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Abstract

Measurements using the PHENIX forward detectors at the Relativistic Heavy Ion Collider (RHIC) in high-
energy deuteron-gold (d+Au) collisions enable us to study cold nuclear matter effects in nucleon structure at
small parton-momentum fraction, or Bjorken-x. The large gluon densities in Lorentz-contracted gold nuclei
enable us to search for the yet-unobserved saturation of the gluon distribution at small x, which is caused by
a balance between gluon fusion and splitting. Gluon saturation is described by the Color Glass Condensate
(CGC) theory [1], which predicts a suppression of inclusive particle production in heavy-ion collisions, in
particular at forward rapidity, because of a decreased gluon density. In addition, it has been suggested
that forward rapidity di-hadron correlations may elucidate CGC effects with two signatures that are specific
predictions from CGC: awayside-yield suppression and angular broadening [2]. This thesis describes the first
experimental measurements of these forward di-hadron correlations in PHENIX.

Previously, RHIC experiments have shown a suppression in the single-particle nuclear modification factors
(Raa, Rep) for (/s = 200 GeV d+Au collisions in the forward (deuteron) direction [3, 4]. Multiple theories
can explain the observed suppression (including CGC), but a conclusive measurement discriminating amongst
the models has yet to be carried out.

Two new forward-rapidity electromagnetic calorimeters (Muon Piston Calorimeters or MPCs, —3.7 <
n < —3.1,3.1 < n < 3.9) enable the PHENIX experiment to measure the single-particle nuclear modification
factors in addition to further understanding forward particle production with the forward di-hadron cor-
relation measurements. Azimuthal correlations of di-hadron pairs at different pseudorapidities allow us to
scan the z-dependence of correlated di-hadron production, which can then be used to discriminate amongst
the models that compete to explain the observed levels of forward particle production. More specifically,
the xz-dependence of the yields and widths of the correlated peaks can be measured, rigorously testing the
theoretical models that attempt to explain the forward particle production. The forward-rapidity correla-
tions are especially interesting because it is expected that they provide a test of gluon saturation down to

2~ 5 x 10~* in the Au-nucleus.
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In this thesis, we present results based on the high integrated-luminosity data sample of proton-proton
(p+p) and d+Au collisions at /5, = 200 GeV taken at RHIC in 2008. In order to produce the results in the
relatively new MPC, a significant effort was concurrently invested into tasks related to the detector efficacy,
including: improving the electromagnetic-shower reconstruction algorithm, devising and implementing the
detector calibration, and creating the simulated particle-reconstruction efficiency and simulated particle-
identification schemes. The relevant details of this work are shown followed by the physics analyses, which
we summarize in what follows.

We first present the PHENIX /57 = 200 GeV inclusive 70 Rqa results as well as the p+p 70 differential
cross section and the d4+Au invariant yields for the pseudorapidity ranges of 3.0 < 1 < 3.4, 34 < n <
3.8, and 3.0 < n < 3.8. We observe a similar trend in the suppression of Rqa as first observed by the
BRAHMS experiment in the forward direction wherein the suppression increases with decreasing collision
impact parameter [3]. We also observe a larger suppression in the higher-rapidity bin (3.4 < n < 3.8) as
compared to the lower (3.0 < n < 3.4). These results are compared with the nuclear-shadowing model of
Qiu and Vitev [5], and the comparison shows that nuclear shadowing alone is unable to explain the observed
level of suppression.

We then proceed to show three sets of di-hadron correlation functions: two sets wherein a particle is
at midrapidity (]n| < 0.35) and the other is at forward rapidity (3.0 < n < 3.8) in the MPC (termed
mid-forward correlations), and another wherein both particles are detected at forward rapidity in the MPC
(forward-forward correlations). For both the mid-forward and forward-forward correlations, we quantify the
yields of the correlated awayside signal and form the di-hadron nuclear modification factor Jya, which is
the correlated two-particle analogue of Rqa. We again observe an increasing suppression with decreasing
impact parameter, but in addition we see a very large suppression in Jqa that reaches Jqa &~ 0.1 for the
forward-forward correlations; it is these correlations that are expected to be most sensitive to gluon-saturation
effects [6]. To summarize the Jya data, the measured values are plotted versus our estimate of the parton
momentum-fraction in the Au-nucleus, aff;‘a 4+ We observe an increasing level suppression with decreasing
x?ﬁa 4> Which would seem to support the predictions of CGC. However, predictions from other models, notably
initial-state energy loss with nuclear shadowing, are necessary to eliminate other possible explanations. We
also present simulation studies in the appendix that raise questions about the nature of particle production
for the forward-forward correlations. In particular, the forward-forward correlated di-hadron signal in the
PYTHIA p+p monte-carlo simulations does not seem to originate from di-jet production, but from some

other momentum-conserving process. While PYTHIA admittedly does not correctly simulate the partonic
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interactions, this study still raises questions about the nature of di-jet production in this region.
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Part 1

Introduction



The proton is the most prevalent nuclear system in the universe, and yet even ignoring the challenges of
spin substructure the exact composition is not completely understood. Ostensibly, the proton is composed
of three valence quarks which are bound together by gluons — the gauge bosons of the strong nuclear
force. However, if one probes the proton substructure on small timescales, the quantum fluctuations appear
as a large density of gluons and quark/anti-quark pairs fluctuating into and out of existence. This rich
substructure has been of great theoretical interest; experiments with collision systems ranging from e* /e~
Deep Inelastic Scattering (DIS), p+p, and heavy ions have all played a role in understanding the distribution
of partons (quarks and gluons) inside protons and heavier nuclei.

It is our goal in this thesis to provide experimental measurements that help to understand the substructure
of nucleons bound in nuclei. In particular, using deuteron-gold (d+Au) collisions at the Relativistic Heavy
Ton Collider (RHIC), we probe the low momentum-fraction (or Bjorken z) distribution of gluons in the
gold nucleus, which in the rest frame appears as transient fluctuations that have little influence on collision
dynamics, but when Lorentz-boosted to a high-energy frame, appear on longer time-scales and can have
significant impact on the collision dynamics. Our measurements are sensitive to low-z phenomena in the

9’s in the forward (deuteron-going) direction; in particular we measure

Au-nucleus because we measure 7
the single-particle spectra and angular correlations with one forward particle and the other at both mid
and forward rapidities, thereby constraining x to small ranges. By using the high-energy Au-nucleus, we
look at a system wherein the parton densities are enhanced owing to the Lorentz contraction, and thus yet
unobserved effects such as gluon saturation [1l [7, 8] are expected to occur at a larger = than they would
in a simple p+p collisions. It is this nuclear enhancement that we exploit in our measurements wherein
we compare spectra in d+Au to p+p; however, other initial-state effects such as leading- and higher-twist
nuclear shadowing [9} [10, 1T] and initial-state energy loss [12], [13] must also be accounted for the in the d4+Au
collisions to fully understand our measurements.

In this introduction, we weave together theoretical and experimental results relevant to our measurement.
Our goal is to understand the parton distribution functions (PDFs) of the Au-nucleus at very low momentum
fraction; hence, we begin our discussion with an introduction to DIS experiments, which have been crucial
in the calculation of PDFs. We then discuss the phenomenon of nuclear shadowing and discuss some
models and methods of parameterizing it. Finally, we discuss heavy-ion collisions at RHIC and how gluon
saturation effects might be detected through forward-rapidity particle production in deuteron-gold collisions.
We contrast the Color Glass Condensate (CGC) theory of gluon saturation with other models that make the

similar predictions and discuss a set of measurements (azimuthal two-particle correlations) that will help to



distinguish amongst the competing models.



Chapter 1

Motivation

1.1 QCD

Experiments have shown that the interactions between the quarks and gluons are described by the relativistic

SU(3) theory of Quantum Chromo-Dynamics (QCD) [14]. The QCD Lagrangian is

1
160G, (1.1)

Locop = ¥i(iy" 8, — ma)s — gGopy' T, —
where 1) are the spin 1/2 fermion fields (quarks) and G are the spin 1 massless boson fields (gluons). Analytic
solutions to QCD remain elusive; instead there are certain regimes and techniques wherein QCD calculations
can be performed. The two most prevalent schemes for calculating QCD solutions are perturbative QCD
(pQCD) [15] 6] and lattice QCD [I7]. Perturbative QCD can be formulated as an expansion in powers of
the strong coupling constant a, (see Fig. . At the scale of gluon exchanges in the bound state of hadrons
(Agep =~ 0.2 GeV), as ~ 1, which means a perturbative solution at fixed order will not be reasonable
to describe these systems; instead, one employs the computationally intensive lattice QCD calculations
which have been successful in calculating properties of nucleons such as mass and in understanding the hot,
dense, de-confined state of matter formed in high-energy Au+4Au collisions at RHIC known as Quark Gluon
Plasma (QGP) [18| [19] 20, 21 22]. On the other hand, asymptotic freedom of QCD shows a decrease in
the strong coupling constant with a decrease in the distance scales probed [15] [16]. In the context of high-
energy nucleon-nucleon collisions, the resolution of the partonic interaction is measured by the momentum
transfer (q) between the initial and final state, which is inversely proportional to the distance scale probed.
Asymptotic freedom is very significant for both its physical meaning and calculational applicability. From
a calculational standpoint, it says that at high energies, pQCD calculations at finite orders can be used
to describe interactions between partons; at low energies, QCD calculations remain difficult due to the
coupling constant of order unity. Physically, it means that if one probes the nucleon structure with a low-

energy interaction, the partons cannot be seen individually; rather one sees pairs (mesons) or trios of quarks



(baryons) coupled together by gluons. However, if the probe has a sufficiently high energy, the distance scale
is small enough that the interactions can resolve individual partons. The charge radius of the proton is ~ 0.8
fm, and one needs a probe of ~ 0.2 fm, or Q2 ~ 1 (GeV/c)? to resolve the individual partons and so that o

is small.

Q)
04\

aa Deep Inelastic Scattering
ce ¢'e Annihilation
Hadron Collisions

03+

021

01t

=0CD oM7) =0.1189%0.0010

1 100

Y QIGev]

Figure 1.1: The strong coupling constant as versus the four-momentum transfer Q = /|¢?| [23].

In recent years, theorists working on understanding the initial state of nucleon structure in nuclei have
created a theoretical framework to solve problems in another region of QCD phase space — the low Bjorken-z
region of high-energy nuclei wherein the gluon density is large. Based on experimental evidence, the gluon
density at moderately small x appears to diverge faster than is physically allowable. But, when the gluon
density becomes very large, the process of gluon fusion begins to balance out the gluon splitting, which slows
down the divergence of the gluon distribution with decreasing x. This phenomenon is commonly known
as gluon saturation [7, [8]. In the regime where gluon fusion exceeds gluon splitting, a new theory, the so-
called Color Glass Condensate (CGC) [1], has been developed that performs a perturbative expansion with

a characteristic saturation scale, Q.

1.2 The Structure of Nuclei in DIS

One of the most effective methods to understand the structure of the nucleus has been through Deep Inelastic

Scattering (DIS) [24]. Though we are dealing with heavy-ion collisions in this thesis, it is useful to give a



brief introduction to DIS in the context of understanding the parton distribution functions (PDFs).
A common DIS experiment is electron (or positron)/proton scattering (see Fig. [1.2)), wherein an exchange

of a virtual photon occurs.

Figure 1.2: Feynman diagram for virtual photon exchange in ep — eX Deep Inelastic Scattering (DIS).

Given that p (k) is the four momentum of the incoming proton (electron), and ¢ is the four-momentum
transfer by the virtual photon, we define the following variables related to the DIS ep — eX cross section

and structure functions

Q2

r = =Q?/2Mv, 1.2
pb-q
= - = FE 1.
y ok v/E, (1.3)

where Bjorken-z [25] can be interpreted as the fraction of the proton momentum carried by a parton, and in
the proton rest frame v is the energy of the virtual photon, making y the fraction of the electron energy trans-
ferred to the proton. If Q? = —¢? 2 1 (GeV/c)?, the virtual photon interacts with the parton substructure
rather than the proton as a whole. The DIS cross section can be parameterized by two structure functions
Fy(z,Q?) and Fr(z,Q?), which are mainly related to the quark and gluon distributions, respectively. If we
consider the proton as consisting only of point-like charged partons (the so-called Quark-Parton Model [26]),
then we expect that the structure of the proton will be independent of the spatial resolution (o< 1/Q?) at

which we probe it. We quantify this experimentally in terms of the structure function Fs, which in this



example is simply

Fy(z,Q%) = Fy(z) = Zefx(qi(f) + qi(x)), (1.4)

where ¢; and @; are the quark and anti-quark distribution functions; i refers to the quark-flavor. These
distribution functions are considered to be universal; that is, they apply for any collision system for a given
z, Q2.

F5 and F, are experimentally accessible through the double differential DIS cross section

d?c  2ma’Y,

2
dl‘dQ2 - $Q4 (FQ(CE> Qz) - LFL(xu 2))7 (15)

where Y, = 1+ (1 —y)2. Here we have neglected electro-weak contributions which only are important when
Q? ~ M%O and do not consider charged W-boson exchange. As indicated above, the quark-parton model
predicts that F, should be independent of @2 and that F; = 0, as Fy, is related to the gluon field absent
from the model.

Indeed, from Fig. [27, 28, 29, B0, 3T, 32] we see that for x ~ 0.25 this property known as Bjorken
scaling [25] holds; however, for both small x and large = we see that there are scaling violations, as one can
see a variation of Fy with Q2. These violations arise as a natural consequence of QCD and the inclusion of
gluons in the proton wavefunction. Quarks are surrounded by a parton cloud, and as one views the quark
structures at higher values of @2, we undress the quark; therefore, we view the quark as having a smaller
momentum fraction x as we increase Q2. The gluon distribution is not directly accessible via F, but can be
determined by the scaling violation dldTFé2 x asxG(x,Q?), or from measurements of F.

The evolution of the parton distributions between different scales, Q?, is described by a set of equations
known as DGLAPE| evolution equations [33], 34} 35, 6] in QCD. With the help DGLAP evolution, the PDFs
can be determined from experimental data sets at different Q2. In Fig. we show the parton distribution
functions for Q? = 10 (GeV/c)? extracted from Fy data of the H1 and ZEUS experiments at HERA with
a Next-to-Leading-Order (NLO) QCD DGLAP analysis [30]. The input data for the analysis are shown in
Fig.

The gluon distribution found at HERA exceeds the quark distribution for 2 < 0.1 (note that zG(x) is
plotted in Fig. . At small z, the gluon distribution is divergent with the additional consequence of an

infinite number of gluons in the proton. It has been proposed that the divergence in the gluon distribution

1Dokshitzer, Gribov, Lipatov, Altarelli, Parisi
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at small z indicates a breakdown of DGLAP evolution at low = and Q? [37].
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Figure 1.4: Parton distribution functions (PDFs) as determined by a HERA NLO QCD analysis as a function
of z for Q? =10 (GeV/c)? [30].

Next, we introduce the BFKL evolution, which evolves the parton densities versus In(1/z), and is valid
at small z at a fixed Q2. At small z, gluon splitting is the dominant process; BFKL describes the small-z
distributions by successively considering long-lived fast partons (at high ) as a source for the slow partons
(resumming the leading contribution of In(1/x) at each step in the evolution). Consider the ladder diagram
in Fig. The ladder is ordered in x, and the upper, high-z, partons can be considered static sources for the

lower ones. At each step in the ladder, the probability for the emission of a gluon is a [ dz/z = asIn(1/z).
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Figure 1.5: Gluon ladder for BFKL evolution which describes the density of partons as one goes to smaller
z. The horizontal gluon lines are emitted with strong ordering in x; that is xg > z1 > ... zy.



At some point in the evolution, the density of gluons is so large that the gluon wavefunctions begin to
overlap in the transverse direction and gluon recombination effects become important. This taming of the
ostensibly divergent gluon distribution by gluon fusion is known as gluon saturation [7, [§], and is responsible
for restoring unitarity to the BFKL cross section [38]. The Q? where saturation effects are expected to be
relatively large is known as the saturation scale Q2 o 1/z*, (see Ref. [39] for overview).

There is also a cross-over region between Leading-Order (LO) DGLAP and LO BFKL known as the
DLL (double-leading-logarithm) region. BFKL resums in powers of In(1/x), while DGLAP resums powers of
In(Q?). The DLL approximation is valid at small  and involves a resummation of a, In(Q?)In(1/x). This
extends the usefulness of LO DGLAP to small z. Because of its relative simplicity, some models describing
gluon saturation have chosen to use a hybrid of DLL DGLAP and saturation [7} [8 [37], rather than the more
correct BFKL and saturation [38] [39].

In Fig. [1.6|[37], we compare the extraction of the gluon density at low Q2 from HERA data for DGLAP
evolution and the hybrid DLL-DGLAP evolution with saturation effects. The CTEQG6 [40] LO gluon PDFs,
based on DGLAP evolution, are shown along with a gluon distribution based on a saturation calculation
called DGLAP-GRLMQ [37]. In both cases, the gluon distributions are determined by fitting the HERA data.
For relatively large Q2, the distributions are nearly the same; however, as Q2 gets smaller, the saturation
model is systematically higher and avoids the apparent failure of DGLAP evolution leading to a negative
gluon distribution at small Q2.

It is useful at this point to juxtapose the evolution in Q2 versus that in x. To guide the discussion, we
show a schematic picture of the parton densities within a nucleon for different x and Q? in Fig. [39].
First, we consider the evolution of the PDFs with varying Q2. Normal pQCD is applicable at relatively large
Q?; this is the regime wherein the size of the probe can resolve individual partons. As we increase Q?, we
probe smaller distance scales, and hence we resolve partons of decreasing size. This evolution is described
by DGLAP, and most experimental data from DIS are in this kinematic region. At very small Q% < Aéc D
pQCD is no longer applicable, and hence we cannot readily interpret F, in terms of PDFs from DGLAP.
Next we consider varying = with a fixed Q2. At z ~ 0.3 with Q? > 1 (GeV/c)?, we probe the valence-quark
distribution of the proton. As we go to smaller = with a fixed Q%, BFKL describes the evolution of gluon
distribution. At some very small # (where Q2 becomes large), we enter the non-linear evolution regime in
which gluon saturation becomes important, and models without a recombination mechanism are expected
to fail. To date, there has been no conclusive measurement that has proven the existence of this regime;

however, measurable effects should exist at sufficiently high parton densities at small x.

10
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Figure 1.6: Example gluon distribution functions showing the LO CTEQ6 gPDFs [40] and the DGLAP-
GRLMQ saturation model calculation [37]. The gluon recombination effects increase the gluon density at
small Q2 ~ 1 (GeV/c)? above 0 and thus one avoids the problem of a negative gluon density at small Q2.
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Figure 1.7: Phase diagrams in In(1/z) vs. In(Q?) showing where the Color Glass Condensate is expected to
exist. a.) Illustration of how the gluon density changes with varying Q2 and In(1/z), b.) Clear “phases” of
the gPDF's are shown, including the CGC and its boundary with the DGLAP regime known as the Region
of Extended Scaling.
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1.3 Nuclear Shadowing in DIS

Fixed target eA — eX DIS experiments [41] [42] 43|, [44, [45, 46] have been performed to study nucleon
structure in nuclei. Naively, one would expect the total cross section to scale with the number of nucleons,
or .4 = Aocep. However, there are various effects which modify this simple picture. The nuclear modification
factor for DIS is defined as

Fi(z,Q%)

A 2\
RF‘z(x’Q )7 AF;ucleon(x,QQ)' (16)

In Fig. we show the qualitative behavior of Rﬁ as a function of = [47]. One can see the non-unity
behavior of the ratio. Various regions of suppression (shadowing, EMC effect) and enhancement (anti-
shadowing, Fermi-motion) have been found experimentally. At small z < 0.1, the suppression in Réz is

known as shadowing [I1]. In this thesis we focus on low-z phenomena, and so the phenomenon of nuclear

shadowing is of direct relevance to our studies.

A
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antishadowing metion
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shadowing !

0.1 03 0.8 X

Figure 1.8: Example diagram showing the behavior of R?Z as function of z. The shadowing region exists for
xS 0.1,

Nuclear shadowing is simply the suppression of RéQ and does not refer to a specific model. The origins
are not completely understood, but some key features exist in most models.

Some authors take a practical approach to shadowing; they simply parameterize the measured values of
F5', and extract nuclear PDFs (nPDFs) using DGLAP evolution. One limitation of this approach is that
the nPDFs do not represent the true parton distribution functions, but rather may incorporate final-state
interactions. Additionally, gluon recombination effects at small  may be present. In Fig. we show the
ratios of the nPDF's to the proton PDFs calculated in Ref. [47], along with uncertainties as a function of z.

All nPDFs (valence quarks, gluons, and sea) exhibit shadowing at small z; the low-z gluon nPDF appears to
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be more suppressed but also less constrained since the gluon is not directly probed in F5. These nPDF's can
then be used to describe the initial state in heavy-ion collisions at RHIC, as the distributions are universal.
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Figure 1.9: EPS09 Pb nPDFs for Q2 = 1.69, 100 (GeV /c)? [47] for valence quarks (left), sea quarks (center),
and gluons (right).

Next we briefly introduce some of the models proposed to explain shadowing. In the rest frame of the
nucleus, a relatively simple shadowing mechanism arises from multiple scattering of the hadronic component
(gq pair) of the virtual photon with the nucleus as discussed for example by Glauber and Gribov [48] and
Armesto [11]. In nucleus rest frame, a typical scale of the g wavefunction i leonerence = 1/28Mpucicons
and can be the length of several nucleons for sufficiently small x. When l.operence = 74 (nuclear radius) the
probe will simultaneously interact with all nucleons at the same impact parameter. As an example, in Fig.
we show a diagram that represents the leading—twislﬂ [I4, 9] contributions to multiple scattering for
a massless scalar particle colliding with a nucleus; the second diagram contributes a negative correction to
the e(p, A) cross section and hence provides a mechanism for shadowing [I1].

In Ref. [50], predictions for low-z R?Q data indicate that leading-twist shadowing effects are unable to
account for the observed shadowing, and hence higher-twist effects might be necessary. The twist expands
the scattering amplitude in terms of 1/@Q, and at high Q? the higher-twist terms are less important. The
aforementioned example is a model for leading-twist shadowing, with essentially no dependence on Q2.

One mechanism that contains higher-twist effects and is valid at small z and Q? is known as vector-meson

2Twist denotes the order parameter in the operator product expansion (OPE) of the forward scattering amplitude in hard
scattering. The coefficients associated with matrix elements at a given order in the expansion are the so-called Wilson coefficients
and can be calculated in perturbative QCD. The twist parameter, ¢, in the OPE is equal to the dimension of the operator minus
its spin, and governs the power suppression, 1/Q*~2, of a matrix element in the expansion [14} 49].
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Figure 1.10: Example diagrams from Ref. [II] showing the single and double-scattering diagrams for a
massless scalar particle on a nucleus. The second diagram only contributes in large nuclei when the coherence
length is sufficiently large, and contributes a negative correction to the cross section.

dominance (VMD), wherein the virtual photon fluctuates into a vector meson (w, p, or ¢) and is absorbed
by the exterior nucleons, thus shadowing the interior nucleons from the photon flux. When VMD effects are
added to leading-twist effects, Ref. [50] observes better agreement with Rﬁ as seen in Fig. m

Another possibility for nuclear shadowing at moderately small values of Q2 are higher-twist QCD power
corrections to multiple scattering (again coherence effects) [5]. The main result of this model is that low-z
F4* data can be reproduced by a resummation of the higher-twist diagrams. For reasonably small corrections,
the resummation effectively leads to a rescaling of x — z(1+ 5—22(141/3 —1)), where £2 ~ 0.09 — 0.12 GeV? is
determined from fits to the data. One should note that these power corrections are enhanced by the nuclear
size which originates in the coherent multiple scattering. Also, in tuning the parameter £, it was assumed
that there were no leading-twist shadowing effects; hence this is in fact an upper bound on the shadowing
corrections from higher-twist effects. In Fig. we show R?z data and theory curves from this model.

In the Color Glass Condensate formalism for gluon saturation, the nuclear shadowing arises naturally
from the evolution in x to a large density of gluons [1,[39, 51, 52]. The CGC formalism involves a resummation
of all twists and takes into account gluon recombination, which is not the case for any of the other models.
The phenomenon of shadowing arises from the ab initio evolution equations rather than invoking ad hoc
mechanisms. The CGC formalism is complex [53], and only in recent years have the fitted model parameters
become consistent across DIS and heavy-ion collision systems [51], 52]. In Fig. we show Rﬁ data as
well as a CGC prediction for nuclear shadowing (x < 0.01). One can see good agreement between the CGC
curves and the data.

Hence we see that there are a variety of models that predict nuclear shadowing; this phenomenon has

been studied extensively, but there is still a large amount of uncertainty about its origins. It is found that
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higher-twist shadowing corrections in addition to those from leading-twist are needed to properly describe the
low-2z Rﬁ data, though it is also true that these higher-twist corrections are able to describe the shadowing
without leading-twist effects [5]. CGC takes into account both leading- and higher-twist effects as well as
gluon recombination effects; the match between the low-z data and theory is also quite good [51},52]. Others
have taken the approach of using DGLAP evolution with the measured structure functions F3* and not to
consider the origin of shadowing [47]; however, if DGLAP fails at some small value of x then these models

would not produce accurate nPDFs.

1.4 From DIS to Hadronic Collisions

For hadronic collisions (i.e. deuteron-gold collisions compared to a proton-proton reference), the theoretical
ambiguities become even more complex than in DIS, as more effects can modify the differential cross sections
of particle production. An important observation is that most shadowing models alone cannot describe the
suppression observed in forward particle production in d4+Au collisions as compared to p+p. However, in
Ref. [52], Albacete and Marquet show that CGC calculations can quantitatively describe the observed d+Au
and p+p spectra with input mainly coming from the DIS le}z data. Thus we have an exciting opportunity at
RHIC wherein we may be able to detect the onset of gluon saturation. Alternatively, in Ref. [54], the authors
show that by using initial-state energy loss [12] along with the higher-twist power-corrections proposed by
Qiu and Vitev [I0], the measured nuclear modification factor can be reproduced. Thus, more measurements

are needed to distinguish between the models and understand the origins of shadowing observed.

1.5 Hadronic Collisions

Let us consider the most basic hadronic collision system - proton-proton (p+p) collisions. Given a sufficiently
large 2, one can calculate the pQCD differential cross section for a certain species from the parton distribu-
tion functions in both protons, the invariant amplitude for QCD Feynman diagrams, and the fragmentation
functions which describe the production of hadrons from a final-state parton [14]. This is more complicated
than in DISE| because the cross section depends on the convolution of two sets of parton distribution functions

and because we have to consider the fragmentation functions. Formally, we have the following expression

3Semi-inclusive DIS (SIDIS) also uses fragmentation functions.
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for the inclusive p+p — h+X differential cross section at leading-order:

dPoarp_ dz Bortb=ctX D (2
E%:Z/dxlfa(xl)/dngb(xg)/7(EC e Zh( ) )

abe

where

e a, b are the flavor of colliding partons,

¢ is the flavor of one of the final state partons,

e x1, x5 are the Bjorken-z of the colliding partons (i.e. momentum fraction of proton carried by the

partons),

z is the fraction of the scattered quark momentum carried by the measured hadron,

fa(z) is the probability density function for a parton with momentum fraction = and of type a,
e D._n(z) is the fragmentation function for producing a hadron from a parton of type c.

Next-to-Leading-Order (NLO) pQCD calculations for high-energy collisions have been shown to give
excellent agreement with measured single particle differential cross sections in both the central and forward
rapidity regions where /s > 62 GeV (see Fig. [1.14) [4, 55, [56].

When we instead consider proton-nucleus collisions (p+A), theoretical calculations have to consider the
cold nuclear matter effects on the cross section including conventional nuclear shadowing [9, [10, [I1], energy-
loss [12), [13], and a modification of jet fragmentation [57] in addition to gluon saturation [1L 7, 8, 39 £8]. An
understanding of p+A collisions is important in order to quantify the initial state in A+A collisions and to
possibly detect the onset of gluon saturation, which has yet to be experimentally confirmed. We have already
introduced the importance of nuclear shadowing and gluon saturation in the context of DIS collisions; next,

we consider these effects in the context of heavy-ion collisions at RHIC.

1.5.1 Heavy-lon Physics at RHIC

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory turned on in 2000. RHIC
can collide heavy ions (e.g. Au, Cu) up to a center of mass energy of \/syy = 200 GeV, and polarized
protons up to /s = 500 GeV [59).

