

E

µ
, (2.30)

where A⊥ is the transverse size of the dense matter and µ is the Debye screening scale.
The nuclear modification of PDF and the longitudinal Bjorken expansion of the matter is
also taken into account in the GLV model for the realistic calculation.

Figure 2.14 shows the nuclear modification factor RAA of π0 in top 5% central Au + Au
collisions at

√
sNN = 200 GeV [83]. The measured π0RAA is compared to the BDMPS

(left) and the GLV calculation (right) with various values of the model parameters, re-
spectively. These models can describe the measured π0RAA with q̂ = 13.2+2.1

−3.2 GeV2/fm
for the BDMPS and dNg/dy = 1400+270

−150 for the GLV models.
On the other hand, these models can not describe the measured RAA of electrons from

heavy flavor decays as shown in Fig. 2.15 [84]. The measured electron RAA is smaller than
these model predictions for high pT where q̂ = 14 GeV in the BDMPS and dNg/dy = 1000
in the GLV are used. The data shows the opposite trend compared to the prediction of
the less energy loss for heavy quarks. This indicates that the radiative energy loss due to
gluon bremsstrahlung is not adequate to describe fully the measured suppression of heavy
flavors, and the additional energy loss mechanism is required.

In recent theoretical studies [80, 81, 82], it is proposed that the contribution from the
collisional energy loss due to the elastic scattering becomes important for heavy quark,
although the collisional process is negligibly small for light quark. Figure 2.16 shows
the theoretical calculation of the collisional and radiative energy loss as a function of
momentum for charm (left) and bottom (right) quarks. The collisional energy loss for
both charm and bottom quarks makes a larger contribution than the radiative loss for low
pT and becomes gradually smaller for high pT. The combined approach of the collisional
and radiative energy loss can describe the substantial part of the heavy quark energy loss
shown as the green band in Fig. 2.15. But there is a still small difference between the data
and the model.

2.4.5 Aim of This Study

The motivation of this thesis is to study the initial gluon density of the dense matter
created in heavy ion collision. Because their large mass, heavy quarks are only produced
in point-like hard-scatterings in A+ A collisions. Such hard scatterings take place in the
early time of space-time evolution before the possible QGP formation. Thus, the heavy
quark production is sensitive to the initial condition of the collision, especially the initial
gluon density.

The first aim of this study is to investigate whether the total production of heavy
quarks in Au + Au collisions is scaled by Ncoll, especially charms at low pT. If the Ncoll
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Figure 2.14: Both the left and right panel show π0RAA for top 5% central Au + Au colli-
sions at

√
sNN = 200 GeV [83]. π0RAA are compared with the BDMPS (left) and the GLV

(right) model with various parameters. The red curves indicate the best fit curve of the
models.

Figure 2.15: RAA of electrons from heavy flavor decays for top 10% central Au + Au
collisions at

√
sNN = 200 GeV [84]. The electron RAA is compared with the models. The

green dot curve is the BDMPS, and the yellow band is the GLV models. The green band
shows the combined collisional and the radiative energy loss model.
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Figure 2.16: The fractional energy loss of the collisional and radiative process as a function
of momentum for charm (left) and bottom (right) quarks [82]. The solid and dot-dashed
curves correspond to the collisional and radiative process, respectively.

scaling of the total charm production can be observed, it will strongly suggest that the
high pT suppression of charm quarks is caused by the final state effects in QGP, such as
energy losses of partons. The cold nuclear effects can modify both the total yield and
the spectral shape of produced charms. Therefore, the measurement of the total charm
production provides an important baseline for the high pT suppression.

In addition, this study can put quantitative constraints on the gluon shadowing effect,
even though the modification of the charm production due to the shadowing effect is
expected to be small. According to the EKS98 model for the shadowing of nuclear PDF,
the gluon density of Pb with Q2 = 5.39 GeV2 is roughly 5% smaller than that of proton at
x ∼ 0.02. This means that, if the EKS parameterization is correct, charm production due
to gluon fusions in heavy ion collisions will be 10% smaller than that with Ncoll scaling in
p+ p. If the other processes are included, the modification of the charm production due
to the shadowing will be reduced.

Once the cold nuclear effects can be understood, we can study additional productions
of charms in the pre-equilibrium and thermal stage of space-time evolution in heavy ion
collisions. The additional productions are expected to provide some informations related
to the thermalization time and the temperature of the dense matter. Therefore, the
systematic measurement of the charm productions in p+ p, d+Au and Au + Au collisions
is necessary to study these effects due to the initial production, the additional production,
the cold nuclear effects and the final state effects.

As a first step of this important study, we measured the centrality dependence of
the total charm productions from single electron measurement in Au + Au collisions at√
sNN = 200 GeV. These result are compared with p+ p and d+ Au data. The measure-

ments and the results are described in the next sections.



Chapter 3

Experimental Setup

3.1 Relativistic Heavy Ion Collider

The Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL)
was constructed to study the characteristics of a new phase of sub-atomic matter created
in heavy ion collisions. A collision energy at RHIC is one order of magnitude higher than
the AGS at BNL and the SPS at CERN [85]. RHIC can accelerate a variety of nuclear
beams from protons (p) to light ions to gold ions (Au) with its maximum energy up to
250 GeV for p and 100 GeV per nucleon for Au. Figure 3.1 shows a schematic view of the
accelerator complex. Protons and Au ions are initially produced and accelerated by the
Linac and the Tandem Van de Graaff pre-accelerator, respectively. The produced beam is
sent to the Booster Synchrotron followed by the Alternating Gradient Synchrotron (AGS).
AGS then accelerates the beam upto 28 GeV for p and 10.8 GeV for Au per nucleon, and
injected into the RHIC rings. The beams are finally accelerated up to its maximum energy.

RHIC has two individual accelerator rings with 3.83 km circumference. The two rings
intersect at six intersection points. There were initially four experiments, PHENIX, STAR,
BRAHMS and PHOBOS placed at the intersection points of RHIC, and they are designed
to study the various aspects of dense matter created in heavy ion collisions and the spin
structure of nucleon using polarized p beams. RHIC had started the operation from year
2000 and it is continuing its operation. All four experiments has started taking data at the
start of RHIC. BRAHMS and PHOBOS had stopped data taking in year 2006. PHENIX
and STAR is continuing the operation . During that period, RHIC had collided various
nuclear species with various energies. These are summarized in Tab. 3.1.

3.2 PHENIX Detector Overview

The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) is designed to
measure several fundamental probes of high-energy nuclear interactions [86]. In order
to measure photons, leptons and hadrons simultaneously, and to separate leptons from
much larger number of hadrons, the PHENIX detector has a good particle identification
capability in broad pT range with good momentum and energy resolution.

The PHENIX detector is organized by three parts of detector systems: the global

30
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Figure 3.1: The RHIC accelerator complex.

Table 3.1: Summary of RHIC operation. The integrated luminosity is recorded in
PHENIX.

Run Species
√
sNN

∫
Ldt year

1 Au + Au 130 1 µb−1 2000

2 Au + Au 200 24 µb−1 2001/02
p+ p 200 0.15 pb−1

3 d+ Au 200 2.74 nb−1 2002/03
p+ p 200 0.35 pb−1

4 Au + Au 200 241 µb−1 2003/04
Au + Au 62.4 9 µb−1

5 Cu + Cu 200 3 nb−1 2005
Cu + Cu 62.4 0.19 nb−1

Cu + Cu 22.4 2.7 µb−1

p+ p 200 3.8 pb−1

6 p+ p 200 10.7 pb−1 2006
p+ p 62.4 0.1 pb−1

7 Au + Au 200 813 µb−1 2007

8 d+ Au 200 80 nb−1 2007/08
p+ p 200 5.2 pb−1

9 p+ p 500 14 nb−1 2008/09
p+ p 200 16 pb−1
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Figure 3.2: The cutaway drawing of the PHENIX detector.

detectors, the central arm spectrometers and the muon arm spectrometers. Figure 3.2
shows a bird’s eye view of the PHENIX detector.

The global detector consists of a pair of the beam-beam counters (BBC) and a pair
of the zero-degree calorimeters (ZDC). They produce a minimum bias trigger and give an
event characterization of the heavy ion collisions.

The central arm spectrometer measures electrons, photons and charged hadrons at
central rapidity region. The magnetic field for the central arm spectrometer is supplied by
the central magnet which provides an axial field parallel to the beam axis. The central arm
spectrometer is constructed by two almost symmetrical spectrometer arms, named as the
West arm and the East arm. The West arm and the East arm covers the central rapidity
region (pseude-rapidity, |η| ≤ 0.35) and a quarter of full azimuthal angle (∆φ = π/2). The
central arms consist of several detector subsystems for charged particle tracking, particle
identification and calorimetry. Drift chambers (DC) and a layer of pad chambers (PC) are
placed at the most-inner of the central arm and measure charged particle trajectories with
good momentum resolution. The time projection chamber (TEC) in the East arm provides
additional particle tracking and identification. The time-of-flight counters (TOF) in the
East arm identifies charged hadrons up to 2.4 GeV/c for π/K and 4 GeV/c for p. The ring
imaging Ĉerenkov detectors (RICH) have a good capability of electron separation from
large number of produced hadrons. The electro-magnetic calorimeter (EMCal) is placed
at the most outside of the central arm and measures total energy of photons and electrons.
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Figure 3.3 (top) shows the schematic view of the central arm spectrometer from the beam
axis.

The muon arm spectrometers are instrumented to measure muons and consist of a
pair of the spectrometer arm, named as the North arm and the South arm. They cover
the forward and the backward pseudo rapidity (1.15 ≤ |η| ≤ 2.25 for the South arm and
1.15 ≤ |η| ≤ 2.44 for the North arm) and the full azimuthal angle (∆φ = 2π). Each
of the muon spectrometer arms consists of a muon tracker (MuTr) followed by a muon
identifier (MuID). Figure 3.3 (bottom) shows a side view of the PHENIX detector. When
the PHENIX detector is seen from the East arm side, the South and North muon arm
spectrometers are placed in the left and right side of the central magnet, respectively.

In order to measure both soft and hard/rare probes such as J/ψ → e+e− process and
high pT particle production, the PHENIX detector has the first (LVL1) and the second
(LVL2) level trigger and a very fast data acquisition system (DAQ).

We give the detailed description of these detector subsystems and DAQ systems in the
next section.

3.3 Global Detector

3.3.1 Beam Beam Counter

The beam beam counter (BBC) is a pair of identical Ĉerenkov detector arrays [87]. The
BBC is placed ±144 cm far from the center of the PHENIX detector along with the
beam axis. The BBC covers 3.1 < |η| < 3.9 and full azimuthal angle (∆φ = 2π). A
BBC array (Figure 3.4 (a)) is composed of 64 Ĉerenkov detector elements. One element
(Figure 3.4 (b)) consists of a hexagonal-cylinder shaped quartz Ĉerenkov radiator and a 15
stage mesh-dynode type photomultiplier tube (Hamamatsu R6178). The BBC is required
to work in a strong magnetic field (3 kG).

The BBC plays several important roles in the measurement of the collisions. The BBC
provides the minimum bias trigger for level-1 trigger. The BBC is used to determine the
collision vertex along with the beam axis (z vertex) and the centrality for event char-
acterization. In addition, the BBC measures the collision timing for the time-of-flight
measurement.

The BBC measures the arrival time of charged particles emitted from the collisions.
The arrival times (TS and TN for the south and the north side of the BBC) are determined
to calculate a truncated average of hit timings in individual BBC elements with σ =
40 ± 0.5 ps of timing resolution. The vertex position (z) and the start timing (t0) of a
collision are determined using TS and TN :

z =
c

2
× (TS − TN) (3.1)

t0 =
1

2
× (TS + TN − L

c
) (3.2)

Here, L(= 144 cm) is a known distance from the center of PHENIX to the BBC location
along with beam axis and c is the speed of light. The z information is used for both
offline analysis, and level-1 trigger (LVL1). The combination of z position and more than
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Figure 3.3: The composition of PHENIX detector in Run 2 operation: (top) the beam
view of the central arm. (bottom) the side view of the PHENIX detector.
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(a) (b)

Figure 3.4: (a) A BBC array comprising 64 BBC elements. (b) A BBC element.

Figure 3.5: The z vertex distribution. The shaded area corresponds to the events triggered
by LVL1.

2 hit PMT’s is required to produce LVL1. Figure 3.5 shows z vertex distribution. The
shaded area in Fig. 3.5 corresponds to the event selected by LVL1 condition. The position
resolution of z vertex is σz = 0.7 mm, and this corresponds to 23 ps of t0 resolution [88].
In Fig. 3.5, The peak around z = ±144 cm corresponds collisions outside of the BBCs,
e.g. beam-gas collisions.

Each of BBC element is calibrated using a MIP peak. The pulse height information
measured in all BBC elements is summed up to measure total charged particle multiplicity
in BBC acceptance. This multiplicity information combined with the ZDC is used for
determination of collision centrality as described in section 4.2.2.

3.3.2 Zero Degree Calorimeter

The zero degree calorimeter (ZDC) [89, 90] is a pair of hadron calorimeters which are
placed at 18 m up and downstream of the center of the PHENIX along with the beam
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Figure 3.6: (top) The location of the ZDC. (bottom) A side view of a ZDC module.

axis and covers |θ| < 2 mrad with respect to the beam axis shown in top of Fig. 3.6.
The ZDC consists of three identical modules. One module is a sandwich type sampling
calorimeter with a photomultiplier tube read-out (Hamamatsu R329-2) consisting of 5 mm
thick tungsten absorber layers interleaved with optical fiber (0.5 mmφ) read-out layers.
The total thickness of a ZDC module is 2 interaction length (ΛI). A ZDC module samples
Čerenkov lights emitted from secondary charged particles in the fiber layers. Figure 3.6
(bottom) shows a side view of one ZDC module.

The ZDC measures spectator neutrons emitted from heavy ion collisions at RHIC. Since
the ZDC is located behind the beam bending magnets (DX) shown in Figure 3.6 (top),
all charged particles are swept out by the DX magnets. The energy resolution at single
neutron peak is approximately 21% [91], where the single neutron peak is measured in low
multiplicity events. A coincidence hit of both the ZDC gives a minimum bias selection
of the collisions. The neutron multiplicity calculated from the total energy in the ZDC is
correlated with the event geometry. Therefore, the ZDC multiplicity combined to the BBC
are used to determine collision centralities. The ZDC also measures neutrons from mutual
Coulomb dissociations in heavy-ion collisions. This is used for luminosity monitoring. The
cross section of the Coulomb dissociation in Au + Au collisions at

√
sNN = 130 GeV is

measured to be σMCD = 3.67 ± 0.26 barns [91].
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Figure 3.7: The schematic view of the MVD

3.3.3 Multiplicity Vertex Detector

Multiplicity Vertex Detector (MVD) [87] is a array of silicon (Si) detectors comprising a
barrel strip detector and a pair of end-cap pad detectors. The barrel detector consists of
two layers of Si strip elements (300 µm thick and 200 µm pitch). The inner and outer
layer cover 2π in azimuth and ±32 cm in z-position. The bottom part of the outer layer is
only installed to reduce the amount of material in the central arm acceptance, since most
of the background electrons is from photon conversions.

MVD is placed at the center of the PHENIX detector with |z| < ±35 cm along with
the beam pipe. The radius of the MVD outer shell is about 30 cm. Figure 3.7 shows a
schematic view of the MVD.

The purpose of the MVD is to measure charged particle multiplicity and to determine
a position of collision vertex. The MVD information is not used in this analysis. But the
composition of the MVD needs to be described in detail for electron analysis. The amount
of material in the MVD is approximately 1.1% radiation length (X0), and it is a major
source of background electrons from photon conversions. During the “converter run”, a
photon converter described in section 3.6 was installed wrapping around the MVD outer
shell. The detailed list of the MVD material is summarized in Tab. 3.2. The MVD was
installed for the first three years of the PHENIX operation. After these periods, the MVD
was removed. Therefore, background electrons from photon conversions are significantly
reduced in Run 4 analysis compared to Run 2 analysis.
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Table 3.2: Summary of the MVD composition and their radiation lengths

Description Material
Thickness

(mm)
Rad. Length

(mm)
Thickness X0

(g/cm2)

Beam Pipe Be 1.016 353 0.29 %
MVD

Inner Shell Al 0.01 89 0.01 %
adhesive 0.0508 254 0.02 %
Roha cell 3 5000 0.06 %
adhesive 0.0508 0.02 %

Al 0.01 0.01 %
Inner Cell Si 0.3 94 0.32 %

Rohacell Cage Rohacell 24.4 0.11 %
Outer Si Si 0.3 0.32 %

Kapton Cable Kapton 0.05 250 0.02 %
Cu 0.005 14 0.02 %
Cu 0.005 0.02 %

Outer Shell Al 0.01 0.01 %
adhesive 0.0508 0.02 %
Rohacell 6 0.11 %
adhesive 0.0508 0.02 %

Al 0.01 0.01 %

Air before DCH Air 1980 304200 0.65 %
Ar Ar 252.5 109708.2 0.23 %
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Figure 3.8: A cutaway view of the PHENIX magnets. The line shows the contour of the
magnetic field.

3.4 Central Arm Spectrometer

3.4.1 Central Magnet

The central magnet [92] is energized by two pairs of concentric coils and provides a axially
symmetric magnetic field parallel to the beam pipe. The field strength at R = 0 cm is 0.5
T in Run 2 (0.9 T in Run 4) and gradually decrease with approximately Gaussian profile.
Then, the field reaches almost zero for region R > 250 cm. Therefore, electrons can pass
through the RICH with a straight line, because there is no magnetic field in the RICH.
Figure 3.8 shows a cutaway view of the PHENIX magnet systems with the field lines of
the central and the muon magnet.

3.4.2 Drift Chambers

The Drift Chambers (DC) are placed at the front of both the East and the West arms
with a radius of 2.0 to 2.4 m far from the beam axis [93]. Each DC has a cylindrical shape
with |z| < 90 cm and π/2 azimuthal angle (φ) coverage shown in Fig. 3.9 (top).

The DC is supported by a titanium frame and filled with 20 equal sectors covering 4.5
degrees in azimuth. There are 6 types of wire modules stacked radially in each sector.
They are called X1, U1, V 1, X2, U2 and V 2. Each module contains 4 sense planes and
4 cathode planes forming wire cells with a 2 − 2.5 cm drift space in the φ direction. The
X1 and X2 wire cells run in parallel to the beam axis to measure particle trajectories in
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Figure 3.9: (top) A schematic view of the DC with 20 DC sectors. (bottom) A picture of
the DC covered by the PC.
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Figure 3.10: (left)The layout of X and U ,V stereo wires in a sector. (right) The schematic
diagram of X, U and V orientation.

r − φ. These wire cells are followed by two set of small angle U , V wire planes. The U1,
V 1, U2 and V 2 wires have stereo angles of approximately 6◦ relative to the X wires and
measure the z coordinate of the tracks. The X, U and V cells contain 12, 4 and 4 sense
wires, respectively. As a result, there are 40 sense wires in each cell. Figure 3.10 shows
the layout of sense planes and sense wire cells in a sector. The U and V stereo wires start
in a sector on one side and end in a neighboring sector on the other side of the DC.

The DC measures the charged particle trajectories in the r−φ plane to determine their
momentum with good resolution. It is required that the DC recognizes the track for the
highest multiplicity. To satisfy the requirement, the DC is designed to have single wire
resolution better than 150 µm in r − φ, single wire track separation better than 1.5 mm,
single wire efficiency better than 99%, and spatial resolution in z axis better than 2 mm.
Moreover, to reduce the single wire occupancy, the wires are electrically isolated into two
halves at the middle of the DC (z = 0) using kapton of 100 µm thickness. Therefore, the
DC system has 6400 sense wire (40/2 wires/cell * 80 cells/side * 2 sides/arm * 2 arms =
6400 wires). This corresponds to 12800 readout channels The DC operates with a mixture
of 50% Ar, 50% ethane gas and small fraction of alcohol. Figure 3.9 (b) shows a picture
of the DC covered by PC.

3.4.3 Pad Chambers

The Pad Chambers (PC) consist of three individual layers of multi-wire proportional
chambers [93]. The first inner layer of the PC (PC1) are placed between the DC and the
RICH in both the East and the West arms. The second layer (PC2) is located behind the
RICH in the West arm only. The third layer (PC3) is mounted in front of the EMCal.
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Figure 3.11: (left) The pad and pixel geometry. (right) A cell defined by three pixels.

The installed radii of these three PC layers correspond to 248, 419 and 490 cm from the
beam pipe, respectively. A layout of three PC layers in both the East and the West arms
can be seen in Fig. 3.3. Each PC contains a single wire plane inside a gas volume bounded
by two cathode planes. One cathode is finely segmented into an array of pixels to read
out the induced charge through specially designed electronics. The PC operates with a
gas mixture of 50% argon and 50% ethane.

The PCs are the only non-projective detectors in the central arm tracking system and
provide three-dimensional space-point of charged particles with high efficiency. The PC1
is also used to determine z-coordinate of the track measured by the DC. The PC2 and
PC3 are needed to recognize particle trajectories, because many background tracks are
produced by particle decays and particle-detector interactions outside the DC.

A special pad design was invented to archive a high pixel granularity and small readout
channels. Figure 3.11 (left) shows the pixel configuration of a pad. The nine by nine
interleaved pixels are grouped together to form single readout channel. Each cell recognizes
a valid hit and contains three pixels which are connected to different but neighboring pads
shown in Fig. 3.11 (right). So, the hit information can be broken down to the cell level by
identifying the triplets of the pads. The cell size is 8.4 mm for the PC1 and PC2 , and is
twice for the PC3, since the PC3 is twice far from the beam pipe compared to the PC1.
The spacial resolutions of the PC1 and PC 3 in z direction is ±1.7 mm and ±3.6 mm,
respectively.

3.4.4 Ring Imaging Čerenkov Detector

The Ring Imaging Čerenkov detector (RICH) [94, 95] is a gas Čerenkov detector and is
a primary device for identifying electrons among the very large number of charged pions.
The RICH is placed behind the PC1 in both the East and the West arms. Figure 3.3
shows the RICH location.

The RICH consists of a 40m3 gas vessel with an entrance and exit windows of the
aluminized Kapton, two intersecting spherical mirrors and two arrays of 16 × 80 photo
multiplier tubes (PMT). A PMT array is placed behind the central magnet so that particles
from the collision do not directly hit the PMT array. Each PMT (Hamamatsu H3171S)
is housed in a magnetic shield. A Winston cone is attached at the entrance of the shield
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Figure 3.12: A cutaway view of the RICH gas vessel with the spherical mirrors.

with 50 mm diameter to collect Čerenkov photon efficiently. Figure 3.12 shows a cutaway
view of the RICH.

An electron passing through the RICH emits Čerenkov lights. The spherical mirror
reflects the Čerenkov photons and focuses on the PMT array forming a ring-shaped pat-
tern. The diameter of the Čerenkov ring which corresponds the emission angle of the
Čerenkov photon is defined by a type of a gas radiator. The vessel is filled with CO2 gas
at 1 atm as Čerenkov radiator. This corresponds to Čerenkov threshold of 4.9 GeV/c for
pion. Figure 3.13 shows the top view of the RICH. The Čerenkov photons emitted by an
electron are reflected to the PMT arrays, although a charged hadron passes away without
Čerenkov light emissions.

3.4.5 Time Of Flight Counters

The Time-Of-Flight counters (TOF) [94] play an important role for particle identification
of charged hadrons. The TOF is designed to provide π/K separation at momenta up to
2.4 GeV/c and K/p up to 4.0 GeV/c within 4 σ.

The TOF is placed at 5.1 m far from the beam pipe in the East arm and covers the
range of 70 − 110◦ in poler angle (θ) and 30◦ in azimuth (φ). The location of the TOF
is shown in Fig. 3.3. The TOF consists of 10 panels which is composed of 96 plastic
scintillator slats with read-out PMT (Hamamatsu R3478S) attached at both ends of the
slat. Thus, 960 slats of the scintillators and 1920 channels of PMTs are totally installed.
A slat is 1.5 × 1.5 cm2 in width and depth and is aligned to r − φ direction. Figure 3.14
shows the schematic view of one panel in which 96 slats are arranged.

The TOF measures an arrival time (stop time) by taking an average time at both end
of PMTs. This time-of-flight of a charged particles is determined by using the arrival time
and the start time provided by the BBC. The particle identification is performed using
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Figure 3.13: The top view of the RICH. An electron emits Čerenkov photons.

the squared mass of the measured particle expressed as:

m2 =
p2

c2

[(
tTOF

L/c

)2

− 1

]
, (3.3)

where p is the momentum, tTOF is the time of flight, L is the flight path length and c is
the speed of light. The time resolution for the time-of-flight measurement is archived to
be σ ' 120 ps [105].

3.4.6 Electromagnetic Calorimeter

The electromagnetic calorimeter (EMCal) [96] is used to measure the spatial position and
energy of electrons and photons produced in heavy ion collisions. The EMCal is located
at the most outside of the central arm. The EMCal consists of two different detector
systems. One is a Pb-Scintillator calorimeter (PbSc) which provides 4 and 2 sectors for
the West and East arms, and the other is Pb-Glass calorimeter (PbGl) which occupies 2
lower sectors of the East arm. The location of the PbSc and the PbGl calorimeters are
shown in Fig. 3.3.

The PbSc is a shashlik type sampling calorimeter made of alternating tiles of Pb and
scintillator and consists 15552 individual towers. Each PbSc tower contains 66 sampling
cells (55 × 55 × 375 mm3) and has a thickness of 18 radiation length (X0) and about
30 mm of Molière radius. These cells are optically connected 36 longitudinally penetrating
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Figure 3.14: Schematic view of the single TOF panel which is composed of the 96 scintil-
lator slats.

wavelength shifting fibers for light collection. Light is readout by 30 mm PMT (FEU115M)
at the back of the towers. A single basic structure is called as a module which consists
from 4 towers. Figure 3.15 shows a PbSc module.

On the other hand, the PbGl is Čerenkov calorimeter which consists 9216 lead glass
modules with PMT readout (FEU84). Each PbGl module is 40 × 40 × 400 mm3 and has
14.4 X0 and 36 mm of Molière radius. The PbGl has been used previously in CERN WA98
experiment [97]. Figure 3.16 shows an unit array of the PbGl modules.

The EMCal has a important role in particle identification using the informations of
measured energy, time and shower shape of electromagnetic cascade. The energy resolu-
tions of the PbSc and the PbGl are obtained using electron and positron beam at a test
experiment for the PbSc and the PbGl respectively:

σE

E

∣∣∣∣PbSc

=
8.1%√
E(GeV)

⊕ 2.1%,

σE

E

∣∣∣∣PbGl

=
5.9%√
E(GeV)

⊕ 0.8%.

The position resolutions are also obtained:

σPbSc
x (E, θ) =

(
1.55(mm) ⊕ 5.7(mm)√

E(GeV)

)
⊕ ∆ × sin(θ),

σPbGl
x (E) = 0.2(mm) ⊕ 8.4(mm)√

E(GeV)
,

where σPbSc
x depends on both energy and impact angle (θ) of incident particle and ∆ is

given by radiation length.
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Figure 3.15: The PbSc module consisting 4 towers.

Timing information is used for both particle identification and pattern recognition to
find overlapped clusters. In particular, the timing information is a good tool to separate
neutral baryons from photons. The time resolutions of the PbSc are obtained as 120 and
400 ps for electrons and charged pions, respectively. On the other hand, time measurement
is difficult for the PbGl, since the arrival time of hadrons are faster than the Čerenkov
light of electro-magnetic shower produced near the front of the module.

3.5 Data Acquisition System

The PHENIX detector is designed to measure a wide range of observables such as soft
hadron production and rare probes such as photons, single leptons and lepton pairs on a
variety of colliding systems from p+ p to Au + Au. The number of tracks passed through
the detector varies from only a few tracks in p+ p to several hundred tracks in central
Au + Au collisions. The expected interaction rate also varies from a few kHz from central
Au + Au to approximately 500 kHz for p+ p collisions. To handle a variety of event size
and rate seamlessly, the PHENIX Data Acquisition system (DAQ) [98] consists of the
detector front ends equipped with the pipelined and dead-timeless features and higher
level trigger systems. Figure 3.17 shows a general schematic diagram of the PHENIX
DAQ.

The RHIC delivers the 9.4 MHz fundamental clock which corresponds to 106 ns of
time interval between beam crossings. All of PHENIX Front End Electronics modules are
synchronized to the RHIC clock. Signals produced in the various subsystems are processed
by Front End Modules (FEMs) that converts the detector analog signals into digital data.
The FEM for each subsystem is placed in the PHENIX Intersection Region (IR). A FEM
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Figure 3.16: An unit array of the PbGl modules.
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module can buffer the data of up to 40 beam crossings to wait for the LVL1 decisions
and to wait for digitization and readout of triggered event. We have two types of data
collection methods in the FEM. The first type is that the signal is digitized in real time in
every clock period. The BBC, ZDC, DC and PC use the method. The second type is that
the signal is stored in analog form in Analog Memory Units (AMU) and is only digitized
after the event is accepted by the LVL1 trigger. The RICH, EMCal and MVD adopted
the second method.

All the FEM’s are synchronized by the master clock produced in the PHENIX timing
system. Figure 3.18 shows a block diagram of the timing system. The RHIC clock is
received by the Master Timing Module (module). The MTM distributes the master clock
by fanning out the RHIC clock, where the internal phase locked loop is used to minimize the
clock jitter. The master clock is transmitted to the FEM via the Granual Timing Module
(GTM). Thus, all the FEM’s are processed in a single clock. The GTM is prepared for a
unit of detector elements. In addtion, the GTM send the control commands (mode bits)
and trigger decisions.

The purpose of the Level-1 trigger (LVL1) is to select interesting events and provide
event rejection for the limited DAQ rate. The Global Level-1 (GL1) system generates the
LVL1 decision based on logical combinations of the Local Level-1 (LL1) decisions. The LL1
is generated by individual trigger detector such as the BBC and the ZDC independently.
The GL1 can treat totally 128 bits of the LL1 inputs to make the LVL1 decision.

Once the LVL1 decision is generated, the decision signal is sent to the FEM via the
GTM, then the data buffered in the FEM are transfered to the Data Collection Module
(DCM) located at the PHENIX Counting House. The FEM, GTM and DCM are connected
via a fiber optic cable to eliminate a large number of noise, cross-talk and grounding
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Figure 3.19: Block diagram of the EVB architecture.

problems. At the maximum LVL1 trigger rate, the whole FEM’s send over 100 Gbytes of
data per second. The DCM is designed to receive this large amount of data. After receiving
the data, the DCM performs the zero suppression, error checking and data formatting to
generate data packets. The zero suppression is to compress the data by comparing the
preset threshold. In addition, the DCM provides a busy signal which are returned to the
GL1 to hold off further triggers.

Many parallel streams of the data packets from the DCMs are sent to the event builder
(EVB). The EVB performs the final stage of event assembly. Figure 3.19 shows a block
diagram of the EVB architecture. In the EVB, the streams of the data packets from the
DCMs are first received and buffered in a set of the Sub Event Buffers (SEB). These data
are transfered on request to a set of Assembly/Trigger Processors (ATP) via Asynchronous
Transfer Mode switch (ATM). The final events assembled in the ATPs are transmitted to
the PHENIX Online Control System (ONCS) for logging and monitoring processes. The
format of the final event is called “PHENIX Raw Data Format (PRDF)”. The raw data
are sent to High Performance Storage System (HPSS) at RHIC Computing Facility (RCF)
and converted to physical quantities for analysis.

Typical data logging rates for Au + Au collisions increased from 100 Hz in Run 2 and
1 kHz Run 4, then finally reached 5 kHz in Run 7.
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Figure 3.20: (left) Photon converter installed to wrap around the MVD outer shell in
Run 2. (right) Converter placed around the beam pipe in Run 4 because the MVD was
removed.

3.6 Photon Converter

A photon converter is a key component to separate signal and background electrons in the
converter method described in section 4.10.1. The converter is a thin brass sheet of 1.7%
radiation length (X0). In a part of Run 2, the converter was installed wrapping around
the MVD outer shell. On the other hand, the converter was placed directly around the
beam pipe in Run 4 since the MVD was removed. Figure 3.20 shows the picture of the
converter in Run 2 (left) and Run 4 (right), respectively. The basic parameters of the
converter is summarized in Tab. 3.3. The radiation length of the converter was precisely
determined since the size and weight of the converter was measured.

Table 3.3: The basic parameters of the photon converter

Parameters

Length 190.5 (cm)
Width 60.96 (cm)
Thickness 0.0254 (cm)
Weight 2500.405 (g)
Area density 0.215313 (g/cm2)
Mass density 8.476889 (g/cm3)
X0 1.68%

Component (X0 (g/cm2)) Composition

Cu (12.86) 70%(68.5%-71.5%)
Zn (12.43) 30%
Fe (13.84) < 0.05%
Pb (6.37) 0.07%



Chapter 4

Analysis

4.1 Outline

In this chapter, the analysis of heavy flavor electron measurement in Au + Au collisions
at

√
sNN = 200 GeV is described. The data used in this analysis is recorded by the

PHENIX detector with a minimum bias trigger (MB) during the Run 2 period of the
RHIC operation. The definition of the MB trigger and the event characterization are
described in section 4.2. The reconstruction of charged particle tracks and the electron
identification are described in section 4.3 and 4.4.3

Inclusive electrons consists of three components: (1) signal electrons from semi-leptonic
decays of open heavy flavors (namely heavy flavor electrons), (2) “photonic” background
electrons from Dalitz decays of light neutral mesons and photon conversions in the detector
materials, (3) background electrons from Ke3 decays and two electron decays of vector
mesons. In addition, electrons from quarkonium decays and Drell-Yan are also background
included in the component (3). Here, both the component (1) and (3) are called as
“non-photonic” electrons. To separate and extract non-photonic and photonic electrons,
“Converter method” is used. The converter method is described in section 4.10.1.

The invariant yield is obtained using the extracted signal of heavy flavor electrons.
The invariant yield is a Lorentz invariant form of the yield expressed as:

E
d3N

dp3
=

d2N

2πpTdydpT

, (4.1)

where N is the raw yield of heavy flavor electrons per event. To obtain the invariant yield,
the correction factors are applied which are the geometrical acceptance, the track recon-
struction and the electron identification efficiency. These correction factors are estimated
using a GEANT [99] based Monte Carlo simulation of the PHENIX detector described in
section 4.9. The systematic uncertainties for signal extraction and correction factors are
described in section 4.12.

4.2 Event Selection

In this section, the definition of the minimum bias trigger, the determination of the event
characterization are described.

51
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4.2.1 Minimum Bias Trigger

In this analysis, the minimum bias (MB) trigger is defined by a coincidence of both the
BBC and the ZDC signals. Because the BBC can measure charged particles at pseudo-
rapidity 3.1 to 3.9, the BBC is sensitive to both inelastic Au + Au collisions and back-
grounds from beam-gas and/or upstream interactions. On the other hand, the ZDC is
sensitive to the inclusive Au + Au interactions which include not only inelastic collisions,
but also mutual Coulomb dissociations. In the case of the mutual Coulomb dissocia-
tions, there is almost no signal in the BBC. Therefore, in order to select only the inelastic
Au + Au collisions and reduce the backgrounds from bean-gas interactions, the coincidence
of both the BBC and the ZDC is required as the MB trigger. The detailed definition of
the MB trigger is a coincidence of more than 2 hits PMT in both side of the BBC and a
coincidence of hits in both side of the ZDC. In addition, the position of collision vertex is
selected for the MB trigger to optimize the acceptance of the central arm. The require-
ments of the vertex positions are |z| < 75 cm in online and |z| < 20 cm in offline analysis,
respectively.

Efficiency of the MB trigger is studied. The MB trigger efficiency is expressed as

εMB = εBBC × εZDC, (4.2)

where εBBC and εZDC correspond to the trigger efficiencies by the BBC and the ZDC,
respectively. The BBC efficiency (εBBC) is estimated using a Monte Carlo simulation
based on the GEANT [99] with HIJING 1.35 event generator [100] as input. The BBC
response in the simulation is tuned so that the charge and time distributions in all 128
PMT and the LVL1 logic of the BBC are reproduced. The systematic uncertainty of the
efficiency is estimated by changing the model parameters in HIJING and the threshold of
the hit PMT. The BBC efficiency is obtained as [101]:

εBBC = 93.1 ± 0.4(stat) ± 1.6(sys)%. (4.3)

The ZDC efficiency εZDC is estimated using the relative fraction of the ZDC triggered
events in the BBC triggered events. The ratio is obtained as 97.5%. The BBC trig-
gered events include 60% of the background due to high luminosity and 40% of the ZDC
inefficiency. Therefore, the ZDC efficiency εZDC is obtained as [102]:

εZDC = 99.0+1.0
−1.5%. (4.4)

Finally, the MB trigger efficiency is obtained as:

εMB = εBBC × εZDC = 92.2+2.5
−3.0% (4.5)

4.2.2 Centrality Determination

The nucleus collisions are classified by “centrality”. The centrality is an experimental
variable to relate to the geometrical information of the nucleus collisions, e.g. impact
parameter (b) and number of participants (Npart).
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Figure 4.1: The centrality determined by the correlation between the ZDC total energy
and the BBC multiplicity [105].

For the centrality determination, a correlation between the BBC multiplicity (QBBC)
and the ZDC total energy (EZDC) is used. The BBC measures the charged particle multi-
plicity in the rapidity range 3.1 < η < 3.9 which increases proportionally with respect to
Npart. On the other hand, the ZDC measures the total energy which corresponds to the
number of spectator neutrons. The spectator is a part of nucleus not to participate in the
collision, and thus decreases with respect to Npart. Therefore, anti-correlation is seen for
the signals between the BBC and the ZDC as shown in Fig. 4.1. Similar anti-correlation
was measured in the NA49 experiment [103].

The relation between the centrality and the impact parameter is determined using a
Monte Carlo simulation of the Glauber model including the detector response [104]. The
boundary of the centrality is defined in the “clock method ” and is expressed in terms of
an angle φcent as:

φcent = tan−1

(
(QBBC −Q0)/Q

max
BBC

EZDC/Emax
ZDC

)
, (4.6)

where Qmax
BBC and Emax

ZDC correspond to the maximum values of the BBC multiplicity and
the ZDC energy, respectively. The origin of the clock is (0, 0.2 ·Qmax

BBC) which is determined
by the simulation. The lines shown in Fig. 4.1 indicate the centrality boundaries from
central to peripheral collisions. The range of the centrality is from 0 to 92% due to the
MB trigger efficiency.
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Figure 4.2: Schematic view of the colliding nuclei.

4.2.3 Glauber Calculation

The number of participants (Npart) and the number of nucleon-nucleon collisions (Ncoll)
described in section 2.3.3 are useful to compare the observable (e.g. the production cross
section of charged particles) in p+ p and nucleus+nucleus (A+A) collisions. The Npart is
the number of nucleons included in the overlap region of colliding nuclei in A+A collisions
shown in Fig. 4.2. Thus, the Npart can be interpreted as the size of the the overlap region
and is related to the total volume of the dense matter formed in the collision. Ncoll is the
number of inelastic nucleon collisions which is used to study the medium modification of
high pT particles.

To estimate an average number of the impact parameter (b), Npart and Ncoll for the cor-
responding centrality classes, a Monte-Carlo simulation of the Glauber model is performed
[63]. The Glauber model is a simple geometrical picture of a nucleus-nucleus collision. In
the Glauber model, nucleon is assumed to travel in a straight line.

When the distance (d) between the nucleons becomes less than d <
√
σin

NN/π in the
calculation, a collision is considered to take place. Here, σin

NN represents to the inelastic
cross section of the nucleon-nucleon collisions. The nucleon collided with other nucleons
is called as “wounded nucleon”. In the Glauber model, the wounded nucleon is considered
to be identical to the normal nucleon, although one might think that the wounded nucleon
is different with the normal nucleon. For the realistic calculation of Au + Au collisions at√
sNN = 200 GeV, the Woods-Saxon parameterization ρA(r) in Eq. 2.25 are used with

RA = 6.38 fm, a = 0.54 fm and the inelastic cross section is σin
NN = 42 mb. The systematic

uncertainties of the Glauber calculations are estimated by changing the parameters and
the simulation conditions. The definition of the centrality class is also slightly changed to
study the systematic uncertainty. Figure 4.3 and 4.4 show the systematic uncertainties
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Figure 4.3: Systematic uncertainty of the Npart.

as a function of Npart and Ncoll, respectively. The result of the Glauber calculation is
summarized in Tab. 4.1 [106].

4.3 Charged Particle Tracking

Charged particles emitted from nucleus-nucleus collisions pass through the magnetic field
and bend along with a plane perpendicular to beam pipe until these particles arrive at
the DC. Once these particles reach the DC, these particles go away in straight lines, since
there is almost no magnetic field at the outside of the DC.

The DC reconstructs charged particle trajectories using the Combinatorial Hough
Transform method (CHT) which is a general algorithm for finding straight line tracks.
In the Hough transform, any pairs of the DC hits are mapped into a feature space defined
by φ and α. The φ is the polar angle at the intersection of the track with a reference circle
near the mid-point of the DC, and α is the inclination angle of the track at that point
relative to the straight line. Figure 4.5 (left) shows a schematic view of these variables.
In this coordinate, the DC hit pairs from an actual track make a clear peak in the feature
plane, although the random pairs from different tracks result in a flat background. If a
track has n hits in the DC, the peak height is n(n− 1)/2. Figure 4.6 shows an example of
hits in a part of the DC in the feature plane (left) and the corresponding hit distribution
in the Hough transform feature space (right) [107].

Once a track is found in φ − α plane, the z-coordinate of the track is determined
using the Hough transform with the associated PC1 cluster and the stereo U and V wire
informations of the DC. The variable zed is the z-coordinate of the intersection point with
the reference radius and the θ is the polar angle between the track and the beam axis
(z-axis) in the r − z plane shown in Fig. 4.5 (right). Finally, the reconstructed track is
traced back to the event vertex measured by the BBC.

The momentum (p) of a charged particle is determined using its polar angle (θ) and
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Figure 4.4: Systematic uncertainty of the Ncoll.

Table 4.1: Summary of centrality, b, Npart, Ncoll and TAA

Centrality (%) b (fm) < Npart > < Ncoll > < TAA > (mb−1)
0 - 10 3.2 ± 0.2 325.2 ± 3.3 955.4 ± 93.6 22.75 ± 1.56

10 - 20 5.7 ± 0.3 234.6 ± 4.7 602.6 ± 59.3 14.35 ± 1.00
20 - 30 7.4 ± 0.3 166.6 ± 5.4 373.8 ± 39.6 8.90 ± 0.72
30 - 40 8.7 ± 0.4 114.2 ± 4.4 219.8 ± 22.6 5.23 ± 0.44
40 - 50 9.9 ± 0.4 74.4 ± 3.8 120.3 ± 13.7 2.86 ± 0.28
50 - 60 11.0 ± 0.4 45.5 ± 3.3 61.0 ± 9.9 1.45 ± 0.23
60 - 70 11.9 ± 0.5 25.7 ± 3.8 28.5 ± 7.6 0.68 ± 0.18
70 - 80 13.5 ± 0.5 13.4 ± 3.0 12.4 ± 4.2 0.30 ± 0.10
80 - 92 14.1 ± 0.6 6.3 ± 1.2 4.9 ± 1.2 0.12 ± 0.03
0 - 20 4.4 ± 0.2 279.9 ± 4.0 779.0 ± 75.2 18.55 ± 1.27
20 - 40 8.1 ± 0.4 140.4 ± 4.9 296.8 ± 31.1 7.07 ± 0.58
40 - 60 10.5 ± 0.4 60.0 ± 3.6 90.7 ± 11.8 2.16 ± 0.26
60 - 92 13.0 ± 0.5 14.5 ± 2.5 14.5 ± 4.0 0.35 ± 0.10

minimum bias 9.5 ± 0.4 109.1 ± 4.1 257.8 ± 25.4 6.14 ± 0.45
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Figure 4.5: (left) The schematic view of a reconstructed track by the DC in the x − y
plane. (right) The schematic view of a reconstructed track by the DC in the r − z plane.

Figure 4.6: (left) The DC hits in the x−y plane. (right) The corresponding hit distribution
in the feature space [107].



58 CHAPTER 4. ANALYSIS

the inclination angle (α). Especially, the transverse momentum (pT) is approximately
expressed as:

α ≈ K

pT

, (4.7)

where K = 87 (mrad GeV/c) is the effective field integral between the collision vertex and
the DC. Because of the non-uniform shape of the focusing magnetic field, an analytical
calculation is not possible for momentum determination. Therefore, the four-dimensional
field-integral grid (f(p, r, θ0, z)) is constructed for momentum reconstruction and for the
entire radial extent of the central arms in order to trace the entire trajectory of the track
from the event vertex [107]. The parameters in the field grid are: the total momentum of
the particle (p), the radius (r), the polar angle of the particle at the vertex (θ0) and the
z coordinate of the vertex (z).

The momentum scale is verified by comparing the known proton mass with the mea-
sured value. The mass value of proton is measured using the time of flight information
by the TOF. The accuracy of the momentum scale is better than 0.7%. The momentum
resolution is directly related to the α resolution:

δp

p
=
δα

α
=

1

K

√(
σms

β

)2

+ (σαp)
2, (4.8)

where δα is the measured angular spread and β is velocity. The momentum resolution
is composed from the contribution of the multiple scattering (σms) and the contribution
of the intrinsic pointing resolution of the DC (σα). These values are estimated to be
σms = 0.61 (mrad GeV/c) and σα = 0.86 (mrad) using the high energy hadron track
in the zero field data [108, 109]. The momentum resolution is finally determined to be
δp/p ' 0.7% ⊕ 1.0% × p (GeV/c) [110].