The original goal of the experiments at RHIC was to search for a new, hot, dense phase of matter wherein

quarks and gluons are not bound inextricably together by the strong force into states with null net color
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charge, but instead have color degrees of freedom, now known as quark-gluon plasma (QGP) [I8]. The
laboratory for this search is heavy-ion collisions. Heavy-ion collisions are preferable to the simple proton-
proton (p+p) system because one can obtain a much higher energy density in the collision, owing to the
Lorentz-contracted nuclei (in the lab frame, the relativistic nuclei have a flattened pancake shape). The most
prevalent heavy ion used in RHIC is gold (Au), and we will henceforth limit our discussion to only collision
systems involving Au.

One of the main signatures of QGP is that outgoing partons lose energy exiting the colored medium [60].
At RHIC energies, for a large enough momentum transfer 2, the interaction of quarks and gluons can be
modeled via a simple 2 — 2 scattering wherein momentum and energy are conserved. Because of the nature
of the strong nuclear force, the outgoing partons hadronize into a spray of particles known as jets. Thus, a
consequence of the parton energy loss is that one expects a reduction in the measured jet-yield at a given

pseudorapidity (n) and transverse momentum (pr).

1.5.2 Glauber Monte Carlo

To quantify the level of suppression in the jet-yield, one uses a p+p reference experiment and a Glauber
model [61 [62] [63] to calculate the expected number of inelastic nucleon-nucleon collisions in the Au+Au
system for all impact parameters (called Npinary, OF Neoyz). In the Glauber calculation we parameterize the

radial distribution of nucleons within an Au-nucleus by a Woods-Saxon function

1

p:P01_|_e(T,_R)/a7

where R = 6.38 fm, a = 0.54 fm [62] [63].
One then simulates collisions between two nuclei. The nucleon-nucleon inelastic cross section at \/syny =

200 GeV is taken to be oy = 42 mb, and if the colliding nucleons have a transverse separation that satisfies

d<onn/m (1.9)

then the nucleons produce an inelastic collision, adding to N..;. One then forms a ratio of measured particle

yields in Au+Au compared to p+p scaled by 1/Nu, or

1 (dN/dpr) AutAu
Neonw  (AN/dpr)pip

Raalpr) = (1.10)
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1.5.3 QGP or CGC?

A suppression is indicated by Ra4 < 1. In the first two years of running at RHIC it was indeed seen that
there was a large suppression of Ry & 0.3 for pr > 4 GeV/c as seen in Fig. [64, [65]. However, QGP
was not the only proposed mechanism to bring about a suppression of jets, as other initial-state effects could
also predict a suppression in R4 4, such as Color Glass Condensate [I]. The CGC hadron-yield suppression
originates from the saturation of gluons in the initial state of the Au-nucleus (a reduced gluon distribution

produces a smaller cross section, eq. , whereas QGP predicts the suppression from the final state.
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Figure 1.15: Strong evidence for QGP a.) Raa is suppressed [64] 65], while Rqa is not [66]. b.) Raa for
direct photons is not suppressed (photons interact via electromagnetic force and hence do not interact with
the colored medium) [67].

To test between the predictions, a control experiment was devised. In deuteron-gold (d+Au) collisions,
the energy density of the final state was predicted to be much lower than in the Au+Au case, and hence no
QGP was expected to exist. CGC, on the other hand, predicted that the suppression should occur because
the large density of gluons is still present in the initial state of the Au-nucleus. In an experimental tour de
force, the PHENIX collaboration measured the nuclear modification factor Rga (Figs. [L.1511.16)) and found
that the result was nearly unity for hard-scattering regime (pr > 2 GeV/c), indicating that in fact QGP
was responsible for the suppression of R4 [66] 68].

Despite its apparent failure to describe the suppression of the nuclear modification factors at midrapidity,
CGC did offer an explanation of the observed suppression of R44 at forward rapidities in the deuteron-going
direction (see Fig. [3, []. The qualitative argument is that saturation effects become more important
because the forward region probes lower x in the Au-nucleus, and thus the parton densities increase. Hence
the theory of CGC was provided with a new experimental testing ground in inclusive hadron production at

forward rapidity.
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Figure 1.16: Rga for neutral-pion and eta mesons for /s, = 200 GeV collisions shown at midrapidity
(In] < 0.35) for different centrality bins. The 0 — 20% centrality bin is on average the smallest impact
parameter collision sample while the 60 — 88% bin has the largest impact parameter.
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Figure 1.17: Rga for neutral pions (STAR experiment) [4] and negatively charged hadrons (BRAHMS
experiment) [3]. A larger suppression in Rqpa is seen as one goes to more forward values of 7. The negatively
charged hadron sample is expected to be enhanced due to isospin effects, and so the level of suppression may
be larger than shown by the ratio [9].

1.6 The Color Glass Condensate

We have thus far discussed gluon saturation in the context of DIS, and we now extend this discussion to
heavy-ion collisions where gluon saturation is synonymous with the Color Glass Condensate theory [I]. What

is the meaning of this appellation?

Color refers the color charge of the gluons.

Glass is a disordered system that can be viewed as a solid on short timescales and a liquid on long
timescales. Similarly, on short timescales the partons’ color fields are essentially frozen, while

on long timescales they fluctuate.

Condensate refers to the fact that the gluons are expected to have their transverse momentum

peaked about the saturation scale Q).

As we shall soon see, the phenomenology of CGC leads us to perform azimuthal angle two-particle
correlation measurements to test if gluon saturation has been reached at RHIC. We must also take care to
consider other model predictions in these measurements; disentangling the competing models that try to

explain the forward d4+Au physics is paramount to understanding if we can truly observe CGC at RHIC.
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1.6.1 Gluon Wavefunction at Small Bjorken-z

As we have already discussed at some length in this introduction, the gluon distribution function inside a
nucleus increases rapidly as one proceeds to small Bjorken-z. At this point, it is illustrative to describe a
relatively simple physical reason for this behavior. We first consider a nucleus in its rest frame. This is
a non-perturbative object containing many transient quantum fluctuations (e.g. gluons, quark/anti-quark
pairs) as are allowed by the Heisenberg Uncertainty Principle. If we boost the nucleus to successively faster
moving frames, these fluctuations begin to “freeze out” (exist on longer time scales) owing to the Lorentz
time dilation involved in the boost. When the nucleus is boosted to a sufficiently high energy, the “frozen
fluctuations” exist on a long enough time scale to become static sources for other transient fluctuations (even
lower-z gluons). One can repeat this argument ad infinitum and qualitatively understand why the gluon
distribution grows as one views successively smaller values of z (see Fig. [28] [69]. Hence, this is the
essence of the aforementioned BFKL evolution which evolves the PDF's in x; the number of gluons at each
step in the evolution is proportional to the number at the previous step, or % x n, giving exponential

growth in the variable Y = In(1/x).
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Figure 1.18: Gluon distribution function xG(z, Q?) versus z for Q? = 5, 20, and 200 (GeV/c)? [28].

This evolution has both phenomenological and theoretical problems at sufficiently small values of .

Phenomenologically it does not seem reasonable to have a divergent gluon distributiorﬁ as © — 0. More

4 Actually, this is not completely accurate; as long there is momentum conservation and the distribution does not violate the
Froissart unitarity bound, the distribution is allowable [70]. This leads to a logarithmic growth in z.
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specifically, what happens if the gluon density is so high that the wavefunctions overlap in the transverse
planeﬂ? Gluon fusion is an allowable QCD process due to the gluon self-interaction, and it would seem
that there needs to be a term o« —n? in the evolution equation to account for this. Theoretically, the
problem is that the BFKL scattering matrix is not unitary. To restore the unitarity, it was found that
one needs to add the aforementioned term in the BFKL evolution that corresponds to gluon recombination
(< —n?). A simplified version of the correct evolution equation (known as the Balitsky-Kovchegov or BK

equation [38], [71]) is shown below:

on
v = wa,n + xas0? + Ba’n?, (1.11)

where n is the scattering amplitude (directly related to the gluon density), Y = In(1/x), and w, x, and j are
all of order 1. The first term o ayn is the BFKL evolution term (gluon bremsstrahlung), the second term
with 9?2 is a diffusion term, and the third term o (asn)? is the gluon recombination term. The recombination
term only becomes important when agn = 1, and hence it can be ignored for a dilute system.

One can see the effect of the recombination term in the BK-equation on the DIS ep cross section in Fig.
a. At high energy (note that s ~ Q?/xy), one can see a plateau in the cross section known as the black-
disk limitﬂ which originates from the gluon recombination term in eq. slowing down the fast growth
of the scattering amplitude. In Fig. b, we show the scattering amplitude of a quark/anti-quark dipole
scattering with a nucleus versus the transverse separation of the dipole x; ~ 1/@Q, which essentially shows
the same behavior as Fig. a, but in addition illustrates that the saturation scale Q5 (see section
is basically defined as the location where the scattering amplitude reaches half its maximum value.

Initially, the BK evolution was studied at leading order with a fixed coupling constant. The theory was
able to qualitatively describe the data with certain model assumptions, but was not able to make ab initio
predictions across both DIS and heavy-ion collisions. More recently, the theory has been extended to NLO
with a running-coupling constant (called rcBK) [72] [73]; this has restored much of the predictive power that
was found to be lacking with the LO theory.

The full description of CGC is given by the JIMWLK renormalization group equations [53]; the BK
equation arises when one considers the large-N¢ limitﬂ Here, the fast partons are described by a color

charge density p, and the low-z, slow partons are described by the classical gauge fields A* obtained by

5 The overlap in the longitudinal direction is governed by the de Broglie-like coherence length lsonerence o 1 /x, which spans
the longitudinal extent of the Au-nucleus for z < 0.1 [11]

6The black-disk limit means that the cross section for a sphere of radius R is o = 27 R2.

"N¢c = 3 in the real world and is the number of color charges in QCD (red, green, and blue).
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Figure 1.19: a.) Cross section versus s ~ % for DIS ep scattering. Gluon recombination tames the rise of
the BFKL cross section at large s (or small ). b.) Scattering amplitude of a ¢/ dipole scattering with a
nucleus versus the transverse separation of the dipole x; ~ 1/Q. One can see that at relatively large z (or
small Q?) the amplitude saturates.

solving the Yang-Mills equation with the frozen source p. The functional W,,[p| is the weight of p, and
depends on x,, which is the scale used to separate the frozen source from the dynamic fields. The equation

describing the evolution of W (JIMWLK) is

OWoolp] 5
— 20— _Hlp, —|Waolpl, 1.12
Sy = ~Hle 5 Weols (1.12)
where H is the JIMWLK Hamiltonian. Analytic solutions are very difficult; it has been found in numerical

studies that there is little difference between solutions to the BK and JIMWLK equations [70].

1.6.2 The Saturation Scale and Geometric Scaling

The size of the gluon wavefunction is dependent upon both Bjorken-z and the four-momentum transfer
squared of the interaction, Q%. As Q2 increases, the size of the wavefunction probed decreases. Thus at large
Q? it is possible to fit a large density of gluons into a nucleon without observing effects from overlaps. The
condition for observing CGC requires a small z and sufficiently small Q?; this condition can be succinctly
formulated in terms of characteristic scale for gluon saturation aptly named the saturation scale, Q;(x). The
saturation scale describes the Q2 boundary of the saturation regime that evolves with z (see Fig. . It
is given by the value of Q% where the terms in the BK equation (eq. [1.11]) corresponding to gluon splitting
and fusion are equal [70]. Alternatively, another way to specify a saturation scale is to identify the value of

2 in the dipole scattering amplitude where it reaches half of its maximum value, as shown in Fig. b.
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In the leading-logarithmic (LL) solutions of the BK equation, the saturation scale is related to the number

of nucleons A (e.g. 197 in Au) and the momentum fraction z in the following manner:

A1/3

xe

Q3 , (1.13)

where A, ~ 0.2 —0.3 is the so-called evolution speed as determined by DIS data. The A'/3 dependence arises
from longitudinal overlaps amongst the gluon wavefunctions at small x in Lorentz contracted nuclei. The
longitudinal extent of the low-x gluon wavefunction spans the entire length of the nucleus (not true at high
x), and hence the gluon density increases in proportion to the number of nucleons (< Ngiyuons) at a given
transverse position, which on average is oc A'/3. The fact that the Au-nucleus has a diameter of about 12
nucleons coupled with the spherical shape of the nucleus (in the rest frame) determines the impact parameter
dependence of longitudinal gluon density. For instance, in a p+Au collision with zero impact parameter, the
proton interacts with ~ 12 nucleons, while for very peripheral impact parameters, the proton can see only
one nucleon; hence, the gluon density will be 12 times greater at the center of the nucleus than at the edges.
In Fig. we show the so-called unintegrated gluon distribution ¢(z, k%)ﬂ as a function of the intrinsic

transverse momentum kr of the gluons [74].
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Figure 1.20: Unintegrated gluon distributions ¢(x, k:QT) for targets of thickness 1, 6, and 12 nucleons, respec-
tively at x = 3 x 1074, One can see how the saturation scale increases as the target size is increased.

The three curves in the figure correspond to the low-z (z = 3 x 10~%) gluon distributions for targets that

S0G(2, Q%) = [¥ dkZ(a, k2)
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are 1, 6, and 12 nucleons thick (corresponding to Q%, = 0.2, 1.2, and 2.4 (GeV/c)?). Please note that in this
figure, the saturation scale Q? is approximately 2-3 times greater than Q2, because of the evolution with x
(see eq. [1.13).

This figure illustrates a key point about the measurements carried out in the context of this thesis. We
enhance the saturation scale @2, or the Q2 value at which we begin to observe saturation effects, by increasing
the nuclear radius. Hence gluon saturation can occur in both the proton and the gold nucleus, but begins
at larger values of Q2 in the Au-nucleus because of the enhanced nuclear size. For example, given that we
probe x = 3 x 107* (as in the figure) where we have Q2 ~ 4 (GeV/c)?, one would expect to see saturation
effects in the Au-nucleus but not in the proton. Hence our measurements using d+Au collisions compared to
a p+p reference exploit this difference in the saturation scale in an attempt to observe the saturation effects
on the gluon distributions.

Fig [T.20] also illustrates a few important points about a “saturated” gluon density. If one performs the
integral of the gluon distribution over kp, the integral will be finite; the same is true for the z-integral. This
is true simply because the nucleus cannot have an infinite momentum, though there is not restriction on
having an infinite number of gluons. This, along with the Froissart unitarity bound impose restrictions on
the rate of growth, and ¢(z, k%) must grow slower than In(1/z) (In(1/kr)) as @ (kr) — 0 [70]. Also, one
can see that the transverse momentum distribution is peaked near the value of the saturation momentum
Qs, indicating that the majority of CGC gluons have kr ~ Q.

In addition to the A1/3 dependence, the saturation scale is also o 1 /z*s, or if we let the rapidity variable
Y = In(1/2), Q?  e*Y. In the leading-logarithmic BK calculation the value calculated for Ay is about
4 times larger than the Ay =~ 0.3 expected from DIS data. This discrepancy was found to be due to not
including the next-to-leading corrections and running-coupling corrections in the BK equation [72] [75 [76].

Upon adding these corrections, it was seen that the evolution of the saturation scale was in fact

Q2 = Qg (1.14)

where Qo and Yj are the initial conditions for Q% and Y where the evolution begins. Within the = ranges
accessible at RHIC the evolution speed )\, (defined by the logarithmic derivative Ay = dIn Q?/dY’) calculated
in this framework was found to be very close to 0.3 [75], thus agreeing with experimental data on geometric
scaling (discussed below).

At RHIC energies in the Au-nucleus, Qs is expected to be about 1 — 2 GeV/c [39, 52] depending upon

impact parameter and z, which is a semi-hard scattering regime. If Q% < @2, saturation effects are expected
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to play a role in the collision dynamics; hence to observe gluon saturation, it is beneficial to increase the
saturation scale by having a large nucleus and a small momentum fraction. This makes forward-rapidity
particle production (smaller « than midrapidity, see eq. |1.15]) in d+Au collisions an ideal tool to search for

CGC, as one can probe small z with a large nucleus free from QGP effects.
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Figure 1.21: DIS v*p cross section versus the scaling variable 7 = Q?(x)/Q? demonstrating geometric scaling
for x < 0.01 [71].

If we go to slightly larger Q% > Q? at fixed Y = In(1/z), we encounter a region of phase space known
as the Region of Extended Scaling or Color Quantum Fluid [39] 58| 78, [77]; this is predicted to be the
region of overlap between CGC and regular BFKL evolution (see Fig. . One prediction of this region is
called geometric scaling wherein the DIS cross section scales with a single variable 7 = Q2(z)/Q? instead
of having independent x and Q? dependencies; this indeed has been observed in the data for x < 0.01 [77]
and is shown in Fig. wherein experimental data at different combinations of z and Q2 can all be
plotted on a single curve. From the data, this scaling directly constrains the value of the evolution speed,
As, between 0.2 — 0.3. Hence, the fact that the NL CGC theory now predicts an evolution speed that is
consistent with that observed in data shows that the NL corrections are necessary to properly describe the

physics [72, [75], [76].
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DGLAP evolution can also produce this scaling behavior, though it posits no a priori reason why the
scaling should exist. As discussed, CGC, on the other hand, predicts that the scaling region should exist
and makes a prediction for A; that is consistent with the observed parameter in the scaling data. A phase
diagram of the nuclear wave function is shown in Fig. [[.7}b, and one can see that the Extended Scaling
Region lies between the Saturation Region and the region described by BFKL or DGLAP.

Once we increase Q? sufficiently, BFKL evolution describes the evolution in In(1/z) while DGLAP de-
scribes the Q2 evolution. It should be noted that most phenomena in the BFKL region can be described by

the DGLAP evolution and that only a few measurements are sensitive to BFKL effects exclusively.

1.6.3 Comparison between Models and Data

At RHIC, hard scattering dominates particle production at Q% > 4 (GeV /c)?. Because @2 is calculated to be
> 1 (GeV/c)? for the Au-nucleus at RHIC energies, hard-scattering involving gluons from the Au-nucleus in
heavy-ion collisions is thought to be sensitive to CGC and BFKL evolution effects [39, [58], [78]. The absence of
R4 suppression at midrapidity would seem to negate this sentiment [66]; however we also see a suppression
of Ry4 in the forward rapidities [3 4], thus probing lower z. Additionally, recent CGC calculations for Rqa
are able to reproduce the observed spectra quite well [52] as seen in Fig. a; the evolution speed predicted
by CGC agrees with the geometric scaling data [77], and the theory parameters obtained from the fit agree
well with those obtained from fitting the eA DIS data [51), (2].

However, given the present experimental evidence, other shadowing effects can also explain some of the
suppression. One issue with the non-CGC shadowing models is that the predicted suppression of the forward
Rga is too low, even when including higher-twist eﬁectsﬂ [0, 10, [47]. In addition to nuclear shadowing, there

are models that predict an increasing energy loss as the forward-particle Feynman-xp increases, where

Tp = \/1’5/2. The increasing energy loss in combination with shadowing can reproduce the level of observed
suppression (see Fig. [1.22}b) [12} I3]. Another model (parton recombination) posits that because of the
smaller number of soft partons in the forward region in d+Au, there will be a suppression of particles
in the final state [57]. This model would be consistent with models wherein the soft particle production
is suppressed in the forward direction. Hence more detailed measurements are needed to understand the

suppression.

9See Fig. for comparisons of Qiu-Vitev higher-twist shadowing [10] to the new PHENIX data.
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Figure 1.22: Comparison of data and theory for forward particle production at /s, = 200 GeV for a.)
Color Glass Condensate [52] and b.) higher-twist shadowing with initial-state energy loss [54].
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1.7 Two-Particle Correlations and CGC

Two-particle A¢ correlation functions [79, 80, BT], 82], which tag di-jet correlations at different ranges of
x, might discriminate between CGC and other models of cold nuclear matter effects. In the simple 2 — 2
hard-scattering picture, the initial parton transverse momentum (kr) is relatively small, and thus momentum
conservation requires that the particles come out back-to-back in the transverse plane. Thus if we consider
particles produced from opposing jets, the azimuthal angle difference (A¢) between the particles should be
distributed about A¢ = 7 in an approximately Gaussian distribution. On the other hand, if the particles
are produced in the same jet, A¢ between the particles is centered about 0 in a Gaussian distribution. An
example correlation function is shown in Fig. [[.23] One can see that the correlation function is made of a
nearside peak at A¢ = 0 and an awayside peak at A¢ = 7 on top of a pedestal, or flat background. The
pedestal arises from instances wherein the two particles are not correlated; uncorrelated hadron pairs arise
from soft processes that dominate at Q? <1 (GeV/c)?, from different nucleon-nucleon interactions in heavy

ion collisions, from multi-parton interactions, or from three-jet events.

near-side jet

away-side jet

Pair yield

underlying event
0 2 4
A (rad)

Figure 1.23: Sample two-particle A¢ correlation function showing the nearside peak, awayside peak, and
the pedestal (or underlying event). Correlation functions separated in rapidity by An = 1.2 do not show a
nearside peak.

The nearside peak is sensitive to only the fragmentation of hadrons about the jet-axis. There is a
characteristic component of the hadrons momentum transverse to the jet-axis known as Jr =~ 0.5 GeV/c []0]
that controls the width of the peak. Thus by increasing the pr of the two particles, the nearside peak is
expected to narrow. If there were no intrinsic k7 for either of the colliding partons, the width of the awayside

peak would also be dominated by the Jr; however, since there is some (k1) =~ 2 GeV/c [80] at RHIC energies,
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the di-jets are not exactly back-to-back and the awayside peak broadens.

One reason that the correlation functions are interesting is that we expect CGC effects to modify the
traditional 2 — 2 hard scattering picture. One example of this is the production of so-called monojets, or
a 2 — 1 phenomenon, as proposed by Kharzeev, Levin, and McLerran [2]. A monojet could be from two
gluons (off-shell) fusing into one final-state gluon; momentum is conserved by the recoil of the CGC gluons.
There would be no awayside peak (or a decorrelated one) in the correlation function because of the 2 — 1
process, and thus one would expect a decrease in the yield of the awayside and angular broadening. Thus
because the correlation functions have angular information and can isolate hard-scattering, one expects them
to be more sensitive to CGC effects than single-particle measurements such as Rga.

Also, the correlation functions are able to probe the di-jet structure even at pr < 2 GeV/c, because one
can pick out the correlated part of the signal, which indicates di-jet production, from the background. Thus
the Gaussian signal in the correlation functions probes hard scattering and removes the soft contributions,
unlike the single-particle measurements. Maybe more importantly, by constraining the rapidities of the
di-jets, one can constrain the z range to much smaller ranges and values. At leading order the following
relationship holds between parton momentum fractions z; 2 and the rapidity of outgoing jets given that

parton 1 moves in the +z-direction (deuteron-direction) and parton 2 in the -z (Au-direction):

eyl ey?
S prae’” +pre2 , (1.15)

NG
—yl —y2
S prae ” +prac 7T (1.16)
NG

To reach small 25 (z of parton in Au-nucleus), it is preferable to have two particles in the forward direction.

For example, if both jets are forward with y; 2 = 3.0 and pr 12 = 2.0 GeV/c, we have x = 4'38(;3 ~ 1073,

~ 2.0¢°

If one jet is at y; = 0 and y2 = 3, pr1,2 = 2.0 GeV/c, then 2o ~ %555 = 10~2. This also demonstrates that

at leading order, forward-particle production from di-jets consists of a relatively large range in . By using
two-particle correlations, we constrain x and thus are able to study nuclear effects in different ranges of x.
This is paramount to understand particle production in the forward region and to probe CGC.

Let us now consider the rapidity separated angular correlations where n™*¢ < 0.35| and n/*? = 3.0 —
3.8, termed mid-forward correlations. In Ref. [2], the authors describe two processes that decorrelate the
experimentally observed away side peak: one is the large rapidity gap emission of mini-jets, known as

Mueller-Navelet Jets, decorrelating initially back-to-back partons in the subsequent parton shower [83]. The

33



other is the decorrelation from CGC wherein the observed jets are from multiple, independent scatterings

from the CGC, which produce gluon emissions within two parton showers (see Fig. [1.24'")).
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Figure 1.24: BFKL ladder diagrams showing two processes by which angular broadening can occur in
correlation functions. a.) A large rapidity gap between the detected jets (red) allows evolution to produce
multiple gluons along the rapidity gap [83], b.) multiple scattering produces uncorrelated jets [2].
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Figure 1.25: Angular decorrelations from the processes in Fig. [2].

Thus it was predicted that the correlation functions would have a small broadening of the awayside peak
both due to BFKL evolution and CGC effects as well as a decrease in the conditional yields or per-trigger

yields, which are the normalized areas of the awayside peaks (see section [5.2) [2, [6, [84]. The normalization

10 Please note that the diagrams and their complex conjugate diagrams are shown, and the vertices in the gluon ladders are
in fact Lipatov vertices (see Refs. [70} [2] for more details). Also, for clarity the authors decided to highlight the detected gluon
lines in red and point them away from the ladder.
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involves dividing by the inclusive yield of tm’ggeﬂ particles. This measurement was once thought to be an
extremely strong probe of CGC; however, in recent years, many theorists have questioned whether x is low
enough for CGC to be applicable in this regime [85].

A first measurement of the correlated di-hadron suppression for rapidity separated hadron-pairs was
performed in Ref. [86]; here PHENIX performed correlations between charged hadrons detected in the muon
arms (1.4 < n < 2.2) and at midrapidity in d+Au and p+p (mid-muon correlations). The measurement
showed an apparent lack of suppression in the nuclear modification factor Iya, the ratio of CYs between
d+Au and p+p (see section for details), and it was thought that this negated the existence of CGC
at RHIC (see Fig. a). More recently, in 2009 we presented an Ija measurement at the Quark-Matter
Conference that piqued the interest of the CGC community (see Fig. b). We showed that for the mid-
forward correlations (using the midrapidity charged hadrons and MPC 7%’s), a suppression of Iqp =~ 0.5
is present at small impact parameters (large N.on), and some attributed the suppression we observed to
CGC [81].

How then can these two results be consistent when one indicates no suppression and the other clearly

does show it? The difference between the mid-muon I3 and mid-forward Iqa exists for two reasons:

1. The mid-muon correlations used an Iqa where the “trigger particle” was defined at the forward rapidity

of the muon spectrometer, while the mid-forward correlations used the trigger particle at midrapidity,

2. The suppression of I triggered at midrapidity seems to increase with increasing rapidity of the “associate”
particle. Because the MPC is more forward than the Muon Arms, I35 using the MPC should be more

suppressed.

Hence it was once again thought that the mid-forward di-hadron correlations might be revealing CGC effects.
However, upon communicating with one of the main theorists who performed the CGC di-hadron correlation
predictions, it was conveyed that a lower 2 was necessary before CGC effects should show up [85].

In order to probe these very small values of x we measure correlation functions wherein both particles
are at forward rapidity, termed forward-forward correlations; this probes the lowest value of x achievable at
RHIC. Broadening effects due to CGC are expected to be large, and we also would expect the yields to be
suppressed. Recent predictions that have been made using the preliminary results from PHENIX [88] and
STAR [89] show an awayside peak that is greatly suppressed as seen in Fig. [90].

HThe distinction between the two particles is somewhat arbitrary. Usually the trigger particle is the higher-pp particle of
the pair and the associate has smaller pp.
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Figure 1.26: Iy for two-particle correlations wherein a.) the trigger particle is at the forward muon arm
rapidity (1.4 < n < 2.2) and the associate particle is at midrapidity [86], and b.) the trigger particle is at
midrapidity and the associate particle is at the forward MPC rapidity (3.0 < n < 3.8) [87].
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Figure 1.27: Two-particle angular correlations for forward 7%’s where 2.4 < 1y 2 < 4.0 for different impact
parameters. One can see a suppression in the yields as one goes to smaller impact parameters [90].
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The mid-forward and forward-forward correlation functions give access to different parts of the forward
particle production. The mid-forward correlations probe a higher x5 ~ 0.01, while the forward-forward
probe very small x5 =~ 0.0005. In terms of understanding the suppression of Rqa, one might suppose that
the mid-forward are more important because in the 2 — 2 hard scattering picture, the most probable rapidity
configuration for a forward di-jet system is mid-forward. The measurements are complimentary in that we
can understand the di-jet production in different x ranges. We would expect gluon saturation effects to be
the strongest in the forward-forward correlations, because they probe the smallest values of x. Hence we are
providing measurements which will help us to understand the suppression of Rqa and are predicted to be

very sensitive to gluon saturation effects.
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Chapter 2

Experimental Apparatus

2.1 RHIC

The Relativistic Heavy Ton Collider [59] at Brookhaven National Laboratory is a 3.8 km circumference storage
ring used for both polarized p+p and heavy-ion collisions. It can collide protons up to a center-of-mass energy
of \/s = 500 GeV and heavy ions (Au, Cu, etc.) up to /5, = 200 GeV. Two counter-circulating beams have
the capability to collide at six different interaction points. Presently, only the PHENIX [I9] and STAR [20]
experiments are operating at RHIC, though two smaller experiments (PHOBOS [22] and BRAHMS [21])

recently stopped recording data.