The quality of the reconstructed tracks is defined using the hit informations of the X
and the stereo U and V wires and the associated PC1 cluster. The “quality” is a 6 bit
variable to describe the track quality. The definition of quality is described in Tab. 4.2.

Table 4.2: Bit definition of the track quality.

bit decimal description
0 (LSB) 1 X1 hits used
1 2 X2 hits used
2 4 UV hits used
3 8 UV unique (no hit sharing)
4 16 PC1 cluster used
5 (MSB) 32 PC1 unique (no cluster sharing)
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4.3.1 Matching to the Outer Detector

The reconstructed tracks are extended as straight lines and projected into the outer de-
tectors such as the RICH, TOF and EMCal. The inter-detector association of the track
is performed by searching for the closest hit in these detector. The closest hit from the
track projection point is identified as “associated hit”.

The distance in both the φ and z direction between the projection point and the
associated hit is approximately Gaussian with a width (σmatch) expressed as:

σmatch =

√(
σmatch

det

)2
+

(
σmatch

ms

pβ

)2

, (4.9)

where σmatch
det is the finite detector resolution and σmatch

ms is the contribution of the multiple
scattering. The mean value of the distribution is tuned to be zero for the detector align-
ment. The residual distribution between the projection point and the associated hit is
referred as the matching distribution. The matching distributions of φ and z are indepen-
dent each other. In this analysis, the widths of the matching distributions of φ and z are
normalized by their standard deviations, and then these are used for the track selection.
This selection of the tracks is called as “matching cut”.

4.4 Electron Identification

For electron identification, some variables are measured and calculated from the RICH
and the EMCal. In this section, the definition of these variables are described.

4.4.1 Electron ID with RICH

The electron identification (ID) is performed by mainly the RICH described in section
3.4.4. Čerenkov lights emitted by an electron is reflected by the spherical mirror in the
RICH and is focused as a ring shape on the PMT arrays of the RICH shown in Fig. 4.7.
The hit PMT is defined so that a PMT detects more than 0.1 photo-electrons (Npe).

To determine association of the RICH signal with the reconstructed track, the track is
reflected by the spherical mirror and the reflected line is projected onto the PMT arrays of
the RICH. If the track is an electron, the reflected line should be projected to the center
of a ring formed by hit PMTs. Then, we count the number of hit PMTs (n0) within a
association radius (rasso) from the projection point. The association radius (rasso) is ideally
5.9±2.5 cm and depends on both flight path length of the Čerenkov light, refraction index
of the radiator (CO2) and velocity of the electron. Therefore, the range of the association
radius is set from 3.4 to 8.4 cm. Using the association with the RICH, four variables for
the electron ID are defined as follows:

• n0 − Number of hit PMT within rasso.

• npe0 − Number of photo-electrons in all hit PMTs within rasso. Using number of
photo-electrons in single hit PMT i (N i

pe), npe0 is expressed as:

npe0 ≡
∑

N i
pe (4.10)
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Figure 4.7: The schematic view of the reflected line by the RICH mirrors and hit PMTs
in the PMT array with the tight association radius.

• disp − Displacement between a measured ring center (rm) and a position of track
projection. The measured ring center is the weighted average of the hit PMT position
(ri) expressed as:

rm ≡
∑
ri ×N i

pe

npe0
, (4.11)

• chi2/npe0 − χ2-like variable of the ring shape between the expected and the measured
ring. Using the projection point (r0) and ri, chi2/npe0 is expressed as:

chi2/npe0 ≡
∑

rasso
(ri − r0)

2 ×N i
pe

npe0
, (4.12)

The variable n0 and npe0 represents the quality of association between the track and
the RICH hit. The variable disp and chi2/npe0 indicate the quality of the ring shape
reconstructed in the RICH.

4.4.2 Electron ID with EMCal

The EMCal is another main detector for the electron ID which provides the complementary
information to the RICH. Four variables measured in the EMCal are used for the electron
ID. These four variables are defined as follows:
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• emcsdphi e − Distance in φ direction between the track projection position (pemcphi)
and the hit position (emcphi) in the EMCal. The hit position is the center of the en-
ergy cluster at the surface of the EMCal. The distance is normalized by its standard
deviation (σemcdphi(p)). The emcsdphi e is expressed as :

emcsdphi e ≡ emcphi − pemcphi

σemcdphi(p)
. (4.13)

• emcsdz e − Distance in z direction between the track projection position (pemcz)
and the hit position (emcz) in the EMCal. The distance is normalized by its standard
deviation (σemcdz(p)). The emcsdz e is expressed as :

emcsdz e ≡ emcz − pemcz

σemcdz(p)
(4.14)

• dep − Energy(E) - momentum (p) matching, where E is the energy measured by
the EMCal and p is the momentum of the track. Since an electron deposits full
energy in the EMCal and the mass of electron is small compared to its momentum,
the energy to momentum ratio (E/p) must be about unity. On the other hand, E/p
is less than unity for hadron since hadron deposits only a fraction of its full energy.
Using its standard deviation (σE/p(p)), the dep is expressed as:

dep ≡ E/p− 1

σE/p(p)
, (4.15)

• emcdt − Time information (tEMC) measured in the EMCal. Using its standard
deviation (σtEMC

(p)), the emcdt is expressed as:

emcdt ≡ tEMC

σtEMC
(p)

. (4.16)

4.4.3 Summary of Electron ID Conditions

The cut values required for the event selection, the track selection and the electron ID are
summarized in Tab. 4.3. These required cuts are determined to increase both the statistics
and purity of electrons as much as possible.

There are some comments on these cuts. (1) A large fraction of the DC in the West
arm is unstable during Run 2. Therefore, the East arm is only used in this analysis. (2)
The loose quality value in the DC is required to increase statistics. In electron analysis,
the coincidence of hits in the three detectors (the DC, RICH and EMCal) are required
to identify electrons. Therefore, possible contaminations from the ghost tracks might be
reduced.

Applying these cuts for the electron ID, clean electron samples can be extracted. Figure
4.8 (left) shows the E/p ratio of electron sample for 0.5−0.6 GeV/c in pT. Here, all of these
cuts except the dep cut are required for the electron ID. The red and the blue histograms
correspond to the E/p ratio associated with the RICH hit (Real) and background (BG)
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Figure 4.8: (left) Energy to momentum (E/p) ratio (right) n0 distribution in RICH. In
both panels, electron signals are clearly seen.

estimated by the “flip and slide” method described in section 4.5. The net signal (green)
shows the peak around one. As the other example, the n0 distribution is shown in Fig.
4.8 (right). The red, blue and green histograms show the associated, background and
net signal, respectively. These examples indicate that these cuts can work well for the
electron extraction from huge hadron backgrounds. After the electron ID cuts are applied,
the hadron backgrounds due to the random association still remain as roughly 10% which
is described in section 4.5.

Table 4.3: Summary of the required cut values for the electron ID.

Variables Required cuts
Trigger selection MB trigger
Collision vertex |ZBBC| < 20 cm
Spectrometer The East arm
Track quality Not required

Matching of track
√

emcsdphi e2 + emcsdz e2 < 2.0
RICH hit n0 ≥ 3

Ring shape chi2/npe0 < 10.0
Matching of ring center disp < 5.0

Energy momentum matching −2.0 < dep < 3.0
EMCal time emcdt < 2.0 or ttof < 0.3
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Figure 4.9: Fiducial volume for the East-South (left) and the East-North (right). The red
and the blue lines show the boundaries of the fiducial cut E and F , respectively. The
shaded areas are removed out in the analysis.

4.4.4 Fiducial Cut

The selection of the fiducial volume is introduced to control the stability of the detector
acceptance. There are two definitions of the fiducial volumes which is denoted as “E” and
“F”. The E fiducial cut is for removing the difference of the detector acceptance between
the data with and without the photon converter. These two data sets are compared
to extract non-photonic electrons described in section 4.10.1. The F fiducial cut is for
removing the discrepancy of the acceptance between the real data and the simulation.

These fiducial volumes are defined in the plane of “charge/pT vs φ” at the DC. The
φ is an azimuthal angle of the reconstructed track at the DC. Since the south and north
side of the DC are independent detectors, the fiducial volumes are defined for each side
of the East-South and the East-North, respectively. The definitions of the fiducial cuts
E and F for the East-South and the East-North are summarized in Tab. 4.4. Figure 4.9
shows the fiducial volume in the plane of “charge/pT vs φ” for the East-South (left) and
the East-North (right), respectively. The shaded areas shown in Fig. 4.9 are removed
out by these fiducial cuts. An additional fiducial cut for a sector one of the PbGl EMCal
are applied so that the tracks with pT less than 0.5 GeV/c are removed. Because the φ
distribution in the real data is different with that in the simulation.

In order to verify whether the fiducial cut works, the φ distribution of electrons between
the data with that without the converter is compared. Figure 4.10, 4.11, 4.12 and 4.13 show
the phi distributions of e+ and e− for the East-South and the East-North, respectively.
In these figure, the blue and the red histograms correspond to the data with and without
the converter. From the comparisons, the acceptance between the data with and without
the converter are in good agreement.
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Table 4.4: Summary of the fiducial cuts E and F for the East-South and the East-North.

Fiducial cut for the East South
E charge/pT > -46.804 + 12.338 ×φ
E 2.22 < φ < 3.085
E 3.20 < φ
F charge/pT > 36.175 -11.81 ×φ
F charge/pT < 33.26 - 11.86 ×φ

Fiducial cut for the East North
E charge/pT > −46.804 + 12.338 × φ
E charge/pT < −551.5 + 170.0 × φ
E charge/pT > −546.5 + 170.0 × φ
E φ > 2.23
F charge/pT > 36.9 − 11.85 × φ
F charge/pT < 33.357 − 11.809 × φ
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Figure 4.10: φ distributions of e+ in the East-South. The red and the blue histograms
correspond to the data with and without the converter.
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Figure 4.11: φ distributions of e− in the East-South. The red and the blue histograms
correspond to the data with and without the converter.
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Figure 4.12: φ distributions of e+ in the East-North. The red and the blue histograms
correspond to the data with and without the converter.
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Figure 4.13: φ distributions of e− in the East-North. The red and the blue histograms
correspond to the data with and without the converter.

4.5 Hadron Background

A small fraction of the backgrounds from the hadron contamination remains in the electron
samples after the electron ID cuts is applied. The origin of the mis-identified electron
samples is mainly due to accidental association of the reconstructed track with the hit
in the RICH. These backgrounds are estimated by an event mixing method. The event
mixing is performed in software by flipping the z coordinate of the track in a same event,
and then searching for the association of the flipped track with the RICH hit. For example,
if a track has 45 cm of z-coordinate, the z-value of the flipped track is −45 cm. However,
a flipped track near z = 0 is almost same with its original track. To treat such a track,
the z component of a track within |z| < 35 cm is slided toward the opposite side of the
z coordinate. If a track has 20 cm in z, the z value of the slided track is −15cm (=
20 − 35 cm). Since these flipped and slided tracks provide only random association with
the RICH hit, the random hadron backgrounds are statistically estimated. This event
mixing method is called as “flip and slide method”. Figure 4.14 shows the schematic
diagram of the flip and slide method. The backgrounds estimated by the method are
statistically subtracted from the reconstructed electrons to obtain the net signals.

Figure 4.15 shows E/p ratios for four pT ranges. The red and the blue points show
the total and background (BG) electron candidates. The green histograms represent the
net signals obtained by the subtraction of the background from the total electron candi-
dates. From the figure, by comparing the total and background electron candidates, the
backgrounds from random hadron association are estimated to be about 10%.

After the subtraction of the random backgrounds, the other background components
still remain which are shown as a lower tail of the E/p distributions in Fig. 4.15. These
backgrounds are electrons from Ke3 decays and photon conversions that occur far from
the collision vertex. These background electrons reconstructs with higher momentum
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Figure 4.14: Schematic view of the flip and slide method.

compared with its actual momentum due to the tracking algorithm. Therefore, the E/p
ratio of the background electrons has lower value. These background components are
studied using a GEANT simulation [99] of the PHENIX detector described in section
4.10.6.

4.6 Run Selection

The dead and/or the hot area of the detector is possibly changed during the Run 2 opera-
tion period. The run-by-run detector condition is studied to verify whether the data used
in this analysis is taken with the stable condition. Figure 4.16 shows the run dependence of
the inclusive electron yield for six pT classes, which correspond to 0.2-0.3, 0.3-0.5, 0.5-0.8,
0.8-1.0, 1.0-2.2 and pT < 2.2 GeV/c, respectively. In these figures, the red and the blue
points correspond to the positron and the electron yield, respectively.

The photon converter has been installed during a part of the run period. The run
periods with and without the converter are called as the converter run and the non-
converter run respectively. In Fig. 4.16, the electron yield in the converter run is constantly
higher than that in the non-converter run. On the other hand, the electron yield in the
non-converter run is less stable than that in the converter run. Thus, a good run period
in the non-converter run is used in this analysis.

The actual run lists for the converter run and the non-converter run are summarized
in Tab. 4.5. The data statistics for the converter run and the non-converter run are shown
in Tab. 4.6. The minimum bias events are subdivided for five centrality classes, 0-10%,
10-20%, 20-40%, 40-60% and 60-92%, respectively.
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Figure 4.15: E/p distributions for four pT ranges. The net signal in each panel is extracted
by subtracting the backgrounds (BG) from the total electron candidates (Total).

Table 4.5: Summary of the run lists for the converter run and the non-converter run.

the converter run
28623 28625 28627 28632 28718 28749 28750 28751 28761
28765 28768 28775 28777 28781 28791 28794 28795 28798
28902 28903 28956 28958 28961 28962 28966 28968 28971
28972 28973 29014 29015 29016 29017 29036

the non-converter run
29116 29146 29171 29178 29179 29183 29184 29185 29186
29212 29213 29255 29267 29268 29368 29372 29380 29386
29392 29393 29401 29404 29445 29446 29454 29459 29461
29510 29512 29514 29515 29529 29534 29537 29561 29562
29563
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Figure 4.16: The run dependence of the raw electron yield for East-South. The red and
the blue points correspond to the positron and the electron yield, respectively.

Table 4.6: Summary of event samples for the converter run and the non-converter run.

Centrality non-converter run converter run
Minimum bias 2,544,577 2,253,413

0-10 % 247,060 220,410
10-20 % 280,233 248,604
20-40 % 553,849 490,245
40-60 % 562,982 497,595
60-92 % 900,453 796,559
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4.7 Raw Yield of Inclusive Electrons

Applying the electron ID cut described in section 4.4.3, the raw yields of inclusive electrons
are obtained for both the converter run and the non-converter run. The backgrounds
from the hadron contaminations estimated by the flip and slide method are subtracted
statistically. Figure 4.17 shows the raw yield of inclusive electrons as a function of pT in
minimum bias Au + Au collisions. The blue and the red histograms correspond to the
yield in the converter run and the non-converter run, respectively. They are normalized
by their number of analyzed events independently. Since additional photon conversions
take place in the converter run, the blue histogram is always higher than the red one.
The spectra become closer at high pT. This indicates that a fraction of photonic electrons
becomes smaller at higher pT. Figure 4.18 shows the raw yield of inclusive electrons for
0-10%, 10-20%, 20-40%, 40-60% and 60-92% centrality classes, respectively. From the
comparison of the electron spectra with and without the converter, we can separate the
photonic electron and the non-photonic electron components. The details of the analysis
is described in section 4.10.5.

4.8 Detector Response in Simulation

The geometrical acceptance and the electron ID efficiencies are estimated using the Monte
Carlo simulations of the PHENIX detector based on the GEANT simulator [99]. This
detector simulator is called as “PISA”. In order to calculate the acceptance and the elec-
tron ID efficiency, the detector responses in the simulation should be the same with those
in the data. For the electron analysis, the background is mainly electrons from photon
conversions. Thus, the material budget in the simulation is crucial to estimate the back-
ground. In this section, the detector responses and the material budget in the simulation
are described.

4.8.1 Comparison between Real Data and Simulation

To study the detector responses in the PISA simulation, all the electron ID variables are
compared with that in the real data. If the variable in the simulation is different from
that in the real data, the simulation is tuned to reproduce the real data accurately. These
comparisons are performed using the electron samples. To select the electron samples, all
the electron ID cuts except the compared variable are required (to be the same as the
real data). Table 4.7 shows the summary of the required cuts for the comparison of each
variable. In Tab. 4.7, the symbol “©” and “×” mean whether the cut is required or not
required, respectively. For example, when we compare the RICH variable n0 between the
simulation and the real data, the electron sample is selected by emcsdphi e, emcsdz e, dep
and emcdt. It should be noted that a tighter cut in emcsdz e is required for the comparison
of emcsdphi e, since the two dimensional matching cut variables are independent each
other.

Figure 4.19 shows the comparisons of the variables between the real data and the
simulation. The plots from the top-left to the bottom-right in Fig. 4.19 correspond to
the emcsdphi e, emcsdz e, n0 and dep, respectively. These distributions are normalized by
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Figure 4.17: The raw yield of inclusive electrons as a function of pT in minimum bias
Au + Au collisions. The blue and the red points represent the electron yields in the
converter run and the non-converter run, respectively.
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Figure 4.18: The raw yield of inclusive electrons as a function of pT. The blue and the
red points represent the electron yields in the converter run and the non-converter run.
These six panels correspond to the six centrality classes, 0-10%, 10-20%, 20-40%, 40-60%
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the number of the entries. These comparisons indicate that the detector responses in the
simulation are in good agreement with the read data. The detailed comparisons of the
individual electron ID variables are described in Appendix A.1.

Table 4.7: Summary of the required cuts for the comparison between the real data and the
simulation. The symbol “©” and “×” mean whether the cut is required or not required,
respectively. The variables, sdphi and sdz, are shortened forms of emcsdphi e and emcsdz e,
respectively.

Applied Cut Compared Variables
sdphi(z) n0 chi2/npe0 disp dep emcdt√

sdphi2 + sdz2 < 2 × (sdz < 1) © © © © ©

n0 ≥ 3 © × © © © ©

chi2/npe0 < 10 © × × × © ©

disp < 5 © × × × © ©

−2 < dep © © © © × ×
emcdt < 2 © © © © © ×

4.8.2 Material Budget in Simulation

Photon conversions are the main source of photonic electron backgrounds. Most of pho-
ton conversions occur in the beam pipe and the MVD. If photon conversions in the beam
pipe and the MVD are accurately modeled in the PISA simulation, photonic electron back-
grounds can be correctly subtracted using the converter method described in section 4.10.1.
Therefore, it is important to verify whether the material budget of the PHENIX detector
in the simulation is the same as the real one.

The material budget of the PHENIX detector are studied using the yield of electron-
positron (e+e−) pairs from photon conversions. Figure 4.20 shows the invariant mass
distribution of e+e− pairs. The red and the black points correspond to the real and
the combinatorial background pairs, respectively. The combinatorial backgrounds are
estimated by an event mixing method. There are 3 peaks at 5, 15 and 75 MeV/c2 in
Fig. 4.20 which are artificially produced by the tracking algorithm. Since the track
reconstruction algorithm assumes that all tracks originate from the collision vertex, the
electrons produced by photon conversions at the point far from the vertex are reconstructed
with incorrect momenta. Figure 4.21 shows the schematic view of the mis-reconstruction of
the conversion pair. As a result, the reconstructed mass of pair is shifted from its original
value, even though its original value is very close to zero. This shift is approximately
proportional to the magnetic field integral. This indicates that these artificial peaks can
be used to identify the positions where the photon conversions occur. The first peak around
5 MeV/c2 is mainly from π0 Dalitz decays, the second peak around 15 MeV/c2 is from
photon conversions at the beam pipe and the MVD except the outer shell and the third
peak around 75 MeV/c2 are from the conversions at the MVD outer shell, respectively.
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Figure 4.19: Comparisons of the detector response between the real data and the simu-
lations. The detector response of emcsdphi e (top-left), emcsdz e (top-right), n0 (bottom-
left) and dep (bottom-right) are shown, respectively. The black and red lines correspond
to the real data and the simulation.
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Figure 4.22 show the invariant mass distribution of e+e− pairs in the real data (left)
and the simulation (right). The combinatorial backgrounds have been already subtracted.
The red and blue histograms correspond to the pair yield in the non-converter run and
the converter run, respectively. In both the real data and the simulation, the peak at
75 MeV/c2 in the converter run is much higher than that in the non-converter run, since
the converter increases photon conversions around the MVD outer shell. Here, π0 simu-
lations are used for the pair analysis. The conditions of π0 simulations are described in
section 4.10.2.

In order to compare the material budget between the real data and the simulation
quantitatively, we define the following variables:

• NBP : the pair yield forMe+e− < 40 MeV/c2 where the Dalitz decays (0.8%X0 equiv-
alent) and the conversions at the beam pipe (0.29% X0) and the MVD (0.9% X0)
except the outer shell are included,

• NMVD : the pair yield for 60 < Me+e− < 100 MeV/c2 where the conversions at the
MVD outer shell (0.17% X0) and the converter (1.7% X0) are included,

• Rmaterial : the ratio of NMVD to NBP.

Rmaterial =
NMVD

NBP

. (4.17)

where X0 is the radiation length.
The converter gives a good reference to study the amount of the material. Since

the converter in the simulation is implemented using the measured thickness and the



4.8. DETECTOR RESPONSE IN SIMULATION 75

 (GeV)eeM
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

p
ai

r
N

0

20

40

60

80

100

<0.2 (GeV))
ee

Invariant mass of ee pairs (M

Real Data

No conv Run
  : 908.20BPN
 : 139.35MVDN

Conv Run
  : 705.90BPN
 : 939.00MVDN

<0.2 (GeV))
ee

Invariant mass of ee pairs (M

 (GeV)eeM
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

p
ai

r
N

0

20

40

60

80

100

120

<0.2 (GeV))
ee

Invariant mass of ee pairs (M

Simulation

No conv Run
  : 1074.65BPN
 : 177.80MVDN

Conv Run
  : 1045.75BPN
 : 1284.05MVDN

<0.2 (GeV))
ee

Invariant mass of ee pairs (M

Figure 4.22: Invariant mass distribution of e+e− pairs in the real data (left) and the
simulation (right). The red and blue histogram correspond to the non-converter and the
converter run, respectively.

measured weight, NMVD in the simulation should be the same with that in the real data in
the converter run. Therefore, Rmaterial shows the accurate information of NBP compared
with NMVD. This means that the material amount of both the beam pipe and the MVD
except the outer shell can be studied by comparing Rmaterial between the real data and the
simulation.

Before the Rmaterial calculation, the pT distribution of the pairs between real data
and simulation are compared since the invariant mass distribution is sensitive to the pT

spectrum of the pairs, Figure 4.23 shows the pT distributions of the pairs in 0 − 40 (left)
and 60 − 100 MeV/c2 (right) in the converter run. The red histogram corresponds to the
real data, and the black, the green, the blue, the magenta and the light blue histograms
correspond to π0 simulation with pT threshold of 0.0, 0.6, 1.0, 1.5 and 2.5 GeV/c. In
both figures, the shape of the pT distribution in the real data is well reproduced by the
simulation above each pT threshold. From the comparison of pT distribution, we decide
to use two sets of the simulation data with the pT threshold of 0.0 and 0.6 GeV/c. For
Rmaterial calculation, we select the pairs with pT > 0.7 GeV/c.

In addition, in order to increase the statistics of NBP in the simulation, NBP in the
non-converter run of the simulation is combined with that in the converter run of the
simulation. But, it is not so simple to combine these NBP. In the converter run, electrons
emitted inside the converter suffers the radiative energy loss in the converter. This blocking
effect modifies the invariant mass distribution within Me+e− < 40 MeV/c2 in the converter
run. On the other hand, this blocking effect does not appear in the non-converter run. For
this reason, the mass within Me+e− < 40 MeV/c2 in the converter run is slightly smaller
than that in the non-converter run. This effect is shown in both Fig. 4.22 (left) and
(right). Therefore, the blocking effect for the pair yield needs to be taken into account
when the NBP for the converter and non converter run are combined.
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Figure 4.23: Raw pT distribution of e+e− pairs from Me+e− < 40 MeV (left) and 60 <
Me+e− < 100 MeV (right). Red histogram shows real data, and the others are a set of
simulation data

The efficiency of the blocking effect εpair
block for the pair yield is estimate by the simulation

as follows:

εpair
block =

Nnoconv
BP

N conv
BP

, (4.18)

where Nnoconv
BP and N conv

BP are correspond to NBP in the non-converter run and the converter
run, respectively. The blocking effect of the pair is obtained to be εpair

block = 1.068. By using
this εpair

block, NBP is combined as.

NBP =
1

2
· (N conv

BP + 1/εpair
block ·N

noconv
BP ). (4.19)

Table 4.8 shows NBP and NMVD in the real data and the simulation. After the NBP and
NMVD are normalized by number of events, Rmaterial is calculated and compared between
the real data and the simulation. The results are summarized in Tab. 4.9. As a result,
the material budget in the simulation is found to be consistent with that in the real data
within statistical uncertainty (99.8%±4.2%). This value is obtained from the double ratio
of Rreal

material to Rsim
material.

The another double ratio is calculated using the pairs with pT > 0.9 GeV/c. That
double ratio with pT > 0.9 GeV/c is found to be 101.0% ± 5.33%. The difference of
these two values is 1.2% (101.0%/99.8%). We assigned 4.4% (=

√
(4.2%)2 + (1.2%)2) for

systematic uncertainty of the material budget.
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Table 4.8: Summary of NBP and NMVD in the non-converter run and the converter run.

Real data
dataset Nevt NMVD NBP

noconv. 2544590 226 ± 18.87 1320.75 ± 36.89
conv. 2253420 1532.4 ± 42.50 1110.3 ± 34.66

π0 simulation
Nevt NMVD NBP

noconv. (pT ≥ 0.0) 667129 151.7 ± 13.51 801 ± 28.47
noconv. (pT ≥ 0.6) 666825 308.6 ± 19.77 1808.8 ± 42.80
conv. (pT ≥ 0.0) 667328 1057.3 ± 34.27 740.25 ± 27.83
conv. (pT ≥ 0.6) 666714 2349.65 ± 51.22 1703.4 ± 42.25

Table 4.9: Summary of the material amounts in real data and simulation.

dataset NMVD NBP Rmaterial

sum of real data 1532.4 ± 42.45 1101.8 ± 22.94 1.391 ± 0.0482
sum of sim. with pT > 0.0 1057.3 ± 34.27 745.46 ± 19.25 1.418 ± 0.0588
sum of sim. with pT > 0.6 2349.65 ± 51.22 1698.14 ± 29.07 1.384 ± 0.0384
combined the 2 sim. set 1.394 ± 0.0321

Double ratio (Rreal
material/R

sim
material) 0.998 ± 0.042

4.9 Correction

4.9.1 Acceptance Correction

The measured electron yield is smeared by the detection efficiency of the PHENIX detector.
In order to obtain the true invariant yield, the acceptance and the detector efficiency needs
to be corrected. The acceptance correction factor (εacc) is composed from the geometrical
acceptance(εgeom), the track reconstruction efficiency (εtrack) and the electron ID efficiency
(εeID) expressed as:

εacc = εgeom × εtrack × εeID. (4.20)

These efficiencies are determined simultaneously using the PISA simulation with single
electron and position inputs. In the PISA simulation, the 1 M single electron and positron
events are generated with flat pT slope up to 10 GeV/c, |y| < 0.6, 2π in azimuth and
|z| < 30 cm. The correction factor (εacc) is determined as follows:

εacc =
Measured electrons with eID cut

Input electrons
× 1.2, (4.21)

where a factor 1.2 is a normalization factor of the input electrons to unit rapidity (0.6/0.5).
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Figure 4.24: pT distribution of electrons. The black and the red histograms correspond to
the input and the reconstructed electrons, respectively.

Table 4.10: The parameters for the electron spectrum

p0 (GeV/c) 2.329
p1 -14.30

In order to determine the pT dependence of εacc, the pT slope of the input and mea-
sured electrons is modified using a pT weight of electron spectrum which is previously
measured in Au + Au collisions at

√
sNN = 200 GeV [111]. The pT spectrum of electrons

is parameterized as follows:

E
dN3

e

dp3
∝ f(pT) =

(
1 +

pT

p0

)p1

, (4.22)

where p0 and p1 are parameters summarized in Tab. 4.10. Figure 4.24 shows the raw pT

distributions of input and reconstructed electrons in the simulation. These pT shapes are
already modified by the pT weight.

The efficiencies εacc, εgeom, εtrack and εeID are determined by the PISA simulation.
Figure 4.25 shows the pT dependence of the efficiencies for e+ and e− at the East-South
and the East-North, respectively. The black and the red histograms (from top 2 histograms
in each panel) show the pure geometrical acceptance before and after applying the fiducial
cut. Those are calculated assuming what the detectors efficiency is 100%. The green and
black (thick) histograms show the efficiencies of εgeom × εtrack, εgeom × εtrack × εeID. These
efficiencies are determined using only 5 σ matching cut at the EMCal and all the electron
ID cuts, respectively.

The obtained electron ID efficiency (εeID) is checked and confirmed by the real data.
The electron ID efficiency in the real data is determined by using e+e− pairs from photon
conversions [112]. These conversion pairs are selected by requiring the invariant mass
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Figure 4.25: The acceptances for e+/e− at the East-South/East-North, respectively. In
each panel, the black and the red histograms (from top 2 histograms) show the pure
geometrical acceptance with and without the fiducial cut. The green and the thick-black
histograms show the acceptance determined by only 5 σ matching cut and all the electron
ID cuts.

within 60 < Me+e− < 90 MeV/c2 in the converter run. The combinatorial background is
estimated by an event mixing method and subtracted to get the net yield of the conversion
pairs. In order to determine the electron ID efficiency, the yields of the conversion pairs
are compared with and without the standard electron ID cut. In the first case, the pair
yield is calculated by selecting a track with the standard electron ID cut and the second
track in the pair without any eID cuts. In the second case, the pair yield is calculated by
selecting both two track with the standard electron ID cut. Then, the ratio of these two
yields provide the electron ID efficiency. The efficiencies for several electron ID cuts are
summarized in Tab. 4.11.

In order to confirm the electron ID efficiency, we calculate an alternative correction
function by combining the pure geometrical acceptance in the simulation and the electron
ID efficiency by the real data. Then, the alternative function is compared with that by
only the simulation. Figure 4.26 shows the pT dependence of the acceptance correction
functions. The black and the green histograms correspond to the acceptance functions by
the simulation and the combined method, respectively. These acceptance functions are in
good agreement each other up to 5 GeV/c. We decided to use an simple average of these
two acceptance functions as the acceptance correction factor. The red histogram in Fig.
4.26 shows the average of the acceptance.

Finally, we determine the geometrical acceptance (εgeom), the tracking efficiency (εtrack)
and the eID efficiency (εeID) separately. These are calculated as follows.
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Figure 4.26: The acceptance functions for e+/e− at the East-South/East-North, respec-
tively. In each plot, the green histogram is calculated from the simulation, and the black
is calculated from the real data. The red histogram is the average of the green and the
black one.

For the geometrical acceptance (εgeom),

εgeom =
Ne

input
, (4.23)

where Ne is the number of reconstructed tracks with the fiducial cut and “input” is the
number of input electrons in the simulation. Here, the εgeom is normalized to dN/dy. In
this calculation, no track and electron ID cut is required.

For the tracking efficiency (εtrack),

εtrack =
Newith |dr| < 5

Ne

, (4.24)

where dr represents the matching cut (
√

emcsdphi e2 + emcsdz e2). A numerator is selected
by 5 σ of the matching cut.

For the electron ID efficiency (εeID),

εeID =
Newith eID cut

Newith |dr| < 5
, (4.25)

where all of the standard electron ID cuts are required in the numerator. These obtained
values are summarized in Tab. 4.12. The systematic uncertainty of these values are de-
scribed in section 4.12.
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Table 4.11: Electron ID efficiencies determined by the conversion pair analysis

Variables Efficiency√
emcsdphi e2 + emcsdz e2 < 2.0 0.956

n0 >= 3 0.860
chi2/npe0 < 10 0.933

disp < 5 0.966
−2 < dep 0.958
emcdt < 2 0.961

Table 4.12: Summary of the efficiencies determined in the PISA simulation.

Name Efficiency (%)
εgeom 14.1
εtrack 75.3
εeID 64.7

4.9.2 Multiplicity Dependent Efficiency Loss

The detector performance depends on the detector occupancy since multi-particle signals
is merged into the single hit in the high multiplicity environment such as central Au + Au
collisions. In addition to the track reconstruction and the electron ID efficiencies, the
multiplicity dependent efficiency loss (εmult) due to the detector occupancy need to be
taken into account. The εmult is determined by embedding a simulated single electron
track into a real event and measuring the probability that the embedded electron track is
correctly reconstructed [113].

The efficiency loss is independent of pT. The efficiency losses are determined for min-
imum bias and five centrality classes as shown in Tab. 4.13. The systematic uncertainty
on the εmult is assigned as 7%.

Table 4.13: Summary of the multiplicity dependent efficiency loss

Centrality εmult

minimum bias 0.781
0-10% 0.738

10-20% 0.760
20-40% 0.817
40-60% 0.887
60-92% 0.953
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4.10 Heavy Flavor Electrons

Inclusive electrons contain three components as follows:

1. “Photonic electrons” : Background electrons from Dalitz decays of light neutral
mesons (π0, η, η′, ρ, ω and φ) and photon conversions in the detector material.

2. “Non-Photonic electrons”

(a) “Heavy Flavor” : Signal electrons from semi-leptonic decays of hadrons con-
taining charm and bottom quarks,

(b) “The Other Background”: Background electrons from Ke3 decays (K → πeν)
and di-electron decays of ρ, ω and φ. The small contributions from J/ψ and
Drell-Yan process are also included.

Heavy flavor electrons is the signal in this analysis and needs to be extracted from
inclusive electrons. In order to separate the non-photonic and the photonic electron com-
ponents, the converter method is used. After the separation, the third component (the
other background) still remains. The third component is subtracted step by step. The
converter method is described in section 4.10.1. The subtraction of the other background
is described in section 4.10.6 and 4.10.6.

4.10.1 Converter Method

The converter method is used to separate non-photonic and photonic electrons with high
precision. To extract non-photonic electrons, the inclusive electron yield in the converter
run is directly compared with that in the non-converter run. The photon converter is a
thin brass sheet of 1.7% radiation length which is described in section 3.6. The photon
converter increases only the yield of photonic electrons by a fixed factor Rγ determined
by its radiation length. Therefore, the comparison of these two datasets provides a clear
separation of these components. The yield of inclusive electrons with (NConv−in

e ) and
without the converter (NConv−out

e ) is expressed as:

NConv−out
e = Nγ

e +Nnon−γ
e , (4.26)

NConv−in
e = RγN

γ
e + (1 − ε)Nnon−γ

e , (4.27)

where Nγ
e (Nnon−γ

e ) is the yield of photonic and non-photonic electrons, and ε represents
small loss of electrons due to the converter. This small loss is denoted as “blocking effect”.
Next, the ratio of the electron yield (RCN) with and without the converter is defined as
follows:

RCN =
NConv−in

e

NConv−out
e

=
Rγ + (1 − ε)RNP

1 +RNP

, (4.28)

where RNP is the ratio of non-photonic to photonic electrons (Nnon−γ
e /Nγ

e ). If there were no
contribution from non-photonic electrons, then RCN = Rγ. Eq. 4.28 can be transformed
for RNP:

RNP =
Rγ −RCN

RCN − 1 + ε
=
Nnon−γ

e

Nγ
e

. (4.29)
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RNP expresses a significance of non-photonic electrons relative to photonic electrons.

Finally, photonic and non-photonic electrons are determined as:

Nγ
e =

NConv−in
e − (1 − ε)NConv−out

e

Rγ − 1 + ε
, (4.30)

Nnon−γ
e =

RγN
Conv−out
e −NConv−in

e

Rγ − 1 + ε
. (4.31)

These equations indicate that Rγ is the key parameter to extract non-photonic elec-
trons. Figure 4.27 shows the relation between the inclusive electron yield and the thickness
of the detector material in radiation length. In this figure, the non-photonic electron yield
is same in both with and without the converter. However, the photonic electron yield is
increased. The photonic electron yield per photon is approximately given by Y ∝ δ + 7

9
t,

where δ is the branching ratio of Delitz decay per photon relative to 2 γ (for π0, η and
η′) and 1 γ (for ρ, ω and φ) decay, and t is the thickness of the conversion material in
radiation length. The factor 7

9
is the approximate probability of photon conversions in one

unit of radiation length. For π0, the parameter δ is 0.6% which is half of the branching
ratio of π0 Dalitz decays (1.198/2). By applying δ ' 0.8 and t ≈ 1.1% (t ≈ 2.8%) without
(with) the converter, Rγ ≈ 1.9 is roughly estimated. Since there are some pT dependence
for δ, the complete formula of Rγ is determined using the PISA simulation.
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4.10.2 Simulation Study

The simulation study is one of the most important parts in the converter method since
Rγ is determined by the PISA simulation.

The photonic source of electrons is a mixture of light neutral mesons (π0, η, η′, ρ, ω
and φ) with different pT slopes. For these photonic sources, π0 is the main source and
η is the second main source. The contributions of π0 and η relative to the all photonic
sources are roughly 80% and 20%, respectively. The other sources contribute only small
fractions. Therefore, Rγ for π0 and η are first determined separately by the simulations,
then they are combined with a weight of their relative yield. Here, the pT dependences of
these particle yields are modeled by the cocktail calculation of the simple event generator
[114] which is described in section 4.10.2. In the following, we denote that Rπ0

γ and Rη
γ is

Rγ for π0 and η. In next sections, we describe the simulation study step by step.

Input for Simulation

The most important source of photonic electrons is π0. For the input of the PISA simu-
lation, the pT slope of π0 is obtained by fitting simultaneously the pT spectra of π+, π−

[105] and π0 [115] in minimum bias Au + Au collisions measured by PHENIX. The two
fitting functions corresponding the lower and higher pT ranges are expressed as:

f(pT) =
1

2πpT

d2N

dydpT

, (4.32)

= p0 · (1 + pT/p1)p2 (0.5 < pT < 5.0 GeV/c), (4.33)

= p0 · (1 + pT/p1)p2 + p3 · p−8.0
T (1.5 < pT < 12.0 GeV/c), (4.34)

where p0 − p3 are parameters summarized in Tab. 4.14.

Table 4.14: Parameters for the fit functions of π0.

pT range p0 p1 p2 p3
0.5 − 5.0 GeV/c 416.54 2.32603 -13.8865 -
1.5 − 12.0 GeV/c 0.41898 356909 -763859 23.2689

Figure 4.28 shows the pT spectra of charged and neutral pions with the fit functions.
The charged pion means an average of π+ and π−. Figure 4.29 shows the ratio of the pion
spectra to the fit functions.

Cocktail Calculation

The other light mesons contributing to photonic electrons are η, η′, ρ, ω and φ. The shapes
of the pT distributions for these mesons are determined by a mT scaling of π0 spectrum.
In the mT scaling, a spectral shape of a hadron is assumed to be reproduced by replacing

the input π0 pT (pπ0

T ) with a hadron pT of ph
T =

√
(pπ0

T )2 +m2
h −m2

π0 . Here, mh, mπ0 are
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mass of its hadron and π0, respectively. In addition, the absolute normalizations of the mT

scaled spectra are given by the ratio of the meson to pion yield at high pT (pT ∼ 5 GeV/c).
The meson to pion ratios used in the analysis are summarized in Tab. 4.15. Here, the η/π0

ratio is a world average of measurement [116], and the φ/π0 ratio is consistent with the
PHENIX measurement [119]. Using the pT spectra of these mesons, the pT distributions
of electrons from Dalitz decays and others are determined using the simple hadron decay
generator [114]. The branching ratios of Dalitz decays for these mesons are summarized
in Tab. 4.16.

Simulation Dataset

Using the pT spectra determined by the mT scaling, extensive PISA simulations are per-
formed. The several sets of the simulation data for π0 and η are generated to determine
Rγ. All simulations are performed at the RIKEN-CCJ.

The simulation datasets are summarized in the following list. All the particles in
the simulations are generated with a flat distribution in |y| < 0.6, 2π in azimuth and
|z| < 30 cm.

• Five sets of π0 with different pT thresholds. The five pT thresholds correspond to
0, 0.6, 1.0, 1.5 and 2.5 (GeV/c), respectively. The pT slope is determined by fitting
the measured pion spectra. All the datasets are produced with and without the
converter.

• Five sets of η with different pT thresholds. The five pT thresholds correspond to 0,
0.6, 1.0, 1.5 and 2.5 (GeV/c), respectively. The pT slope is determined by the mT

scaling. All the datasets are produced with and without the converter.
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Table 4.15: Mesons to pion ratios

η/π0 0.45 ± 0.1 [116, 117]
η′/π0 0.25 ± 0.13 [118]
ρ/π0 1.0 ± 0.5 [118]
ω/π0 1.0 ± 0.5 [118]
φ/π0 0.4 ± 0.2 [118]

Table 4.16: Branching ratios of the mesons decaying to electrons and photons

π0 → 2γ 98.798 ± 0.032 (%)
π0 → γe+e− 1.198 ± 0.032 (%)
η → 2γ 39.43 ± 0.26 (%)
η → γe+e− 0.6 ± 0.08 (%)
η′ → γe+e− < 9 × 10−4

ρ → e+e− (4.54 ± 0.1) × 10−5

ω → π0e+e− (5.9 ± 1.9) × 10−4

ω → e+e− (6.95 ± 0.15) × 10−5

φ → ηe+e− (1.15 ± 0.1) × 10−4

φ → e+e− (2.96 ± 0.04) × 10−4

The pT thresholds are introduced to increase statistics for high pT effectively. All of the
simulation data are generated with and without the converter for the Rγ determination.
The π0 simulation is used not only for the electron analysis, but also for the electron pair
analysis.

4.10.3 Determination of Rγ

Determination of Rπ0

γ

We determine Rπ0

γ from the π0 simulation data. Rπ0

γ is the ratio of the photonic electron
yields from π0 with and without the converter. Since π0 is the most dominant source
of photons and photonic electrons, Rπ0

γ is very close to Rγ. A small correction due to η
contribution need to be taken into account. The η contribution is described in the next
sections.

Figure 4.30 shows Rπ0

γ as a function of pT. Here, all five datasets of π0 simulations are

combined to increase the statistics. As a result, Rπ0

γ is approximately constant at 1.83 at
high pT, but there is a small pT dependence at low pT.

Determination of Rη
γ

The η is the second dominant source of photonic electrons. Since the mass of η is larger
than π0, the available phase space of Dalitz decays for η is slightly larger than that of π0.
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Figure 4.30: Rπ0
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Figure 4.31: Rη
γ as a function of pT.

Therefore, the Dalitz branching ratio relative to two photon decay of η is slightly larger
than that of π0. The relative branching ratio (Dalitz decay / two photons) is 1.2% for
π0 and 1.5% for η. This difference makes Rη

γ smaller than Rπ0

γ . Figure 4.31 shows Rη
γ

as a function of pT. All five datasets of η simulations are combined as same as the Rpi0

γ

calculation. The Rη
γ is approximately constant at 1.6.

Total Rγ: Combine All Contributions

To obtain the total Rγ, R
π0

γ and Rη
γ are combined based on their relative yield in Au + Au

collisions at RHIC. The combined Rγ (Rπ0+η
γ ) is expressed as follows:

Rπ0+η
γ =

Rπ0

γ ·Nπ0

e +Rη
γ ·Nη

e

Nπ0

e +Nη
e

=
Rπ0

γ +Rη
γ · εη/π0

1 + εη/π0 , (4.35)

where Nπ0

e and Nη
e are the electron yields from π0 and η decays, respectively. εη/π0

is the
ratio of the electron yields from Dalitz decays between π0 and η.

In addition to π0 and η, the contributions from the other hadrons (η’, ω and φ) need
to be taken into account for the total Rγ determination. We treat that these contributions
to Rγ is small and and have similar shapes to Rη

γ, because the branching ratios of Dalitz
decays relative to photon decays for η’, ω and φ are similar to η. Therefore, we replace
εη/π0

with εh/π0
in order to include these hadron contributions in the Rγ calculation. Thus,

the equation 4.35 is modified as follows:

Rπ0+η
γ → Rγ =

Rπ0

γ +Rη
γ · εh/π0

1 + εh/π0 , (4.36)

where εh/π0
is the ratio of the electron yields from Dalitz decays of all hadrons (h) except

π0 to π0, Here, the numerator (h) includes the contributions of η, η’, ω and φ.
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The ratio εh/π0
is obtained using the cocktail calculation of photonic electrons described

in section 4.10.2. Figure 4.32 shows the ratio of the electron yields from Dalitz decays of η,
η’, ω, φ relative to π0, respectively. From these ratios, the ratio εh/π0

is obtained as shown
in Fig. 4.33. The red, the green and the blue histograms correspond to the center value
(e.g. η/π0 = 0.45), the lower (e.g. η/π0 = 0.35) and the upper limit (e.c. η/π0 = 0.55) of
the systematic uncertainty, respectively.

The εh/π0
is parameterized as follows:

εh/π0

= f(pT) = p0 + p1/
√
pT, (4.37)

where the p0 and p1 are the parameters as summarized in Tab. 4.17.

Table 4.17: The parameters of the fit function in Eq. 4.37

p0 0.313909
p1 -0.098408

Finally, we obtained the total Rγ. Figure 4.34 shows the Rγ as a function of pT. The
red and the blue points are Rπ0

γ and Rη
γ, respectively. The green represents the total Rγ.