Figure 2.1: Aerial view of the RHIC accelerator complex.

Heavy-ion beams are created from a sputter-ion source and then accelerated by a Tandem Van Der Graff
accelerator. Next, the beam is sent to a booster synchrotron followed by injection into the AGS (Alternating-
Gradient Synchrotron) where it is accelerated up to ~ 10 GeV/nucleon. The beam exits the AGS and is

split by the transfer line into two RHIC beam lines, where the fully-ionized beams are stored until they reach

full energy [59].
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The original goal of the collider was to observe the transition from normal hadronic matter to a plasma of
quarks and gluons that contain color degrees of freedom. Definitive proof of a plasma has been established [19]
20,21, 22] and so RHIC has transitioned from a discovery machine into a tool for understanding the properties
of the QGP, as well as to precisely measure properties of proton spin structure. Some discovery potential
remains, however, in trying to observe the Color Glass Condensate [I] in d+Au collisions. The asymmetric
d+Au collisions are used rather than p+Au because the magnetic rigidity (o< Z/A) of the deuteron is closer
to that of the Au-ion. Similar rigidities are needed because both beams pass through the DX magnets near

each of the interactions points [91].

2.2 PHENIX

The PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) experiment [92] at RHIC is armed
with an array of detector subsystems capable of identifying photons, electrons, hadrons, and muons in
different pseudorapidity ranges. The initial design of the experiment was aimed at identifying rare probes
in Au+Au and p+p collisions via leptonic (electron and muon) and photonic channels. Many upgrade
detectors have been added to PHENIX throughout its lifetime to increase its efficacy, but the main subsystems
remain intact. PHENIX consists of a central spectrometer mainly used for identifying photons, electrons
and charged hadrons at midrapidity (—0.35 < n < 0.35) [93] 94, ©O5] as well as two muon-spectrometer
arms at forward and backward rapidities (1.2 < |n| < 2.2) [96]. From 2005 to 2007, two new forward
electromagnetic calorimeters were installed in the cylindrical holes of the piston-shaped muon magnets. The
Muon Piston Calorimeters (MPCs) sit at very forward rapidities (3.1 < |n| < 3.9) and are used to detect
photons and hadrons that have photon-decay modes [97, 98] [@9]. These forward calorimeters are useful
for both spin physics [07, O8] and heavy-ion physics (especially for d4+Au collisions) [87, [88, [9, 100], as
the forward rapidity region probes smaller z and larger xr than at midrapidity and has produced several
interesting experimental measurements that are not satisfactorily explained by the present state of theory.
In addition to the main detector subsystems and the MPCs, global event detectors exist that characterize
the events [I0T]. In what follows, we will discuss the detector subsystems that are directly relevant for
discussion of the physics results including the global detectors, the midrapidity electromagnetic-calorimeters

and charged-hadron spectrometers, and the forward Muon Piston Calorimeters.
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Figure 2.2: Side and beam views of PHENIX.

2.3 Global Event Detectors

The global detectors in PHENIX include the Beam-Beam Counter (BBC), Zero-Degree Calorimeter (ZDC),
and Reaction Plane Detector (RXNP). The RXNP [I02] is one of detectors used in heavy-ion collisions
to determine what is known as the reaction plane, which is the plane defined by the set of displacement
vectors that can be drawn between the nuclear centers of the colliding nuclei along their collision paths. It
is useful for determining properties of heavy-ion collisions, especially when QGP is formed. The ZDCs [101]
are hadronic calorimeters at n ~ £6 used for detecting spectator neutrons, triggering on inelastic events
as a minimum-bias trigger, and for determining event centrality (related to impact parameter). However,
for d+Au collisions, only the BBC is used for the minimum-bias trigger as well as centrality determination.
Also, it is not typical to characterize a d+Au event by a reaction plane. Hence we limit further discussion
of global detectors to the BBCs.

The BBCs [I01] sit at +144 cm from the nominal interaction point at 3.0 < |n| < 3.9 covering 27
in azimuth. Each BBC consists of the 64 3-cm quartz radiators with a Cherenkov threshold of 5 = 0.7
readout by photomultiplier tubes. They are used to detect forward, charged particles. The BBCs are an
extremely important set of detectors both for online (during data acquisition) and offline purposes. The
timing difference between the BBCs is used to measure the online z-vertex as well as a more refined offline
z-vertex. The online vertex allows one to select a sample of events that are contained within roughly 40 cm
of the nominal interaction point z = 0 cm in all triggers that utilize the BBCs. Additionally, the sum of
timing signals is the start-time, Tj, for time-of-flight measurements. The BBCs have a timing resolution of
~ 50 ps (as compared to the average bunch-crossing time of ~ 100 ns) and can resolve the z-vertex to within

~ 1 cm.
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The requirement that one phototube in each BBC has a hit selects a sample of events known as the
minimum-bias sample and this trigger is the most basic of all PHENIX Local Level 1 (LL1) triggers [T0T].
In the 2008 PHENIX run (the eighth year of data-taking, or Run8), the event rate for the trigger was
100 kHz, which is far higher than the typical DAQ bandwidth of 5 kHz. Hence, many of these events are
randomly discarded (other triggers exist specifically for photons, electrons, muons, etc. that also take up
DAQ bandwidth). The BBCs are also used to determine the centrality of the event, which we discuss in the

next section.

2.3.1 Centrality Determination

The d+Au collision system is asymmetric; we usually say the deuteron traverses in the forward-rapidity
direction (towards the north BBC, or BBCN) while the gold ion moves in the backward-rapidity direction
(towards the south BBC, or BBCS). It has been shown that the charge deposited in the south BBC is
proportional the number of participants in the collision (Npqr¢), which is correlated with the number of
binary collisions, N¢op, defined in section The relationship between the south BBC charge and Neop
is quantitatively determined by the Glauber monte-carlo along with tuning the BBC response to match in
simulation and data [61], [62] [63].

In d+Au collisions, the BBC trigger detects 88.4% of the total inelastic cross section [63]. We thus split
this event sample into 88 equally-sized bins and call the bin with the highest charge the 1% bin (most central

collisions or largest N,,;;) and the bin with the lowest charge the 88% bin (most peripheral or smallest Neq;).
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Figure 2.3: a.) South BBC charge distribution divided into four centrality classes (0-20%, 20-40%, 40-60%,
and 60-88%), b.) N distributions for the centrality classes as well as the 0-100% class.
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In Fig.[2.3}a, we show the charge distribution for the south BBC; here the colors represent four centrality
classes (0-20%, 20-40%, 40-60%, and 60-88%). In our analysis, we use these classes and form distributions
of N,oy for each centrality class (Fig. b) as determined from the Glauber monte-carlo. When we discuss
using a value of N.,; in a ratio such as Rqa, we always use the average of the centrality class in question
(see Fig. b); (Neon) values are 15.1+1.0, 10.2+£0.70, 6.6 £0.44, and 3.2+0.19, respectively for the 0-20%
through 60-88% centrality bins [63, [09]. For p+p, (Neon) = Neon = 1.

2.4 Central Rapidity Spectrometer

The PHENIX central-rapidity (a.k.a. midrapidity) spectrometer [94] [95] has two main components:

e A charged particle tracking system (Central Magnet, Drift Chambers, multi-wire proportional chambers

with pad readout, Ring Imaging Cherenkov Detectors, Time of Flight Detectors),
e A large electromagnetic calorimeter (EMCal).

The spectrometer consists of two arms which each cover 7/2 in azimuth and —0.35 < 7 < 0.35. One can see
the different components in Fig. Some of the measurements presented in this thesis use both charged
hadrons as well as 7°’s from the central spectrometer, and hence we give a brief description of the relevant

detectors in what follows.

2.4.1 Charged Tracking

The PHENIX Drift Chambers (DCs) [94] sit 2 — 2.4 m away from the interaction point and consist of six
planes of wires, X1, Ul, V1, X2, U2, and V2. The DCs were designed to have a tracking efficiency of > 99%.
The X-layers are oriented along the direction of the beam, allowing a precise determination of the position
(< 150 pm in the r — ¢ plane, and thus providing precise transverse momentum determination). The U- and
V-layers are oriented with a stereo angle of £6° relative to the X-layers and provide a measurement in the
z-position of < 2 mm, which is nearly what can be obtained by the Pad Chambers.

The PHENIX Pad Chambers (PC1, PC2, PC3) [94] are multi-wire proportional counters with pad readout
that reside directly behind the DCs (PC1), behind the RICH (PC2, West arm only), and directly in front of
the EMCal (PC3). The PCs provide a measurement of the position in all directions (z as well as radial) and
are thus used in calculating the total momentum of a track. The PCs are the only non-projective element

of the central tracking system, and hence they provide a veto of spurious tracks. Together with PC1, the
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PHENIX DCs provide a total momentum resolution of dp/p = 0.7% & 0.1%p. PC3 is used to confirm tracks
through z- and ¢-matching cuts, while PC2 is not often used. To reconstruct tracks in the high-multiplicity
Au+Au environment, a Hough transform is employed which transforms all possible tracks into a — ¢ space

(see Fig. and finds local maxima in the track density that pass a threshold.
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Figure 2.4: Example path of a charged particle originating from the nominal collision vertex. The track is
bent by the PHENIX magnets and is detected by the Drift Chambers [94].

The last detector that we will discuss in this section is the Ring-Imaging Cherenkov detector (RICH) [94]
which sits between 2.6 and 4.1 m from the center of the beam pipe. The RICH detects Cherenkov light
radiated by charged particles traversing the radiator gas (COs in our case) and can discriminate electrons
from charged pions up to ~ 4.7 GeV/c. For a 8 = 1 particle, the ring diameter is 11.8 cm and roughly 12
photons are emitted per ring through a path length of 1.2 m. The RICH is used mainly to identify electrons.
Conversely, a RICH veto rejects tracks in charged-hadron identification. We expect all charged hadrons

(m > my) to emit no Cherenkov light until they reach the pion-threshold, and hence this gives us a very

pure sample of hadrons below 4.7 GeV /c [103].
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2.4.2 Midrapidity Electromagnetic Calorimeter

The PHENIX EMCal [93] consists of 8 sectors (2 Pb-Glass, 6 Pb-Scintillator) and contains in total 24,768
towers. The acceptance is identical to the midrapidity tracking system wherein we have two arms that each
cover /2 radians in ¢ and |n| < 0.35. The EMCal is used to detect photons, electrons, and hadrons that
decay into photons and electrons. Each PbSc (PbGl) sector consists of 72 x 36 (96 x 48) towers; the towers
cover approximately 0.01 x 0.01 (0.008 x 0.008) in A¢ x An space. The energy resolution of the PbSc (PbGl)
is

%E =81%/VE ®2.1% (5.9%/VE @ 0.8%). (2.1)

The PbSc (PbGl) calorimeters have sufficient granularity to completely separate two photons from the
70 — 7 decay up to E = 12 (17) GeV, which is well above the energy used in the analysis presented in this
thesis. A photon trigger using the energy deposition into the EMCal towers is used in PHENIX to trigger
on high-momentum photons (pr > 2 GeV); this allows us to utilize the full luminosity of the data-taking

period.
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Chapter 3

Muon Piston Calorimeter

The nearly symmetrical forward- and backward-rapidity Muon Arm detectors possess large magnets shaped
like pistons, as seen in Fig. 2:2] In the front of the magnets are cylindrical holes nearly 50 cm in diameter
where the two Muon Piston Calorimeters (MPCs) were installed between 2006-2007 (see Fig. [2.2). A detailed
introduction to the MPCs, particularly the hardware, can be found in Ref. [98]. In this chapter, we give a
basic description of the MPCs and discuss the principles of calorimetry for electromagnetic showers. We then
proceed to discuss the details of the clustering algorithm (used to calculate energy and position of particles)
which we implemented, and next discuss how we reconstruct the invariant mass spectrum of two-photon
decays. Finally, we provide details on the calibration procedure and the performance of the detector in the

2008 data-taking period.

3.1 Description

The north MPC (3.1 < 7 < 3.9) has 216 homogeneous PbWOy crystals while the south MPC (=3.7 < n <
—3.1) has 192. Both calorimeters have a toroidal shape where the outer diameter of the frame measures ~ 46
cm (see Fig. . The MPCs are positioned in the shadow of the BBCs (see section at z = £220 cm in
either direction and have 27 coverage in ¢. The tower dimensions are 2.2 x 2.2 x 18 c¢cm?; this corresponds
to a A¢ x Af acceptance of ~ 0.01 x 0.01 rad?.

PbWO, has a Moliere radius of 2.0 cm and a radiation length of ~ 0.9 cm [104] 105], which means
that the electromagnetic shower has relatively small transverse and longitudinal profiles; in fact, the Moliere
radius is the world’s smallest for scintillating crystals. The towers are read out by Hamamatsu avalanche
photodiodes [I06] (APDs) attached to the front of the crystals. Both the crystals and the APDs have
temperature coefficients of ~ —2%/°C [106], 107], and hence the output signal is very sensitive to temperature
fluctuations, as the net result is —4%/°C. In fact, if run at a cryogenic temperature of —25°C (as with the

PbWO, PHOS calorimeter at ALICE [I07, [I0§]), the light yield from the crystal nearly increases by a
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factor of three compared with room temperature. The MPC is usually kept near room temperature, but is
located near a water-cooling system for the Muon Arm magnets, and hence is subject to some fluctuations.
These fluctuations are partially corrected out by the LED monitoring system [109, [110], which corrects for
any changes in APD gain and crystal transparency throughout the duration of running period, but does
not correct for changes in the light yield of the crystal due to temperature fluctuations. The crystals were
donated by the Kurchatov Institute and were developed for the PHOS detector in ALICE [105] [107, [108].
Fig. shows a picture of a PbWOy, crystal and tower assembly, while Fig. shows the crystals installed

in the toroidal MPC frame.

(b)

Figure 3.1: a.) A PbWOy crystal from the Muon Piston Calorimeter, and b.) MPC Tower Assembly: 1)
Crystal, 2) APD Holder, 3) Avalanche Photodiode and preamp [98].
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South Morth

Figure 3.2: AutoCAD drawing of MPCs [95].
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3.2 Readout

There are 220 towers comprising the north MPC and 196 comprising the south. The Hamamatsu avalanche
photodiodes [106] (APDs) convert the scintillation light produced in PbWO, crystals into charge signals,
which are amplified and sent to a driver board. The amplifiers are mounted on the backside of the small
printed circuit boards that are attached to the APDs. Each driver board can supply power to the amplifiers
and read back signals from up to 24 towers, and there are 10 driver boards used in each MPC for contiguous
groups of towers. Because the MPC uses EMCal front end modules (FEMs), the analog charge signals are
sent to a receiver board, where the signals are converted to match the input specifications of the FEMs.
These signals are then sent to the FEMs (each FEM can read 144 towers, so we use 2 per MPC) where they
are stored Analog Memory Units (AMUs). The FEMs have a ring buffer of 64 AMU cells for each tower,

which allows us to store up to 64 events and only digitize the signals if a trigger condition is sent by the

triggering systemﬂ [98].
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Figure 3.3: Diagram of MPC electronics from Ref. [08] showing the main components in the readout.

The data are then sent to the Data Collection Modules (data formatting and packaging), SubEvent Buffers
(CPUs that hold subevents before they are assembled into full events), Assembly and Trigger Processors
(CPUs that build an event by combining subevents from multiple buffers), and finally to one of six “Buffer

Boxes” for temporary data storage. The final format of an event is termed PHENIX Raw Data Format

1The Global Level 1 trigger performs a logical OR of trigger bits for all available triggers and instructs the Master Timing
Module to send signals to the Granule Timing Modules, which then send signals for all FEMs to initiate the readout.
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(PRDFs); the PRDF files are the starting point for the offline reconstruction [T11], 112} 113].

3.3 Offline Reconstruction

The PHENIX Raw Data Format files (PRDFs) are the lowest level file used for offline reconstruction. A
data-production process is used to reconstruct hit or track information from the PRDF, and to write this
information to separate files for each subsystem called nano-DSTs (Data Summary Tables). For instance,
the MPC charge and timing information are written to files with the identifier DSTMPC, while the EMCal
cluster data are written to files called PWGs. The data production also creates files for each trigger type
(e.g. minimum-bias trigger, EMCal photon trigger, MPC Photon trigger) [114].

For the MPC, the data-production step is simple, as the charge and timing signals are transcribed from
the PRDF to the nano-DST. It is only at the analysis stage that the tower charges turned into photon-
candidate clusters with energy and position information. This is feasible because there are a small number
of towers (416) in both MPCs. It is also beneficial because it allows the calibration process to occur on a
longer timescale than allowed by data production. The final calibration procedure we established is outlined
in this thesis (see section , and was only completed recently; the flexibility of the MPC reconstruction
allowed us to optimize the procedure free from the deadline of the data production. For each event, the

clusters are produced using the clustering algorithm (see section [3.6.2)), and then are available for analysis.

3.4 Basic Principles of Calorimetry

In general, an electromagnetic calorimeter is used for detecting photons, electrons, and hadrons (mainly
79’s) with photon or electron decay modes. For the MPC, the PbWO, crystals are homogeneous, meaning
that it is both an absorber and scintillator (for comparison, the midrapidity PbSc sampling calorimeter has
thin alternating layers of absorber and scintillator).

When a photon (also e®) is incident upon the calorimeter, its energy is spread into a shower of elec-
tromagnetic particles where the lateral size of the shower (transverse to the direction of incidence) grows
as the shower particles traverse the length of the crystals. For high energy particles (E ~ 1 GeV), the
shower proceeds through a stochastic cascade of particles created by e*/e™ pair production (for photons)
and bremsstrahlung (for e®) (see Fig. and caption for description).

Once the energy of the shower electrons and positrons decreases to the so-called critical energy (Cal-

culation using Z=68.3 and formula from Ref. [IT5] yields € ~ 9 MeV for PbWQ,), or the energy at which
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Figure 3.4: Creation of an electromagnetic shower in an absorber material for a high-energy photon in-
cident on the absorber. The photon first interacts with the absorber and transfers its energy into an
electron/positron pair. The electron and positron then interact with the absorber and radiate a photon via
bremsstrahlung. This cascade continues until the electrons and positrons reach the critical energy of the
material, e.

ionization losses equal those from bremsstrahlung, they lose most of their energy through ionization and
excitation of the crystals electrons. Many electrons are excited from the valence band into the conduction
band (and holes in the opposite sense), and the subsequent relaxation process creates the scintillation light
which is detected by the photosensor (in this case the APD) [115].

The electromagnetic shower can essentially be described by two parameters, the radiation length X
and the Moliere radius Rjs. The radiation length is the distance over which an electron will lose 1/e of its
energy due to bremsstrahlung (i.e. E(x) = Ege~*/%0). In Fig. a, we show the longitudinal profile of an
EM-shower in the PbWO, crystals [115].

One can see from the figure that most of the energy is contained within 20X, the radiation length of
the PbWQOy crystals used in the MPC. Showers up to ~ 100 GeV will deposit all their energy within about
25X, though there is some energy dependence to the shape of the distribution; this originates from the fact
that it takes more steps in a cascade for the shower particles reach the critical energy if the initial energy is
higher. The energy dependence of the longitudinal profile is logarithmic; this can be understood because the
process is similar to a binary tree-like branching. In a very simplistic model, at the end of the showering,

all the energy Ej is distributed equally amongst Npgriicies = Eo/€ with energy e. If we double the energy,
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Figure 3.5: a.) Longitudinal shower profiles for incident electrons with Ey of 1 GeV, 10 GeV, 100 GeV, and
1 TeV, and b.) Radial shower profile for an electron with Ey of 1 GeV and 1 TeV.

we simply double the number of particles. The number of particles at the t' step is 2, or conversely, the
number of steps is t = logy Nparticies = 10go(Eo/€) (and hence the logarithmic growth). The location where

95% of the energy is contained, tg59; is given in Ref. [I15] as

toso ~ In(Eo/€) + 0.08Z + 10.1, (3.1)

where Ej is the initial photon-energy and Z is the atomic number of the crystal. Using this equation along
with the approximations Z =~ 68.3 and € ~ 9 MeV indicates that a 1 GeV photon will deposit around 95%
of its energy in the 20 radiation lengths of the MPC crystals. As the energy of the incident photon grows
we expect more leakage from the back of the crystal, and thus a small energy-dependent leakage-correction
is necessary (e.g. Fig.|3.10).

The lateral growth of the shower comes mainly from multiple scattering of the electrons and positions.
The transverse profile the PbWOy, crystals is shown in Fig. B.5}b in units of Xy. The lateral spread is
described by the Moliere radius (Rp; = 2.0 cm for the PbWO, crystals), which is essentially the radius of

an infinite cylinder that would contain 90% of the shower energy. A very simple relationship [I15] exists
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between the Moliere radius, radiation length, and critical energy, which is

Rar = 21 MeV x 20 (3.2)
€

The Moliere radius influences the design choices for the lateral crystal size; crystal dimensions should be
such that the energy in a shower is spread over multiple crystals for good position resolution and hence the
lateral dimensions should be < Ryy.

The intrinsic uncertainty in the measured energy is based on the stochastic nature of the shower. The

energy is o< Npgrticles and thus we have

OF X ONparticles = \/ Nparticles x VE. (33)

Typically, one can parameterize the uncertainty of the energy in the following manner:

R a b

— ==+ —=+c 3.4
i I + = +c (3.4)
Though not necessarily the standard terminology, we will use the nomenclature that follows when discussing

terms in the above equation. Additionally listed are the approximate values of the terms for the 2008 MPC

data.

a The noise term is uncorrelated with the energy measured and is dominated by electronics noise in

the MPC, ~ 40 — 70 MeV.
b The stochastic term originates from the showering process, ~ 2.6%.

¢ The calibration term increases with the energy and is dominated by the calibration error in the

MPC, ~ 4%.

3.5 MPC Clustering Basics

As detailed in the previous section, when a photon or electron is incident upon a MPC crystal, the energy is
converted into a shower of electrons, positrons, and photons that spreads longitudinally through the crystal’s
depth and laterally to the surrounding crystals. The exact distribution of energy into the different crystals
is essentially determined by the radial profile (Fig. b) and the location where the incident particle strikes

the face of a calorimeter crystal.
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To make our experimental measurements, we group the cluster of towers where the energy is deposited
into an aptly named object called a cluster. It is possible to form clusters for virtually all types of particles;
however, the only particles that consistently deposit the majority of their energy into the calorimeter are
photons, electrons, and positrons. Hadronic interactions are suppressed by the long hadronic interaction
length of the crystals, while other leptons do not experience any significant bremsstrahlung and only interact
through ionization in a minimal sense (minimum ionizing particles or MIPs).

The MPC uses a similar clustering algorithm as the midrapidity EMCal, wherein clusters are formed
by searching for those towers that have greater energy than their nearest neighbors; in other words the
algorithm searches for energy local-maxima. The calorimeters have very similar calorimeter dimensions
(ratio of lateral tower size to Moliere radius) as do the central PbSc EMCal towers [93], and hence the
existing EMCal reconstruction code is the basis for the MPC; the algorithm implemented is somewhat based

on what was done for the GAMS calorimeter by Lednev [116].

3.6 Reconstruction Algorithm

The reconstruction involves turning raw charge signals of the towers into cluster energies, positions, and
parameters used for particle identification. In what follows we outline the basic scheme used for analyzing
MPC data and provide an in-depth discussion of the clustering algorithm. We discuss relevant detector
performance parameters and show a comparison between the data from Run8 /s = 200 GeV p+p data and
simulations of /s = 200 GeV p+p events generated by PYTHIA [I17] simulations that are run through
the PHENIX GEANT3 [I18] detector simulation package known as PISAE| [I11]. We will also discuss the
parameterization of the EM-shower shape and contrast it with the EMCal algorithm.

As a reference, the main parameters created from the reconstruction algorithm are listed below.

x,y, z Log-weighted center-of-gravity lateral positions x, y and the longitudinal position z.
ecore Energy optimized for single electromagnetic clusters.
dispz, dispy Lateral dispersion, 2"¢ moment of the position where the weight is the tower energy.

chi2core A x*/NDF variable that compares the measured shower-shape with the predicted.

2PHENIX Integrated Simulation Application

53



3.6.1 Tower Energy Calculation

A tower energy is determined by multiplying the charge signal by a gain constant, or

Etow = GJtow X Qtow- (35)

The charge signal is based on the output of an AMUﬂbased ADC system wherein the charge is essentially the
difference between the ADC signal measured after (post) and before (pre) the event. The MPC ADCs have
two dynamic ranges (hi and lo) that differ by a factor of ~ 16, allowing one to make precise measurements
for both low- and high-energy particles. The gain is determined from the calibration procedure detailed
in section [3.10} The majority of gain changes are corrected by use of a LED monitoring system wherein

blue (and red) light are pulsed into the crystal and the subsequent signals are measured by the APD (see

section [3.10.3]).

3.6.2 Clustering Algorithm

Towers that have passed the online zero-suppression cuts on the ADC values and that have an energy above
the tower-threshold of 10 MeV are considered in the process of clustering. In the clustering algorithm, a
cluster is essentially defined as a group of contiguous towers that have energy above the tower-threshold.

In each cluster there exists only one local maximum; if multiple local maxima exist within a group of
contiguous towers, then one has overlapping showers, and a cluster-splitting algorithm is used in an attempt
to reconstruct the original showers. In the overlap region, the splitting consists of assigning fractions of tower
energies to the different clusters. We only try to distinguish shower overlaps where multiple energy maxima
are visible in the towers. If two showers overlap on the same tower or neighboring towers, no attempt is
made at the reconstruction stage to distinguish them.

In what follows, we outline the details used in creating clusters where we only consider towers that have
energies above the tower-threshold. Please note that in this discussion we reference the usage of the radial
EM shower-shapes, which are described in detail in section[3.9] The shower-shapes give the expected fraction

of energy for a tower at a given radial (lateral) displacement from the cluster center.

1. “Glue” together towers and edge neighbors into a grouping that we call a “supercluster.”

2. Create a cluster object for each local maximum found in the “supercluster.” If only one maximum is

found, then only one cluster is formed, and we skip the next step (cluster-splitting).

3 Analog-Memory Unit
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3. Given that more than one local maxima is found in the previous step, an energy-sharing procedure is
used to distribute each tower’s energy amongst the clusters. An initial informed guess is made for each
cluster’s position and energy by using the 3 x 3 grid of towers surrounding the cluster’s local maximum.
Then, for each tower in the supercluster, the lateral displacement from the different cluster centers is
calculated. For a given tower, this displacement and the clusters’ energies are then used to predict
the fraction of the energy this tower should contribute to each cluster. The prediction assumes that
the showers are electromagnetic and is calculated from the parameterized shower-shapes (section .
The energy in the tower is thus shared amongst the clusters in proportion to the predicted energies for
each cluster (energy is conserved in this step). The cluster energies and positions are then recalculated

using the shared energies. The procedure is then repeated six times.

4. Calculations of cluster position, energy, lateral dispersion, and x2/NDF (measure of how electromag-
netic the shower is) are performed and the variables are stored in cluster objects. These are the objects

available to analyzers of the MPC data.

3.6.3 Position Calculation

The z-positions of the MPC faces are located =~ 220 cm from the nominal z-vertex, and hence all particles
incident on the MPC share the same nominal z-position. The distance from the event vertex does change
on an event-by-event basis, but usually not by more than 4+40 cm.

For the MPC z- and y-measurements (normal to the incident plane), we use a relatively simple log-
weighted center of gravity (CG) technique as opposed to a linear-weighted position. Both linear- and log-

weighted CG positions can be written as

B szl X w;

r==
Ziwi

The difference between linear- and log-weighted positions are the weights. For the linear-weighted CG

(3.6)

position we have

w; = Ei, (37)

whereas for the log-weighted CG




Both positions have a systematic offset from the real position by construction. However, the log-weighted
position is a better measurement of the real hit position because the EM-shower’s radial profile is exponential
in the tails (see Fig. . Additionally, there is a correction to a particle’s position based on its angle of inci-
dence obtained from PISA simulations. Consider a track incident on the calorimeter at a non-perpendicular
angle. The longitudinal direction of the ensuing shower will proceed in the direction of the incident par-
ticle. This changes the radial distribution of energy amongst the crystals, and thus changes the position

calculation. In the MPC, the correction for this change is at most ~ 0.6 cm. The correction we apply is

T =Teg — Teorrs (3.9)

where

Teorr = Sign(z) x 0.0326 x (|acq| — 0.4642). (3.10)

The position resolution of the MPC is energy and species dependent; it is approximately 2 — 5 mm for
single photons run through the PISA simulation as seen in Fig. [3.6l There is also a position dependence to

the resolution, as the BBC frame and the MPC frame both create areas where the resolution is worse (see
Fig. [3.7).
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Figure 3.6: Position resolution for the north and south MPCs as a function of primary photon energy from
single-photon PISA simulations.
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Figure 3.7: Position resolution in the north MPC as a function of reconstructed cluster position for 10 <
E < 20 GeV from single-photon PISA simulations.