4.10.4 Blocking Effect

In the converter run, electrons emitted inside the converter suffer a small energy loss,
mainly due to bremsstrahlung, when electrons passes through the converter. This energy
loss causes the reduction of the electron yields. We call this effect as “blocking effect”.
Here, we consider the blocking effect for the single electron yield, even though the blocking
effect affects both the single electron and e+e− pair yields. The blocking effect for the pairs
is already described in section 4.8.2.

The blocking effect should affect equally both photonic and non-photonic electrons.
Since Rγ is simply calculated as the ratio of the electron yields with and without the
converter, Rγ automatically includes the blocking effect for photonic electrons. Thus, the
blocking effect only appears for non-photonic electrons in Eq. 4.31. The factor ε in Eq. 4.31
represents a partial loss of the non-photonic electron yield due to the blocking effect.

The blocking effect is studied by the PISA simulation of π0 Dalitz decays. Since
electrons from Dalitz decays originate at a collision vertex, these electrons undergo the
same blocking effect with non-photonic electrons in both the simulation and the real data.
Therefore, we can study the blocking effect by the simulation. In the simulation study,
the electron yields from π0 Dalitz decays are compared with and without the converter.
Figure 4.35 shows the ratio of electrons from Dalitz decays with and without the converter.
The ratio represents (1 − ε). As the result, the loss ε due to the blocking effect is ε =
(1−0.979) = 0.021(2.1%). We assigned 25% of the systematic uncertainty for the blocking
effect.
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Figure 4.32: The ratio of the electron yields from Dalitz decays of the other hadrons
relative to π0.
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Figure 4.36: RCN in real data and Rγ in simulation for minimum bias and five centrality
classes.

4.10.5 Extraction of Non-photonic Electrons

The ratio of inclusive electrons (RCN) with and without the converter in real data is
expressed in Eq. 4.28. RCN is compared with Rγ. If there were no contribution from non-
photonic electrons, then RCN = Rγ. Figure 4.36 shows the RCN and the Rγ as a function
of pT. The blue points and the red curves are the RCN and Rγ. From the top-left to the
bottom-right, the panels correspond to minimum bias and five centrality classes (0-10%,
10-20%, 20-40%, 40-60% and 60-92%), respectively. The difference between RCN and Rγ is
seen clearly, and the RCN gradually decreases for high pT compared to Rγ. This difference
indicates that the existence of non-photonic electrons.

In order to show directly the significance of non-photonic electrons, the ratio RNP is
calculated from RCN and Rγ as expressed in Eq. 4.29. Figure 4.37 shows the “1 + RNP”
distribution for minimum bias and five centrality classes. It denotes that “1 + RNP”
is the ratio of the inclusive electron yield relative to the photonic electron yield. The
signal of non-photonic electrons can appear above unity in Fig. 4.37. From the figure, the
contribution of non-photonic electrons increases with pT. The fraction of non-photonic
electrons are 40% relative to photonic electrons for pT > 1.0 GeV/c.

The raw yield of non-photonic electrons can be statistically extracted using Eq. 4.31.
Figure 4.38 shows the raw pT distributions in minimum bias Au + Au collisions. The red,
the light blue and the magenta spectra correspond to the pT distribution of inclusive,
non-photonic and photonic electrons, respectively.
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Figure 4.37: The 1 + RNP distributions as a function of pT for minimum bias and five
centrality classes. The points above 1.0 show a fraction of non-photonic electrons relative
to photonic electrons.
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4.10.6 Background from Ke3 decays and vector meson decays

After non-photonic electrons are extracted by the converter method, small backgrounds
still remain. These backgrounds are electrons from Ke3 decays and two electron decays of
light vector mesons. Electrons from J/ψ decays and Drell-Yan process are also background,
but they are negligibly small especially for low pT. In this section, the backgrounds from
Ke3 decays and light vector meson decays are described.

Ke3 Decay Background

The background electrons from Ke3 decays (K → πeν) are determined by the PISA
simulations. The input pT distribution for the simulation is obtained by fitting the pT

spectrum of kaon in minimum bias Au + Au collisions measured by PHENIX [105]. Here,
the K+ and K− spectra are averaged for the fitting. The fit function is expressed as
follows:

1

2πpT

dN

dydpT

= f(pT) = p0 · e−pT/p1 , (4.38)

where p0 and p1 are the parameters. Figure 4.39 show the kaon spectrum with the fit
function. The fit parameters are summarized in Tab. 4.18.

Table 4.18: The parameter obtained by fitting the kaon spectrum.

Parameter Value
p0 23.1648
p1 (GeV/c) 0.317162

10M events are generated for each of K+, K− K0
S and K0

L, respectively. Figure 4.40
shows the raw pT distributions of electrons from Ke3 decays. From the left to the right,
the panels correspond to electrons from K+, K−, K0

L and K0
S decays, respectively.

The absolute normalization of electrons fromKe3 decays in the simulation is determined
using dN/dy of kaons in minimum bias collisions measured in PHENIX. These dN/dy are
summarized in Tab. 4.19. The average dN/dy of K+ and K− are used for K0

L and K0
S.

Table 4.19: dN/dy of K+, K− and 〈K〉 in minimum bias Au + Au collisions [105].

K+ K− 〈K〉
dN/dy 13.6 ± 1.5 12.7 ± 1.2 13.1 ± 1.0

In order to obtain the electron spectra from Ke3 decays for the five centrality classes,
the electron spectrum in simulation is modified using the pT weight which is the ratio of
the kaon yield measured in minimum bias to that in each centrality. Figure 4.41 shows
the ratio of the kaon yield for minimum bias and the five centrality classes. For the
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Figure 4.39: The averaged pT spectrum of K+ and K− with the fitting function.
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Figure 4.40: Raw pT distributions of electrons from K+, K−, K0
L and K0

S decays, respec-
tively

centrality dependence of electrons from Ke3 decays, the multiplicity dependent efficiency
loss described in section 4.9.2 is also taken into account.

Since the simulation accurately reproduces the detector response, the electron spectra
from Ke3 decays in the simulation can be directly compared with the real data. Figure
4.42 shows the ratio between electrons from Ke3 decays and photonic electrons. From
the top-left to the bottom-right, the panels correspond to the minimum bias and the five
centrality classes, respectively. The contribution of electrons from Ke3 decays relative to
photonic electrons is 5% at low pT and smaller at high pT.
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Figure 4.41: The ratio of kaon spectra in minimum bias to that in five centralities
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Figure 4.42: The ratio of electrons from Ke3 decays to photonic electrons



96 CHAPTER 4. ANALYSIS

 (GeV/c)
T

p
0 1 2 3 4 5 6

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210
Total

-e+ e→ ω
-e+ e→ ρ
-e+ e→ φ

 in min. bias-e+ e→ φ, ρ, ωe from 

 (GeV/c)
T

p
0 1 2 3 4 5 6

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210
Total

-e+ e→ ω
-e+ e→ ρ
-e+ e→ φ

 in 0-10%-e+ e→ φ, ρ, ωe from 

 (GeV/c)
T

p
0 1 2 3 4 5 6

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210
Total

-e+ e→ ω
-e+ e→ ρ
-e+ e→ φ

 in 10-20%-e+ e→ φ, ρ, ωe from 

 (GeV/c)
T

p
0 1 2 3 4 5 6

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210
Total

-e+ e→ ω
-e+ e→ ρ
-e+ e→ φ

 in 20-40%-e+ e→ φ, ρ, ωe from 

 (GeV/c)
T

p
0 1 2 3 4 5 6

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210
Total

-e+ e→ ω
-e+ e→ ρ
-e+ e→ φ

 in 40-60%-e+ e→ φ, ρ, ωe from 

 (GeV/c)
T

p
0 1 2 3 4 5 6

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

 in 60-92%-e+ e→ φ, ρ, ωe from 

Total
-e+ e→ ω

-e+ e→ ρ
-e+ e→ φ

 in 60-92%-e+ e→ φ, ρ, ωe from 

Figure 4.43: pT spectra of ω, ρ and φ→ e+e− for each centrality

Background from two electron decays of light vector mesons

The background electrons from two electron decays of light vector mesons (ρ, ω and
φ → e+e−) are determined by the cocktail calculation described in section 4.10.2 and
appendix B. Figure 4.43 shows the pT spectra of electrons from the decays of these light
vector mesons. From the top-left to the bottom-right, the panels correspond to minimum
bias and the five centrality classes.

It should be noted that the mT scaling is slightly modified, since the mT scaling of pion
does not well reproduce the spectral shape of kaon and proton. The modified formula of
mT scaling is expressed as follows:

ph
T =

√
(pπ0

T )2 +m · (M2
h) −M2

π0 , (4.39)

where m is a factor to change the weight of the mass. In case of that m > 1 is set, the
pT slope becomes more harder than the original mT scaling. Figure 4.44 shows the pT

spectra of kaon (left) and proton (right) with two mT scaled functions. The red and the
blue curves correspond to the functions with m = 1.0 and m = 1.7, respectively. The blue
curve reproduces better than the red curve. Therefore, we used m = 1.7 for the modified
mT scaling.
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Figure 4.44: pT spectra of kaon (left) and proton (right) compared with 2 mT scaling
functions. The red and blue correspond to mT scaling with m = 1.0 and m = 1.7,
respectively.

4.11 Bin Width Effect

After the background subtractions and the acceptance corrections are performed, the
invariant differential yield of heavy flavor electrons is obtained. There still remains a bin
width effect due to the finite bin width of the obtained pT spectrum. In this analysis, we
have so far assumed that the mean pT (〈pT〉) in a bin is equal to the center of its bin in the
electron histogram. But this is not really correct if the electron spectrum has a steeply
falling shape. In this case, the 〈pT〉 is shifted to lower pT than its bin center. This bin
width effect is larger for the wider bin width. Thus, we correct the bin width effect.

This correction is performed base on the PYTHIA heavy flavor spectrum described in
next section. We first fit the PYTHIA spectrum by an empirical function as follows:

f(pT) =

(
a

1 + b · pT + ec+d·pT · p3
T

)e

, (4.40)

where a, b, c, d and e are the fit parameters. Using this function, we calculate the 〈pT〉 for
each pT bin. The data point in each pT bin is moved to its 〈pT〉 value.

4.12 Systematic Uncertainties

The systematic uncertainties are studied. The sources of the systematic uncertainties in
this analysis are mainly classified as follows:

1. Uncertainty of inclusive electrons : geometrical acceptance and electron identifica-
tion.
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2. Uncertainty of background subtraction : background from decays of Ke3 and vector
mesons.

3. Uncertainty of the converter method.

These three uncertainties, 1, 2 and 3 are independent each other. Thus, these uncer-
tainties are estimated separately.

4.12.1 Systematic Uncertainty of Inclusive Electrons

The systematic uncertainty of inclusive electrons are composed of the errors of the geo-
metrical acceptance and the electron ID efficiency due to the applied cuts.

First, the uncertainty of the geometrical acceptance is considered. In this analysis,
the dead and the hot area of the detectors are removed by applying the fiducial cut and
the acceptance in the simulation is tuned as described in section 4.8.1. To estimate the
uncertainty of the geometrical acceptance, the position dependence of the electron yield
are compared in the real data and simulation. Figure 4.45 and 4.46 show the e+ and e−

yield as a function of the DC phi value. The red and the green correspond to the real
data and the simulation, respectively. From the comparison, we assign 10 % uncertainty
for the geometrical acceptance.

Second, the statistical fluctuation of the acceptance correction function is assigned
as a systematic uncertainty. The acceptance correction function is described in section
4.9.1. This uncertainty is calculated as the ratio of the statistical error to the content
value in each pT bin of the correction function. Figure 4.47 shows the ratio of the error
and the content as a function of pT. From the figure, we assigned conservatively that the
systematic uncertainty is 3.0% at pT = 0.3 GeV/c and 2.5% for higher pT.

Third, the systematic uncertainties of the electron ID efficiency for each cut variable are
estimated using inclusive electrons. We measured the fluctuation of the inclusive electron
yields by changing the electron ID cuts tighter and looser. Then, the fluctuation of the
electron yield is assigned as the systematic uncertainty for each electron ID cut. The
tighter and looser cuts for the electron ID used in this study are summarized in Tab. 4.20.
The obtained systematic uncertainties for each cut variables are also summarized in Tab.
4.20. The systematic uncertainty of εmult is described in section 4.9.2. Figure 4.48 shows
the pT dependence of the systematic uncertainties for the electron ID variables. Finally,
these uncertainties are added in quadrature to obtain the total systematic uncertainty of
the electron ID. The total systematic uncertainty of the electron ID is 11.8%.

4.12.2 Systematic Uncertainty of Electrons from Ke3 and Vector
Meson Decays

The systematic uncertainty of electrons from decays of Ke3 and light vector mesons are
considered separately. The uncertainty from Ke3 decays includes two components. One
is the systematic uncertainty of the kaon measurement (11.2%), and the other is the
uncertainty of the electron ID (11.8%). These two components are added in quadrature
to obtain the total uncertainty of Ke3 decays. To evaluate the uncertainty relative to
non-photonic electrons, these values are multiplied by the ratio of the electron yields from
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Figure 4.45: Comparison of the e+ yield as a function of the DC phi.

phi
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 40

100

200

300

400

500

Phi in Pt 0.3-0.5

phi
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 40

50

100

150

200

250

Phi in Pt 0.5-0.8

phi
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0

10

20

30

40

50

Phi in Pt 0.8-1.0

phi
2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0

10

20

30

40

50

Phi in Pt 1.0-2.2

Figure 4.46: Comparison of the e− yield as a function of the DC phi.
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Figure 4.47: Ratio between the statistical error and the value of the geometrical acceptance
in the simulation.

Table 4.20: The Summary of the systematic uncertainties for the electron ID cut variables
and the others.

Variables Cut Systematic Comments
tighter std. looser uncertainty√

emcsdphi e2 + emcsdz e2 1.5 2.0 2.5 3.0%
n0 4.0 3.0 2.0 3.0%
chi2/npe0 7.0 10.0 15.0 5.0%
disp 3.0 5.0 7.0 3.0%
dep −1.5 −2.0 −2.5 2.0%
emcdt 1.0 2.0 3.0 2.0%
MC statistics 2.5%
Acceptance 5.0% 10% at low pT

εmult 7.0%
Total 11.8 %
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Figure 4.48: Systematic uncertainty of the acceptance and the electron ID variables

Ke3 decays to non-photonic electrons. Figure 4.49 (left) shows the uncertainty of electrons
relative to non-photonic electrons as a function of pT. From the figure, the uncertainty of
this component contributes only at lower pT.

Next, the uncertainty from two electron decays of light vector mesons (ρ, ω and φ) is
also estimated. The uncertainty also includes two components. One is the meson to the
pion ratios which are assigned 50% uncertainty for all mesons at high pT. The second is
the systematic uncertainty of the charged and the neutral pion measurement. These two
components are added in quadrature. Figure 4.49 (right) shows the pT dependence of the
uncertainty of electrons from light vector meson decays. The uncertainty increases slightly
at high pT.

4.12.3 Uncertainty of The Converter Method

The uncertainty of the converter method consists of four components as listed below:

A Material budgets in the real data and the simulation (4.4%).

B η/π0 ratio (0.45 ± 0.1).

C Acceptance with and without the converter (2.5%).

D Blocking effect (25% of 0.021).

In the component A, the uncertainty of the material budget is estimated as 4.4% in
e+e− pair analysis. Since the material budget affects directly Rγ, this 4.4% uncertainty can
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Figure 4.49: Systematic uncertainty of electrons from Ke3 decays (left) and two electron
decays of light vector mesons (right).

propagate to the uncertainty of Rγ. In the section 4.8.2, the uncertainty of the material
budget is estimated using Rmaterial = NMVD/NBP. Here, NBP and NMVD are the yield
of the conversion pairs at the beam pipe and the converter. The NBP also contains the
contribution from Dalitz decays. Those are expressed as:

NBP = Dalitz + beampipe + MVD(excluding outershell) (4.41)

∼ Dalitz + beampipe + MVD, (4.42)

NMVD = MVD outershell + converter (4.43)

∼ converter, (4.44)

where the contribution from the MVD outershell is small compared with the other contri-
butions, then it is approximately neglected.

In the single electron analysis, Rγ is expressed as:

Rγ =
Dalitz + beampipe + MVD + converter

Dalitz + beampipe + MVD
, (4.45)

= 1 +
converter

Dalitz + beampipe + MVD
, (4.46)

∼ 1 +
NBP

NMVD

= 1 +Rmaterial. (4.47)

Using this relation, the uncertainty of Rγ is determined as:

4.4% × Rγ − 1

Rγ

= 2.0%. (4.48)

We assign 2.0% uncertainty for Rγ.
For the component B, the modification of Rγ due to the η/π0 ratio is studied by

changing the ratio within its error, η/π0 = 0.45 ± 0.1. The other mesons (η′, ω and φ) are
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Figure 4.50: Relative error of Rγ calculated by changing the η/π0 ratio.

also taken into account for the modification of Rγ. Figure 4.50 shows the relative error
of Rγ calculated by changing the η/π0 ratio. The error is roughly 1% at 0.5 GeV/c and
increase slightly at high pT. To calculate the total uncertainty of Rγ, the uncertainties
from the material budget and the η/π0 ratio are added in quadrature. The obtained total
uncertainty of Rγ is

√
(2.0%)2 + (1.0%)2 = 2.2%.

In the component C, the systematic uncertainty of RCN is considered. If the acceptance
between the converter run and the non-converter run is different, the electron yield in these
two runs can not be directly compared. This difference should include as a systematic
uncertainty. Figure 4.10, 4.11, 4.12 and 4.13 show the phi angle dependence of the electron
yield for e+ and e− at the sorth and nouth side of the DC, respectively. These phi
distributions represent the acceptances of electrons. By comparing the acceptances with
and without the converter, we assign that the systematic uncertainty of RCN is 2.5%.

Finally, we consider the error propagation of these four components to obtain the sys-
tematic uncertainty of the non-photonic electron yield. These four components differently
contributes to the uncertainty of Nnon−γ

e as shown in Eq. 4.31. Therefore, these contribu-
tions are estimated separately and added in quadrature. The component A and B affect
Rγ. Thus, this can be expressed by changing Rγ to Rγ(1 ± δRγ ) in Eq. 4.31 as follows:

Nnon−γ
e =

Rγ(1 + δRγ )N
Conv−out
e −NConv−in

e

Rγ(1 + δRγ ) − 1 + ε
, (4.49)

where δRγ denotes the error value. The combined uncertainty of A and B is 2.2% deter-
mined above.

The component C affects RCN. Since the uncertainty of RCN is due to the difference of
the acceptance with and without the converter, NConv−in

e is changed to NConv−in
e /(1+δRCN

)
to represent the changing of the electron yield in the converter run as follows:

Nnon−γ
e =

Rγ(1 + δRCN
)NConv−out

e −NConv−in
e

(1 + δRCN
)(Rγ − 1 + ε)

, (4.50)

where δRCN
= ±0.025 is used as described above.
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The component D affects ε. As same as the other components, In order to evaluate
the error of the blocking effect, ε is changed to ε+ δε as follows:

Nnon−γ
e =

RγN
Conv−out
e −NConv−in

e

Rγ − 1 + ε+ δε
, (4.51)

where δε = ±0.005 is used which is 25% of 0.021. Then, the uncertainties calculated by
these four components are added in quadrature.



Chapter 5

Results and Discussions

5.1 Invariant Yield of Heavy Flavor Electrons

The invariant differential yield of single electrons from semi-leptonic decays of heavy flavors
has been measured in Au + Au collisions at

√
sNN = 200 GeV.

As described in previous sections, non-photonic electrons are extracted by the converter
method from a large amount of photonic background electrons. The background electrons
fromKe3 and vector meson decays are subtracted. After these backgrounds are subtracted,
the only remaining significant source of non-photonic electrons is electrons from semi-
leptonic decays of heavy flavors. Therefore, we denote the remaining electrons as heavy
flavor electrons. Here, we neglect the contributions from J/ψ and Drell-Yan processes due
to their small contributions.

Figure 5.1 shows the invariant differential yield of heavy flavor electrons in minimum
bias Au + Au collisions at

√
sNN = 200 GeV. The error bars and brackets represent the

statistical and the systematic uncertainty, respectively. Figure 5.2, 5.3, 5.4, 5.5 and 5.6
show the heavy flavor electron spectra for 0-10%, 10-20%, 20-40%, 40-60% and 60-92%
centralities, respectively. The data points of these spectra are summarized in Appendix C.

5.2 Comparison with p + p result

The invariant differential yield of heavy flavor electrons in Au + Au collisions is compared
with that in p+ p collisions at

√
s = 200 GeV. The heavy flavor electron spectrum in p+ p

collisions was measured in PHENIX Run 2 [120]. Figure 5.7 shows the invariant yield of
heavy flavor electrons for minimum bias collisions and for the five centrality classes. These
spectra are scaled by several powers of ten for clarity. The curves in Fig. 5.7 show the best
fit curve of the heavy flavor electron spectrum in p+ p collisions. The curves are scaled by
TAA for the corresponding Au + Au centrality. Here, TAA is the nuclear overlap function
calculated by the Glauber model described in section 4.2.3. The curves are also scaled by
the same factor as the Au + Au data point for clarity. The Au + Au data points are in
reasonable agreement with the TAA scaled p+ p fit curve in all centrality classes within
relatively large error at high pT.

Recently, the heavy flavor electron spectrum in p+ p collisions is extended to high pT

105
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Figure 5.1: Invariant differential yield of
heavy flavor electrons in minimum bias
Au + Au collisions at

√
sNN = 200 GeV.
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Figure 5.2: Invariant differential yield of
heavy flavor electrons in 0-10% central
Au + Au collisions at

√
sNN = 200 GeV.
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Figure 5.3: Invariant differential yield of
heavy flavor electrons in 10-20% central
Au + Au collisions at

√
sNN = 200 GeV.
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Au + Au collisions at
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Figure 5.6: Invariant differential yield of
heavy flavor electrons in 60-92% central
Au + Au collisions at
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sNN = 200 GeV.

with smaller statistical uncertainty in Run 5 [39]. The pT spectrum in p+ p collisions
in Run 2 is consistent with that in Run 5 within statistical and systematic uncertainty.
The top panel in Fig. 5.9 shows the invariant differential cross sections of heavy flavor
electrons in p+ p collisions at

√
s = 200 GeV. The red and black points are the electrons

measured in Run 2 and Run 5 with statistical error bars. The brackets and the yellow
bands represents the systematic uncertainties. These electron spectra in p+ p collisions are
also compared with a Fixed-Order-Plus-Next-to-Leading-Log (FONLL) pQCD calculation
[33] as described in section 2.2.1. The top curve in Fig. 5.9 shows the central value of
the FONLL calculation. The contributions of charm and bottom are also shown. The
contribution of bottom decays becomes larger than that from charm decays above pT >
4 GeV/c. The bottom panel in Fig. 5.9 shows the ratio of the data to the FONLL
calculation. The ratio is nearly independent of pT over the entire pT range and is 1.71 ±
0.02(stat)± 0.18(sys) obtained by fitting. This indicates that the spectral shape of heavy
flavor electrons in p+ p collisions is explained by the FONLL. From these comparisons of
the spectral shape in Au + Au, p+ p and the FONLL, the spectral shape of heavy flavor
electrons in Au + Au collisions is also explained by the FONLL within large error

In p+ p collisions, the ratio of electrons from bottom decays to heavy flavor electrons
has been measured by the electron-hadron correlations [123]. The ratio is compared with
the FONLL calculation. Figure 5.8 shows the ratio of (b → e)/[(b → e) + (c → e)] as
a function of pT. The solid and dashed curves represent the FONLL calculation and its
systematic uncertainties. The FONLL calculation agrees with the measured ratio. This
result confirms that the main contribution is charms up to pT < 4 GeV/c for the spectra
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in Au + Au collisions.

5.3 Centrality Dependence of Charm Electron Yield

In order to quantify the centrality dependence of the charm production, the integrated
yield (dNe/dy) of heavy flavor electrons is calculated with 0.8 < pT < 4.0 GeV/c for
each centrality class. In this pT range, the charm contribution is dominant as shown in
Fig. 5.9. Therefore, we denote that heavy flavor electron within this pT range is charm
electron. Although the integration pT range should be as wide as possible to study the total
production of charm electrons, the high pT is limited up to 4.0 GeV/c due to the increase
of bottom contribution for higher pT. By contrast, the low limit of the pT range is chosen
for pT > 0.8 GeV/c where the systematic uncertainty is comparable with the statistical
error. Then, the calculated integrated yield is fit by an empirical function, ANα

coll, where
A is a normalization parameter and α is the parameter which describes the centrality
dependence. If there is no initial and final state effects on the total charm production, we
expect α = 1. Figure 5.10 shows dNe/dy(0.8 < pT < 4.0)/Ncoll as a function of Ncoll for
minimum bias and the five centrality classes in Au + Au and p+ p collisions. The gray
box and the black circles correspond to the minimum bias data and the five centrality
classes. The cross symbol shows the p+ p data. The error bars and the brackets represent
the statistical and systematic uncertainties. We find α = 0.938± 0.075(stat)± 0.018(sys).
If p+ p data is included for the fitting, α = 0.958 ± 0.035(stat). In this fitting, most of
the systematic uncertainties will cancel. The systematic uncertainty of α is described in
Appendix D.1. This shows that the total yield of charm electrons for all centralities is
consistent with Ncoll scaling.

This result is confirmed by the updated data with much higher statistics in measured
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Figure 5.9: (top)Invariant differential cross sections of electrons from heavy flavor decays
in p+ p collisions at

√
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yellow bands are systematic uncertainty for Run 2 and Run 5, respectively. The curves
are the FONLL calculation. (bottom) Ratio of the data and the FONLL calculations. The
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√
sNN =
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brackets represent the statistical and systematic uncertainties, respectively.

in PHENIX Run 4 [121]. Figure 5.11 shows the updated dNe/dy/TAA as a function of
Ncoll. The Au + Au and the p+ p data are measured in Run 4 and Run 5[39]. The
integration range is slightly broadened for the updated data due to higher statistics. The
updated α is α = 1.009 ± 0.012(stat) ± 0.051(sys). If the p + p data is included, α =
1.010 ± 0.009(stat) ± 0.040(sys). All α values are consistent with unity within statistical
and systematic uncertainty.

This is an important finding that the total charm production in Au + Au collisions is
consistent with Ncoll scaling of the production in p+ p collisions, as expected for point like
pQCD processes. Therefore, the result rules out a large enhancement of total charm yield
due to the secondary and/or the athermal charm production predicted in [18]. In addition,
this result also gives the important baseline for charm suppression. It is found that the
heavy flavor electrons are suppressed and its RAA approaches the π0 value at pT > 4 GeV/c
[121]. Therefore, it can be understood that most of charm quarks are produced in initial
hard scatterings and they suffer the energy loss when they pass through the dense matter.

Even though the total charm production is consistent with the Ncoll scaling, there
might be small room for an possible secondary/thermal charm production.



112 CHAPTER 5. RESULTS AND DISCUSSIONS

collN
0 200 400 600 800 1000 1200

 (
m

b
)

A
A

>0
.4

) 
/ T

T
/d

y 
(p

e
d

N

0.003

0.004

0.005

0.006

0.007

0.008

0.009 centrality binned

min. bias
p + p

Figure 5.11: dNe/dy/TAA as a function of Ncoll in Au + Au and p+ p collisions measured
in Run 4 [121] and Run 5 [39]. The gray box and the black circles correspond to the
minimum bias data and the five centrality data. The cross symbol shows the p+ p data.
The error bars and the brackets represent the statistical and systematic uncertainties,
respectively.

Table 5.1: Summary of α values obtained by fitting.

Data for fitting α
Au + Au 0.938 ± 0.075(stat) ± 0.018(sys)
Au + Au and p+ p 0.958 ± 0.035(stat)
Updated Au + Au 1.009 ± 0.012(stat) ± 0.0506(sys)
Updated Au + Au and p+ p 1.010 ± 0.009(stat) ± 0.0403(sys)
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5.4 Comparison with d + Au collisions

Heavy flavor electrons in d + Au collisions at
√
sNN = 200 GeV are also measured by

PHENIX [74]. The Ncoll scaled yields of heavy flavor electrons (dNe/dy/Ncoll(0.8 < pT <
4.0 GeV/c)) for minimum bias d+ Au collisions and four centrality classes are calculated
with 0.8 < pT < 4.0 GeV/c in the same way as the Au + Au data. The four centrality
classes correspond to 0-20%, 20-40%, 40-60% and 60-88%, respectively. Figure 5.12 shows
the dNe/dy/Ncoll(0.8 < pT < 4.0) as a function of Ncoll in d+Au collisions. The error bars
and the brackets represent the statistical and the systematic uncertainties, respectively.
The p+ p data point is also shown in this figure. From the figure, the dNe/dy/Ncoll(0.8 <
pT < 4.0) for all the centrality classes in d+Au collisions and for p+ p collisions are found
to be consistent within their statistical and systematic uncertainties. Thus, this result
indicates that the total production of charms in d + Au collisions is consistent with Ncoll

scaling. This implies that the modification of heavy flavor production due to the shadowing
effect of the cold nuclear effect is small. However, the statistical and systematic error too
large to make any strong constraints.

The FNAL-E866 experiment was reported the heavy flavor production in p+A collisions
at

√
s = 38.8 GeV [124]. In order to compare the heavy flavor production in d + Au

collisions with that in p+ p collisions, they define the following relation:

σcc̄
pA = Aα · σcc̄

pp, (5.1)

where A is the mass number of the target nucleus and α is the parameter to study the
cold nuclear effect. If there is no modification due to the cold nuclear effect, then, α = 1.
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Figure 5.13: The parameter α of open charm and J/ψ as a function of rapidity (left) and
pT (right).

Figure 5.13 show α of open charm and J/ψ as a function of rapidity (left) and pT (right).
In the left panel of Fig. 5.13, α of open charm is unity near y = 0 and decreases gradually
with increasing y. This result of α = 1 at y = 0 could indicate that the shadowing effect
is small. This is the same tendency with that in d + Au collisions at

√
sNN = 200 GeV,

even though the small effect is expected since the related x region in the target nucleus
is x ∼ 0.1 where the shadowing effect is expected to be small compared with that of
the RHIC energy (x ∼ 0.02). For the forward rapidity region, α is smaller than unity.
This might indicate that the modification of the charm production due to the shadowing.
In a model [125], the intrinsic charm in a projectile is expected to contribute the charm
production. Since the intrinsic charm in a nucleus is depend on A2/3 in the model, the
charm production in p+A collisions is expected to be reduced compared with that in p+p
collisions. This is also a possible model to describe the experimental result at the forward
rapidity. Therefore, it is difficult to discuss the modification of the charm production at
the forward rapidity region.

5.5 Medium Modification of Heavy Quarks

PHENIX reported that the RAA of heavy flavor electrons shows a strong suppression at
high pT as described in section 2.4.4. The RAA value of heavy flavor electrons is about
RAA = 0.35 for pT > 4 GeV/c, which is similar with that of π0. This clear suppression
at high pT is seen for 0-10%, 10-20%, 20-40% centrality and minimum bias events. This
result indicates that not only light quarks, heavy quarks also lose their energy in the dense
matter created in Au + Au collisions.

The BDMPS and GLV models including gluon radiations failed to describe this strong
suppression of heavy flavor electrons. These predictions show a larger RAA compared with
the data. The collisional energy loss is another possible model to describe the measured
suppression of heavy flavor. The updated GLV model including both the radiative and
the collisional energy loss can describe the substantial part of the energy loss. But there
is still small difference between the model and the data.

Recently, the ratio of the bottom contribution to heavy flavor electrons was measured
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in p+ p collisions at
√
s = 200 GeV as shown in Fig. 5.8. The bottom contribution is

about 40% relative to heavy flavor electrons and is increasing with pT. Using this result,
we consider the energy loss of bottoms, although bottoms are expected to suffer smaller
energy loss than that of charms due to their large mass. If the initial composition of
charms and bottoms in Au + Au collisions were the same with that in p+ p collisions and
bottoms suffer no energy loss in the dense matter, the expected RAA is same or even a
little larger than the measure RAA within the statistical and the systematic uncertainty,
even though in the case of all of charms are suppressed. This may interpret that bottoms
also suffer an possible energy loss in the dense matter. But the current measurement can
not set significant limits of the bottom energy loss.

5.6 Total Charm Cross Section

5.6.1 Calculation of Cross Section

In this section, we evaluate the total charm cross section per nucleon-nucleon collision.
The procedure to obtain the total charm cross section is described step by step:

(1) We calculate the integrated invariant yield of charm electrons per nucleon-nucleon
collision (dNe

dy
(0.8 < pT < 4.0)/TAA) with the limited pT range (0.8 < pT < 4.0 GeV/c).

The dNe

dy
(0.8 < pT < 4.0)/TAA is equivalent to the integrated cross section of charm

electrons per N +N collisions (dσe

dy
(0.8 < pT < 4.0)).

(2) Assuming the PYTHIA calculation can reproduce the spectral shapes of charm and
bottom quarks, the dσe

dy
(0.8 < pT < 4.0) is extrapolated to the full pT range. The

conversion factor (RpT
= dσe

dy
(0.8 < pT < 4.0)/dσe

dy
) is 12.6%. The RpT

is determined
by the PYTHIA electron spectrum from charm and bottom decays.

dσe

dy
=

1

RpT

dσe

dy
(0.8 < pT < 4.0) (5.2)

(3) The electron cross section dσe

dy
is translated to the charm cross section dσcc̄

dy
using a total

branching ratio of charm decaying to electron. The total branching ratio of BR(c→ e)
is 9.5%. The bottom is neglected due to a small contribution for the integrated dσe

dy
.

dσcc̄

dy
=

1

BR(c→ e)

dσe

dy
(5.3)

(4) The total charm cross section (σcc̄) is finally obtained to extrapolate to the full rapidity
range. It is assumed that the rapidity distribution of charm can be modeled by
PYTHIA. The extrapolation factor (Ry) is 23.0%.

σcc̄ =
1

Ry

dσcc̄

dy
(5.4)
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Figure 5.14: D+/D0 ratio (left) and Ds/D
0 ratio (right) measured at CDF [128].

Since the conversion and the extrapolation factors used in this analysis are determined
by PYTHIA, we first describe a PYTHIA calculation with a modified set of parameters.
We used PYTHIA 6.205 with Mc = 1.25 GeV/c2, Mb = 4.1 GeV/c2, 〈kT〉 = 1.5 GeV/c,
K factor = 3.5 and PDF = CTEQ5L for the input. Here, Mc and Mb are charm and
bottom quark mass, 〈kT〉 is the width of intrinsic parton kT smearing in a proton, and
the K factor is a constant to take into account the higher order correction (e.g. NLO).
These parameters are determined to reproduce the charm production data in lower energy
experiments at SPS and FNAL [127, 126] and the charm electron production data at ISR
experiments [22, 23, 24]. This set of the PYTHIA parameters were used for previous
PHENIX electron analysis [114].

The total branching ratio of charm decaying to electron is obtained to combine the
charmed hadron ratio and their electron branching ratios. The branching ratio is sensitive
to the charmed hadron ratio, since the ratio of the charged D+ meson is quit different
from that of the neutral D0 meson. The charmed hadron ratio in default PYTHIA does
not agree with the experimental data. The CDF experiment reported the D0 and D+

cross section in
√
s = 1.96 TeV p + p̄ collisions [128]. Figure 5.14 show the D+/D0 ratio

(left) and Ds/D
0 ratio (right) measured at CDF. The STAR experiment also reported the

D+/D0 ratio at
√
sNN = 200 GeVd+ Au collisions [129]. In addition, the ratio in e+ + e−

experiments is summarized by the Particle Data Group [27].

From these experimental data, we assume in this analysis the these ratios to be 0.45,
0.25 and 0.1 for D+/D0, Ds/D

0 and Λc/D
0, respectively, as shown in Tab. 5.2. The total

electron branching ratio (BR(c → e)) is obtained by weighted averaging these electron
branches with their charmed hadron ratios. This modification of the electron branch is
applied to the PYTHIA calculation. This total branching ratio (BR(c → e)) is also used
when dσe

dy
is translated to dσcc̄

dy
in step 3.

Figure 5.15 shows the differential cross section of electrons from charm and bottom
decays calculated by PYTHIA. The green and blue points represent the charm and bot-
tom contributions, and the red point is the combined contribution of charm and bottom,
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Table 5.2: D+/D0, Ds/D
0, Λc/D

0 ratios in the experimental data and PYTHIA.

CDF STAR PDG PYTHIA This analysis
(p + p̄) (d + Au) (e+ + e− at

√
s = 91GeV)

D+/D0 0.45 0.4 0.3 0.45 ± 0.1
Ds/D0 0.23 0.29 0.2 0.25 ± 0.1
Λc/D0 0.17 0.1 0.1 ± 0.05

Table 5.3: Electron branching ratio of charmed hadrons

Particles Ratio to D0 BR(c → e + X)
D0 1 6.87 ± 0.28%
D+ 0.45 ± 0.1 17.2 ± 1.9%
Ds 0.25 ± 0.1 8 ± 5%
Λc 0.1 ± 0.05 4.5 ± 1.7%

Total BR(c → e) 9.5 ± 0.4%

Table 5.4: The parameters obtained by fitting the PYTHIA electron spectrum.

a ((c/GeV)2) 0.00101594
b ((GeV/c)) 1.4598
c 4.11875
d ((c/GeV)2) 1.2852

respectively. Here, the PYTHIA electron spectrum is shown as the invariant yield using
Tpp = 1/σpp = 0.238 mb−1 (σpp = 42 mb).

This PYTHIA electron spectrum is parameterized as follows:

f(pT) = a ·
(

1

1 + pT/b+ d · p2
T

)c

, (5.5)

where the parameters a, b, c and d are obtained by fitting. The magenta curve in Fig.
5.15 show the fit function. The obtained parameters are summarized in Tab. 5.4. Using
the fit function, we obtained the conversion factor RpT

= 12.6%.
Now all the extrapolation and the conversion factors are prepared. We can calcu-

late the total charm cross section step by step. In step 1, In order to calculate the
dσe/dy(0.8 < pT < 4.0), the charm electron spectrum is scaled with TAA and fit with
the PYTHIA electron function within 0.8 < pT < 4.0 GeV/c. In this fitting, the spec-
tral shape is fixed and the normalization is only a free parameter. Figure 5.16 shows the
scaled invariant yields of charm electrons ( 1

TAA

1
2πpT

dNe

dydpT
) with the fit function. The panels

from the top-left to the bottom-right correspond to minimum bias and the five centrality
classes, respectively.
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five centrality classes. The spectrum is fit by the PYTHIA electron function with 0.8 <
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Using the fit function, the integrated yield dσe/dy(0.8 < pT < 4.0) is calculated. The
result is summarized in Tab. 5.5. Then, these integrated dσe/dy(0.8 < pT < 4.0) are
converted to the total charm cross section σcc̄ per N +N collision.

Table 5.5: dσe/dy (0.8 < pT < 4.0 GeV/c) for minimum bias and the five centrality classes.
The systematic uncertainty represents the combined uncertainty of the spectrum and TAA.

Centrality Ncoll dNe/dy (µb) stat.error sys.error
(0.8 < pT < 4.0)

Min. bias 257.8 1.707 ± 0.157 ± 0.373
0-10 % 955.4 1.638 ± 0.256 ± 0.357
10-20 % 602.6 1.634 ± 0.316 ± 0.349
20-40 % 296.8 2.006 ± 0.321 ± 0.446
40-60 % 90.65 2.308 ± 0.562 ± 0.559
60-92 % 14.83 1.382 ± 1.036 ± 0.486

To estimate the systematic uncertainty on the total charm cross section, we consider
the following sources of the uncertainty:

(1) the uncertainty in dNe/dy(0.8 < pT < 4.0) obtained from the pT distribution of heavy
flavor electrons.

(2) the uncertainty in Ncoll.

(3) the uncertainty in the shape of the fit function.

(4) the uncertainty in the method to calculate the total charm cross section.

(5) the uncertainty in the pT range of the fitting.

The uncertainty of dNe/dy(0.8 < pT < 4.0) of heavy flavor electrons (source (1)) is
estimated (21%) by refitting the electron spectrum at the higher and lower error band. The
uncertainties are summarized in Tab. 5.5. Here, the uncertainty in Tab. 5.5 represents
the combined uncertainty of the source (1) and (2).

For the source (3), we tested the two other methods to calculate dNe/dy(0.8 < pT <
4.0). One is to count the bin entries in the pT range and the other is to fit the spectrum
with a power-law function. The uncertainty of the source (3) is summarized in Tab. 5.7.

For the source (4), we test the another conversion and the extrapolation factors , RpT

in step (2), BR(c → e) in step (3) and Ry (4). Since the intrinsic 〈kT〉 can modify
the shape of the pT spectrum, we test the two other 〈kT〉 values, 1.0 and 2.0 instead
of 1.5 GeV/c. Then, the RpT

= 11.5% and 14.1% is determined for 〈kT〉 = 1.0 and
2.0 GeV/c, respectively. Thus, the RpT

uncertainty is assigned as 10.1%. The BR(c →
e) uncertainty is estimated using the errors of the charmed hadron ratios in Tab. 5.2
and assigned as 4.3%. The rapidity distribution of the PYTHIA charm calculation is
studied. Since the rapidity distribution is sensitive to the initial state gluon distribution,
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Figure 5.17: Rapidity distribution of charmed hadrons.

Table 5.6: The systematic uncertainty of the source (4).

step uncertainty
RpT

step (2) 10.1%
BR(c→ e) step (3) 4.3%
Ry step (4) 6.2%
Total for dσcc̄/dy step (2) and (3) 11.0%
Total for σcc̄ all 3 steps 12.6 %

we test the two other PDFs , GRV98LO and MRST(c-g) in stead of CTEQ5L. Fig. 5.17
shows the rapidity distributions of the charmed hadron. The red, the green and the blue
histograms correspond to CTEQ5L, GRV98LO and MRST(c-g), respectively. From these
distributions, The extrapolation factor Ry = 23.0%, 21.5% and 21.6% are determined for
CTEQ5L, GRV98LO and MRST(c-g), respectively. The relative difference of these values
is 6.2% which is assigned as the Ry uncertainty. Total uncertainty of the source (4) is
estimated by adding these uncertainties in quadrature. The systematic uncertainty of the
source (4) is summarized in Tab. 5.6.

In order to estimate the uncertainty of the source (5), we test the pT range of 0.6 −
4.0 GeV/c to fit the charm electron spectrum, then calculate the integrated invariant
yield using same pT range dNe/dy(0.6 < pT < 4.0) and the total charm cross section. The
conversion factor RpT

for dNe/dy(0.6 < pT < 4.0) is 25.1% determined using the PYTHIA
electron spectrum. Then, these total charm cross sections with the different pT fit ranges
are compared to estimate the uncertainty. The difference of these charm cross sections
is assigned as the uncertainty of the source (5). Since all the systematic uncertainties
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are independent each other, these uncertainties are added in quadrature to obtain the
total systematic uncertainty. All the systematic uncertainties and total uncertainty are
summarized in Tab. 5.7.

Finally, we calculated the differential (dσcc̄/dy) and the total charm cross section (σcc̄).
The total charm cross section in minimum bias Au + Au collisions is σcc̄ = 622 ± 57 ±
160 µb. The result for minimum bias and the five centrality classes are summarized in
Tab. 5.8.

Recently, the total charm cross section is updated using the new data with much
higher statistics in Run 4 period. The updated total charm cross section in minimum bias
Au + Au collisions at

√
sNN = 200 GeV is σcc̄ = 568 ± 8 ± 150 µb. The method and the

result of the total charm cross section in Run4 are described in detail in Appendix E.
Even though the statistical error is much reduced, the systematic uncertainty in Run 4 is
similar compared to that in Run 2. The obtained cross section in Run 4 is consistent with
that in Run 2 within the statistical and the systematic uncertainty. The comparison of
the total charm cross section in

√
s = 200 GeV is described in next section.

Table 5.7: All the systematic uncertainties are summarized and the total uncertainty is
obtained by adding these uncertainties in quadrature.

Min.bias 0-10% 10-20% 20-40% 40-60% 60-92%
source (1) 20.6% 20.7% 20.4% 20.7% 21.0% 20.5%
source (2) 7.3% 6.9% 7.0% 8.2% 12.0% 28.6%
source (3) 3.8% 3.4% 4.6% 5.5% 0.3% 5.2%
source (4) 11.0% for dσcc̄/dy and 12.6% for σcc̄

source (5) 2.5% 5.9 % 8.0% 7.7% 4.2% 0.6%
Total for dσcc̄/dy 24.8% 24.6% 24.5% 25.4% 26.6% 37.2%
Total for σcc̄ 25.5% 25.4% 25.2% 26.1% 27.3% 37.7%

Table 5.8: Centrality class, Ncoll, nuclear overlap function (TAA), charm cross section
(dσcc̄/dy) and total charm cross section (σcc̄) in Au + Au collisions at

√
sNN = 200 GeV.

Centrality Ncoll TAA (mb−1) dσcc̄/dy (µb) σcc̄ (µb)
Min. bias 257.8±25.4 6.14±0.45 143±13±36 622± 57±160

0-10% 955.4±93.6 22.76±1.56 137±21±35 597± 93±156
10-20% 602.6±59.3 14.35±1.00 137±26±35 596±115±158
20-40% 296.8±31.1 7.07±0.58 168±27±45 731±117±199
40-60% 90.7±11.8 2.16±0.26 193±47±52 841±205±232
60-92% 14.5± 4.0 0.35±0.10 116±87±43 504±378±190
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5.6.2 Comparison with Di-electron Measurement

There is an alternative measurement of the total charm cross section. This total charm
cross section is measured by PHENIX using the mass spectrum of electron-positron pairs
in p+ p collisions at

√
s = 200 GeV [132]. This result allows us to cross-check the charm

cross section.