3.6.4 Cluster Energy Calculation

The ecore variable is defined as the sum of tower energies in a subset of towers within a cluster that are
predicted to have > 2% of the total energy (typically it only uses 3 x 3 grid of towers centered at the
maximum). The prediction is based on the central position of the cluster and the radial shower-shape (see
section determined from simulations. This procedure is used to keep the noise at a low level in the
energy calculation.

We tune ecore by running single-photon simulations in PISA. Photons of varying energies and hit po-
sitions are directed from the nominal collision vertex into the MPC, and the energy response is measured
along with position information. The ecore variable is tuned such that the peak in the distribution of
Erecasured/ Eprimary as seen in Fig. is at 1 (note: Eprimary is the true energy of the photon). In this way,
we correct for the = 5% leakage of energy out the back of the calorimeter (see eq.[3.1]) as well as any devia-
tion in ecore from the true energy. The low-side tails in Fig. [3.8 arise from integrating over positions where
energy leakage can occur including the BBC shadow (see Fig. and the metal frame which separates the
sections of the MPCs.

The behavior of ecore in response to single photons run through PISA is shown in Fig. In the

simulation, a 5% x E calibration error was introduced to simulate the smearing of the gains in real data.
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Figure 3.8: Example distributions of Ecjys/Eprimary for different energy bins. On the top, the bins are
Eprimary = 3 —4,4 -5, and 5 — 6 GeV, while on the bottom the bins are Ep imary = 16 —17, 17 — 18, and

Eprimary = 3-4 GeV
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Figure 3.9: a.) This plot illustrates the effect of the BBC frame (z = 144 cm) and the beam-pipe steel (r & 4
cm, z > 75 cm) on the cluster hit-distribution for single photons run through the MPC PISA simulation.
b.) The PISA hit distribution of single photons directed at the MPC (z = 220 cm) in the r — 2z plane,
illustrating where the significant preshowering can occur.
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Additionally, a 75 MeV noise contribution and a 2.62% x v/E stochastic error were also used to smear the
tower energies (see eq. . The photons were required not to preshower in any other PHENIX detectors
and are distributed at least 1 cm inside of the detector edges. Additionally, we require the cluster position
to be within 0.8 ¢cm of the primary position. As seen in Fig. [3.10}a, a correction to the energy response is
necessary to bring the Eycosured/Eprimary curve to 1. The correction function used to transform Fig. a
toBI0MD is

Ey

E = . 3.11
0.9759 4 0.03201 x e(—0.09286E0/0.98) ( )
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Figure 3.10: Single-photon simulation behavior of ecore a.) before correction and b.) after correction from

eq. B.10}

One can see that there is some non-uniform behavior still remaining in the energy response that may be
at most 1% above 2 GeV. This originates from a 1% difference in energy scale between the north and south
calorimeters in simulation, small changes in the tower position as compared to the simulation where this
function originates, and a non-optimal functional form used for the correction. However, since this 1% is not
the dominant uncertainty in the energy scale (presently 2%), we accept this in our systematic error. The 2%
energy-scale uncertainty encompasses number of factors including a slight difference between the eta-meson
mass in data and simulation, fluctuations of the gain with time, and the factors mentioned above.

It is also interesting to observe that in Fig. [3.10}a, there is a negative slope at high energies in the energy-
response curve. This is qualitatively consistent with our discussion in section Here we discussed that
the 20 radiation lengths of the MPC are only sufficient to contain about 95% of the shower energy for E ~ 1
GeV. As the incident particle energy increases, the shower grows longitudinally and less of it is contained

within the MPC. As an exercise, we have attempted to understand this behavior with the admittedly simple
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Energy Leakage Study
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Figure 3.11: Energy-response comparison between ecore for single photons run through PISA (blue) and
predictions using longitudinal-profile parameterizations of PbWOy crystals based on Ref. [I19] (black). The
reason for the negative slope at high energies is that the shower needs more length to deposit all of its energy.

parameterizations of the longitudinal profile in Ref. [I19] by first calculating profiles for PbWOQOy,, and then
calculating the energy deposit within 20X for different energies. The qualitative picture looks the same (see
Fig. , but the negative slopes of the high-energy responses differ, as the parameterized showers seem
to be slightly longer than those in the simulation. The parameterizations seem to also have the problem
that they do not obey eq. and hence perhaps they are inaccurate. The simulation studies in the figure
already include a 5% leakage correction factor, and so it may be coincidental that the plots are at the same

scale.

3.6.5 Lateral Dispersion and x?/NDF

Two important variables that can isolate electromagnetic showers from other types (e.g. hadronic showers)
are the lateral dispersion and the x2/NDF, or chi2core. The lateral dispersion for the z-position coordinate
is defined as

 Ei(z; — z)?
disp, = M7 (3.12)

Zi E;

where Z is the mean value for the x-position. The dispersion can be defined with respect to the different
types of positions (e.g. log- or linear-weighted CG) and there are position-dependent corrections that can
be applied [120].

The radial shower-shape and fluctuations were both parameterized in simulation as described in sec-
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tion [3.9 These provide the predicted energies and fluctuations in the towers of a cluster as a function or
radial (or lateral) separation from the cluster center, Ar;, and total energy in all towers of the cluster, Ey;.

Using the shower profile and fluctuations, we construct a y2-like quantity as follows:

Ei - E redicted,i 2
x2=Z( e i (3.13)
where
Epredictedgi = f(Etot; Ari)a 0; = g(EtOt? Ari)' (314)

The NDF in x2/NDF is simply the number of towers used in the calculations.
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Figure 3.12: Results from single-photon simulations run through PISA for a.)Maximum of x and y disper-
sions, b.) chi2core distributions. The counts in the shaded gray region in (a) and those shaded in blue for
(b) are excluded from analysis when running over the real data so as to reject hadronic showers.

The response to single photons has been simulated using PISA; these give us a reasonable handle on
what type of cuts we can make on these variables to reject non-photonic clusters. In Fig. we show
the lateral dispersion and chi2core distributions for different energy ranges of photons as indicated on the
plots. The chi2core variable is the x?/NDF defined in eq. and only includes contributions from towers
less than 2.5 module units from the cluster center. The cuts made in analysis are chi2core < 2.5 and
Max(dispg,disp,) < 4.0 module units?; entries above these cut values are shaded gray in the dispersion

histograms and in blue for the chi2core histogram.
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3.7 Invariant Mass Reconstruction

In high-energy nucleus-nucleus collisions, the most abundant particles produced are the mesons with the
smallest mass called pions. The charged pions (7F) are relatively stable particles, but the neutral pions
decay via the 7 — 7 decay channel 98.9% of the time. Thus, the easiest particle to detect with an EM-
calorimeter is the 7%, and its invariant mass (in terms of the decay photons) can be calculated as the product

of the relativistic four-vectors, or

m2,, = pup" = B — p* = 2E, Fy(1 — cos Af), (3.15)

where E7, E5 are the photon energies and A#f is the angle between the three-momentum vectors of the
photons. We thus take all photon-candidate pairs (a photon candidate is a cluster that passes the cuts
listed in section and calculate their invariant mass, binning the resultant masses into a histogram. In
Fig. we show sample invariant mass plots for p+p, d4+Au peripheral, and d+Au central collisions that
display a pronounced 7° peak near m;,, = 0.135 GeV/c%. To measure the yield of 7°’s, we have to subtract

a combinatoric background from underneath the 7° mass, as is shown in section m
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Figure 3.13: Sample invariant mass spectra for p+p, d+Au peripheral, and d+Au central collisions showing
the 7° peak around my,, = 0.135 GeV/c2.

The separation of the two photons decaying from a 7% depends on the energy and the so-called energy

asymmetry of the 7°. We can rewrite eq. in terms of the total energy E;,; = E1 + E5 and the energy
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asymmetry o = Igi;gzl and eq. becomes

m? = E—2(1—a2)(1—cosA9) o %2(1—a2)(A92/2). (3.16)

inv 2

The small angle approximation above (1 — cos Af ~ A#?/2) is valid for angles between photons detected
within the MPC. Eq. shows that for a fixed mass and energy asymmetry «, the angular separation
of the photons decreases as the energy increases. Thus for sufficiently high-energy 7%’s, the photons will
be separated by an angle A# smaller than the granularity of the towers; subsequent clustering would then
produce one cluster and the two-photon invariant mass technique becomes intractable. In the analysis
presented in this thesis, a minimum separation of 2.6 cm is required for photon-candidate pairs, which with
m = 0.135 GeV/c?, a = 0, gives a 7 energy of ~ 23 GeV. If we instead choose o = 0.6 (which is the
maximum asymmetry we have in the analysis), the energy becomes ~ 28 GeV. Hence, the granularity of our
detector imposes an upper limit on the energy of 7°’s that we can detect via the two-photon decay.

One can also see from eq. [3.16] that at a fixed energy, the parameter that controls the two photons’
separation angle A# is the energy asymmetry «, to which it is directly proportional. If one considers the
two-photon decay in the rest frame of the 7%, one can show that the decay probability is uniform in o and
that qunee = B, the velocity of the 7°.

The minimum separation is defined by the condition o = 0, or Fy = FEs. Very large separations are
possible for large values of a (e.g. > 0.9), but we use the constraint that o < 0.6, which limits the separation
to within a 20% range. The cut of a < 0.6 ostensibly reduces our efficiency by 40%; however, many

0

asymmetric 7°’s cannot be detected with the other cuts we impose, and hence the loss is not significant.

3.8 Comparison of Data with Simulation

Detector efficiency calculations are performed using PISA [I11], the GEANT3 [I18] PHENIX detector sim-
ulation package. It is very important that the simulation accurately describes the detector acceptance and
behavior. Detailed studies have been performed that show our detector is well described by the simulation,
and in what follows we present supporting results.

In order to understand how well our simulated results match with the data, it is necessary to look at the
invariant mass, x?/NDF, and dispersion distributions; if the distributions look significantly different, the
simulations could produce significantly different efficiencies than what we should measure in the data.

Single-photon distributions in simulation are useful for understanding how to cut on the variables, but
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they do not tell one how well the simulations compare to the data (unless we have a clean sample of
photons). To do this, one can compare the quantities by selecting the invariant mass window of the 7°. In
Figs. |3.1443.16] we show the invariant mass distributions, dispersion distributions, and y? distributions for
70 candidates in p+p data compared to p+p PYTHIA [117] — PISA simulations in the north MPC. These
distributions are shown in three energy-bins: 7—10 GeV, 10 — 15 GeV, and 15 — 22 GeV. For the dispersion
and x? distributions, we use the 7° mass window of 0.08 GeV/c? < E < 0.18 GeV/c?. The x? distribution
is shown for each cluster individually, while the dispersion distributions are shown as Max(disp;,disps),
where disp; = Max(disp; 5, disp; ) for both clusters 1 and 2.

In the figures that follow, one can see that there is a very good match between the simulation and data,
which gives us confidence that our simulation is properly describing the response of the detector for both

single photons and for 7°’s. This is paramount in determining acceptance and efficiency corrections.
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Figure 3.15: North MPC 7° dispersion comparison between simulation and data for three different energy
bins: 7T< E <10 GeV, 10 < F < 15 GeV, and 15 < F < 22 GeV.
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Figure 3.16: North MPC cluster x2/N DF comparison between simulation and data for three different energy

bins: 7T< EF <10 GeV, 10 < F < 15 GeV, and 15 < F < 22 GeV.
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3.9 Shower Shape Parameterization and Test Beam Results

3.9.1 Introduction

Parameterization of the radial shower-shape was accomplished by simulating single photons in the MPC
PISA simulations and measuring both the radial shower-shape and the associated fluctuations as a function
of the primary energy. To parameterize the fluctuations, a noise term of 75 MeV was applied as well as a
stochastic term of 2.62% x v E. To produce a shower-shape at a given energy, we consider a cluster with

total energy Eo; and tower energies Eyqy ;. We form a 2-D histogram with the following axes

Efrac,i = Etow,i/Etotu (317)

Ar; = /(z; — )2 + (y; — §)2, (3.18)

where Z and g are the log-weighted CG (eq. cluster - and y-positions. One then fills the histogram
for each tower in the cluster. The radial shower-shape is simply a fit of Ef.q. as a function of Ar. The
fluctuations are simply the spread in Efq.(Ar), or the RMS (RMS = standard deviation in this context) of

a projection in a given Ar bin. Please note that for the figures in this section, we use the notation R = Ar.

3.9.2 Test Beam Data

Before discussing the parameterization of the shower-shape, let us first justify the usage of single-photon
simulations for the parameterization of the shower-shape. A beam test was carried out at Fermilab with
the MPC crystals, and here we present the analysis performed by A. Kazantsev [12I]. Two samples of
beams are used for the comparison of simulation to data: a 16 GeV electron beam, and a hadronic beam.
Hadronic backgrounds in the electron beam were decreased by using a Cherenkov detector, but the exact
hadronic background remaining is not known. The shower-shape for both e~ and hadrons was then created
as described in the introduction above. In Fig. [3.17] one can see the side-by-side comparison of the electron
sample (a) and the hadronic sample (b).

One notable observation is that in both plots there is some contamination, which in turn will slightly
skew the corresponding shapes. Still, one can easily see that the energy in the electromagnetic shower is
more concentrated in the center of the shower. The shower-shape parameters thus give good rejection against

hadronic showers because of the distinctly different behaviors.
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Figure 3.17: Test beam shower-shapes for a.) 16 GeV electron sample and b.) the hadronic sample. The
horizontal- and vertical-axis labels are Ar and E{,q., respectively.

In Fig. we show the averaged electromagnetic shower-shape for both electrons (black, open circles)

and hadrons (black, closed circles). The hadronic shape is distinctly different than the others; it starts at

a lower value, but has less of a drop-off. Also shown are sample corrected electron shapes (colored crosses)

based upon weighting the hadronic shape by different factors and subtracting this from the measured electron

shape; this exercise shows how the contamination could affect the signal.
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Figure 3.18: Test beam shower-shapes for electrons (black, open circles), hadrons (black, closed circles),
and corrected electron shapes assuming different levels of hadronic contamination (colored crosses). The
horizontal- and vertical-axis labels are Ar and E¢yq., respectively.

Next, in Fig. we compare a simulated shower-shape (10 — 15 GeV electromagnetic showers) with
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the 16 GeV test beam data. Here we have the shower-shapes for the electron test beam data (open black,
circles), simulation data (closed black, circles), and corrected electron test beam data (colored crosses).
Please note that these corrections are not based on any measurement of the hadronic contamination, and
so are admittedly not proof of an exact match between simulation and data. However, even assuming no
contamination, the shapes are very similar, and hence this gives us confidence that using single-photon

simulations to parameterize the shower-shape is a valid procedure.
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Figure 3.19: Shower-shapes for 16 GeV e~ test beam data (black, open), 10— 15 GeV simulated data (black,
closed), and corrected test beam data (colored crosses). The horizontal- and vertical-axis labels are Ar and
Efrqc, respectively.

The last test-beam plot that we will discuss is shown in Fig. [3:20] Here we show that using the primary
position (black) in simulation and the log-weighted position (red) in data produce similar shower-shapes.
From this, one can infer that the log-weighted CG position is a very good measurement of the true position

of an electromagnetic-shower producing particle.

3.9.3 Shower Shape Parameterization

The MPC analysis code is based on the pre-existing PHENIX EMCal [93] code. The EMCal shower-shape
was parameterized and used in the clustering in a similar manner as in the MPC. We sought to improve
the on the EMCal shower-shape parameterization, which uses a linear-weighted CG position. When the
EMCal position is calculated, a minimization technique is used that has a similar position resolution as the

log-weighted CG position. Thus, when the xy?/NDF is calculated, there will always be some systematic
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Figure 3.20: Simulated shower-shapes using primary position (black) and log-weighted CG position (red).
The horizontal- and vertical-axis labels are Ar and Ef;.q., respectively.

contribution because the position used to parameterize the shape is different from the measured cluster
position. However, according to the author of the analysis code [122], this difference is accounted for in the
energy fluctuations of the parameterization; nevertheless, we sought to improve the parameterization and
opted to use the log-weighted CG position for this. In Fig. we show a comparison between the EMCal
and MPC shower-shapes. One can see that the linear-weighted CG position does not have the plateau at
small Ar as does the log-weighted CG.

In the process of parameterizing the shower-shape, it was realized that the following two distinct shower-

shapes were necessary.
sharing-shape The shape that is used for the sharing of energies when clusters are merged.

x2-shape The shape used for the calculation of the x?/NDF.

The sharing-shape does not include fluctuations (other than stochastic) in its formulation and includes towers
that have zero energy. This shape is used in the energy-sharing procedure, as this procedure tries to properly
distribute the energy amongst the different towers. If the towers with zero energy were not included, the
high-Ar (or R) shower-shape tails would be biased upwards. This in turn would lead to problems with
the cluster-splitting procedure; towers far from the cluster position would tend to “grab” more energy than
should be allocated in the sharing procedure. This shape was parameterized out to a photon energy of 60

GeV.
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Shower Shape Comparison at E=20 GeV
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Figure 3.21: Shower-shape comparison between linear-weighted CG (red), log-weighted CG (green) in the
MPC for E = 20 GeV single photons run through GEANT. The EMCal parameterization (blue line) is also
shown for comparison and matches well with the MPC linear-weighted CG shape.

The x2-shape includes the fluctuations in its formulation and only uses towers with energies above the
10 MeV threshold, which eliminates noise. This shape is what is used for the x? calculation, wherein we
only consider the sample of towers that do have a given energy above the threshold, and is parameterized
to 30 GeV. Above the range where the shapes were parameterized, 60 (30) GeV is used as the input for the
sharing- (x?-) shape.

As it turns out, it is also useful to use the linear-weighted CG shape of the EMCal during the cluster
splitting process; the reason is that the log-weighted CG shape tends to spread the energy farther away from
the cluster-center, and this can have adverse effects on the sharing procedure. Hence, because the EMCal
shape is in fact very similar to the MPC-shape, we use this in all but the last step of the energy-sharing
procedure (see section , wherein we use the sharing-shape. Hence in our clustering we have three shapes
that we use for different purposes.

The parameterization of the MPC shower-shape begins by finding suitable fit functions (see egs.
to fit the shower-shape and the fluctuations. We then calculate the energy dependence of the parameters in
the fit functions. The EMCal fit functions (see eq. [3.19)) were initially used; the shower-shape and fluctuation

fit functions are
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1AT

Jemc(Ar) = poe? +p267”3m3, (3.19)

OEMC(Efrac) = So+ SlEfrac + S2E]20rac + S3E?rac' (320)

Bad fits to the MPC shower-shape, however, necessitated a modification to better fit the log-weighted

shape; we added an extra term of e_(AT)S, and thus the MPC shower-shape is described by the function

Farpc(Ar) = poe PHAT 4 ppe P AT o p empe AT (3.21)

Modifications to the functional form of the fluctuations were made to optimize both the energy dependence

of the fit and are shown below.

So + Sl(Efrac — 04) + Sg(EfTac — 0.4)2 + Sg(Efrac — 0.4)3 + 34(Efrac — 0.4)4 A?" < 1.2
JMPC(Efrac) =

toe AT else

(3.22)

The offset of (E 4. —0.4) in the polynomial equation above is significant; the terms in the polynomial get
successively smaller with increasing power for E.q. € (0,0.9). Without an offset, when Ef.q. ~ 0.8 — 0.9,
the terms are of order one and the fit parameters converge to large, positive and negative values, which
are not stable. This instability makes it impossible to parameterize the energy dependence of the RMS
fit-parameters accurately, but is fixed by parameterizing about Ef.q. = 0.4.

All the parameters in egs. [3.2113.22| (p;, s;,t;) are parameterized as functions of the cluster energy. We
first show a few example fits to both the radial shower-shape and fluctuations in Figs. [3.22 We then
show how well our parameterized shapes reproduce the observed shape and fluctuations in Figs. [3.2513.27]
Finally we show the fits used to extract the energy-dependent parameters in Figs. It should be
noted that these fits and parameters correspond to the y2-shape.

A few example sharing-shapes from our parameterization (blue) are compared to the measured shapes

in Figs. [3.30 fits to the energy-dependent parameters are shown in Fig. [3.33
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Figure 3.22: x2-shape: Fits to the shower-shape (top) and fluctuations (bottom) for E=5.25 GeV photons
in PISA; the blue curve is functional form used for the shower-shapes. The legend refers to the leading
exponential power of the functional form of the fit. The right-hand plots are the log-scale of the left.
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Figure 3.23: x2-shape: Fits to the shower-shape (top) and fluctuations (bottom) for E=10.5 GeV photons
in PISA; the blue curve is functional form used for the shower-shapes. The legend refers to the leading
exponential power of the functional form of the fit. The right-hand plots are the log-scale of the left.
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Figure 3.24: x2?-shape: Fits to the shower-shape (top) and fluctuations (bottom) for E=20.5 GeV photons
in PISA; the blue curve is functional form used for the shower-shapes. The legend refers to the leading
exponential power of the functional form of the fit. The right-hand plots are the log-scale of the left.
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Figure 3.25: x%-shape: E = 5.25 GeV, Left: The parameterized shower-shape and fluctuations (blue) are
plotted on top of the actual measured shape and fluctuations (black). Right: The parameterized (blue) and
measured (black) fluctuations are plotted versus R.
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Figure 3.26: x?-shape: E = 10.5 GeV, Left: The parameterized shower-shape and fluctuations (blue) are
plotted on top of the actual measured shape and fluctuations (black). Right: The parameterized (blue) and
measured (black) fluctuations are plotted versus R.
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Figure 3.27: x%-shape: E = 20.5 GeV, Left: The parameterized shower-shape and fluctuations (blue) are
plotted on top of the actual measured shape and fluctuations (black). Right: The parameterized (blue) and
measured (black) fluctuations are plotted versus R.
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I Calculation
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Figure 3.28: x2?-shape: The coefficients p; of the shower-shape

a piecewise fashion.
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Figure 3.29: x2-shape: The coefficients s; and ¢; of the RMS in eq. are fit as a function of energy in a

piecewise fashion.
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Figure 3.30: sharing-shape: E = 5.25 GeV, Left (linear-scale), Right (log-scale): The parameterized
shower-shape and fluctuations (blue) are plotted on top of the actual measured shape and fluctuations
(black).
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Figure 3.31: sharing-shape: E = 10.5 GeV, Left (linear-scale), Right (log-scale): The parameterized
shower-shape and fluctuations (blue) are plotted on top of the actual measured shape and fluctuations
(black).
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Figure 3.32: sharing-shape: E = 20.5 GeV, Left (linear-scale), Right (log-scale): The parameterized
shower-shape and fluctuations (blue) are plotted on top of the actual measured shape and fluctuations
(black).
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Figure 3.33: sharing-shape: The coefficients p; of the shower-shape in eq. are fit as a function of
energy in a piecewise fashion.
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3.10 MPC Calibration Procedure

Through a process of trial and error, a clear calibration procedure for the MPC has been optimized. The
original Run8 calibration idea was that the Minimum Ionizing Particles (MIPs) and the so-called inverse
slope technique were to give us a first order calibration and that the so-called iterative 7° would be the final
calibration.

However, it was found that the gains can shift by a significant amount on both short and long timescales.
The short-term changes result mainly from temperature changes coupled with the effective 4% temperature
coefficient of the towers. The long-term changes are due to a change in how the light is transmitted from
the PbWQy, crystal to the APD. For instance, in Run8, we see a =~ 40 — 50% gain drop from the beginning
of the d+Au run to the end of the p+p run in virtually all towers (e.g. Fig. , and there are many local
gain-shifts resulting from changes in temperature. The 7° calibration is not fine enough to elucidate many
of the local changes, and hence a finer gain-monitoring technique was necessary.

To improve the situation, it was decided to implement data from the LED monitoring system [98]. A
blue (red) pulse of light of known intensity is sent from the back of a crystal to the APD (which sits at the
front), and a charge signal is measured. The change of this signal gives us a handle on how the gain changes
over time. Once the usage of the LED monitoring system was implemented to track the time-dependence of
the gains, the MIP+LED calibration gave us a stable 7 peak across all runs and was good to 0E/E =~ 8%.

Additionally, by using the 70 calibration, we were able to reduce the calibration error to ~ 4%.

3.10.1 MIP Calibration

A Minimum-Ionizing Particle (MIP) is a particle that interacts with a material only through Bethe-Bloch
ionization wherein a minimal amount of energy is lost through interactions with electrons. Typical MIP
particles are muons and charged pions, though charged pions can also undergo hadronic interactions as well.
The energy deposited depends upon a particle’s path length through the material. For the 18 cm long
PbWO, towers of the MPC, the average energy deposited by a MIP has been calculated to be 0.234 GeV.
To observe a MIP in the MPC, one simply examines the low-energy spectra of each tower, and searches for
a signal protruding from the spectral shape. This signal is enhanced by requiring that the energy deposited
in the tower be correlated with a track that projects from the interaction vertex through the BBC and
through the tower of interest. In Fig. we show an example MIP peak. A tower gain value can then be

determined from the correlation of the charge at which the MIP value occurs, or giow X Qtow = 0.234 GeV.
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Figure 3.34: Example MIP peak and fit from Ref [98].

3.10.2 Inverse Slope or Log-Intercept

There are cases wherein towers do not have clear MIPs. When this occurs, another method can be used to
determine the tower gains called the method of inverse slopes (or log-intercept depending on the fit to the
charge spectrum). This calibration technique requires that some towers are well calibrated, and makes a
correlation between the shape of the charge distributions and the gains of the towers. For large energies, it
is expected that the behavior of the energy distribution scales as a power law in transverse momentum (at
fixed rapidity) while at low energies an exponential behavior is expected. We consider these two cases and
derive a correlation between the gain and the fit parameters of these two functional forms.

First, consider a power-law spectrum where f(E) = AE~® with the gain g determined from the relation

g@Q = E. Then we have

Q)= A(gQ)™" = (Ag~")@™" (3.23)

Thus we see that by correlating the intercept in a log-log plot of In(f) versus In(Q) (or the prefactor in
the power law) against the gain value, we obtain a correlation that can be used to calibrate towers whose
gains are not fixed by the MIP. This applies to towers that are at similar pseudorapidities since the energy
spectrum changes as the pseudorapidity is varied.

For an exponential function of the form f(E) = Aexp(—(F), we have

f(Q) = Aexp(—PgQ) (3.24)

81



and hence by correlating the slope in a semi-log plot of In(f) versus @ with the gain values, we can calibrate
the remaining uncalibrated towers. In practice it was found that using a power law worked better and this

is what was used in the fits [123].

3.10.3 LED Calibration

The LED calibration is very straightforward. A detailed description of the system can be found in Ref. [98)].
Blue and red LEDs pulse light through the crystals every 100 ns and the ADC values are measured. The
light is also sent to PIN diodes which monitor the intensity; the PIN diodes correct the measured ADC
values for any fluctuations in the source. The LEDs track and correct for changes in gain that occur over the
running period due to changes in the amount of light a crystal transmits to the APD or due to temperature
fluctuations in the APD itself. The LED system does not, however, monitor for changes in the light yield;
the temperature coefficient in the PbWO, crystal is associated with the light yield and hence this is not

monitored with the LED system.

- Example Channel

25— ~50% LED Change during Run8
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Figure 3.35: Example red LED signal throughout the 2008 run. Each data point corresponds to a data-taking
period that was roughly one hour long, and the entire run lasted from November of 2007 through March of
2008. One can see a clear drop of nearly 50% over the duration of the run for this tower. The discontinuities
are due to the magnets being switched off and on during shutdown periods.

The necessity of the LEDs can be seen in the 40 — 50% gain change (as measured by the LEDs) that
occurred in the 2008 running period (Fig. [3.35)). Possible reasons for the gain changes include a change in
the optical properties of the region between the APD and crystal or a change of the optical properties of
the crystal itself. Additionally, the MPCs sit next to the water-cooling system of the muon magnets and
experience relatively large variations in temperature before and after shutdown periods.

For each run, distributions of ADC values for the LEDs are measured and the mean values of the
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distributions are calculated. A procedure is then carried out that eliminates outliers and the values are
entered into the database. As we run over the data, we modify the gain value by giow — gtow/LEDiow.
An example of the normalized LED values versus run number are shown in Fig. [3.35] and the efficacy of

the LEDs can be seen by the 7° mass remaining constant over the running period despite the 40-50% gain

change (see Fig. in section [4.3.3)).

3.10.4 =° Calibration

The combination of MIP, inverse slope, and LED calibrations lead to an approximate 8% calibration error.
By using an iterative procedure to match the 7° mass in each tower with the expected values, we can improve
this further to ~ 4%.