After the combinatorial and the correlated background are subtracted, the measured
mass spectrum of e+e− pairs is compared with a cocktail calculation of e+e− pairs from
light meson decays and vector meson decays. Then, the cocktail calculation can describe
the measured mass spectrum of e+e− pairs in the mass region below Me+e− < 1.1 GeV/c2

within the systematic uncertainty. On the other hand, except for the vector meson peak,
the e+e− pair yield in Me+e− > 1.1 GeV/c2 is dominated by semi-leptonic decays of
charmed hadrons correlated through flavor conservation. Figure 5.18 shows the measured
mass spectrum of e+e− pairs comparing the cocktail calculation. In addition to charm
hadrons, the remaining contributions from bottom hadrons and Drell-Yan calculated by
PYTHIA are also shown in Fig. 5.18. To determine the charm contribution, the pair yield
is integrated within 1.1 < Me+e− < 2.5 GeV/c2 after subtracting the cocktail of the light
neutral mesons and the vector mesons. The integrated pair yield is extrapolated to zero
e+e− mass using PYTHIA and translated to charm pair yield using the known branching
ratio. Then, assuming the rapidity distribution from NLO pQCD, the charm cross section
is obtained as σcc̄ = 544 ± 39(stat) ± 142(sys) ± 200(model)µb.

The result in the e+e− pair analysis is compared with the charm electron measurement
in p+ p and Au + Au collisions at

√
sNN = 200 GeV. Figure 5.19 shows the comparison of

the total charm cross section measured by the single electron measurements and the e+e−

pair measurement. All these charm cross sections measured by PHENIX are consistent
each other within the statistical and systematic uncertainty. The STAR collaboration
reported 2-3 times larger cross section in d+ Au collisions [133]. The charm cross section
by the FONLL calculation is smaller but compatible with these data within its uncertainty.

5.6.3 Collision Energy Dependence

The obtained total charm cross section in Au + Au collisions at
√
sNN = 200 GeV is

compared with those measured in the other experiments at several beam energies. The
charm cross sections are measured in the fixed target experiments at SPS/FNAL [126, 135,
136, 137] and the collider experiments at Sp̄pS [134]. Figure 5.20 shows the total charm
cross sections as a function of the collision energy

√
s. The theoretical curves of the charm

cross section calculated by PYTHIA (solid) and NLO pQCD (dashed) are also shown.
The shaded band in Fig. 5.20 represents the systematic uncertainty of the NLO pQCD
calculation. The input parameters for PYTHIA is chosen to reproduce the charm data
as described in section 5.6.1. For the NLO pQCD calculation, HVQMNR [130] is used to
calculate the charm cross section with Mc = 1.5 GeV/c2, µF = 2Mc, 0.5Mc < µR < 2Mc

and CTEQ5M PDF as input.

The data obtained in this thesis are consistent with the energy dependences of the
total charm cross section calculated by both PYTHIA and NLO pQCD within theoretical
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uncertainties. This indicates that the charm production is well reproduced by pQCD.
Therefore, as expected, the most charm quarks are produced in the initial stage of the
space time evolution in the heavy ion collisions.



Chapter 6

Summary and Conclusions

We have studied the centrality dependence of charm production in Au + Au collisions at√
sNN = 200 GeV. We have measured the single electrons from semi-leptonic decays of

heavy flavors (charms and bottoms) in Au + Au collisions during Run 2 period.

In Run 2, RHIC first operated with the full energy in Au + Au collisions. PHENIX
measured inclusive electrons in Au + Au collisions at

√
sNN = 200 GeV. A photon con-

verter was installed in a part of run period. By comparing the inclusive electron yield with
and without the converter, signal electrons are extracted from large amount of photonic
backgrounds which are electrons from Dalitz decays of light neutral mesons and photon
conversions. After subtracting the backgrounds of Ke3 and vector meson decays, only the
significant source of non-photonic electrons is the semi-leptonic decays of heavy flavors,
dominantly charm at low pT. Since the contributions from J/ψ decays and Drell-Yan
process is small, they are neglected.

We have measured the invariant differential yields of heavy flavor electrons for minimum
bias Au + Au collisions and the five centrality classes, 0-10%, 10-20%, 20-40%, 40-60% and
60-92% centralities, within the pT range from 0.3 to 4.0 GeV/c. These yields are compared
with that in p+ p collisions at

√
s = 200 GeV scaled with the number of binary nucleon-

nucleon collisions Ncoll, and are found to be consistent within relatively large error. Since
the cross section of heavy flavor electrons in p+ p collisions agrees with a NLO pQCD
theory (FONLL) with a normalization factor of 1.71 ± 0.02 ± 0.18, the invariant yield
scaled by Ncoll in Au + Au collisions also agrees with the FONLL pQCD theory within the
errors in the measured pT region.

To quantify the centrality dependence of the charm production, the integrated yields
of charm electrons dNe/dy/Ncoll(0.8 < pT < 4.0 GeV/c) are calculated for minimum bias
and 0-10%, 10-20%, 20-40%, 40-60% and 60-92% centralities, and these yields are fitted
with ANα

coll for the linearity test. We found α = 0.938 ± 0.075(stat) ± 0.018(sys). This
shows that the centrality dependence of the total charm production is consistent with Ncoll

scaling. This result is confirmed by the new data with higher statistic measured in Run 4.
The updated result of the linearity test is α = 1.0097 ± 0.0094(stat) ± 0.0403(sys). This
result is consistent with the finding of energy loss of heavy quarks in the dense matter
created in high energy heavy ion collisions. Since the final state effects such as the energy
loss affect only the momentum distribution of charm, they have little or no effect on the
total charm yield. Therefore, the result indicates that most charm quarks are produced
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by point-like pQCD processes in the initial stage of space time evolution in high energy
heavy ion collisions.

The total charm cross sections per nucleon-nucleon collision are calculated for minimum
bias Au + Au collisions and the five centrality classes. The obtained charm cross section
per N + N collision is σcc̄ = 622 ± 57(stat) ± 160(sys) µb in minimum bias Au+Au
collisions. In addition, the cross section is updated in Run 4 analysis as σcc̄ = 568±8(stat)±
150(sys) µb. These cross sections are confirmed by a complementary measurement of e+e−

pairs. By comparing a NLO pQCD prediction, the obtained cross section is consistent with
a NLO pQCD prediction within theoretical error.

The Ncoll scaling of the total charm production provides an important information
for the initial nuclear effect, e.g. Cronin effect and nuclear shadowing effect. From our
results, no significant initial nuclear effect is observed. However, the present data can not
exclude a small initial nuclear effect or possible cancellation of these effects. We need more
systematic study of collision system, especially including data in d + Au collisions. This
can help to understand the initial nuclear effects in Au + Au collisions.

High pT suppression of heavy quarks has been observed in the RAA measurement of
heavy flavor electrons in central Au + Au collisions. It is a surprising discovery that the
magnitude of heavy quark suppression is almost same with that of light quark at high pT.
This observation is not well explained by recent theoretical models for the heavy quark
energy loss. In addition, the measurement of (b → e)/(b → e + c → e) in p+ p collisions
by partial reconstruction of D meson shows the significant contribution of bottom quark
above pT > 4 GeV/c. Although theoretical models predict that heavy quarks suffer smaller
energy loss than light quarks such as dead cone effect due to their large mass, this result
indicates that not only charms, but bottoms could suffer energy losses.

In order to understand the initial gluon density, the systematic study of the heavy
flavor production in p+ p, d + Au and Au + Au collisions is necessary with a much large
amount of statistics. The d + Au data in Run 7 with 20 times large statistics is now
analyzed for the systematic study. In addition, to understand better the energy loss of
heavy quarks in the dense matter, it is necessary to measure the RAA of D and B mesons
separately. The PHENIX experiment plans to install a silicon vertex detector (VTX) in
order to directly measure D and B meson by reconstructing the secondary decay vertex
of these mesons. Furthermore, high luminosity upgrade of RHIC facility is underway.
Therefore, the upcoming experimental results with the new detector and much higher
statistics will be shown in the near future.
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Appendix A

Simulation Condition

A.1 Comparison between Read Data and Simulation

The detector responses of the electron ID variables in the real data are compared with
that in the simulation for several momentum classes. The momentum is subdivided for 11
classes which correspond to 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.8, 0.8-1.0, 1.0-1.5, 1.5-
2.0, 2.0-3.0, 3.0-5.0 and 5.0-10.0 GeV/c, respectively. All the variables in the simulation
are tuned and/or smeared to reproduce the real data whether the response is significantly
different.

Figure A.1 and A.2 show the emcsdphi e and emcsdz e distributions measured by the
PbSc EMCal. The black and red histograms correspond to the real data and the sim-
ulation. The left-top to the right-bottom panels correspond to the lower to the higher
momentum classes. Although the statistics in the real data is too small for higher mo-
mentum class, the response in the simulation is in good agreement with the real data .
The other comparisons are emcsdphi e and emcsdz e for the PbGl EMCal, n0, chi2/npe0
and disp for the RICH, dep for the PbSc and PbGl EMCal, and emcdt for the EMCal are
shown in Fig. A.3, A.4, A.5, A.6 A.7, A.8, A.9 and A.10, respectively. These figures shows
that the responses in the simulation are in good agreement with the real data.
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Figure A.1: Comparisons of emcsdphi e measured at the PbSc EMCal for several mo-
mentum classes. The black and the red histograms correspond to the real data and the
simulation, respectively.
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Figure A.2: Comparisons of emcsdz e measured at the PbSc EMCal for several momentum
classes. The black and the red histograms correspond to the real data and the simulation,
respectively.
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Figure A.3: Comparisons of emcsdphi e measured at the PbGl EMCal for several mo-
mentum classes. The black and the red histograms correspond to the real data and the
simulation, respectively.
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Figure A.4: Comparisons of emcsdz e measured at the PbGl EMCal for several momentum
classes. The black and the red histograms correspond to the real data and the simulation,
respectively.
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Figure A.5: Comparisons of n0 for several momentum classes. The black and the red
histograms correspond to the real data and the simulation, respectively.
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Figure A.6: Comparisons of chi2/npe0 for several momentum classes. The black and the
red histograms correspond to the real data and the simulation, respectively.
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Figure A.7: Comparisons of disp for several momentum classes. The black and the red
histograms correspond to the real data and the simulation, respectively.
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Figure A.8: Comparisons of dep measured at the PbSc EMCal for several momentum
classes. The black and the red histograms correspond to the real data and the simulation,
respectively.
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Figure A.9: Comparisons of dep measured at the PbGl EMCal for several momentum
classes. The black and the red histograms correspond to the real data and the simulation,
respectively.
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Figure A.10: Comparisons of emcdt for several momentum classes. The black and the red
histograms correspond to the real data and the simulation, respectively.
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A.2 Photon Converter in Simulation

The photon converter in the PISA simulation is implemented. The element composition
of the converter material (brass) is Cu (70%), Zn (29.88%), Fe (0.05%) and Pb (0.07%).
The mass density is 8.5 (g/cm3). The tube shape with 29 cm radius, 60.96 cm height and
0.0254 cm thickness is placed at center of the PHENIX along with beam axis.

The density and the thickness of the converter was checked by measuring the area and
the weight of a piece of the converter which was actually installed in the experiment. The
measured area density is 0.215313 (g/cm3). The converter is a 10 mil (= 0.0254 cm) thick
brass sheet. The density of the converter is 8.4769 (g/cm3). Therefore, the difference
between the measured value and the simulation value is less than 0.3% (8.4769/8.5 =
0.9973).

In the real experiment, the converter is fixed around the MVD by a plastic tape with
a overlap width at the bottom of the MVD. the radiation length of the plastic tape
is negligible relative to the converter. Therefore, the tape is not implemented in the
simulation. On the other hand, the overlap region with 6.985 cm overlap width at the
bottom of the converter tube is also implemented.

Figure A.11 shows the photon converter wrapped the MVD in the simulation. The left
and the right figure correspond to the beam view and the side view, respectively. The red
tube around the MVD is the converter. The blue part at the bottom of the MVD is the
overlap region of the converter.

Figure A.11: The photon converter wrapped the MVD in simulation. The panels shows
the beam view (left) and the side view (right), respectively. The blue part at the bottom
of the MVD in the beam view (left) is the overlap width of the converter.



Appendix B

Cocktail Calculation for Centralities

The composition of photonic electrons in Au + Au collisions is modeled by the cocktail
calculation. The method for the cocktail calculation is described in detail in section 4.10.2.
For the inputs of the cocktail calculation, the spectral shapes of pion for each centrality
classes are obtained by fitting the measured pT spectra of charged and neutral pions
simultaneously. The average of π+ and π− represents “charged pion”. In this analysis,
the fittings are performed for six centrality classes corresponding minimum bias, 0-10%,
10-20%, 20-40%, 40-60% and 60-92%, respectively. The fit functions are expressed as:

1

2πpT

dN

dydpT

= f(pT) (B.1)

= p0 · (1 + pT/p1)p2 + p3 · e−pT/p4 (for min. bias), (B.2)

= p0 · (1 + pT/p1)p2 · e−pT/p4 (for 0 − 10%), (B.3)

= p0 · (1 + pT/p1)p2 · ep3+p4·pT+p5·p2
T (for 10 − 20%), (B.4)

= p0 · (1 + pT/p1)p2 + p3 · e−pT/p4 (for 20 − 40%), (B.5)

= p0 · (1 + pT/p1)p2 + p3 · e−pT/p4 (for 40 − 60%), (B.6)

= p0 · (1 + pT/p1)p2 (for 60 − 92%), (B.7)

where p1 − p6 are the parameters.

Table B.1: The parameters obtained by fitting the pion spectra for each centrality.

Centrality p0 p1 p2 p3 p4 p5
(GeV/c) (GeV/c) ((c/GeV)2)

Min. bias 415.479 2.33895 -13.9435 6.71687 × 10−4 1.2504 -
0-10% 1095.74 4.76572 -34.6169 - 0.554525 -

10-20% 716.026 2.5 -14.37 0.264 -0.231 0.04588
(c/GeV)

20-40% 530.297 2.03543 -12.5758 1.11136 × 10−4 1.70697 -
40-60% 253.29 1.55091 -10.7785 1.64298 0.297068 -
60-92% 72.2085 1.29234 -9.99336 - - -

136
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Figure B.1 shows the pT spectra of charged and neutral pions for minimum bias and
five centrality classes measured in PHENIX [105, 115]. The green, the blue points and
the red curves correspond to the charged and the neutral pions, and their fit functions,
respectively. The bottom plots in each panels are the ratio of the spectrum and the
fit function. This indicates that the fit works reasonable. The obtained parameters are
summarized in Tab. B.1.
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Figure B.1: The pion spectra for minimum bias and five centrality classes. The blue and
the green points are the charged and the neutral pion, respectively. The spectral shape is
obtained by fitting.

Based on the obtained spectral shape, photonic background electrons are determined
by the cocktail calculation. The calculations are performed for centrality class by class
independently. Figure B.2 shows the cocktails of photonic electrons for minimum bias and
five centrality classes.
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Figure B.2: The pT spectra of photonic background electrons for minimum bias and five
centrality classes. These contributions are determined by the cocktail calculation.



Appendix C

Data Table

C.1 Invariant Differential Yield of Heavy Flavor Elec-

trons

The invariant differential yield of heavy flavor electrons has been measured in minimum
bias Au + Au collisions at

√
sNN = 200 GeV and five centrality classes. These results are

shown in Fig. 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6. These are results in Run 2 analysis. The data
points are summarized in the following tables.

Table C.1: The invariant differential yield of heavy flavor electrons in minimum bias
Au + Au collisions in

√
sNN = 200 GeV.

pT (GeV/c) 1
2πpT

dNe

dydpT
stat. error sys. error (+) sys. error (−) comment

0.347 5.1383e-02 1.0911e-02 2.5235e-02 2.6695e-02
0.446 3.4119e-02 6.3093e-03 1.2778e-02 1.3485e-02
0.546 1.8739e-02 3.6599e-03 7.0393e-03 7.4293e-03
0.684 1.3407e-02 1.4443e-03 3.1393e-03 3.2799e-03
0.885 4.8469e-03 6.9054e-04 1.0466e-03 1.0901e-03
1.086 1.8593e-03 3.5921e-04 3.8546e-04 4.0074e-04
1.288 7.5209e-04 2.1681e-04 1.6098e-04 1.6751e-04
1.611 2.4963e-04 4.9966e-05 4.0639e-05 4.1719e-05
2.320 2.1728e-05 9.3890e-06 3.6175e-06 3.7197e-06
3.358 7.1900e-07 1.6719e-06 1.5439e-07 7.1900e-07 shown as “→”
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Table C.2: The invariant differential yield of heavy flavor electrons in 0-10% central
Au + Au collisions in

√
sNN = 200 GeV.

pT (GeV/c) 1
2πpT

dNe

dydpT
stat. error sys. error (+) sys. error (−) comment

0.347 1.3134e-01 6.4748e-02 6.4504e-02 6.8238e-02
0.446 1.1149e-01 3.7788e-02 4.1752e-02 4.4062e-02
0.546 9.7878e-02 2.2649e-02 3.6767e-02 3.8804e-02
0.684 5.1656e-02 8.7366e-03 1.2095e-02 1.2637e-02
0.885 1.7392e-02 4.1758e-03 3.7554e-03 3.9115e-03
1.086 6.2817e-03 2.1480e-03 1.3023e-03 1.3539e-03
1.288 2.4103e-03 1.3316e-03 5.1590e-04 5.3683e-04
1.611 9.2125e-04 3.0212e-04 1.4998e-04 1.5396e-04
2.320 9.2892e-05 5.6707e-05 1.5466e-05 1.5902e-05
3.358 3.0122e-06 1.0429e-05 6.4678e-07 3.0122e-06 shown as “→”

Table C.3: The invariant differential yield of heavy flavor electrons in 10-20% central
Au + Au collisions in

√
sNN = 200 GeV.

pT (GeV/c) 1
2πpT

dNe

dydpT
stat. error sys.error (+) sys.error (−) comment

0.347 2.5069e-01 5.1595e-02 1.2311e-01 1.3024e-01
0.446 8.1438e-02 2.8830e-02 3.0498e-02 3.2186e-02
0.546 1.5789e-02 1.6897e-02 5.9310e-03 1.5789e-02 shown as “→”
0.684 2.2646e-02 6.5243e-03 5.3026e-03 5.5401e-03
0.885 1.0463e-02 3.1854e-03 2.2592e-03 2.3531e-03
1.086 5.6593e-03 1.7259e-03 1.1732e-03 1.2197e-03
1.288 1.7300e-03 1.0216e-03 3.7028e-04 3.8530e-04
1.611 4.1933e-04 2.3646e-04 6.8267e-05 7.0080e-05
2.320 9.4155e-06 4.3146e-05 1.5676e-06 9.4155e-06 shown as “→”
3.358 1.1223e-05 8.5209e-06 2.4099e-06 2.5168e-06

Table C.4: The invariant differential yield of heavy flavor electrons in 20-40% central
Au + Au collisions in

√
sNN = 200 GeV.

pT (GeV/c) 1
2πpT

dNe

dydpT
stat. error sys. error (+) sys. error (−) comment

0.347 2.0903e-02 2.4537e-02 1.0266e-02 2.0903e-02 shown as “→”
0.446 4.9819e-02 1.4409e-02 1.8657e-02 1.9690e-02
0.546 2.2979e-02 8.2808e-03 8.6318e-03 9.1101e-03
0.684 2.0266e-02 3.2620e-03 4.7454e-03 4.9579e-03
0.885 7.5990e-03 1.6080e-03 1.6408e-03 1.7090e-03
1.086 1.9210e-03 8.3206e-04 3.9825e-04 4.1403e-04
1.288 1.0073e-03 5.0680e-04 2.1560e-04 2.2435e-04
1.611 3.9285e-04 1.2126e-04 6.3957e-05 6.5655e-05
2.320 1.7569e-05 2.2482e-05 2.9252e-06 1.7569e-05 shown as “→”



C.1. INVARIANT DIFFERENTIAL YIELD OF HEAVY FLAVOR ELECTRONS 141

Table C.5: The invariant differential yield of heavy flavor electrons in 40-60% central
Au + Au collisions in

√
sNN = 200 GeV.

pT (GeV/c) 1
2πpT

dNe

dydpT
stat. error sys. error (+) sys. error (−) comment

0.347 3.1060e-02 1.4112e-02 1.5254e-02 1.6137e-02
0.446 1.9198e-02 7.9258e-03 7.1897e-03 7.5876e-03
0.546 9.8178e-03 4.5819e-03 3.6879e-03 3.8923e-03
0.684 6.6278e-03 1.7911e-03 1.5519e-03 1.6214e-03
0.885 1.8013e-03 8.6796e-04 3.8894e-04 4.0511e-04
1.086 8.3136e-04 4.6280e-04 1.7235e-04 1.7918e-04
1.288 3.7519e-04 2.8169e-04 8.0305e-05 8.3563e-05
1.611 1.3588e-04 6.1679e-05 2.2121e-05 2.2709e-05
2.320 2.1301e-05 1.2180e-05 3.5465e-06 3.6466e-06
3.358 1.3009e-06 1.3354e-06 2.7934e-07 1.3009e-06 shown as “→”

Table C.6: The invariant differential yield of heavy flavor electrons in 60-92% central
Au + Au collisions in

√
sNN = 200 GeV.

pT (GeV/c) 1
2πpT

dNe

dydpT
stat. error sys. error (+) sys. error(−) comment

0.347 6.2483e-03 4.4116e-03 3.0686e-03 3.2462e-03
0.484 1.9156e-03 1.2876e-03 7.1720e-04 7.5697e-04
0.740 3.0672e-04 2.6902e-04 6.9811e-05 7.2860e-05
1.149 1.1195e-04 7.6627e-05 2.3400e-05 2.4331e-05
1.611 1.6400e-05 upper limit
2.320 7.1337e-06 4.5662e-06 1.1877e-06 1.2212e-06

Table C.7: The Ncoll scaled integrated yield of heavy flavor electrons dNe/dy
Ncoll

(0.8 < pT <

4.0 GeV/c).

Centrality Ncoll
dNe/dy

Ncoll
(0.8<pT<4.0) stat.error sys.err(+) sys.err(−)

0-10% 955.4 ± 93.6 4.072e-05 6.522e-06 9.222e-06 9.514e-06
10-20% 602.6 ± 59.3 4.155e-05 8.007e-06 9.533e-06 9.842e-06
20-40% 296.8 ± 31.1 5.143e-05 8.122e-06 1.185e-05 1.222e-05
40-60% 90.7 ± 11.8 5.437e-05 1.441e-05 1.304e-05 1.339e-05
60-92% 14.5 ± 4.0 3.576e-05 2.595e-05 1.207e-05 1.224e-05

minimum bias 257.8 ± 25.4 4.269e-05 4.000e-06 9.700e-06 1.001e-05
p + p 1.0 5.631e-05 1.247e-05



Appendix D

Centrality Dependence of Charm
Production

D.1 Systematic Uncertainty of α for Run 2 data

The systematic uncertainty of the parameter α is estimated for the linearity test of the
charm production in Run 2. Since the α influences the curvature of the fit function A·Nα−1

coll ,
we only consider the following sources:

(1) Multiplicity dependent efficiency loss (7%),

(2) Extraction of non-photonic electrons (uncertainty of Rγ and RCN).

These two sources change the shape of the distribution of dNe/dy(0.8 < pT < 4.0)/Ncoll. In
contrast, the other sources of the systematic uncertainties (e.g. the electron ID efficiency)
do not affect the α, but contribute the overall normalization of dNe/dy. Therefore, the
other sources are neglected.

For the source (1), the systematic uncertainty is 7% as described in section 4.9.2. Ap-
plying the higher (lower) limit of the uncertainty instead of the center value, we re-calculate
the dNe/dy(0.8 < pT < 4.0)/Ncoll, and then fit it by the function, A · Nα−1

coll . Figure D.1
(left) shows the three kinds of dNe/dy(0.8 < pT < 4.0)/Ncoll which correspond to the
center (gray) value, the higher (blue point) and the lower (red point) limit of the multi-
plicity dependent efficiency applied, respectively. The curves represent the corresponding
fit functions. The obtained α values are summarized in Tab. D.1. The difference of the
α between the center and the higher (lower) is assigned as the higher (lower) systematic
uncertainty.

Next, we study the systematic uncertainty of the source (2). We re-calculate the non-
photonic electron spectrum by changing Rγ, RCN and the blocking effect with their higher
(lower) limit, and then re-calculate dNe/dy/Ncoll. The combination of the higher (lower)
Rγ, the lower (higher)RCN and the lower (higher) blocking effect provides a larger (smaller)
non-photonic electron yield. Then, α is obtained for the higher and lower dNe/dy/Ncoll.
Figure D.1 (right) shows the re-calculated dNe/dy(0.8 < pT < 4.0)/Ncoll using the uncer-
tainty of the source (2). The gray, the blue and the red points correspond to the center

142
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Figure D.1: The dNe/dy(0.8 < pT < 4.0)/Ncoll for the source (1) (left) and (2) (right).
The gray, the blue and the red points correspond to the center value, the higher and the
lower uncertainties, respectively. The curves represent the fit functions.

value, the higher and the lower uncertainties, respectively. The curves represent the fit
functions. The obtained α is summarized in Tab. D.1.

In order to average the higher and the lower systematic uncertainties, we calculate
a root mean square (RMS) of the higher and the lower errors for source (1) and (2),
respectively. The total systematic uncertainty of α is calculated adding in quadrature
these RMS errors of source (1) and (2). The total systematic error is also shown in Tab.
D.1.

Table D.1: The systematic uncertainty of α for the source (1) and (2). The total systematic
error is estimated adding these errors in quadrature.

Source of uncertainty α − 1 difference RMS (high and low)
Center value -0.0623 - -
Source 1 for higher -0.0496 0.0127 0.0130
Source 1 for lower -0.0756 -0.0133
Source 2 for higher -0.0779 -0.0156 0.0120
Source 2 for lower -0.0558 0.0065
total sys. error 0.0177 (0.0130 ⊕ 0.0120)
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D.2 Systematic Uncertainty of α for Run 4 and Run

5 data

The systematic uncertainty of the linearity parameter α is estimated in Run 4 data analysis
as same as Run 2. Since the most of the systematic errors (the electron ID and the
acceptance) are independent of centrality. These errors do not affect the linearity (α).
The sources of the systematic uncertainties are considered as following:

(1) Multiplicity dependent efficiency loss,

(2) Rγ which is used to separate non-photonic and photonic electrons,

(3) Number of nucleon-nucleon collisions, Ncoll.

First, the systematic uncertainty from the source (1) is considered. The systematic
uncertainty of the multiplicity dependent efficiency loss (εmult) is summarized in Tab.
D.2 [122]. To estimate the systematic uncertainty of α from source (1), the data points
are moved up (down) by the higher (lower) uncertainty of εmult for the corresponding
centrality, and then the moved data are fit by the function, A ·Nα−1

coll . Figure D.2 shows the
moved-up (down) dNe/dy(pT > 0.4)/TAA as a function of Ncoll. The black, the magenta
and the light-blue points correspond to the center, the moved data by the higher and
the lower systematic uncertainties, respectively. The curves are the fit functions for the
corresponding data. The fit are performed for Au + Au and for Au + Au and p+ p data.
The fit results are shown in the left and the right panel of Fig. D.2.

Table D.2: Systematic uncertainty of the multiplicity dependent efficiency loss [122].

Centrality Sys. error of εmult

0-10% 4.43%
10-20% 3.47%
20-40% 2.50%
40-60% 1.72%
60-92% 1.26%

Min. bias 3.22%
p+ p 0%

Second, the systematic uncertainty of α from source (2) is estimated. We, first, consider
the error propagation of Rγ to the non-photonic electron yield based on Eq. D.1:

Nnon−γ
e =

Rγ ·NConv−out
e −NConv−in

e

Rγ − 1
, (D.1)
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Figure D.2: dNe/dy(pT > 0.4)/TAA as a function of pT. The data points are moved-up
(down) by the systematic uncertainty of εmult. The magenta and the light-blue points
correspond to the higher and the lower systematic uncertainties. The curves are the fit
functions for the corresponding data. The fit are performed for the Au + Au (left) and for
the Au + Au and p+ p data (right) separately.

where the blocking effect is omitted for simplification. If Rγ has an error “e”, Rγ is
modified as Rγ → R

′
γ = Rγ + e. Then, Eq. D.1 is transformed as follows:

Nnon−γ′

e =
R

′
γ ·NConv−out

e −NConv−in
e

R′
γ − 1

=
(Rγ + e) ·NConv−out

e −NConv−in
e

(Rγ + e) − 1
(D.2)

= Nnon−γ
e ·

(
1 +

e · (k − 1)

Rγ + e− 1

)
, (D.3)

where k is the ratio of inclusive to non-photonic electrons (k = N inc
e /Nnon−γ

e ). Therefore,
the relative error of non-photonic electrons (δNnon−γ

e /Nnon−γ
e ) is expressed as:

δNnon−γ
e

Nnon−γ
e

=
Nnon−γ′

e −Nnon−γ
e

Nnon−γ
e

=
e · (k − 1)

Rγ + e− 1
. (D.4)

Based on Eq. D.4, we obtain the relative errors of non-photonic electrons from the sys-
tematic uncertainty of Rγ. Here, we use Rγ = 2.333 at pT = 0.5 GeV/c and e = 0.064
(2.74% of Rγ) described in [122]. Figure D.3 shows the ratio k of inclusive to non-photonic
electrons as a function of centrality classes. The ratio k and the obtained relative errors
are summarized in Tab. D.4.

Using these relative errors, the data points are moved to the higher and the lower limit
of systematic uncertainty for dNe/dy/TAA. Then, they are fit to obtain the limit of α.
Figure D.4 shows the higher and the lower limit of dNe/dy/TAA and the center value. The
curves represent the fit functions. The left and right panels correspond to the data in
Au + Au and in Au + Au and p+ p collisions, respectively. The systematic uncertainty of
α is obtained by averaging in the same way. The obtained uncertainty are summarized in
Tab. D.5.
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Table D.3: The systematic uncertainty of α for the source (1). The parameter α are
obtained for the Au + Au data and for the Au + Au and p+ p data separately.

Au + Au data
α difference RMS of difference

center 1.00922 - -
higher 1.01944 0.01022 0.01042
lower 0.99860 -0.01062

Au + Au and p+ p data
center 1.00971 - -
higher 1.01826 0.00855 0.00864
lower 1.00097 -0.00874

Table D.4: Summary of the ratio k and the relative error of non-photonic electrons in Run
4 analysis.

Centrality k Relative Error
0-10% 3.47 11.30%
10-10% 3.86 13.08%
20-10% 4.45 15.78%
40-10% 4.95 18.07%
60-10% 6.08 23.23%
Min.bias 4.09 14.13%
p+ p 6.942 27.18%

Third, the systematic uncertainty from the source (3) is estimated. The systematic
uncertainty of Ncoll consists of two components. There is the correlated and the un-
correlated term with respect to centrality. The un-correlated error only contributes to the
α. The estimation of the un-correlated term of Ncoll is described in detail in Appendix
D.3.

Using the higher and the lower limits of Ncoll systematic uncertainty, the higher and the
lower limit of dNe/dy/Ncoll is calculated, and then they are fit to obtain the uncertainty
of α. The Ncoll value used in this analysis is summarized in Tab. D.6. The Ncoll value
in p+ p collisions is by definition 1.0 with no error. However, the relative value between
p+ p data point and all five Au + Au data points are moved up/down due to the common
systematic error of Ncoll. Therefore, we assign 7.3% to the p+ p point as this common
error of Ncoll which is equivalent to the systematic uncertainty of TAA in minimum bias
collisions.

Figure D.5 shows the higher and the lower limit of dNe/dy/TAA and the center value.
These three curves represent the fit functions for these data points. The left and the
right panels correspond to the data in Au + Au and in Au + Au and p+ p collisions,
respectively. The systematic uncertainty of α is obtained by averaging in the same way.
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Figure D.3: Ratio k of inclusive to non-photonic electrons. Electrons are measured in Run
4 Au + Au [121] and Run 5 p+ p collisions [39].

Table D.5: The systematic uncertainty of α for the source (2). The parameter α are
obtained for Au + Au and for Au + Au and p+ p separately.

Au + Au data
α difference RMS of difference

center 1.00922 - -
higher 0.98326 -0.02596 0.03169
lower 1.04576 0.03654

Au + Au and p+ p data
center 1.00971 - -
higher 0.98690 -0.02281 0.02881
lower 1.04348 0.03377

The uncertainty is summarized in Tab. D.7.
Finally, these three uncertainties are added in quadrature to obtain the total uncer-

tainty. Table D.8 shows these three and the total uncertainties. As the result, we obtain
α = 1.0092±0.0120(stat)±0.0506(sys) in Au + Au collisions. If the p+ p point is included,
α = 1.0097 ± 0.0094(stat) ± 0.0403(sys).
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Figure D.4: dNe/dy(pT > 0.4)/TAA as a function of pT. The data points are moved-
up (down) by the systematic uncertainty of Rγ. The magenta and the light-blue points
correspond to the higher and the lower systematic uncertainties. The curves are the fit
functions for corresponding data. The fit are performed for Au + Au (left) and for Au + Au
+ p+ p data (right) separately.

Table D.6: Uncorrelated systematic uncertainty of Ncoll described in Appendix D.3.

Centrality Ncoll Sys. error Comment
(Uncorrelated term only)

0-10% 955.4 9.7
10-20% 602.6 3.3
20-40% 296.8 7.8
40-60% 90.7 5.3
60-92% 14.5 3.6
p+ p 1 18.9 7.3%. systematic error of

TAA in minimum bias
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Figure D.5: dNe/dy(pT > 0.4)/TAA as a function of pT. The data points are moved-up
(down) by the systematic uncertainty of Ncoll. The magenta and the light-blue points
correspond to the higher and the lower systematic uncertainties. The curves represent the
fit functions for the corresponding data. The fit are performed for Au + Au (left) and for
Au + Au + p+ p data (right).

Table D.7: The systematic uncertainty of α for the source (3). The parameter α are
obtained for Au + Au and for Au + Au and p+ p separately.

Au + Au data
α difference RMS of difference

center 1.00922 - -
higher 1.04051 0.03131 0.03800
lower 0.96553 -0.04369

Au + Au and p+ p data
center 1.00971 - -
higher 1.03369 0.02398 0.02683
lower 0.98031 -0.02940

Table D.8: Summary of the α systematic uncertainty from all three sources

Au + Au Au + Au and p+ p
Source (1) 0.01042 0.00864
Source (2) 0.03169 0.02881
Source (3) 0.03800 0.02683

Total 0.05057 0.04031
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D.3 Uncorrelated Systematic Uncertainty of Ncoll

We studied the systematic uncertainty of Ncoll. The uncertainty of Ncoll is subdivided to
the correlated and the uncorrelated term with respect to centrality. The uncertainty is
made from 14 components [106] listed below:

1. σpp = 39 mb, instead of σNN = 42 mb,

2. σpp = 45 mb, instead of σNN = 42 mb,

3. Different Woods-Saxon parameters (R = 6.65 fm, a = 0.55 fm),

4. Different Woods-Saxon parameters (R = 6.25 fm, a = 0.53 fm),

5. Different radius of hard-core. (Rcore = 0.4),

6. Different neutron loss in the ZDC,

7. Different BBC fluctuation,

8. Gray disk nucleon overlap function,

9. Gaussian nucleon overlap function,

10. Different origin of angles for the centrality selection,

11. Higher BBC trigger efficiency (92.2 + 2.5%),

12. Lower BBC trigger efficiency (92.2 - 3.0%),

13. Additional uncertainty of the centrality determination (more central),

14. Additional uncertainty of the centrality determination (less central).

The uncertainties calculated by these modified parameters are compared to that of the
default parameters. The some components are the pair of the higher and the lower limit.
Thus, the differences from the following pairs are averaged.

(i) σNN (average of 1 and 2)

(ii) Wood-Saxon parameter (average of 3 and 4)

(iii) Different radius of hard-core (5)

(iv) Different neutron loss in the ZDC (6)

(v) Different BBC fluctuation (7)

(vi) Overlap function ( average of 8 and 9)

(vii) Different origin of angles (10)
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Figure D.6: The correlated terms of the uncertainty as a function of centrality. These
panels from the top-left to the bottom-right correspond to the errors from components (i)
to (ix), respectively. The line in each panel shows the weighted average.

(viii) BBC trigger efficiency (11 and 12)

(ix) Additional uncertainty (13 and 14)

The total error is calculated adding these averaged errors in quadrature (from i to ix).
Each component contains both the correlated and uncorrelated terms. To separate these
terms, we define that the correlated term is the weighted average of these errors at the
five centrality bins and the uncorrelated term is the difference from the weighted average.
Here, the Ncoll value in each centrality class is used as the weight factor. Figure D.6 shows
the errors from these components. These panels from the top-left to the bottom-right
correspond to the errors from the components (i) to (ix), respectively. The line in each
panel shows the weighted average which is the correlated term for each component.

Figure D.7 shows the uncorrelated errors as a function of Ncoll for these components.
In each panel, the error pairs (closed circles) listed above and the averages of these pairs
(open circles) are shown. The averages of these pairs represent the uncorrelated errors.
The obtained uncorrelated errors from these components (i to ix) are summarized in Tab.
D.9.

Figure D.8 shows the systematic error of Ncoll as a function of Ncoll. The yellow and the
gray band represent the total and the uncorrelated errors, respectively. The uncorrelated
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Figure D.7: The uncorrelated terms of the uncertainty as a function of centrality. In each
panel, the closed circles are the errors from these components and the open circles are the
averages of these error pairs.

Table D.9: Summary of the uncorrelated Ncoll uncertainty for the five centrality classes.

Centrality 0-10% 10-20% 20-40% 40-60% 60-92%
Component Uncorrelated error (average of pair)

i 0.33% 0.21% 0.58% 0.80% 2.56%
ii 0.28% 0.07% 0.48% 1.64% 2.73%
iii -0.15% -0.05% 0.45% 0.74% -1.93%
iv -0.03% -0.04% 0.20% -0.08% 0.03%
v 0.01% -0.22% 0.03% -0.33% 5.93%
vi 0.60% 0.25% 1.21% 3.20% 6.63%
vii 0.19% -0.37% -1.90% 3.22% 20.30%
viii 0.06% 0.06% 0.06% 0.06% 7.33%
ix 0.65% 0.02% 1.01% 2.91% 3.05%

Total 1.02% 0.55% 2.63% 5.75% 23.92%
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Figure D.8: Systematic uncertainty ofNcoll as a function of centrality. The points represent
the difference of the calculated Ncoll compared to the default value. The yellow and gray
bands correspond to the total and the uncorrelated error of Ncoll.

errors are summarized in Tab. D.10.

Table D.10: Summary of the total and the uncorrelated systematic uncertainties for the
five centrality classes.

Centrality Ncoll Total error Uncorrelated error
0-10% 955 86.0 9.7
10-20% 599.8 51.7 3.3
20-40% 295.4 24.9 7.8
40-60% 91.5 8.4 5.3
60-92% 14.9 3.6 3.6



Appendix E

Charm Cross Section in Run 4

The total charm cross section in Au + Au collisions at
√
sNN = 200 GeV is calculated

using the heavy flavor electron spectra with high statistics measured in Run 4 [121]. The
method to calculate the cross section is slightly modified from that described in section
5.6.1. This modified method is initially used to calculate the charm cross section in p+ p
collisions [39, 131]. The procedure is described as follow:

(1) The invariant integrated yield per nucleon-nucleon collision (dNe

dy
/TAA (pT > pTlow))

above pT > pTlow is calculated. We denote dNe

dy
/TAA (pT > pTlow) = dσe/dy (pT >

pTlow). The pTlow = 0.4 GeV/c is chosen, since the available pT range is extended to
lower pT due to the higher statistics.

(2) The obtained integrated yield (dσe/dy (pT > pTlow) is extrapolated to the entire pT

range (dσe/dy). The extrapolation factor RpT
= 0.54 is obtained from the FONLL

calculation instead of the PYTHIA calculation.

(3) The contributions from bottom decays (b→ e) and bottom cascade decays (b→ c→
e) are subtracted. These contributions (b → e, b → c → e) is determined based on a
FONLL calculation. These contributions are σb→e = 0.061 µb and σb→c→e = 0.053 µb,
respectively.

(4) The integrated yield (dσe/dy) of electrons is converted to the charm yield (dσcc̄/dy)
using a total branching ratio BR(c→ e) = 9.5 ± 1.0%.

dσcc̄

dy
=

1

BR(c→ e)

1

Ce/D

dσe

dy
(E.1)

Here, Ce/D = 0.935 is a correction factor to account for the difference of the rapidity
distribution between D mesons and their decayed electrons.

(5) dσcc̄/dy is extrapolated to the entire rapidity range to obtain the total cross section.

σcc̄ =
1

Ry

1

Cc/D

dσcc̄

dy
(E.2)
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The extrapolation factor Ry = 0.225 is determined using a HVQMNR calculation [130]
instead of the PYTHIA calculation. Here, the factor Cc/D = 0.96 accounts for the
difference of rapidity distribution between D mesons and charm quarks.

For the step 1, we calculate dσe/dy(pT > pTlow) by adding the bin entries of heavy
flavor electron spectra with pT > pTlow, instead of fitting by a PYTHIA electron function
described in section 5.6.1. The bin counting method is more reliable, because the fitting
uncertainty is not involved to the systematic uncertainty. The obtained integrated yield
(dσe/dy(pT > pTlow)) is summarized in Tab. E.1. The systematic uncertainty is calculated
from the heavy flavor electron spectrum and TAA.

Table E.1: The summary of dσe/dy(pT > 0.4) calculated in the step 1.

Centrality TAA(mb−1) dNe/dy(pT > 0.4)(×10−3) dσe/dy(pT > 0.4)(µb)
0-10% 22.8 148.0 ± 2.7 ± 21.1 6.50 ± 0.12 ± 0.92
10-20% 14.4 90.7 ± 1.9 ± 13.9 6.30 ± 0.13 ± 0.96
20-40% 7.07 43.5 ± 0.9 ± 7.6 6.15 ± 0.13 ± 1.07
40-60% 2.16 14.3 ± 0.5 ± 2.8 6.64 ± 0.22 ± 1.28
60-92% 0.35 2.10 ± 0.15 ± 0.59 5.98 ± 0.42 ± 1.68
Min.bias 6.14 36.6 ± 0.5 ± 5.9 5.96 ± 0.08 ± 0.96
p+ p [131] 5.95 ± 0.59 ± 1.59

For the step 2 to 5, the extrapolation factor RpT
and Ry are determined based on the

FONLL and the HVQMNR calculation, respectively, instead of the PYTHIA calculation.
Although PYTHIA contains only lowest order (LO) pQCD, FONLL and HVQMNR is
NLO and beyond. Thus, FONLL and HVQMNR can provide a trustworthy calculation.
In addition, the FONLL calculation agrees well with the data within the statistical and
the systematic uncertainty [39]. As a result, the factor RpT

= 0.54 ± 0.05(10%) and
Ry = 0.225 ± 0.034(15%) are obtained. The errors of these factors are assigned as the
systematic uncertainty.

HVQMNR calculates the rapidity distribution of bare charm quarks, but not charmed
hadrons and/or charm electrons. We need to take into account the difference of rapidity
distribution between charm quarks, D mesons and charmed electrons. The factor Ce/D is
used to correct the rapidity distribution of charm electrons to D mesons, and Cc/D also
corrects the rapidity spread of charm quarks to D mesons. These factors Ce/D = 0.935
and Cc/D = 0.96 are determined by PYTHIA.

The results in step 2 and 3 are summarized in Tab. E.2. In these steps, the invariant
integrated yield dσe/dy is calculated and then bottom contributions calculated by FONLL
are subtracted.

After the subtraction of the b contribution, the charm contribution only remains in
heavy flavor electrons. Therefore, we denote the electrons as charm electrons. In step 4
and 5, the integrated yield of charm electrons is translated to the charms yield (dσcc̄/dy)
using BR(c → e) = 9.5 ± 1.0%. Then, that is extrapolated to the total charm cross
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Table E.2: Summary of dσe/dy and then b contribution is subtracted.

Centrality dσe/dy (µb) dσe/dy after
b subtraction (µb)

0-10% 12.04±0.22±2.04 11.93±0.22±2.04
10-20% 11.66±0.24±2.09 11.55±0.24±2.09
20-40% 11.38±0.23±2.24 11.27±0.23±2.24
40-60% 12.30±0.40±2.62 12.18±0.40±2.62
60-92% 11.08±0.77±2.38 10.97±0.77±2.38
Min.bias 11.03±0.15±2.05 10.92±0.15±2.05
p+ p [131] 11.02±1.10±3.12 10.90±1.10±3.12

section (σcc̄). The obtained dσcc̄/dy and σcc̄ are summarized in Tab. E.3. The systematic
uncertainties are determined by adding the errors in these steps in quadrature.

Table E.3: Summary of dσcc̄/dy and σcc̄ in minimum bias Au+Au collisions and five
centrality classes. The charm cross section in p+ p collisions is also shown [39].

Centrality TAA (mb−1) dσcc̄/dy (µb) σcc̄ (µb)
0-10% 22.8 134.3±2.4±27.0 620±11±156
10-20% 14.4 130.0±2.7±27.3 600±12±155
20-40% 7.07 126.8±2.6±28.6 586±12±159
40-60% 2.16 137.1±4.6±32.9 633±21±180
60-92% 0.35 123.4±8.7±39.2 570±40±201
Min.bias 6.14 122.9±1.6±26.5 568± 8±150
p+ p [131] 122.8±12.3±37.5 567±57±193
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