The iterative 70 calibration tries to match the mass of the 7% in each tower to a mass determined by
simulation. The simulations are /s = 200 GeV p+p PYTHIA events run through PISA, and we reconstruct
the 7° mass in each tower. A histogram with the two-cluster invariant mass distribution is formed for
each tower. Entries into the histogram are made when a tower is the central tower of a cluster (highest
energy tower). Hence, for each cluster pair, there is an entry for two different towers. The simulation has
been tuned to match the electronics noise and the stochastic fluctuations with those in the data. We use a
calibration error 0 E.qip = 1%X E for simulation. The PYTHIA simulations (Tune A [124]) have been tuned
to match the spectral shape and cross section of p+p data quite well at /s ~ 1 TeV, and this tuning seems
to extrapolate down to RHIC energies and produce realistic particle rates [98]. We fit a Gaussian peak to
the mass in each tower in simulation. We then try to adjust the gains in the data such that the mean value
of a fit to the 7 mass peak matches that in simulation.

Certain cuts are used on the clusters and the cluster pairs to enhance the signal-to-background ratio. A

list of the cuts used in the calibration procedure are given below:

z-vertex |zyi.| < 30.0 cm,

Minimum cluster energy FE ., > 2 GeV,

Shower-shape Y\?/NDF < 3,

Lateral dispersion Maz(disp,,disp,) < 4.0 module units?,
Pair pr prpair > 0.45 GeV/c,

Pair energy 9 GeV < Epq; < 17 GeV,
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Energy asymmetry a < 0.6.

The data are analyzed first with the gains determined from the MIPs. The gains are then adjusted by

trying match the mass in data to simulation, or

Gnew = Gold X msim/m7'eco~ (325)

Nominally speaking, mgim = 0.135 GeV/c?; however, we used the values determined by simulation in order
to optimize the gains.

A simple Gaussian fitting procedure was used to find the value of the mass in each bin. Ideally, a
subtraction of the background would be performed before fitting the peak to a Gaussian. However, it was
found that a subtraction was unnecessary and that one could simply fit a small region (£25 MeV) around
the maximum of the mass peak. The mean value and standard deviation are then calculated from this fit;
the standard deviation is still a good measure of the width of the peak, but is not an exact measure. Seven
iterations of this procedure are carried out; subsequent iterations produce changes that are < 1%.

Results from a few of the iterations are shown in Figs. 3:373.38 and the gain changes are shown in Fig.
[3:39] Additionally, the invariant mass peaks of all MPC towers are shown for the first and last iteration in
Figs.

A cursory evaluation of the efficacy of the gain-set is shown in Fig[3.36] wherein we show the invariant mass
spectrum for Ep,q; > 30 GeV. The peak at m,, ~ 0.55 GeV/ c? is the eta meson; the angular separation
of the photons from the 7% — v decay is too small to observe the decay at this energy (see section ,
and hence no 70 peak is present. To evaluate the calibration error, we compare Run8 p+p data with p+p
PYTHIA— PISA simulations; different calibration errors were scanned in simulation to best match the
observed dm/m of the eta-meson peak. It was necessary to use a high-energy (Epqir 2 20 GeV) peak to
ensure that the peak width was not dominated by noise. It was found that the MPC has a calibration error of
~ 4%, which is reasonable considering the large gain changes, temperature fluctuations, and energy leakage

(along frames, out the back, and preshowering before the detector).
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\s = 200 GeV p+p, d+Au; E > 30 GeV

8 3 6F
. 7F : .
R F d+Au 60-88 5t d+Au 0-20
< F 4F
o : : .
o % - 3
3F E s
8 F - 2r
N : ;
13 3 i3
0: 1 1 | 1 1 1 1 1 G: 1 1 1 1 1 1 1 1 0: 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4.05 0.6 0.7 0.8

M., (GeV/c?)

Figure 3.36: Sample invariant mass spectra for p+p, d+Au peripheral, and d4+Au central collisions showing
the eta-meson peak around my,, = 0.55 GeV/c?. The 7¥ peak is not present because the energies of the
cluster pairs are too high.
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After 6™ Iteration
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Figure 3.38: Distributions of the 7° mean-mass values and 7% mass-width values for towers in the south
(top) and north (bottom) MPCs after the sixth iteration of the 7° calibration.
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Figure 3.40: Invariant mass distributions in all north MPC towers before the iterative 7° calibration (using
only MIP and LED calibrations). The iterative procedure matches the mean value of the 7% peak in each
tower to the simulated means from simulation.
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Figure 3.41: Invariant mass distributions in all north MPC towers after the iterative 7¥ calibration. The
iterative procedure matches the mean value of the 7% peak in each tower to the simulated means from
simulation.
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Part 11

Measurements
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In the following chapters we present essentially four measurements that have been performed using the
PHENIX MPCs; these include the inclusive p+p 7° cross section, Rg4, azimuthal di-hadron correlations
where one particle is detected at midrapidity and the other at forward rapidity, and finally, di-hadron
correlations where both particles are detected at forward rapidities.

We first define each measurement, followed by discussing the relevant technical details. Then, we show
the final results and accompany these with a discussion of the experimental impact. After all measurements
have been presented, we will show a few theoretical predictions and try to discuss how these data can have
an impact on our understanding of the initial state for heavy-ion collisions, the Color Glass Condensate, and

cold nuclear matter effects.
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Chapter 4

Forward 7V Invariant Yields, p+p
Cross Section, and Rjx

4.1 Definitions

First, we define the 7% invariant yields, which later can be simply related to the 70 differential cross section.
The invariant yield is defined as:
d*N 1 1 d®N(pr,n)

E = 4.1
d3p Ninel 27TPT dedn ’ ( )

where Ny, is the total number of inelastic events. Also, it is implicit that the values of d?>N/dprdn have
been corrected for the bin-shift and bias-correction factors as well as for the acceptance x efficiency of the

detector, or

1 dQN(pT7’I’/) _ 1 Nﬂ'o (pT777) « Cbias X Cupfdown
Niner  dprdn Ny AnApr € ’

(4.2)

where Cpiqs is the bias-correction factor for the minimum-bias sample (see section , Cup—down is the
up-down correction factor (see subsection that corrects for the finite bin-width and spectral shape,
and € is the acceptance x efficiency of the detector that includes the 7° — ~~ branching ratio of 98.79%
(see section [£.4.2). We also normalize the spectrum, dividing by the bin-sizes An = 0.4 or An = 0.8, and
Apr = 0.25 GeV/c.

Next, we define the p+p differential cross section. This is simply the invariant yield multiplied by the
inelastic p+p cross section at /s = 200 GeV of 42.2 mb, or

3o d3N

dTp = EW X 0inel,p+p- (4.3)

Finally, we define the nuclear modification factor Rqa as the ratio of the invariant yields per number
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binary collisions, Nce1, in d+Au over p+p, or

1 (EdN/dp®)ga
Ncoll (EdgN/dpg)pp .

Raa(pr,n) = (4.4)

It is also useful to write Rqa in a relatively simple form in terms of the 7¥ differential cross sections (written

here as 0,0) and the inelastic cross sections, c;ner, as shown below:

1 UWO,dA/Uinel,dA

Neout Jﬂ-o,pp/o'inel,pp

Rya(pr,n) = (4.5)

Rga written in the form of eq. above has an analogous form in the two-particle measurements (i.e. Jgqa

in eq. .

4.2 MPC 7' and High-Energy Cluster Particle Identification

In this section, we discuss the particle-identification cuts used to identify 7%’s in the MPC and the quality
assurance (QA) metrics used to ensure good data quality. In addition, we also discuss the cuts used to

identify single high-energy clusters (e.g. 7°

’s with photon showers that are merged) that can be used to
extend the pr reach of the 7° measurement. Only data taken when the detector subsystems in PHENIX
were functioning properly are analyzed; otherwise, the data are excluded.

We use the 2008 RHIC Run8 p+p and d+Au datasets taken by PHENIX. The minimum-bias data is

used for the invariant yield, p+p cross section and R4 measurements.

4.2.1 Photon Candidate Identification

0’s via the 7% — 7y channel, and thus we must detect the photons from the decay.

Our goal is to measure 7
Photons are identified in a calorimeter as clusters (see section , and we enhance the sample by making
lateral dispersion and shower-shape cuts in order to reject hadronic contamination. Low-energy clusters are
rejected because of the high level of electronics noise present (40-70 MeV /tower). Additionally, radial cuts
on cluster positions are applied to ensure that it lies within the MPC acceptance; the inner radial cut also

has the benefit of decreasing the combinatoric background underneath the 7% invariant mass peak. The

aforementioned cuts are summarized in the list that follows; the variables are defined in section [3.6]

Minimum cluster energy ecore > 2 GeV.

Radial MPC acceptance 11 cm < r < 19 cm, where r = /22 + y2.
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Electromagnetic shower-shape x?/NDF < 2.5.

Lateral dispersion Maz(dispz,dispy) < 4.0 module units?.

4.2.2 Neutral-Pion Identification

Neutral pions are identified by their peak in the invariant mass spectrum at mj,, ~ 0.135 GeV/c?. The
invariant mass spectrum is formed by pairing together all photon-candidate pairs and calculating their mass

(see section|3.7)). The following cuts are made on photon-candidate pairs to form the invariant mass spectrum:

Pair energy 7 < E;o: < 22 GeV,

Cluster separation Ar = \/(z1 —22)2 + (y1 — y2)? > 2.6 cm (also, contiguous clusters must have

at least one tower in between them),

_ |E2—Ei|
Energy asymmetry o = Baih, < 0.6.

4.2.3 High-Energy Cluster Identification

Around E ~ 15— 20 GeV, the two photon showers from a 7% decay begin to merge into one cluster. Because
79’s are the dominant source of photons within the MPC, we can use a single cluster measurement at high
energies to measure 7%’s. Simulated p+p PYTHIA—PISA studies indicate that the 7% contribution to the
single-cluster spectrum for pr > 1 GeV/c and E > 15 GeV is 2 75%. Hence, single high-energy clusters are
used to extend the pr reach of 7%’s beyond 2 GeV/c in the MPC.

0’s can significantly change the shower-shape, and hence no

The merging of the two photon showers from 7
x2/NDF cut is applied. The lateral-dispersion distribution, on the other hand, does not change significantly,
and hence the applied cut changes minimally. High-energy clusters above E 2 30 GeV face a problem that
does not plague the low-energy ones: a fake background of high-energy clusters exists that has a comparable
rate to the real clusters from a nuclear-counter effectﬂ These fake clusters usually have a single tower that
contains all the energy, and it is thought that some type of particle deposits energy directly into the avalanche
photo-diode, thus causing a fake signal. The fake clusters do not affect the low-energy clusters because their
rate is small in comparison, and because the x?/NDF cut (for the photon candidates) reduces the fakes

rate. To cut against these fakes, we first define Eg to be the sum the energies of the 8 towers in the 3 x 3 grid

surrounding the central tower. Then we take the ratio of Fg to the central tower energy, F..,:, and require

IThe source of the effect is not completely understood, but can easily be corrected for. It is thought that a large flux (e.g.
spallation neutrons) of low-energy particles can actually deposit energy directly into the silicon layers of the APD and create a
false signal. The rate of these fake hits is small compared to the inclusive single-cluster rate below E ~ 20 GeV.
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that the ratio is greater than some minimum value (see below). Additionally, we require a minimum lateral
dispersion to further cut against the fakes. All the cuts we make on the high-energy clusters are summarized

in the list that follows.

Cluster energy 15 < E < 100 GeV.

Minimum pr pr > 1 GeV/c.

Lateral dispersion Mazx(dispx,dispy) < 5.0 module units?.

Eliminate fakes I Fg/FE c,; > 0.14.

Eliminate fakes II \/disp% + disp? > 0.5 module units?.

4.3 MPC Data Quality

4.3.1 MPC Warnmap

One of the first QA steps is to create a list of towers that are excluded from analysis known as a warnmap
using the minimum-bias data in p+p and d+Au. To form our warnmap, we plot distribution of In(Np;.s)
versus the radial position of the tower (note: r/z a2 2e~"). The logarithm appears to vary linearly with
the radius. We thus fit the correlation with a line and use least trimmed squares (LTS) regression [125] to
eliminate outliers that are more than 3.50 away from the mean value (see Fig. 4.2)).

Towers in the MPC lie outside the +3.50 band for various reasons; these include a beam-pipe support in
the North MPC that blocks 14 towers and a dead tower in the South MPC, but these can be identified by
other methods. One of the main reasons for this procedure is to identify poorly calibrated towers. Use of
In(Npizs) rather than Ny, is thus justified because it is directly proportional to the gain error given that
one has a power law or exponential spectrum, as we now justify. If we say that the energy spectrum for a
given tower is f(E) o« E~%, then integrating over a small energy range we have Np;zs E‘a+1|f. Given

that the ratio of the calibration gain to the real gain is 1 4+ dg, we have

Nhits (14 dg) @ E—o+1f, (4.6)

Taking the log of both sides and assuming that dg is small, or In(1 4 dg) = dg, we have

In(Npits) < In(1+6g) + C(E) = dg + C(E), (4.7
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where C(F) is a function of energy.

A similar exercise can be performed for an exponential-energy spectrum which leads to the same result
above (eq. . Hence we see that for a Gaussian distribution of dg centered about 0, we would expect
the distribution of In(Np;s) to reflect the spread in the gain; more precisely, one standard deviation of this
distribution should reflect the standard deviation of the difference between the measured gains and their
true values, or the calibration error. Thus, this procedure gives us a way to cut out badly calibrated towers
as well as towers that do not perform properly.

Four energy-thresholds were chosen for the creation of the warnmap: 1.0, 6.0, 10.0, and 13.0 GeV. The
number of counts above each threshold were put into histograms for each tower and run, and one value was
established for each tower by calculating the mean across all runs. Then the linear fit with LTS regression
is performed and the outliers are excluded.

There was a noisy driver board in the north MPC which caused towers to appear in the warnmap
only for lower-energy thresholds (< 1 GeV) due to the fact that one begins to sample the pedestal of the
ADC distribution. To ensure data quality, this entire region was removed from the analysis (20 towers).
Additionally, there are 14 towers in the north MPC that are blocked by a thick beam-pipe support which
are also masked out (see Fig. a) The north essentially has no other bad towers, thus indicating a good
calibration. The south MPC was also calibrated well, as only four towers in total were rejected. One can

see how some of the towers were rejected in Fig. The final warnmaps for the north and south MPCs

are shown in Fig.
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Figure 4.1: Final warnmaps in both p+p and d+Au for a.) north MPC and b.) south MPC. The black
towers are excluded from analysis.
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4.3.2 Neutral-Pion Yield

The next QA metric is to plot the 7%-yield per minimum-bias event. We fit the background of the invariant
mass distribution as described later in section and subtract it from the foregroundﬂ distribution, leaving
a Gaussian peak. We fit this distribution and integrate the yield as a function of run number (Fig. [4.3). We

exclude runs that have a yield outside the red bands shown in the figure.

4.3.3 Neutral-Pion Mean

Another QA metric is the mean value of the 7° invariant mass peak across the run (see Fig. . We accept
all points which are within 1.5% of the mean value of the fit, as we claim a 2% uncertainty on our energy
scale. The cuts used for this peak are the basic cuts described in section with the requirement that
pr > 0.75 GeV/c. We plot the 1o lower band to show the width of the Gaussian distribution for the 7°

peak.

4.3.4 Two-Particle Ap Acceptance Functions

The last QA metric is the two-particle A¢ event-mixed acceptance function calculated across Run8 for two
forward particles. The stability of the acceptances for p+p and d+Au are shown in Fig. we quantify

the change in acceptance by a y?-value which is defined as follows (See Fig. [4.6):

2 © (Wij — Yin)®
X3/NDF = Z = % 1/Npins, (4.8)

where y;; is the value of the acceptance in the i'* A¢ bin for the j'* run, and n is a fixed run (actually set
of five runs) that all y2-values are compared to. Stringent cuts of x2/NDF < 2, (1.5) are used as a QA

metrics for p+p (d+Au).

2The foreground distribution is simply the di-cluster invariant mass distribution where clusters are paired from the same
event.
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Figure 4.2: Hit distributions for p+p collisions at /s = 200 GeV in a.) north MPC and b.) north and south
MPCs. The vertical axis is log; o (Npits/Nirig), and the horizontal axis is radial distance from the beam pipe
of a given tower. The low energy-thresholds are 1, 6, 10, and 13 GeV for the plots shown. Only the towers
within the red 3.50 bands are kept (excepting for the noisy driver board in the north).
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Figure 4.3: The 7%-yield per min-bias event for a.) p+p, b.) d+Au 60%-88%. Data points outside the red
band are excluded from analysis.
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Figure 4.4: The mean and standard deviation of the Gaussian fit to the 7% invariant mass distribution for
a.) p+p, b.) d+Au 60-88%.
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Figure 4.5: The cluster/7° (MPC/MPC) event-mixed acceptance functions versus run number for a.) p+p,
b.) d+Au. The color scale represents the value of the acceptance, which has been normalized to have an
average value of 1 for a given run.
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Figure 4.6: The x?/NDF for the cluster/7% (MPC/MPC) mixed-event acceptance functions versus run
number for a.) p+p, b.) d+Au. Data points with a x?/NDF value above the red line are excluded from
the analysis.
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4.4 Data Analysis

4.4.1 Yield Extraction

The 7%s are identified by forming an invariant mass distribution for all combinations of cluster pairs that

pass the particle-identification cuts defined in section The position and energy of the clusters are then

input in the formula for the invariant mass of the 7% — v decay, which as a reminder is
m?., = 2F1Es(1 — cos Af).

inv

(4.9)

The extraction of the 7% yield from the invariant mass distributions in PHENIX is usually first attempted
by a technique known as event mixing. Event mixing consists of forming an invariant mass distribution with
clusters paired from different events. To distinguish between the same-event and mixed-event invariant mass
distributions, they are termed foreground and background, respectively. The background will contain no
mass peaks, whereas clear 7°- and n-meson peaks are present in the foreground. One usually normalizes the
amplitude of the background to the foreground on both sides of the ¥ peak, careful to avoid the n-meson
peak. However, in our case, there is little to normalize to on the low-mass side of the peak (e.g. Fig. ,
and hence we are forced to only use the higher-mass side for the normalization. In Fig. [£7] we show the
foreground (black) and event-mixed background (red) distributions normalized from m;,, = 0.30 — 0.36

GeV/c?. The 7 yield is obtained by subtraction of the background from the foreground and integrating the

counts.
\s = 200 GeV p+p, d+Au; 0.75 < p_ < 2.0 GeV/c
- 20;’ 12 14
g p+p I d+Au 60-88 12 d+Au 0-20
= 145 12 10
T 12 10
Q9 o o 8
W g 6
O &£ 6 |
(0 45_ 4
2 2 2

S P PP PP T rrws .
0.10.2030405060708
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M. . (GeV/c?)

inv

001020.304.0506 0.7 0.8

Figure 4.7: Sample invariant mass spectra (black) and mixed-event background (red) for p+p, d+Au pe-
ripheral, and d+Au central collisions showing the 7° peak around my,, = 0.135 GeV/ ¢?. The mixed-event
background has been normalized from m;,, = 0.30 — 0.36 GeV /c2. This technique underestimates the true
background level in the MPC invariant mass distribution (see Fig. |4.8]).
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The mixed-event technique, however, has been shown in monte-carlo simulations to be incorrect for the
MPC 7-yield extraction. The PYTHIA [117] simulation package was used to produce simulated /s = 200
GeV p+p events. The events consist of partonic interactions, followed by the hadronization of the partons into
particles. These particles decay until the “stable” particles remain. All particles (including partons) and their
relevant kinematical properties (e.g. energy and momentum) are stored in an event record. The PYTHIA
events are then run through the PHENIX GEANT3 detector simulation package known as PISA [I11].
PISA takes the particles produced in PYTHIA and interacts them with the different detector geometries
and materials in PHENIX. We use a version of PYTHIA (6.4 Tune A) [124] that has been tuned to match
the single-particle distributions observed in Fermilab data, and hence the invariant mass distributions in
simulation look very similar to those observed in data.

We developed a technique to track the simulated particle-energy deposits into clusters in the MPC. This

0’s on an event-by-event basis in simulation, thus enabling one to

allows one to identify decay photons from w
track the background contributions to the invariant mass distribution in an exacting manner. In Fig. [1.8 we
show example simulated invariant mass distributions that illustrate the failure of mixed events to describe
the background. One can see that the green (mixed-event background) underestimates the true level of the
background (blue). The motivation for this technique is that the yield extraction using the mixed-event
background is inconsistent with the reconstruction efficiency. More specifically, when we extract the yield in
p+p PYTHIA—PISA simulations and use our calculated efficiencies to correct back to the original spectrum,
the result does not match with the input from PYTHIA.

Because the p+p PYTHIA—PISA simulations have very similar invariant mass distributions to the actual
p+p data, they can be used as a good estimator of the background in p+p data. For d4+Au collisions, linear
combinations of embedded p+p PYTHIA events were used for the background, as we explain below.

Embedding in this context is the superposition of two (or more) events on top of each other. For the
embedding of two p+p PYTHIA events, the event records from the different events are merged. Then, for
each tower, the energy deposition from one event is added to that of the other. The last step is to form the
new clusters which can have contributions from both events. Deuteron-gold collisions can be thought of as a
superposition of multiple nucleon-nucleon collisions (see Fig. b for the N,y distribution); the embedding
of multiple p+p events is an attempt to reproduce the effect that the underlying N.,; distribution has on the
background level. It was found that embedding three p+p events produces an invariant mass distribution
similar to d+Au 0-20% events (these have the smallest signal-to-background ratio). Hence, to describe the

d+Au backgrounds, we add linear combinations of what we now term lpp, 2pp and 3pp events (i.e. 3pp
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means three p+p events embedded into each other) to match the foreground mass distribution in question
(e.g. d+Au 20-40). We then add the background distributions together in the same proportion and use
these for yield extraction.

The invariant mass shapes for 1pp, 2pp, and 3pp events can be seen in Figs. In the pr = 0.25—-0.5
GeV/c bin, a small hump in the background of the 3pp shape (Fig. was observed that is not reproduced

in data, and hence it was reduced such that the simulated distributions better match the real data.
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Figure 4.8: Foreground (red and black), background determined from simulation (blue), and the mixed-event
background (green) for two p+p PYTHIA events embedded into each other for 3.0 < n < 3.8.
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Figure 4.10: 2pp: Foreground (black) and background determined from simulation (blue) for two p+p
PYTHIA events embedded into each other for 3.0 < n < 3.8.
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Figure 4.11: 3pp: Foreground (black) and background determined from simulation (blue) for three p+p
PYTHIA events embedded into each other for 3.0 < n < 3.8.
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The actual matching consists of minimizing a x2-like quantity between the linear combination of simulated
foreground shapes and the data in the range of m;,, = 0.05 — 0.4 GeV/c?. In particular, we first form a

linear combination of the 1pp, 2pp, and 3pp foreground shapes s; using coefficients cppp as

S; = Cipp X fglpp,i + capp X f92pp,i + C3pp X f93pp,i (410)

where ¢ is an invariant mass bin, c1p, + copp + capp = 1 (we are careful to avoid double-counting), and fgnpp.;
corresponds to the simulated foreground produced by embedding 1 < n < 3 p+p events into each other.

Then, given that d; is the value of the data in bin i, we perform the minimization on the quantity

.7d. 2
_ 1 54 1 /o 1
Asd > _ i s;+d; 2

= X
O A tot > 1/0? oY J?’

where o; corresponds to the statistical uncertainty of asymmetry quantity Asq =

(4.11)

;1;22, and s; has been
re-normalized such that Y, s; = > .d; for 7 in bins between m = 0.05 — 0.40 GeV /c?. This procedure is
akin to averaging the asymmetry value Azq over all bins and dividing by the total statistical uncertainty. In
practice, it was used over a more conventional y2-minimization because it produced better results. We thus
produce a simulated shape that best matches our real data by using the linear combination of the 1pp, 2pp

and 3pp shapes. The last step is to calculate our background, which is a linear combination of the simulated

backgrounds with the same coefficients c,,;, fixed from the minimization, or

bgi = cipp X bg1pp,i + Copp X bg2pp,i + Capp X bY3pp,i- (4.12)

This becomes that background we use for yield extraction.

If we look at the invariant mass plots in Fig. [£.12] for central d4+Au collisions, we see that the black is
the data (d;), the red is the linear combination of shapes that best matches the data (s;), and the blue is
the linear combination of background shapes with the same coefficients as used in the matching (bg;).

Figure shows the value of our minimization parameter versus fractions of 2pp and 3pp events (or cap)
and c3pp). Here we do not allow negative coefficients ¢y, < 0, and so only the triangle wherein cg,,+c3pp < 1
is considered. Also, since ¢1pp + Copp + C3pp = 1, the fraction of 1pp (c1pp) can be thought of as lying on the
diagonals; that is, when cap), + c3pp = 1 (at the hypotenuse of the triangle), ¢1p,, = 0. When capp, + c3pp = 0,
then cqp, = 1, and we are at the origin.

The simulated data consists of 50 million p+p events; hence using the simulated shapes increases the

statistical error in subtracting the background. In some cases (i.e. the last two pr bins), the statistics of
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the background are not sufficient to use the histogram for subtraction. In these cases, the background is fit
with a Landau distribution added to a 7% degree polynomial. In appendix we show the invariant mass
distributions, backgrounds, and minimization contours for all centralities and rapidity ranges (3.0 < n < 3.4,

3.4<mn<38,and 3.0 <n < 3.8).
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Figure 4.12: Tllustration of the process for finding the background for d+Au 0-20% events, 3.0 < n < 3.8.
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4.4.2 Acceptance x Efficiency

There are several different techniques that can be used to estimate the correction factor for the limited MPC
acceptance and efficiency. The most basic one is to generate a sample of single-7’ events using a single-
particle generator (e.g. PYTHIA) that can generate 7%’s distributed uniformly in pseudorapidity and pr (or

energy). The decay photons from the 7%’s are run through PISA, and the efficiency is simply determined as

NT@CO p ’77
e(pr.n) = #

= 4.13
Nthrown (pTa 77) ( )

The reconstructed 7%’s are extracted from the invariant mass distribution. If we had a perfect detector,
this technique would be sufficient. However, one additionally has to account for the resolution of the detectors,
which causes a smearing of the pr and pseudorapidity bins. Also, one has to consider efficiency changes
when the 7%’s are detected in the presence of other particles — so-called multiplicity effects.

To estimate the multiplicity effects, we embed the single 7%’s into real events (d+Au or p+p) and calculate
the efficiency. The embedding procedure basically involves adding the energies in a tower from both events
together, as described in the previous section.

The smearing effect from the finite detector resolution can be resolved by a number of different approaches;
two common approaches include matrix inversion and iterative methods to unfold the smeared spectrum.
We have chosen to use the iterative method but both will be described in what follows.

To correctly calculate the efficiencies, we have to consider the bin smearing wherein bin content that
belongs to bin ¢ ends up in bin j, along with a falling spectrum in both py and pseudorapidity. It is easiest
to formulate the efficiency calculation in terms of a matrix-inversion problem. Given that s; are the true
yields in bin ¢ (pr or n bin), y; are the measured yields in bin 4, and €;; is the efficiency matrix which

accounts for smearing from bins ¢ — j, we have

S eysi = v (4.14)

J
This efficiency matrix accounts for both the smearing of bins as well as the probability to reconstruct a
7%, To obtain s;, we simply need to invert the matrix &;. The efficiency matrix can be determined from
simulation, but properly inverting the matrix and the errors can be difficult, especially because we must

account for the smearing in both py and 7.

Instead, we choose to follow PHENIX convention perform an iterative procedure. The problem can be
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formulated as

Yi 2 €iiS;
e
si si

(4.15)

P =

where ¢; is the efficiency of bin 7 that has accounted for all smearing (y; has contributions from all s;). As

a simple example, for the case where there are two bins, we have

s
€1 = €11+ 5612- (4.16)
1

This illustrates that the spectral shape must be known to measure the efficiencies, as ¢; depends on both
s1 and sg, the true values of the spectrum in these two bins (unless there is no smearing between bins 1 and
2 or €15 = 0, i.e. the perfect detector). Because the off-diagonals of the efficiency matrix are non-zero (i.e.
there is smearing), a simultaneous determination of the efficiencies and the spectral shape is carried out via
an iterative procedure. We begin the procedure by using the spectral shapes (in both py and 1) measured
from PYTHIA.

To “apply” the shapes, we consider the single-7" events distributed uniformly in pr (what follows also
applies to n). Each of the generated events is weighted according to the py at which the 7° was generated.
For example, given a pr spectrum that has a value of 3 at pr = 0.25 GeV/c and 1 at pr = 0.5 GeV/c, each
79 with pr ~ 0.25 GeV/c is counted three times in the efficiency calculation; each 7° with pr ~ 0.5 GeV/c
is counted once.

Using the two-bin example in eq. s1 = 3s9 and thus

1
€1 = €11 + §€12- (4.17)

Consider an other example in which true 7° distribution is flat in pr, or s; = so and we have

€1 = €11 + €12. (4.18)

These two examples illustrate that what we call the “efficiency” actually depends on the spectral shape and
is not simply a property of the detector.

The iterative procedure is designed to produce the correct pr and n spectra. The corrections to the
pr and 7 spectra are done separately, rather than simultaneously. Specifically, five iterations of corrections

are performed on the pp spectrum, followed by a corrective iteration to the n spectrum. This procedure is
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carried out six times; thus in total there are 36 steps in the procedure. The steps of one iteration are detailed

below:

1. Use pr and 7 spectra from the previous iteration (0'" pr, 7 iterations use PYTHIA) as a weight to

calculate the efficiencies (eq. |4.13)),
2. Correct measured yields by efficiencies to create the pr spectrum in 7 bins,
3. Fit pp spectrum with piecewise exponential/Hagedorn function from eq.
4. Repeat steps 1-3 five times and convergence of pp spectrum is achieved,
5. Modify linear fit to 7 spectrum to better match observed yields in 7 bins,

6. Repeat steps 1-5 six times.

The pr fit function that describes the data well is a piecewise exponential and modified Hagedorn function,

or

age~4PT pr < 0.5 GeV/c,
flpr) = (4.19)

qobz pr > 0.5 GeV/c.

(e=a1pr —a2pT? 4 b /qy)aa

The Hagedorn function is designed to encompass both the high-pr power-law behavior and low-pr exponen-
tial behavior; in practice an exponential function at low-pr and in combination with the Hagedorn function
at higher pp fit the data quite well.

In Figs. we show dN/dpr for the five iterations of the pp-corrective procedure for p+p and
d+Au 0-20%. The top, left plot uses the PYTHIA input spectrum, and the subsequent plots are the iterations
of the procedure. Here the black data points are for real data, while the data points shown with a dashed,
blue line are the input PYTHIA spectrum. One can see in Fig. that the PYTHIA dN/dpr matches

that in data very well.
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For the 7 distribution, we fit a simple line to the shape from PYTHIA in each py bin as shown by the
black line in Fig. Care is taken to ensure that the average value of the weights in the 1 bin equals one,
so that the total weighting of the given pr bin does not change.

The yields are measured in two pseudorapidity bins, 71 = 3.0 — 3.4 and 1y = 3.4 — 3.8. The measured 7
spectra (in each pp bin) are compared to PYTHIA (in the two 7 bins); then in each pseudorapidity iteration
(step 5 in the above procedure), the linear fit is modified so that the ratio of counts in the two 7 bins is the

same as what we measure. Formally, we have

NN

C(pT) - P2/P1

(4.20)

where P; (N;) are the integral PYTHIA (data) yields over the pr, n range of the n;-bin in question. The
original linear fit to the PYTHIA pseudorapidity spectrum is modified until Ny/No = Pj/Pj, where P*
corresponds to the yield from the modified fit. Examples of the final n distributions compared to those from
PYTHIA are shown in Fig. for d+Au 0-20% data. The pseudorapidity distribution was never allowed
to be negative, but rather when 7 > 9, (i.e. where the distribution is 2% of the maximum value) the
distribution remains flat.

The modification of the 7 distribution is made difficult because the py range accessible is different in the
two pseudorapidity bins measured, as the n = 3.0 — 3.4 bin has py bins from 0.25 — 2.0 GeV/c, whereas
the n = 3.4 — 3.8 bin has py bins from 0.25 — 1.5 GeV/c. The procedure that was carried out was to
measure C(pr) in the three bins with pr between 0.5 — 1.25 GeV/c, and essentially use the C'(pr) values
of the highest and lowest py bins for the surrounding bins. The three “middle” p7 bins were used to avoid
systematic problems; the other two pr bins (0.25 — 0.5, 1.25 — 1.5 GeV/c) common to both pseudorapidity
bins have small efficiencies because simultaneous pr and energy cuts are made. This is illustrated in Fig. [4.17]
which shows what we call the “kinematic acceptance” in the pr and 7 bins for the energy cuts of 7 < F < 22
GeV. In Fig. we show the ratio C'(pr) using the 3-point fit (a) and 5-point fit (b). The 3-point fit was
the actual fit that was used; the 5-point fit was used in the systematic error studies.

The final efficiencies are shown in Fig. [f.19] One can see that the increased event multiplicity of d+Au

collisions has a relatively small effect on the MPC 79 efficiency.
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Figure 4.19: Final acceptance x efficiencies in p+p and d+Au for all centralities and rapidity intervals.
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4.4.3 Bias-Correction Factor

The PHENIX minimum-bias trigger is defined by a coincidence between hits in the Beam-Beam Counters
(BBCs) on either side of the interaction point. The efficiency of the minimum-bias trigger is &~ 54% in p+p
collisions [126]. This means that the trigger will see only 54% of the p+p inelastic cross section in p+p
collisions, or in absolute terms, & 23 mb of the available 42 mb at /s = 200 GeV. This correction is applied
to correct up the total number of events observed in the minimum-bias sample to the true number of inelastic
p+p events, or Nineiastic = Narp/0.54. For the 7m0 measurement at hand, we must also correct for the 79°s
that are lost by our minimum-bias selection. It has been found that when the minimum-bias trigger is 54%
efficient, the 7° efficiency is ~ 79% (the efficiencies are correlated with each other and can change as the
high-voltage is changed [127]). Thus one would correct the number of 7°’s to N0 inel = Nyo p/0.79.

A simple heuristic for understanding why the efficiency of the minimum-bias trigger and the 7%-efficiency
within this trigger sample are so different is that the 70 requires one detector whereas the minimum-bias
sample requires at least a two-particle coincidence. Thus the efficiency for each BBC to fire individually is
~ 74%, which is very similar to the #° efficiency. For the p+p sample, we define the bias factor to be the

ratio of these correction factors, or

Cbms = EMB/Eﬂo ~ 0.69, (4.21)

so that we can easily correct the minimum-bias ratio of 7°’s per event to the true value, or

Nfro,inel N’TTO,MB

= Cbias X .
Np+p,inel NP'HLMB

(4.22)

In the d+Au sample, the trigger efficiency is 88.4%. This can be understood in a very simple manner. If
we consider the d4+Au system as a superposition of nucleon-nucleon (NN) collisions where the minimum-bias
efficiency for a single NN collisions is 54%, we can calculate the overall efficiency by assuming the efficiency
follows a binary distribution (e.g. if Neoy = 2, then eprp = 1 — (1 — 0.54)% = 0.71). We then can use the
Neou distribution in Fig. 2:3}b as a weighting function and use the probabilities from the binary distribution

to calculate an expectation value for the efficiency, or

€d+Au,MB = Z F(Neow) x (1= (1 = épipmB)?), (4.23)
Neou

where ZN@ou f(Neor) = 1.
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We also consider the bias corrections for the d4+Au centrality classes. As previously discussed, the
centrality class is defined by dividing the BBC charge distribution in the Au-going direction (or south) into
88 bins of equal area. We define our centrality classes as 0-20%, 20-40%, 40-60%, and 60-88% (see Fig.
a). The bias-correction factor is defined in a slightly different way for these classes than for the p+p or
d4Au minimum-bias samples. Within each class, the efficiency loss for the given sample is not corrected for.
Instead, we consider the bias created by measuring the 7%’s. Given that we measure a 7°, the nucleon-nucleon
minimum-bias trigger becomes ~ 75% efficient because the charge distribution is biased to larger values. For
a given centrality class, we consider both events that move into and out of a centrality class because of the

0

bias in triggering on 7° events, and apply a bias correction that makes the sample unbiased [63]. In Table.

we show the bias-correction factors for the p+p and d+Au samples.

Table 4.1: N.oy, bias factors, and inelastic p+p cross-section

species | Neop O'Ncoll/Ncoll Chias UCbias/Cbias % p+p x-section

d+Au 0-20% | 15.06 0.099 | 0.941 0.011 0.048 -
d+Au 20-40% | 10.25 0.107 | 1.000 0.006 0.041 -
d+Au 40-60% 6.58 0.139 | 1.034 0.016 0.051 -
d-+Au 60-88% 3.20 0.025 | 1.031 0.053 0.075 -
d+Au MinBias 7.59 0.028 | 0.889 0.001 0.034 -
p+p 1.00 0.000 | 0.690 0.097 0.097 42.2 mb

4.4.4 Bin-Shift Correction

To correct the yield measured in the pr bin to the bin center, a so-called up-down correction is used [128]. The
fit to the pr spectrum (see eq.|4.19) f(pr) is used to calculate the correction for the transverse-momentum
bin p; < pr < p2. The correction is the ratio of the fit function at the bin center to the average value of the

function over the range of the bin, or

F(25")

1/(p2 = p1) [3 f(2)da

A very easy way to calculate this comes about when one takes the functional form for the spectra to be

Oup—down = (424)

exponential. If f(pr) = e~ T and the width of the py bin is A, then

* (4.25)

Cu —down —
P sinhz’

where x = Aa/2. If the fit function behaves exponentially over the bin in question, one can still use this
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formula by simply setting a = \%L As a rule of thumb, in our case A = 0.25 and a = 4, and thus
x =~ 0.5, which gives R ~ 0.96.
In Fig. [£.20] we show the bin-shift correction as a function of pr for all centralities and pseudorapidity

bins used in this analysis. The correction is quite small due to the choice of small py bins and the shape of the

falling spectra. If we chose 0.5 GeV/c bins, then we would have a more sizable correction of Cyp—dgown = 0.85.
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Figure 4.20: Up-down correction, Cyp—down, in p+p and d+Au for all centralities and rapidity intervals.
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4.5 Systematic Studies

In the following we present our systematic studies for the invariant yields, p+p cross sections, and Rga
values. Plots of the systematic errors are presented and specific values are quoted in the text. The relative
errors on the invariant yields summarized in Tables Since some of the errors cancel when taking
the ratio between d4+Au and p+p, the errors on Rqa are different and the relative errors are shown in Tables

5. 7HB.9

4.5.1 Energy Scale

As stated in section [4.3.3] we quote a scale error of dE/E =~ 2%. We then calculate this systematic error
as a function of py by propagating the 2% into our functional form. If we say f(pr) = dN/dpr, then our

systematic uncertainty from the energy scale becomes

df (pr)

0.02 4.26
X 002 py (426)

5f(pr) = |

Please note that if we multiply the yields by 1/pr (as we do for the differential cross section and invariant

yield) that the relative error increases by 2% for all pr bins. The energy scale error on the invariant yields

is shown in Fig.
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Figure 4.21: Relative energy-scale error on the invariant yields in p+p and d+Au for all centralities and
rapidity intervals.
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When calculating Rg4, much of this error cancels due to the fact that we use the same calibrations for
the p+p and d+Au datasets. Rqa still exhibits a positive slope, and hence we should propagate the 2% error
into this quantity. If we assume the functional form of R;4 is linear and has a vertical intercept at Rga = 0,
then we have an error of 2%. In addition to this error, there is also a small error from the gain stability in
each tower, as the LED corrections we apply to each tower can be as large as a factor 2. We estimate that

this error is about 2% and quote a conservative, total systematic error on the ratio of the invariant yields as

1%.

4.5.2 GEANT

Here we try to establish the systematic error from using the GEANT3 [I1§] simulation to calculate the
efficiency of MPC. We do this by comparing quantities between /s = 200 GeV p+p PYTHIA — PISA
simulations and the p+p data. In particular, we look at the xy?/NDF (or chi2core) and lateral-dispersion
parameters in the 7° mass window and compare the effect of our cuts between simulation and data. One note
is that the z-vertex distributions in the PYTHIA dataset are different than p+p data, and so a weighting
factor was used to make them effectively the same.

We begin by making only the energy and pr cuts in both simulation and data. The distributions are
normalized such that the integral number of counts in the 7% mass window in simulation and data are
equal. In the leftmost columns of Figs. we plot the invariant mass, x?/NDF, lateral dispersion,
¢, and 7 distributions where we have only made the energy and pp cuts. We then apply the analysis cuts
of x2/NDF < 2.5 and Maxz(dispy,disps) < 4 and the resulting distributions are shown in the rightmost
columns of the figures. The distributions in simulation and data are very similar, as the maximum difference
in yields is 3% in any of the py bins displayed. This 3% thus goes into our systematic error for the
reconstruction efficiency.

One issue with the MPC is that the beam-pipe steel can cause preshowering long before the photon
reaches the MPC. This effect is z-vertex dependent as well. Fig. [£:27)shows the average number of radiation
lengths that a photon traverses before reaching the MPC.

This motivates a study wherein we check the behavior of the 70 efficiency as a function of z-vertex. To
do this, we essentially employ the same procedure as above, except in a limited z-vertex range surrounding
zyte = 0 cm. We postulate that the behavior is very similar in simulation and data near z,:;, = 0, and hence
we normalize in this range. We then compare the z-vertex distributions without making any dispersion or

X?/NDF cuts. In Fig. [4.28] we see that for z,;, < —20 cm and 2,4, > 20 cm, there are differences in the
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distributions. The directions of the differences would actually cancel when added together, but we decide to
use the absolute value of the difference between the two distributions as a measure of systematic error. We
find the difference to be around 6% and use this as another source of systematic uncertainty.

Finally, another possible systematic error is the use of 7%°s embedded into real events to estimate
multiplicity-dependent effects on the efficiency. Using p+p PYTHIA—PISA events, we have calculated
the efficiencies using our embedding procedure, and used these to correct the measured yields (for the sim-
ulated data) to produce a reconstructed py spectrum. We have compared our reconstructed pr spectrum
to the thrown pr spectrum and find very good match that is better than 2%. We add this contribution in

quadrature to the GEANT systematic error and obtain a final error of

5f(pr)/f(pr) = 0.036 0.06 & 0.02 = 0.07. (4.27)

In taking the ratio of yields between d+Au and p+p, a portion of this error will cancel. Differences
between d+Au and p+p that contribute to the error of the ratio include different z-vertex distributions
as well as significant changes in the LED values, which change the noise error in the tower energies. We
conservatively estimate that approximately 4% of the error remains, and we quote this in our calculation of

Rga as the GEANT systematic uncertainty.
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Figure 4.22: Invariant mass distributions in data (black) and p+p PYTHIA simulations (red). The counts
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rightmost column shows the distributions after all cuts are made.
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Figure 4.26: Pseudorapidity distribution for the 7% mass window in data (black) and p+p PYTHIA simula-
tions (red). The counts are normalized in leftmost column, where the x?/NDF and dispersion cuts are not
made. The rightmost column shows the distributions after all cuts are made.
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as a function of z-vertex and 6.
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Figure 4.28: The z-vertex distribution comparison between p+p PYTHIA simulations and data in the 7°
mass window. The counts are normalized between data and simulation from —5 cm < 2y, < 5 cm.
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4.5.3 Yield Extraction

As described in section [£:4.1] we do not use mixed events to determine the background in the invariant mass
spectrum but rather use the background shapes from simulation. We created a high-statistics sample of
simulated p+p PYTHIA—PISA events in the MPC, and we use linear combinations of 1pp, 2pp, and 3pp
events (where 3pp means we embed 3 p+p events into each other) to measure the invariant mass background.
To estimate a systematic error on this procedure, we do not compare with mixed events, but rather vary
the composition of our background to have different fractions of 1pp, 2pp, and 3pp events. For example, in
Fig. above we chose our background shapes by the linear combinations of the simulated distributions
that minimize the contour. To gauge a systematic error, we vary the shape in a circle of radius 10% around
the minimum value. We simultaneously vary the normalization range symmetrically around the nominal
range of 0.25 — 0.3 GeV/c? and form a distribution of the relative values of the yield. We conservatively
estimate that our systematic error is 1.5 times larger than the Gaussian width of this distribution. The

yield-extraction systematic errors for all centralities are plotted in Fig.
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Figure 4.29: Relative systematic error on yield extraction in p+p and d+Au for all centralities and rapidity
intervals.
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4.5.4 Input Spectrum

The systematic error on the input spectrum would be zero if there were no smearing between different pr
and 7 bins. Since this is not the case, we must estimate an error for this. As described in the embedding
efficiency section we use an iterative procedure to calculate the correct pr shape which consists of
five steps. Then we correct the n shape, and repeat the total procedure six times. When we correct the 7
distribution, we do so using only three measured points as described in section Thus, to calculate a
systematic error, we use different input spectra and quantify how the different choice of input spectra affects
our final result. In Figs. we show the relative difference, W, of the input spectra used

in this study for all centralities considered. The input spectra used for systematic error evaluation are as

follows:

rapidity itr6; pT itr5; fit5 Identical to the final result with the exception that a 5-point fit is used

when correction the pseudorapidity distribution (see Fig. b),

rapidity itrl; pT itr5; fit3 Identical to the final result with the exception that only one iteration

is used to correct the pseudorapidity distribution,

pythia rapidity; pT itr5 We perform the five pp-spectrum correction iterations and use the PYTHIA

pseudorapidity spectrum,

+20% Increase the pseudorapidity ratio in eq. by 20% for all p values, which effectively flattens

the pseudorapidity distribution,

-20% Decrease the pseudorapidity ratio in eq. by 20% for all pr values, which effectively steepens

the pseudorapidity distribution,
pure pythia weight We use ppr and 7 spectra obtained directly from PYTHIA.

To calculate a relative systematic error, we take half of the maximum deviation between our measured
spectra and the spectra that are systematically varied. This error is plotted in Figs. as the error
bar in each bin, and in Fig. as the value of the histogram.
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Figure 4.30: This shows relative differences of using different input spectra in the efficiency calculation for

d+Au 0-20%, 20-40%, and 40-60%.
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Figure 4.31: This shows relative differences of using different input spectra in the efficiency calculation for
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Figure 4.32: Systematic error from varying the shape of the input spectra.
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4.5.5 Global Errors

The global systematic errors present in our measurement are those that correct out the triggering biases.
For p+p collisions, we quote a global error of ~ 9.7% on our bias-correction factor, which is also the global
error of both the 70 invariant yields and differential cross section. For d+Au, global errors exist for both
the bias-correction factors and (N..;) values; these systematic errors as well as the errors for the ratio
Chias/Neon were calculated in Ref. [63]. The systematic errors are summarized in Table below; for the

R4 measurement we add the p+p global errors in quadrature with the d+Au errors.

Table 4.2: Global systematic errors for invariant yields and Rga .

p+p | d+Au MB [ d+Au 0-20% | d+Au 20-40% | d+Au 40-60 | d+Au 60-88
0Cbias/Chias | 0.097 0.001 0.011 0.006 0.016 0.053
O Rda/Raa - 0.103 0.108 0.105 0.110 0.123

4.6 Results

We present the results for the invariant yields in p+p and d+Au in the 0-20%, 20-40%, 40-60%, 60-88%
and 0-100% centrality bins. We then proceed to calculate the values of the p+p cross section as well as the

values of R4a for all centrality bins in question.

4.6.1 MPC 7° Invariant Yields

The invariant yields (see eq. for all d+Au centrality classes and for p+p are shown in Fig. The
tabulation of the invariant yields and relative errors can be found in Tables

4.6.2 MPC 7° Cross Section in p+p

We calculate the p+p cross section by simply multiplying the invariant yields by the p+p inelastic cross
section, oy, = 42.2 mb. The results for this are shown in Fig. The tabulated values and relative errors
are available in Tables Please note that for the yields and p+p cross section, the 7° branching ratio
is accounted for in the efficiency calculation. Also, no feed-down correction is applied. For reference, we also
plot the BRAHMS 7~ data for n = 2.95, 3.3 in Fig. One would expect our data to be very similar to

that of BRAHMS, and a very reasonable match is indeed seen.
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Figure 4.33: Invariant yields
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Figure 4.34: Differential cross section for p +p — 7° for all rapidity intervals.
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Figure 4.35: Differential cross section for p + p — 70 for all rapidity intervals. The PHENIX results for 7°
mesons are compared to the BRAHMS results for 7+ and 7~ mesons.

4.6.3 MPC 7 Rga

The nuclear modification factor is simply defined as the ratio of the invariant yields in d+Au over p+p
scaled by 1/N.ou (see eq. . In Fig. we show the values of Ry4 for all centralities and rapidities.
R4 is largely suppressed in the most central collisions, but is much less suppressed (if at all) in peripheral
collisions. Also, one can easily see increasing suppression as we go from the lower rapidity bin of 3.0 — 3.4 to

the higher rapidity bin of 3.4 — 3.8. The tabulated values of Rqa along with their relative errors are available
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in Tables [B.7HB.9] while the N.o; values can be found in Table
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Figure 4.36: R44 for all centralities and rapidity intervals. The systematic error on each point is shown by
the open boxes. The gray error band at the left on each panel represents a global systematic scale error of
9.7%. Additional centrality-dependent systematic errors of 7.5%, 5.1%, 4.1%, and 4.8% for the peripheral
to central bins, respectively, are not shown.
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Chapter 5

A¢ Correlation Functions

5.1 Overview

Azimuthal angle correlation functions are the distributions of angular differences between pairs of particles
in the transverse plane (or ¢-direction) relative to the beam-axis (z). Angular correlations at A¢ = 7 are a

corollary of momentum conservation of the outgoing jets from a simple 2 — 2 hard scattering picture.

!

g1 d1 '
g1 g1

72 g2 g2
(a) (b)

Figure 5.1: Example leading-order QCD processes wherein a virtual gluon is exchanged in the scattering of
a.) two quarks, b.) two gluons.

Example leading-order processes are shown in Fig. depicting the scattering of two quarks (a) and two
gluons (b) via virtual gluon exchange. At leading order in QCD, the incoming partons have no transverse
momentum and hence the outgoing partons have opposing pr vectors. The partons hadronize into jets of

particles; particles from opposing jets are therefore expected to be nearly back-to-back in ¢, and hence a
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peak at A¢ = 7 appears in the correlation functions. Particles from the same jet have very similar angles,
giving rise to a correlation at A¢ = 0. This picture is applicable for the majority of the jets produced at
RHIC energies, and allows one to measure quantities sensitive to di-jet production without directly observing
jets. It should be noted that not all pairs of particles will be correlated (e.g. soft production mechanisms,
multi-parton interactions); these produce a flat pedestal upon which the correlated signals sit.

The raw, measured A¢ distribution (termed foreground) can be described by the following expression:

deeasured (A¢)
dA¢

— acc(Ae) x (jet(Ag) + bg(Ae)), (5.1)

where acc(A¢) is the pair acceptance function (defined below), bg(A¢) is the flat combinatoric pedestal
from uncorrelated particle production, and jet(A¢) is the jet component of the A¢ distribution. The pair
acceptance function is defined by the convolution of the single-particle ¢ distributions of the two particles,
f(#1), g(¢2). Given that Ap = @2 — ¢, one formal expression for the acceptance function is

2

ace(Ag) = /0 " 46 f(61)g(62) = /0 dé1 f(61)g(Ad + ). (5.2)

The correlation function (CF) is defined by dividing out the acceptance from the foreground distribution, or

1 y deeasured(A¢)

CF = acc(A¢) dA¢

(5.3)

Correlation functions have been used extensively in PHENIX and STAR to understand the modification
of di-jet production in the presence of a dense, final-state medium — the quark-gluon plasma. One of the most
significant observations was the apparent disappearance of the awayside peak in Au+Au collisions [129], as
seen in Fig. The most prevalent interpretation is that one jet escapes the medium (produced near
surface of medium), but that the opposing parton (in 2 — 2 picture) loses energy as it traverses in the
opposite direction through the bulk of the colored medium. The energy losses change the direction of the
parton and cause an angular decorrelation.

In addition to the QGP effects observed in the correlations, it was also thought that Color Glass Con-
densate (CGC) effects might cause decorrelations in the awayside peak, which should be observable in d+Au
collisions. The idea behind the CGC decorrelations is that the Au-nucleus has a parton density that is
enhanced by its large size; a parton from the deuteron interacts with multiple low-z gluons from the CGC.
What appears is one jet and many scattered gluons. This is the so-called monojet picture of correlations in

the CGC framework [2]. The monojet effect is supposed to turn on as one progresses to smaller values of
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Figure 5.2: Azimuthal two-particle correlations (top) for d+Au central compared to d+Au minimum bias
and (bottom) for Au+Au central compared to p+p minimum bias. The disappearance of the awayside peak
in the Au+Au correlations does not occur in d+Au, indicating that a final-state effect is responsible [129].

gluon momentum fraction z in the Au-nucleus, and would predict both a broadening in the awayside peak
width (as determined by a Gaussian fit) as well as a suppression in the integral yield over the awayside
peak. It is thus preferable to have both jets in the forward direction (see x5 in eq.[1.15) in order to probe
small z. Previous measurements have been performed with both hadrons detected at midrapidity; it was
found that little decorrelation exists in this rapidity range [I30]. In this thesis, we make two azimuthal cor-
relation measurements, the so-called mid-forward correlations (particles at mid and forward rapidity) and
the forward-forward correlations (both particles at forward rapidity). In this way we scan different ranges
in Bjorken-z and search for the turn on of suppression and broadening effects in two-particle correlations.
These measurements also serve to provide an understanding of the suppressed Rqa observed at forward

rapidity.

5.2 Quantifying Suppression

We have thus far defined the correlation functions and discussed why they are important, but have yet to
describe specifically how they can be used to show that a suppression or broadening exists in the awayside

peak. As discussed in section the correlation functions can be modeled as two Gaussian peaks (at
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A¢ = 0, ) sitting atop a constant pedestal. To understand the di-jet properties, we quantify the yield
and width of the awayside peak. The simplest method is to find a flat normalization region in between the
nearside and awayside peaks and assume that this is the level of the pedestal; this method is termed ZYAM
or Zero-Yield at Minimum [I3T]. Then one can simply use a two-Gaussian fit with a fixed pedestal level
to extract the awayside peak properties. Another method is to allow the pedestal level to be determined
from a fit. The width can be directly read off from the fits to compare between p+p and d+Au. The yield
is also taken from the fit (or an integral over the awayside bins), but one must be careful to normalize the
yield and correct for detector inefficiencies. In this vein, we define a quantity termed “conditional yield”,
CY, that is essentially the area of the awayside peak normalized to the number of “trigger” particles and
corrected for the “associate” particle inefficiency. Trigger and associate are appellations given to the two
particles that are in fact interchangeable; however, it is usually understood that the trigger particle is the
higher-pr particle and indicates that a jet was produced. The conditional yield can then be interpreted as
the yield of correlated particles in the awayside peak that were produced given that a jet was produced with
(Ag) = .
Thus the conditional yield is extracted by taking

1 2m

cy AAG(CFaysiac (M) — bg(Ap)) (5.4)

Ntm’gGa 0

where Nir;4 is the number of trigger particles measured and ¢, is the associate particle efficiency (see section
. It is understood here that C'Fyayside is only the peak at A¢ = 7 on top of the pedestal and does not
include any contributions from the nearside peak. One advantage of using the conditional yield as opposed to
a fully-corrected yield is that one does not need to correct for the trigger particle efficiency in the calculation.

To compare d+Au to p+p, we form the correlated di-hadron nuclear modification factor Ij4, which is

defined to be the ratio of the conditional yield in d4+Au to p+p, or

CYga
= . 5.5
“ =Gy (5.5)
Additionally, we form the nuclear modification factor called Jgz4, which is
Jaa = Iqa X Raatriggers (5.6)

where Ry trigger is measured for the trigger particle. The reason we define Jg4 is that it is essentially the
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correlated two-particle analogue of Rj4, as

(Nsngl/Nevt)dA
= R A, 57
(Npair/Nevt)pp ¢ ( )

Jaga =1/Neo o
4 / ! (Nsngl/Nevt)pp

<~ ]-/Ncoll

where Ncon is the number of binary collisions, Npe is the corrected number of correlated pairs in the
awayside peak, N, is the number of inelastic events, and Ny, is the single particle yield for the definition
of Ryqa.

Thus we see that Jga is the ratio of the fully-corrected correlated pair yield per binary collision of
the awayside peak between d+Au and p+p; it can be interpreted as the di-jet nuclear modification factor
analogous to Rqa for single particles. Another advantage of Jqa is that the value does not depend upon the
choice of trigger-particle rapidity, whereas Iqa does. In fact, it is impossible for Iyja with a forward trigger

to be the same as Iqa with the midrapidity trigger given that the value of Rqa in the two regions differ.

5.3 Experimental Method

Particles are first identified as described sections and buffers containing these particles are filled;
each particle object holds position, energy, pr, and ¢ information. After the buffers are filled, the order of
the particles is randomized to eliminate bias from the particle ordering.

To construct a correlation function, two particle buffers are first selected (e.g. midrapidity EMCal 7%’s
and MPC 7°’s). For each same-event pair, a histogram is filled with all values of A¢. If the two detectors
had uniform 27 coverage in azimuth, no corrections for the two-particle acceptance acc(A¢) (eq.[5.2)), would
be necessary. However, because there are essentially two 7/2 acceptance holes that exist at midrapidity
(see Fig. and the useful MPC ¢-acceptance is not uniform, it is necessary to calculate the two-particle
acceptance. In principle this can be done using the single-particle acceptance distributions (from eq. ,
but complications can arise if one uses particles from the same detector and one has to make a pair cut
not in the single-particle ¢ distributions; additionally one needs to keep track of the z-vertex and centrality
dependencies of the ¢-distributions. Another equivalent technique is to form mixed-event pair acceptance
distributions, wherein the acceptance is calculated by measuring A¢ of particle pairs from different events.

In what follows, we give a brief description of the event mixing. Event-mixing objects are created; these
contain the particle information from the present event in a buffer plus a fixed-size queue of past-event
buffers ordered sequentially. Once each queue is filled to capacity, the event mixing ensues; we calculate

A¢ between the particles on the current-event buffer for the trigger particle (e.g. central arm particle) and
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the event-mixing queue of the associate particle (e.g. MPC 7). The filling of the queue is FIFO (first-in,
first-out) wherein the events from current event are added to the front of the queue and the events at the
back of the queue are discarded. We mix events only when they fall within the same centrality and z-vertex
bin. Within the centrality bins (0-20%, 20-40%, 40-60%, and 60-88%), we only mix events that are within
4-5% of each other, depending upon the centrality bin in question. The z2-vertex bins are 3 cm wide, and
we accept only events between £30 cm. The capacity of each queue is based upon the multiplicity of the
associate particle and thus depends upon the centrality binning.

Once an acceptance function is measured, its area is normalized to 2w. This choice of normalization
ensures that the normalization of the correlation function (eq. does not depend upon the A¢g-binning

and is defined per-unit Ag.
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Chapter 6

Mid-Forward Correlations

The first set of correlation functions we shall discuss are those wherein the trigger particle is a midrapidity
hadron (h* or 7%), and the associate particle is a forward rapidity 7° detected in the MPC. The two particles
are separated in rapidity by approximately 3.3 rapidity units; jet cones have a radius of ~ 1 unit in rapidity,
and hence no peak appears at A¢ = 0 in the correlation functions. No azimuthal anisotropy due to elliptic
flow contributions [132] is expected because QGP is not formed in d+Au nor p+p collisions. Hence we only
expect to have an awayside peak at A¢ = 7 atop a constant background.

As previously mentioned, these correlation functions were predicted to be a strong signature of CGC
early on [2], though recently there has been skepticism [85] [133] as to whether CGC effects should be present

given the moderately small values of x ~ 1072 of expected in the mid-forward system.

6.1 Charged Hadron Identification

Charged hadrons are identified for 0.5 < pyr < 4.7 GeV/c by requiring tracks in the X-, U-, and V-layers
of the PHENIX DCs and by requiring that no Cherenkov signal is present in the RICH. Electrons have a
Cherenkov threshold in COs of &~ 18 MeV that is much lower than that for the lightest charged hadron,
the 7+, of 4.7 GeV/c, and hence requiring a RICH veto filters electrons from the sample. As an additional
criterion to reduce ghost tracks a match with the PC3 detector subsystem is also required. The uncorrected
h* spectra for the d+Au centrality classes and p+p is shown in Fig. One can see that the hadron yields

increase with increasing Ny of the centrality class in question.

6.2 Charged Hadron Data Quality

As with the MPC, a number of QA-metrics are employed to ensure data quality. We looked at the run-by-
run variations in particle yields as well as looking at the mixed-event two-particle A¢ acceptance between

hadrons and MPC 7%’s. In Fig. we show the h* yields per minimum-bias event as a function of run
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Figure 6.1: The uncorrected h* pr spectrum for p+p and all d+Au centrality classes at midrapidity,
|n] < 0.35.

number with an acceptance correction applied (the acceptance varies mainly due to inoperative regions of
the DCs [134]). We exclude runs that have yields outside the red bands.

Because the midrapidity h* ¢-acceptance changes over time (see Fig. , we calculate two-particle
acceptance functions for rungroups with similar acceptances (this is an issue that does not affect the MPC
data), as indicated by the blue bands in Figs. Here we show the p+p and d+Au two-particle
acceptance x?/NDF for different rungroups, which have the blue lines as the rungroup boundaries. The
groups shown here are also the rungroups used for event mixing. We make a x?/NDF cut of about 2.5 — 3

for all plots.
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Figure 6.2: The corrected central-arm h* yield per minimum-bias event versus run number for a.) p+p, b.)
d+Au 60-88%. The red lines indicate the stability cuts applied for data quality.
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Figure 6.3: The central-arm h* /MPC-7° A¢ mixed-event acceptance functions versus run number for a.)
p+p, b.) d+Au 60-88%. The color scale represents the value of the acceptance, which has been normalized
to have an average value of 1 for a given run.
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Figure 6.4: The x?/NDF for the central-arm h*/MPC-7° A¢ mixed-event acceptance functions for three
different run ranges in p+p. The run range for each plot is indicated by the bounding blue vertical lines,
while runs that have a x?/NDF above the red line are excluded from analysis.
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Figure 6.5: The x2/NDF for the central-arm h* /MPC-7° A¢ mixed-event acceptance functions for five
different run ranges in d+Au. The range for each plot is indicated by the bounding blue vertical lines, while
runs that have a x?/NDF above the red line are excluded from analysis.
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6.3 EMCal 7 Particle ID

6.3.1 Photon-Candidate Identification

We only use EMCal 7°’s from the photon-triggered dataset; specifically, we require that at least one of the
two clusters used is in the EMCal supermodule (12 x 12 group of towers read out the by the same Front-
End Module) responsible for firing the trigger. Our photon-candidate clusters also have an electromagnetic
shower-shape and an energy above a minimum threshold. Below, we list the specific photon-candidate

identification cuts.

Minimum Cluster Energy FEpyc > 0.2 (Eppse > 0.1) GeV.
Shower-shape I x?/NDF < 3.0.

Shower-shape II probynoton > 0.02 (This maps directly to a x>/NDF cut; it represents the fraction
of photons rejected by the cut. In this case, we would expect to reject the 2%

sample of photons that have the largest x?/NDF.).

6.3.2 Neutral-Pion Candidates

For 7° candidates (cluster pairs that go into the di-cluster invariant mass spectra in the mass window of
0.1 — 0.18 GeV/c?), we first specify that both clusters are in the same sector of the calorimeter. We then

form the di-cluster invariant mass spectra from clusters that pass the following pair cuts:

— |E2—E|
Energy asymmetry o = o <038,

Pair energy F; + FEy > 2.5 GeV.

In Fig. we show sample invariant mass spectra (black) of pairs that pass the above listed cuts
for p+p, d+Au 0-20, and d+Au 60-88 with 4.0 < pr < 7.0 GeV/c. The red curve is the normalized,
event-mixed background which we subtract to obtain the yields. The normalization occurs in the ranges of
Miny = 0.065 — 0.09 GeV/c? and 0.19 — 0.22 GeV/c?. Many analyses in PHENIX have used a 3"¢ degree
polynomial normalized to the areas outside the 70 mass window for the yield extractions; we have found the
difference between the polynomial and mixed-event backgrounds is < 1% (which is far less than the other
systematic errors for the measurement) for all p bins and centrality classes, and hence using the event-mixed
background was deemed acceptable. Moreover, we only use the EMCal 7° yields in Iga and Jga, and thus

the majority of the yield-extraction systematic error will cancel in the ratio between d+Au and p+p.
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Figure 6.6: Sample EMCal invariant mass spectra (black) and mixed-event background (red) for p+p, d+Au
peripheral, and d+Au central collisions showing the 7° peak around m;,, = 0.135 GeV/c?.

6.4 EMCal m° Run QA and Warnmap

The EMCal-m° QA-metrics are very similar to those used in the MPC in section and they are shown

below:

1. Create warnmap (Fig. ,

2. Plot mean and width of #° invariant mass peak as a function of segment number and cut out runs

outside 1% of the mean value (Fig. ,

3. Extract yields through background subtraction (here we use mixed events) and plot Nyo/Neyents as a

function of segment number,
4. Plot two-particle EMCal/MPC A¢ acceptance function versus segment,

5. Plot x?/NDF for the acceptance function (see eq. [4.8) and cut out runs where the two-particle
x?/NDF > 3 (Fig. [6.10).

We next expound upon a few of the items listed above. First, the EMCal warnmap determination is
simpler than in the MPC because we expect a nearly uniform hit rate across all towers at midrapidity, which
was not the case at forward rapidity (see Fig. . Because of the large number of towers and the uniform
grid structure of the EMCal, we can also mask out towers that surround bad ones and exclude the edges
without a significant loss in acceptance. In Fig. we show the towers that have been masked in our

analysis in both p+p and d+Au. We employ a similar procedure as in the MPC wherein we look at the
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distribution of In(Np;ts/Nevents) and exclude outliers. The resulting warnmap masks out a2 25% of the total

EMCal acceptance.

Bl
10 20 30 40 50 60 70 M0 20 30 40 50 60 70 B8O 20

Figure 6.7: Final warnmaps for each sector of the EMCal West and East Arms. The black color indicates a
tower that has a hit rate that is out of the acceptable limits. The other colors are neighboring towers that
are masked off or edge towers. The PbGl sectors are EO, E1, while the rest are PbSc.

Next, in Fig. we show the stability of the mean value of the EMCal 7% mass peak (pr > 2.5 GeV/c)
across the entire run with the exclusion bands in red. We plot the 1o lower band to show the width of the
Gaussian distribution.

In Fig. one can see that the two-particle A¢ acceptance functions for the EMC 7 /MPC 7% corre-

lations are fairly stable over time. Our y? metric (Fig. [6.10) also looks reasonable for the p+p and d+Au
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Figure 6.8: The mean and standard deviation of the Gaussian fit to the EMC 7° invariant mass distribution
for a.) p+p, b.) d+Au 60-88%. The expected mass is M, ~ 0.139 GeV/c? from simulation data [135].

runs indicating that our acceptance correction is stable.
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Figure 6.9: The 7°/7% (EMC/MPC) mixed-event acceptance functions versus run number for a.) p+p, b.)
d+Au. The color scale represents the value of the acceptance, which has been normalized to have an average
value of 1 for a given run.
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Figure 6.10: The x?/NDF for the 7°/7% (EMC/MPC) mixed-event acceptance functions versus run number
for a.) p+p, b.) d+Au. Runs that have a x2/NDF above the red line are excluded from analysis.
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6.5 Data Analysis

6.5.1 Fitting Procedure

Example efficiency-corrected correlation functions for p+p are shown in Fig for the rapidity-separated
EMCal/MPC 7%/7% correlations. The MPC 7°-identification procedure was described in section We
fit the distribution with a constant plus a Gaussian signal. Because the correlation functions are very wide,
we have to account for the periodic boundaries of 0 — 27; that is, a wide Gaussian signal will wrap around
the sides of the periodic boundaries. Hence we define our signal as a periodic function; in the ideal case,
we would create a function that is periodic to infinity. However, for pragmatic considerations, we only use
what is termed a 5-Gaussian fit, wherein our function is the sum of five Gaussian signals atop a constant

background, with each Gaussian centered at nmw, n € {—3,—1,1,3,5}, or

y41 (@—w)?
f(AP) = po + —— > e 27, (6.1)
2no pe{—3n,—m,m, 37,57}

For correlation functions with good statistics, we observe that this fit procedure works well and usually
(~ 95% of CFs) gives answers where o < 1.3. However, when statistics are small, the fits can systematically
favor widths that are very large. Upon performing fitting tests, it is easy to see that a large-width and a low-
statistics signal can produce fits whose widths deviate from the original value significantly. Also, there are
cases when minimization contour for the fit is very flat, and this increases the systematic error dramatically.
In both these cases, we obtain a better measurement by fixing the background level to a constant and re-
fitting the correlation function. Hence for these cases when we have large widths (o > 1.3) or large errors
on the area (> 30%), we use the background level from the nearest neighbor that has the same trigger pr to
calculate the background and perform the fit again with a fixed-background level. We take our new fitted
error on the width and add 15% to this in quadrature. Additionally, we add a conservative 25% errOIE| to

the new area to account for the uncertainty in the background level.

I The 25% error is an upper estimate for the area error this procedure produces. The relative error on the area can be greater
than the width because an increasing area will start to reduce the background level once the correlation function is wide enough.
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Figure 6.11: EMC 7°/MPC 7°: Example p+p A¢ correlation functions. The pr of the trigger (EMC)
and associate particle (MPC) are hsted as DT trig @ PT,assoc-
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6.5.2 Sideband Correction

Another issue is that we have background counts underneath the 7° peak that contribute to the correlation
function. These exist in both the EMCal-7° (mj,, = 0.10 —0.18 GeV/c?) and MPC-7° (my,,, = 0.08 — 0.18
GeV/c?) mass windows, though the background is larger in the MPC mass window. We try to measure
only the correlation function for the 7%’s, and so we must correct for these background contributions. The
problem is analyzed in two different ways: 1.) measure the correlation functions of the sidebands (mass
windows outside the 7° range) and 2.) use p+p PYTHIA—PISA simulations. It has been found that
assuming that the sidebands have a similar correlation strength (defined below in eq. as the 70 signal
is reasonable. In practice, we employ a non-unity correction to the correlation strength (7% in p+p, 10%
in d+Au), as one would naively expect the sidebands to contribute more than the 7°’s simply because of
combinatorics. Evidence that our procedure works well in simulation is shown in Figs. [6.1246.13] These
figures represent the correlation functions as determined in full PYTHIA—PISA simulations for single p+p
events and two embedded p+p events, respectively. Here we have identified the exact 7° contributions to
the correlation function (red) by tracking the energy depositions in the calorimeter and also have used our
corrective procedure to measure the correlation function (blue). This is a direct comparison of the true 7°
correlation function to the measured one using simulated events.

To understand the systematic error on our procedure, it is easiest to define a quantity called the correlation

strength M, where for a pure signal one would have

Npairs = (5152) X My, (62)

where s; is the yield of trigger particles and so is the number of associate particles that we measure. We need
to disentangle the contributions from the background underneath both the trigger and associate particles,
but we will start with a simpler exercise. Let us assume there is only a background for the associate particle
(i.e. the mass background underneath the 7 mass window), thus giving us sy + by associate counts. Then
we have

Ys1so + Ysie  Masisa + Mpsibe

CYmeas = = = MASQ + MBbQ; (63)
S1 S1

where M 4 is the correlation strength for the pure-signal correlation and Mp is the correlation strength for
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Figure 6.12: Example p+p PYTHIA—PISA A¢ correlation functions for the true 7% correlation function
(red) and our measured (blue). The pr of the trigger (midrapidity h*) and associate particle (MPC 7°) are
listed as pr.¢rig @ PT,assoc-
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Figure 6.13: Example 2pp (2 embedded p+p events) PYTHIA—PISA A¢ correlation functions for the true
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particle (MPC 7°) are listed as DT trig @ DT,assoc-
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the background correlation. We know that the true signal has the conditional yield

}/8182

S1

CYreal =

= MASQ. (6.4)

Now, if we assume that M, = Mp, then we just need to scale down our correlation function by a factor

S9
so+b2

and we will have the true signal correlation function. Let us now take the ratio of our correlation

function to the real correlation function for the signal; we assume that %ﬁ =1+ Ap, and we obtain

CYmeas X 32/(32 + b2) b2
frd 1 A .
CYreal o X S2 + b2

(6.5)

One arrives at a similar expression given a background b; in the trigger particle, by = 0 in the associate,

and given that Yp1450 = b1soMe:

CYmeas

Zoimeas _ 4L A
CY;"eal Thex

1
: 6.6
— (6.6)

Note that we do not scale this correlation function as we divide out by the number of signal plus background
trigger particles.
If we allow both trigger and background particles to have backgrounds, then a b1bs term with Yy1p0 =
b1bo M p enters the final equation and we get
CYmeas X 82/(82 + b2) 1

=1+ Apsiby + Acbysy + Apbiby). 6.7
Cy;eal (51+b1)(32+b2)( B-192 CcU152 D01 2) ( )

Hence with this expression we now can quantify an error on the measured conditional yield. If we assume a
40% errorﬂ on the values of the A;’s, then we can just plug this into the above equation and calculate our
error.

As mentioned previously, we have measured the sidebands in both simulation and data. When we use
simulation results, one is able to understand exactly how the background contributes to the correlation
functions, and hence we can compare the sidebands to the background directly beneath the 7% peak. Our
simulated results are from correlations between a hadron identified at midrapidity correlated with a 7°
detected in the MPC. For statistical reasons, the hadron sample came directly from the PYHIA event

record, while the 7° was reconstructed from the PISA simulations. In Fig. [6.14), we show the ratio of

the simulated correlation strength for 1pp (a) and 2pp (b) events of the background underneath the peak

2The 40% error is an upper estimate for the level of deviation between the correlation strength of the sidebands and the
background under the 70 peak.

161



(Miny = 0.08 — 0.18 GeV/c?) to correlation strength of the 7°’s. For comparison, we also show the ratio
of the correlation strength of the sidebands (M, = 0.18 — 0.26 GeV/c?) to the 70 correlation strength. A
constant line is fit to the measured ratios; the ratios we use for the corrections are from the top set of plots.

In Figs. we show the ratio of the sideband correlation strength to that of the 7° mass window
for h* /MPC-7° and EMC-7?/MPC-7¥ correlations from the data. These results also seem to indicate that
a small correction to the assumptions made in eq. is necessary.

We opt to use the simulated fit results for our correction rather than the measured sidebands and include
our sizable systematic error on this assumption. Thus, we determine that the correlation strength of the
background is 7% larger in p+p and 10% in d+Au than the correlation strength of the peak itself; this
measurement still carries a large systematic error. We correct the correlation functions by scaling them with

). In Tables m the term MLB A po Contains this correction. When

calculating the systematic error from the sidebands, we do not include this correction.

an additional term of 1/(1+ As;sz

i I ndf 13.31/8 i I ndf 5.663/8
5 Real Corr. vs pT bin Eeon S oie . Real Corr. vs pT bin Eoh rAd
L £ E p0 1.079:+ 007536 L 4 . | so 1.105 + 006558
2 C p+p pythia 5] = 2p+p pythia
w15 T ‘ i =
5 [ 5
g I
g 0.5;7 1 g 1; L T 1 . I
of- o
Y= | | | | , | | | 1= | L | | | | I |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
pT bin pT bin
i i 1 ndf 1.325/6 i i 2«1 ndf 8.256/6
5 Sideband Corr. vs pT bin | %™ or0s - Sideband Corr. vs pT bin | £/ M
B 1,3;— [po 1.368 + 0.07536 % = p0 1.207 + 0.06558
Eowe 11 1] £ | L]
§ 1= - § s
ARy l I 5 F
g g = |
5 = 5 oot [ I
[N o 05
06F 060
0.4 0.4
0.2 | L L s \ L L | E L | 1 L |
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
pT bin pT bin
(a) (b)

Figure 6.14: The ratio of real background contribution and the sideband background to the measured yields
for a.) p+p PYTHIA, b.) 2p+p PYTHIA embedded events.
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Figure 6.15: Central-Arm h* /MPC-7%: The ratio of the sideband yields to the measured yields for the
mid-forward correlations for a.) p+p, b.) d+Au 0-20, c.) d+Au 20-40, d.) d+Au 40-60, e.) d+Au 60-88.
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Figure 6.16: EMCal-7°/MPC-7": The ratio of the sideband yields to the measured yields for the mid-
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6.5.3 Efficiency Correction

In section we calculated the acceptance xefficiency correction for the MPC 7%’s for all centrality classes
and pr bins for pr € 0.25 — 2.0 GeV/c. For the present measurement, the pr bins needed are 0.5 — 0.75
GeV/e, 0.75 — 1.0 GeV/c, and 1.0 — 1.5 GeV/c (the last bin results from combining two smaller bins). In
Table we show the rebinned efficiency values and systematic errors that we apply to the data; these
efficiencies are used as a correction to the CFs. It should be noted that some portion of the systematic error
cancels when taking the ratio between d+Au and p+p, as seen in Table In these tables € is the single-7°
reconstruction efficiency, o is the statistical error, and syass, Sspec, Sescale, and sgeanT correspond to the
systematic errors from the yield extraction, shape of the input spectrum, energy scale, and GEANT errors,
respectively. The total systematic error is listed as s;o; and the bcorr corresponds to the up-down correction,
Cup—down-

One small aside is that because our efficiency depends upon the spectral shape, if the shape of the di-
hadron measurements differed significantly from the single-particle spectra, we might have to recalculate our

efficiencies. However, as seen in Figs. the spectral shapes are quite similar.
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Table 6.1: Rebinned efficiencies, relative stat, sys errors for 3.0 < n < 3.8.

d+Au 0-20%
pr € O¢ Smass Sspec Sescale SGEANT Stot bcorr
0.625 | 0.052 | 0.016 | 0.020 | 0.031 | 0.067 0.070 | 0.104 | 0.964
0.875 | 0.076 | 0.014 | 0.021 | 0.009 | 0.086 0.070 | 0.113 | 0.962
1.250 | 0.051 | 0.015 | 0.036 | 0.017 | 0.104 0.070 | 0.132 | 0.875
d+Au 20-40%
pr € O¢ Smass Sspec Sescale SGEANT Stot bcorr
0.625 | 0.053 | 0.015 | 0.020 | 0.023 | 0.067 0.070 | 0.102 | 0.964
0.875 | 0.077 | 0.014 | 0.022 | 0.011 | 0.085 0.070 | 0.113 | 0.963
1.250 | 0.051 | 0.015 | 0.038 | 0.017 | 0.104 0.070 | 0.132 | 0.878
d+Au 40-60%
pr € Oc Smass Sspec Sescale SGEANT Stot bcorr
0.625 | 0.057 | 0.015 | 0.017 | 0.018 | 0.067 0.070 | 0.100 | 0.964
0.875 | 0.077 | 0.014 | 0.021 | 0.013 | 0.084 0.070 | 0.112 | 0.965
1.250 | 0.050 | 0.015 | 0.036 | 0.018 | 0.106 0.070 | 0.133 | 0.874
d+Au 60-88%
pr € Oc Smass Sspec Sescale SGEANT Stot bcorr
0.625 | 0.059 | 0.012 | 0.015 | 0.015 | 0.069 0.070 | 0.101 | 0.961
0.875 | 0.080 | 0.012 | 0.017 | 0.011 | 0.089 0.070 | 0.115 | 0.960
1.250 | 0.052 | 0.012 | 0.031 | 0.017 | 0.110 0.070 | 0.135 | 0.861
d+Au MinBias
pr € Oe | Smass Sspec | Sescale | SGEANT Stot | beorr
0.625 | 0.055 | 0.007 | 0.019 | 0.020 | 0.068 0.070 | 0.101 | 0.963
0.875 | 0.077 | 0.007 | 0.020 | 0.011 | 0.087 0.070 | 0.114 | 0.962
1.250 | 0.051 | 0.007 | 0.035 | 0.017 | 0.105 0.070 | 0.132 | 0.873
pP+p
pr € Oc | Smass Sspec | Sescale | SGEANT Stot | beorr
0.625 | 0.060 | 0.010 | 0.013 | 0.029 | 0.075 0.070 | 0.107 | 0.952
0.875 | 0.082 | 0.010 | 0.019 | 0.008 | 0.097 0.070 | 0.122 | 0.950
1.250 | 0.052 | 0.010 | 0.030 | 0.019 | 0.118 0.070 | 0.142 | 0.834
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Table 6.2: Rebinned efficiency ratios, relative stat, sys errors for 3.0 < n < 3.8.

d+Au 0-20%/p+p

pT EdA/Epp Ocrat Smass Sspec Sescale SGEANT Stot bCOTTTat
0.625 0.863 | 0.016 | 0.024 | 0.042 | 0.040 0.040 | 0.074 1.013
0.875 0.935 | 0.016 | 0.028 | 0.012 | 0.040 0.040 | 0.064 1.013
1.250 0.989 | 0.018 | 0.047 | 0.025 | 0.040 0.040 | 0.078 1.050
d+Au 20-40%/p+p
pr EdA/Epp Ocrat Smass Sspec | Sescale SGEANT Stot bCOTTT’at
0.625 0.890 | 0.016 | 0.024 | 0.037 | 0.040 0.040 | 0.071 1.013
0.875 0.947 | 0.016 | 0.029 | 0.013 | 0.040 0.040 | 0.065 1.013
1.250 0.977 | 0.018 | 0.049 | 0.026 | 0.040 0.040 | 0.079 1.053
d+Au 40-60%/p+p
pr EdA/Epp Ocrat Smass Sspec Sescale SGEANT Stot bCOT"I‘rat
0.625 0.955 | 0.017 | 0.021 | 0.034 | 0.040 0.040 | 0.069 1.013
0.875 0.939 | 0.016 | 0.029 | 0.015 | 0.040 0.040 | 0.065 1.016
1.250 0.965 | 0.018 | 0.047 | 0.026 | 0.040 0.040 | 0.078 1.049
d+Au 60-88%/p+p
pr EdA/Epp Ocrat Smass Sspec | Sescale SGEANT Stot bCOT”I‘rat
0.625 0.990 | 0.016 | 0.020 | 0.033 | 0.040 0.040 | 0.068 1.010
0.875 0.975 | 0.015 | 0.026 | 0.014 | 0.040 0.040 | 0.064 1.010
1.250 0.994 | 0.016 | 0.043 | 0.025 | 0.040 0.040 | 0.076 1.033
d+Au MinBias/p+p
pr EdA/epp Oerat | Smass Sspec | Sescale | SGEANT Stot | bcorTya;
0.625 0.917 | 0.012 | 0.023 | 0.035 | 0.040 0.040 | 0.071 1.012
0.875 0.949 | 0.011 | 0.028 | 0.013 | 0.040 0.040 | 0.065 1.012
1.250 0.981 | 0.012 | 0.046 | 0.026 | 0.040 0.040 | 0.077 1.047
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6.5.4 Bin-Shift Correction

In section [£.4.4] we derived our formulae for calculating the up-down bin-shift correction and did the calcu-
lation for the bins used in the single-particle spectra. The corrections depend upon the spectral shape; we
use the same spectral shape for corrections in the di-hadron measurements because as one can see in Figs.
the spectral shapes are fairly similar (as evidenced by that agreement of the points with the fit).

The 1.0 — 1.5 GeV/c bin has a larger correction because of the larger bin size. These corrections are listed

in Tables and

6.6 Systematic Errors

In the present correlation analysis, the main systematic errors arise from the fitting procedure and the
sideband analysis (see eq. . We assume a 40% errorﬂ for the sideband contributions to the correlation
functions. The statistical errors from the fit itself contain a combination of statistical and systematic parts
(type-A errors [I36]), and are incorporated into the statistical errors of the yields. Errors on the yield

extraction, efficiency, and energy scale are also incorporated here, and these calculations were shown in

sections [4.4.1] [4.4.2] [4.5.1] respectively. The errors from the EMCal-7° yield extraction is negligible, as the

systematics cancel when taking the ratio. The errors on the midrapidity 7° and h* energy scales are also
negligible; this is because the behavior of Iya and Jga versus the midrapidity pr essentially are linear with
a very small slope, and thus the propagated errors become very small.

The main contribution to the global error for the Jya calculation comes from the uncertainty of the total
p+p cross section, which we take to be 9.7% [126]. There is also a centrality-class dependent global error
that is added in quadrature with the aforementioned error [63]; these global errors are the same as in the

MPC 7% Rqa case in Table

3The 40% error is an upper estimate for the level of deviation between the correlation strength of the sidebands and the
background under the 70 peak.
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6.7 Results

6.7.1 Conditional Yields

Our final calculation of the conditional yields (see eq. given that we trigger in the midrapidity detector

gives us the following expression

Nairsxcufownxceaae
cy = =2 p—d leakag (6.8)
NtrigeassocApTAn

where Clp—down is the up-down bin-shift correction, Cleqrage accounts for the leakage of the ¥ counts outside
the 7° mass window, and N, corresponds to the integral number of counts in the awayside peak.

In Figs. [6.1746.18] we show the background-subtracted correlation functions for all centralities. The
supporting correlation functions and fits are shown in Appendices [C.2] [D-2] In Figs. [6.19}6.20} we show
the conditional yields as a function of centrality class, pr +rig, and pr gssoc for the midrapidity h* and 70s,
respectively. From these figures, one can see a suppression in the yields as the impact parameter decreases
(more central collisions). Also, scaled fits to the single-particle spectra are shown along-side the data points,
which describe the shape reasonably well; thus we do not attempt to recalculate the efficiencies using the
spectral shape of the conditional yields.

In Tables we show the various factors that go into the calculation of the conditional
yields and in Tables we show the final value of the yields and the errors.
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Figure 6.17: Background-subtracted central-arm h*/MPC-7% A¢ correlation functions all centralities. The
pr of the trigger (midrapidity h*) and associate particle (MPC 7¥) are listed as DT trig @ PT,assoc-
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represent the shape of the single-particle pr spectra for MPC 7%’s.
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6.7.2 Correlation Widths

In Tables we also included the correlation widths and their statistical and systematic
errors. These widths are interesting because they test CGC hypotheses wherein a broadening of the widths
in d+Au as compared to p+p is seen [2, [6]. In addition to the identified 7°’s in the MPC, we also add
single, high-energy clusters as defined in section so that we can reach higher pr. In Fig. we show
all the correlation functions for the EMC-7?/MPC-cluster correlations (as opposed to EMC-7?/MPC-7°
correlations). No efficiency corrections have been applied, and no background contributions to the correlation
functions have been subtracted. We summarize the widths and errors for the cluster correlations in Tables
1D.HD.9i

Finally, in Fig. we show the correlation widths as a function of pr qss0c for three different pr irigger
bins. One can see that there does not seem to be a larger difference between p+p and d+Au, especially as
one moves to the clusters (open points). The widths decrease as the pr of the MPC particle is increased as

expected from jet fragmentation.

6.7.3 g4, Jga

As a quick reminder, Igp = g’{;‘A
PP

and for the midrapidity trigger we have

Jaa = Raa,mid X Laamid—trig- (6.9)

We show our results for Jqa and Iqa in Figs. [6.23 along with the values of Rqs for MPC 7¥s.
Here we see the interesting trend of increasing suppression as we increase N,,;. There also seems to be a
decrease in Jqa with decreasing pr ;9. Because the trigger particle is at midrapidity and the associate at
forward rapidity, 4% (Bjorken-x of parton in the Au-nucleus) should depend very strongly on DT,trig and
only weakly on pr gssoc (see eq. for x5). Hence we see that the level of suppression in Jqa increases as
we go to small x, which is qualitatively consistent with shadowing and CGC predictions.

In Tables and [D-10HD.12] we tabulate the results for Jg4 and Iz4. It should be noted that some of
the systematic errors cancel when taking the ratio of conditional yields, including a portion from the sideband
errors. Additionally, we used the results for the midrapidity hadron R4 from the 2003 data [68] 137] and
these results plus the relative errors are listed in [C.104C.12] and [D.13HD.15] In these tables, we also present

the values of Rg4 for MPC 7%’s in the ps bins of this analysis.
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Chapter 7

Forward-Forward Correlations

We now proceed to discuss correlation functions wherein the trigger particle is a MPC cluster and the
associate particle is a MPC 7¥ (see section ; these are termed forward-forward correlations as both
particles are detected in the same, forward MPC. We observe the nearside peak at A¢ = 0 in addition to
the peak at A¢ = m because the particles have very similar rapidities. Given that the two particles come
from di-jet production, this is the lowest Bjorken-z ~ 5 x 10~ achievable in VSx~ = 200 GeV collisions
at PHENIX (and RHIC). Recently, there have been a number of CGC-inspired predictions indicating that
a large modification to the width and yield of the awayside peak is expected in central d+Au collisions
(especially central collisions wherein the parton densities can be a factor 12 larger than in the proton) but

not in p+p [6l B0 I38]. We test these theories with our measurements.

7.1 Data Analysis

7.1.1 Procedural Discussion

In calculating a conditional yield (eq. for the forward-forward correlations, we have to make corrections
for non-signal contributions to the correlation function, which come from the background underneath the 7°
peak. We have already discussed the methodology (section for correcting the mid-forward correlation
functions; this is applied to the forward-forward correlations along with a correction to the nearside peak,
which must be corrected for mass resonance decays. In section we apply our correction and show that

0 correlation function.

in simulation we attain good agreement with the true 7
After correcting the correlation functions for the background contributions, they are corrected for the
single-particle efficiency and pair efficiency (efficiency loss from having the two particles overlap in the MPC).

We also correct for the leakage of the 7° mass distribution outside the defined window and additionally apply

a bin-shift correction.
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7.1.2 Cluster-Energy Correction

Usage of the clusters requires that we understand their energy response. Because the cluster sample is
dominated by 7%’s, we focus on correcting the energy of the clusters to the true 7° energy. The issue is
that for merged 7%’s and for those which are almost merged, some of the energy is outside the “core” of the
cluster, and hence the energy calculated by the clustering algorithm called ecore (see section will not
produce the correct energy response. To understand this behavior, we take 7%’s embedded into p+p events
and calculate the energy response, as seen in Fig. From this study, we calculate that our ppr-bin edges
change from 1.0 — 1.08, 1.5 — 1.57, and 2.0 — 2.04 GeV/c. The upper bin edge of the 2.0 — 5.0 GeV/c bins

remains the same.
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Figure 7.1: Energy and pr response of single-cluster reconstruction of 7%’s

7.1.3 Pedestal Determination

Determination of the constant pedestals of the correlation functions can be performed by using a fit, assuming
that the signal has Zero-Yield At the Minimum (ZYAM) [131], or by calculating it explicitly using single-
particle distributions of both the trigger and associate particle (known as Mean-Seeds Mean-Partners or
MSMP in PHENIX) [I39]. Example efficiency-corrected correlation functions for p+p are shown in Fig.
Please note that the open, red triangles represent the correlations before we apply a correction to the nearside
peak (see section . Here we have used the ZYAM assumption to fit the pedestal, which simply means
we set the pedestal level to the minimum in the correlation function.

We fit the distribution with a constant plus two Gaussian signals centered at A¢ = 0 and 7. As with

the mid-forward correlations, we have to account for the periodic boundaries of A¢ € 0 — 27. We again
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use a 5-Gaussian fit, wherein our function is the sum of five sets of two Gaussian-signals atop a constant
pedestal, with the Gaussian for the awayside centered at nm, n € {—3,—1,1,3,5} and for the nearside at

mm, m € {—4,-2,0,2,4}, or

(z—p)? (z—m)?

F(AG) = po + —m— > e Tvay 4 L2 > €27 hcar . (7.1)

210, V2mo
\ﬁ away el 35 7w 3w 5w} near ,e{—4n,—2m,0,27, 47}

One can see in the example (Fig. that the nearside peak tends to be narrower than the awayside.
To extract the awayside signal and pedestal level, one technique is to simply fit the correlation function with
the above fit function. However, because there may be a large region of overlap between the two Gaussian
signals, the task of simultaneously fitting the pedestal level along with the two Gaussian signals is difficult;
the fit results seem inconsistent and the technique is inadequate to properly calculate the yields and widths
of the peaks. Another technique is to fix the nearside width, and perform the fit; however, this still produces
a relatively large uncertainty on the background level, as the fit completely depends on the shape of the
awayside peak being Gaussian. Any systematic fluctuations in the shape can easily cause the fit to fail.

Alternatively, one can attempt to quantify how incorrect the ZYAM assumption is. To evaluate this, we
do a simple exercise: create simulated correlation functions which are the sum of two Gaussian signals as
defined in eq. and measure how incorrect the awayside yield is when we fit using the ZYAM pedestal. In
Fig. we show a plot that quantifies how the ZYAM assumption fails as a function of the awayside width
and the awayside signal fraction (ﬁ, where A is the awayside area and N is the nearside area) given a
fixed nearside width of g,cq = 0.6. As one expects, the wider the awayside peak gets, or the smaller its
fraction, the larger correction one has to make.

This analysis shows the difficulty in obtaining the awayside width and yield with good precision and
accuracy using ZYAM. A better approach would be determining the background level from the particle
production rates, such as MSMP [139]. This was tried; however, the results did not seem reasonable, as the
background level in some cases was even higher than in ZYAM. One uncertainty with this method is that
while it has been used extensively for Au+Au analyses, it has not been used in p+p or d4+Au, and hence its
validity has not been established. Another issue is the possibility of auto-correlations with the BBC (which
sits at a similar pseudorapidity to the MPC) that complicates this analysis.

Thus, the inability to consistently obtain good fit results for the correlation functions, and the failure

of the absolute-normalization technique leads us to use the ZYAM-fit method with all of its inadequacies.
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Figure 7.3: Performance of ZYAM as a function of the awayside width and awayside signal fraction (AJFLN).
The colored axis indicates the ratio of the awayside yield obtained assuming ZYAM background subtraction
and the true input yields.
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Hence throughout the rest of this chapter, it should be noted that the fits use a ZYAM background, and the

background subtracted correlation functions use ZYAM as well.

7.1.4 Pair Cuts

Particle pair cuts are usually made when the correlations involve two particles from the same detector; pair
cuts require some minimum spatial separation between particles to ensure that both particles are detected
properly. The particle pair cut made in this analysis is a Ar = 4.0 cm separation between the high-energy
cluster and the two clusters of the identified 7°. This cut effectively makes an 8 cm diameter hole around the
high-energy cluster, which in turn makes the nearside peak very difficult to measure. In fact, our correlations
are performed in a torus of 8 cm (11 < r < 19 cm), and hence the nearside is very sensitive to the acceptance.
What does this hole do in terms of the physical signal? It will reduce the nearside signal size because we cut
a hole in our acceptance at An x A¢p = 0 x 0. The amount that our signal is reduced depends both upon
the hole size as well as our An coverage integrated over in the correlation function.

In Fig. [7.4] we show an example, un-normalized two-particle acceptance function for the forward-forward
correlations in p+p. One can see the large hole at A¢ = 0 and 27 resulting from the separation cut made
amongst the clusters (the so-called pair cuts). In Fig. we show the pair efficiency for all pr 1rig ® PT.ass0c
bins used in this analysis. The pair efficiency « is defined as the Ag¢-integral of the acceptance function with
pair cuts divided by the integral of the acceptance function without pair cuts (the Ar = 4 cm cut). One
correction is used for each pr ¢rig ® P1 assoc bin as shown in Table @; the values of k are averaged over all

centralities and collision species.

%1 03 p+p n%Cluster Two-Particle Acceptance
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Figure 7.4: Example two-particle forward-forward acceptance function in p+p.
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Figure 7.5: Pair acceptance correction versus pp bin for p+p and d+Au centrality bins.

Table 7.1: Pair acceptance k.

prZn P1,trig PT,assoc R
1| 1.0-1.5 0.625 | 0.871
21 1.0-1.5 0.875 | 0.885
3| 1.0-1.5 1.25 | 0.896
41 1.5-2.0 0.625 | 0.875
5 | 1.5-2.0 0.875 | 0.885
6 | 1.5-2.0 1.25 | 0.894
7 1 2.0-5.0 0.625 | 0.877
8 | 2.0-5.0 0.875 | 0.886
9 | 2.0-5.0 1.25 | 0.892
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7.1.5 Sideband Correction

Similar to the mid-forward correlations, we must correct the forward-forward correlations for background
counts underneath the 7° peak. We employ the procedure outlined in section m We show evidence
that our procedure is reasonable in Fig. [7.6l Here we have taken a sample of roughly 500 million p+p
PYTHIA—PISA events (the size of our minimum-bias dataset) and measured the same correlation functions.
The advantage is that we are able to use the simulations to track the signal (7") and background contributions
to the correlation functions. Hence we can test our method for subtracting the background contributions to
see if it reproduces the true signal correlation functions. In Fig. we show these A¢ correlation functions

O correlation function (dark blue) and the measured (red). The light blue is the correlation

for the true =
function before correcting the nearside, which will be discussed shortly.

One can see in Fig. that the measured awayside peak (red or light blue) almost exactly matches
the signal peak (blue), showing that the correlation strength of the signal and background are very similar.
However, the nearside peak (light blue) with no other correction is far from the correct value. To correct
for this, we try to measure the correlation strength of the background for the nearside peak. The reason we
have to do this is that it is possible to have mass resonance decays contributing to the nearside (this will
not affect the awayside). Hence we naively expect that the correlation strength for the nearside should be
larger because of these decays. To correct for this, we try to measure the ratio Co = My/M,, where M is

the true signal correlation strength and M, is the nearside correlation strength of the background. We use

the ZYAM subtraction and scale down by a factor F' (rather than subtraction). To obtain the correct scaling

factor, we must have (note: this is not yet scaled by -*2,-)

CYmeas = MSSQ + Mst = F(MSSQ + Mbe), (72)

and hence we define a correction factor to the nearside yield of

CO X (82 + bg)

F
Coso + by

(7.3)

Thus by measuring the factor Cy we can correct the nearside. We measure Cj in data using the sidebands.
In Fig. [7.7, we show this factor as a function of collision centrality measured using the sideband of m;,, =
0.18 — 0.3 GeV/c?. To minimize some of the systematics in this procedure, it was decided to only use the
first data point for all centrality bins, which has the best statistics. We have two different corrections that

we ended up applying: we apply a correction of Cy = 0.45 in p+p and Cy = 0.29 in d+Au. In d+Au we
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Figure 7.6: Example p+p PYTHIA A¢ correlation functions for the true 7° correlation function (dark blue)
and our measured (red). The light blue is the correlation function before correcting the nearside. The pr of
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measure the factor in all centrality bins and take the average.
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Figure 7.7: Value of Cy = %b for the nearside peak versus pr bins.

As a test of our procedure and of the correlations in the forward direction, we also embed two p+p events

into each other and track the energy depositions across the two events. In Fig. we show the corrected

correlation functions (red) and the nearside uncorrected (light blue). In Fig. |[7.9] we subtract the ZYAM
backgrounds and show a comparison of the correlation functions from the two embedded p+p events (red)
with the single p+p events (blue) in Fig. One can see that there is a good agreement between the true
70 correlation functions for single p+p events and our measured ones for the two embedded events.

The final corrected correlation functions and background-subtracted correlation functions are shown in Figs.

EJ}JE9 in the appendix.
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7.1.6 Efficiency and Bin-Shift Corrections

We correct the correlation functions with the same efficiency corrections discussed in section and the

bin-shift corrections detailed in section [6.5.41

7.2 Systematic Errors

The main systematic errors for the forward-forward correlations come from the sideband correction and the
ZYAM subtraction procedure. In this section, we detail the errors from each of these sources. In addition,

though relatively small, the errors on the yield extraction, efficiency, and energy scale are also incorporated;

these calculations were shown in sections [4.4.1} 4.4.2] |4.5.1| respectively.

7.2.1 Sideband Systematics

As with the mid-forward analysis, significant systematic errors arise from the side-band analysis. We assume

a 40% error on our assumptions about how the sidebands contribute to the correlation functions in the

awayside and a 60% error on the nearside. That is, if we scale down the correlation function by S;szg, then

our systematic error on the awayside becomes

— _ 82
Saway = 04 x (1= =5, (7.4)

while the systematic error on the nearside is

82
S92 + b2

Snear = 0.6 x (1 — x F). (7.5)

7.2.2 ZYAM Ij5 and Jy5 Systematics

Our procedure for calculating I;4 and Jg4 is made difficult by the fact that our Gaussian peaks are wide.
We have resorted to using a ZYAM procedure for the pedestal determination in our measurements of Iqa
and Jqa. ZYAM is a procedure that can be systematically off for calculating the conditional yields, but less
so for calculating either I 4 or Jya. This is true because the ZYAM estimate for the conditional yield will
be systematically low (because the pedestal is too high) in both p4+p and d4+Au, and thus the ratio of the
CYs cancels portions of the systematic errors.

To understand the systematic behavior of ZYAM, we create “simulated correlation functions” by adding
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nearside and awayside Gaussian peaks on top of a constant pedestal. We fit the known correlation functions
with our ZYAM procedure, and try to understand how systematically off the ZYAM assumption is by varying
the widths of the peaks as well as the awayside signal fraction (f = A_‘_LN), where A and N are the area of
the awayside and nearside peaks.

Let us define a few variables that will be relevant to this discussion. Let A (V) refer to the true area of
the away (near) side Gaussian peak, and o4 (on) refer to the true width of the peaks. We define A, (N,)
as the area of the respective ZYAM measured areas.

In our previously shown simulated study (Fig. , the vertical axis (awayside signal fraction) corresponds
to A/(A+ N), while the horizontal axis is the true width of the awayside o4. We measure A, and N, for the
correlation functions, and thus we can measure the ratio A,/(A, + N.). We can also reconstruct 04,z and
on,z or the ZYAM widths of the peaks, and subsequent studies are performed for different values of op.

In Fig. we show the o4 7z (colored scale) as a function of A/(A+ N) and o4 for a fixed nearside
width of on = 0.6.

| Gaussian Away-side width of ZYAM

P I TR N AN R R BT A 0.3

0608 1 12141618 2
Away-side Width

Figure 7.10: ZYAM 04 z (colored scale) with varying values of o 4 (horizontal axis) and A/(A+ N) (vertical
axis) for a fixed nearside width of 0.6.

One can see that the measured ZYAM-width level-curves of the awayside are not monotonic, and hence

there arises an ambiguity if we attempt to extract the true awayside width from the ZYAM width; this
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difficulty propagates to the extraction of the awayside area. It is possible that for very wide peaks there is
a significant area hidden underneath the correlation function.

It would thus seem that a significant broadening as well as a suppression in the yields can have the same
effect on the correlation functions. We first evaluate the systematic errors under the assumption that the
broadening is not so significant and that the awayside peak has widths that are not significantly larger than
the mid-forward case as well as the Muon Arm h*/MPC 7 case (the Muon Arm/MPC correlations were
briefly studied and appear similar to the mid-forward correlations). In both of these sets of CFs, the widths
do not rise above 1.3 for virtually any correlation function, and hence we use this as our upper limit when
evaluating the systematic error.

Let us now outline the procedure used for calculating the error in the ZYAM assumption; we use this
as our systematic error for the conditional yields. From the data, we can measure Az/(Az + Nz). For our

simulated correlation function, we measure 4282 and A, /A for varying values of A/(A+N), o4, and oy,

yEu
as shown in Figs. [[.11[7.12}
| Total Yield ZYAM/True Total Yield |
5 '
*g 0.9
o 0.8
@ 0.
S0
7]
2 0.5
©0.4
0.3
Z02
0.1

0608 1 12141618 2
Away-side Width

Figure 7.11: Simulated values of Ajixz (colored scale) with varying values of o4 (horizontal axis) and

A/(A+ N) (vertical axis) for a fixed nearside width of 0.6.

For a given awayside width o4, we use our simulation to determine A/(A + N) from our measured

ratio and the simulated distributions. A 7" degree polynomial is fit to the 1-dimensional projection of the
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Figure 7.12: Simulated values of ““TZ (colored scale) with varying values of 0 4 (horizontal axis) and A/(A+N)

(vertical axis) for a fixed nearside width of 0.6.

194



fi = Az/A distribution while a 6!" degree polynomial is fit to the fo = % distribution; the projections

are now a function of A/(A + N). We then calculate the value of A/(A + N) that gives the best match to

Az
Az+Nz

0.7 — 1.3. We additionally vary the nearside width from 0.55, 0.60, and 0.65. Also, we allow our input

x 1/f1 x fa. We perform this procedure for 13 different values of o4 distributed uniformly between

ratio Az /(Az + Nz) to vary by £20% in 10% increments. Thus we have essentially calculated a (one-sided)
distribution which we can call our systematic error. To completely utilize all information from our fit, we
also weight by how well the value of o4,z matches that expected from our simulated study. This does not

change the error significantly, as we use a relatively weak weighting function where the width is p:

w(p) = (1+ (2/w)Gaus(p, o = 0.1))2. (7.6)

In this weighting function, we first give all widths from 0.7 — 1.3 a weight of 1, which corresponds to an
area of 0.6 x 1 = 0.6. We add on top of this a Gaussian peak and square the entire function. The area of
the Gaussian-like function on top of the background is & 1.2. Thus, the peak region has a weight of ~ 3 —4
higher than the rest of the widths.

This ensures that we give more weight to values of o 4 where the ZYAM width between our simulated CF's
and measured ones match, but does not weight so heavily that the other cases are not accounted for. Thus
we have our one-sided error distributions for the CYs which can be extremely large, and that are measured
for all centralities.

The next step is to take the ratio of the CYs to form I;4. The nice thing about using ZYAM in this ratio
is that ZYAM will provide an answer for the CY that is too small, and thus by taking the ratio of the ZYAM
yields, the systematic error from the ZYAM assumptions cancel. We thus take the (one-sided) systematic
error distributions from the CYs above and use these to calculate an asymmetric systematic error for the
ratio of the CYs.

Procedurally, we iterate through each bin of the d+Au and p+p CY systematic-error histograms in
question, and calculate the ratio of the horizontal values in the two histograms. For instance, let us say the
d+Au ZYAM CY is low by a factor of 4, while the p+p ZYAM CY is low by a factor of 2. Then we would
say that the systematic error from using the ZYAM assumption on Iy is sz =4/2 — 1 = +100%. Thus we
would have an error of 100%. If on the other hand our p+p error was 4 and the d+Au error was 2, then we
would have an error of sz = 2/4 — 1 = —50%; from this simple example one can see how the asymmetric
error bars arise. We use all combinations of the error histograms for the CYs; the weight is the product of

the heights in each bin.
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At this point, we also use a constraint from the physical system; we have observed that the d+Au
peripheral and p+p correlation functions are similar, as the collision systems are very similar. If we allow
the range of widths to vary uniformly between 0.7-1.3 for both systems simultaneously, we ignore the fact
that the collision systems are so similar, and the error becomes larger; for example, if one has a small width
in p+p (say 0.6) and a large width in d4+Au (say 1.3), then the ZYAM yield in p+p will be very close to
the true value, whereas it will be much different in d+Au. Thus, we choose to create a weighting function
that is similar to a step function to try to account for the fact that peripheral d+Au and p+p correlation

functions are similar.

15.0/Aw  Aw <k
fAw) = (7.7)
1.0 else

where Aw = wga — wpp, and k = % x min(wpp, waa). We thus see that for d+Au central collisions, the
weighting function is large when the widths are within 100% of each other, while for peripheral collisions the
weight is large when the widths are within 20%. Thus our systematic error includes more possible broadening
in d4+Au central collisions, and less-so for d+Au peripheral collisions.

In Figs. [TI3}[7.14] we sce the error distributions for d4+Au central and peripheral collisions. The system-
atic error is calculated from these distributions by taking one standard deviation on the left- and right-hand

sides of the distribution.

7.3 Results

7.3.1 Correlation Functions

Our final correlation functions are shown as

d®N dAN/dA¢

1/Nt'm'gm = Cup—down X Cleak X (7~8)

NtrigeaﬁApT A'I]

where Cyup—down is the up-down bin-shift correction, Cjeqr accounts for the leakage of the 70 counts outside
the window used in our analysis, « is the pair-acceptance correction, and €, is the single-particle efficiency
for the MPC 7¥s.

In Figs. [7.15]7.16] we show the ZYAM pedestal subtracted correlation functions for d4+Au peripheral

and central compared to p+p.
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Figure 7.13: Relative error distributions of the ZYAM conditional-yield ratio between d+Au 0-20% and p-+p
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Systematic Error Distribution for d+Au 60-88
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Figure 7.14: Relative error distributions of the ZYAM conditional-yield ratio between d+Au 60-88% and
p+p for the different pr bins.
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Figure 7.15: ZYAM background-subtracted MPC-cluster/MPC-7% A¢ correlation functions for d+Au 60-
88% (black, full circles) compared with the p+p correlation functions (blue, open circles). The pr of the
trigger (MPC cluster) and associate particle (MPC 7) are listed as pr trig @ PTassoc-
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Figure 7.16: ZYAM background-subtracted MPC-cluster/MPC-7" A¢ correlation functions for d+Au 0-20%
(black, full circles) compared with the p+p correlation functions (blue, open circles). The pr of the trigger
(MPC cluster) and associate particle (MPC 7°) are listed as pr trig @ PT,assoc-

200



One can see that the awayside appears suppressed in central d+Au collisions as compared to p+p (but is
similar in peripheral d+Au), and thus there appears to be a di-jet suppression when both jets are forward.
Alternatively, if the awayside peak does not come from di—jet&EI but rather other correlations in the forward
direction, then this conclusion cannot be drawn.

In Appendix we show the cluster/n% correlation functions for all centrality bins. We show the
corrected correlation functions, fit, and a comparison with the nearside uncorrected plots. Then we show
the ZYAM subtracted correlation functions and a comparison with the p+p correlation functions.

In Tables we show the various factors that go into the calculation of the conditional yields
and the relative errors. In Tables we show the conditional yields, ZYAM fit widths, and show the

contributions to the systematic error (excluding the ZYAM assumption error).

1 This idea is motivated by a PYTHIA study in appendix
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7.3.2 IdA and JdA

We next show the nuclear modification factor Iyj4 = CY44/CY,, in Fig. for the forward-forward cor-
relations using the ZYAM subtraction and the systematic errors we described previously. It is shown as
a function of the number of binary collisions N..;. One can indeed see an increasing suppression with
increasing Ncol-

To calculate J;4, we also need the Rg4 values for the clusters, which have not yet been measured. It has
been found through PYTHIA studies that the clusters are dominated by 7°’s, and hence we use the values
of the 7% Rqa in this calculation. This is further justified because a comparison of the Rqa values of 7°’s
to those of clusters (without efficiency corrections) shows excellent agreement. The reason we can make this
comparison with clusters is that the geometric acceptance of the MPC does not change between d+Au and
p+p, and the multiplicity does not significantly differ either. Hence the efficiencies of d+Au and p+p nearly
cancel in the Rgqa ratio, and using the ratio of uncorrected cluster spectra gives a nearly correct answer.

What value of pr do we use for Rg4? From Fig. below, we see that Rga looks very linear (i.e.
Raa = Y a;p% where i € {0,1}). The linearity for Rqa simplifies our calculation to using the p+p (pr)
values for each bin as we show below. Let us say the p+p spectrum is f(pr) and the d+Au spectrum scaled

by 1/Neou is g(pr). Thus we have

9(pr) = Raa(pr)f(pr). (7.9)

We define xg, yo such that for a given bin

fzg) =C x /p2 f(z)dz, (7.10)

g@m=0x/mmw@, (7.11)

P1

where p; and ps are the lower and upper bin edges and C' = 1.0/(p2 — pl)ﬂ Thus we have

oyo) = CX/mmm@=0x/”RMuﬁ@Mx (7.12)

p1

= Cx /m > (aiw') f(w)dw = aif(zo)(a’) (7.13)

2If f = g, then o = yo
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Thus we see that for our bin we have

Raa =Y ai{pr’) (7.14)

) P2 2’ f(z)dx
where (pr*) = plfww
P1

Hence, if R44 is linear as a function of pr, then we simply need to use the average value in this bin of
pr from the p+p spectrum. We employ this procedure for the pr bins with ranges 1.08-1.57 GeV/c and
1.57-2.04 GeV/c; from a fit to the p+p 7° spectrum, we determine that the associated pr-bin averages are
(pr) = 1.25,1.75 GeV/c. For the highest pr bin, we have to extrapolate, since we do not measure the
value of Rga here. We have chosen to take the value of Rga(pr = 2), and thus increase systematic error
on this data point. In addition to the systematic error of the points, we add an additional systematic error
that is based on the linear fit to Rg4. We take the difference between the value we use at pr = 2 and the

extrapolated value of Rq4 from the linear fit at pr = 2.5 GeV/c (see Fig. [7.18]).
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Figure 7.18: Fits to Rga for all centrality bins (d4+Au 60-88, top to d+Au 0-20, bottom).

For the statistical and systematic errors we use the two bins for R44 that roughly correspond to the
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binning of the cluster py range. The errors are calculated based on a simple formula that could be used to

combine the bins

= fapit Rops (7.15)

p1+ D2
where R; are the R44 values for the two bins and p; are the p+p pr-spectrum values. We simply propagate
the errors using the above formula, adding statistical errors in quadrature and essentially averaging the
systematic errors by replacing R; with s; in the eq. above. The highest pr bin (2.04-5.0 GeV/c) uses
the systematic errors from the 1.57 — 2.04 GeV/c bin added in quadrature with the error determined by the

fit. The final Rqa values, statistical errors (ocrqa), and systematic errors (srqa) are shown in Table

Table 7.2: Rg4 and statistical and systematic errors for the fit.

d+Au 0-20%
pr | Raa ORdA SRdA
1.25 | 0.290 | 0.00540 | 0.0233
1.75 | 0.380 0.0385 | 0.0625

2 | 0.426 0 | 0.0876
d+Au 20-40%
pr | Raa ORdA SRdA

1.25 | 0.431 | 0.00800 | 0.0351
1.75 | 0.567 | 0.0548 | 0.0938

2 1 0.637 0 0.147
d+Au 40-60%
pr | Raa ORdA SRdA

1.25 | 0.589 | 0.0109 | 0.0475
1.75 1 0.754 | 0.0744 | 0.115

2 1 0.838 0 0.200
d+Au 60-88%
pr | Raa ORdA SRdA

1.25 | 0.805 | 0.0135 | 0.0630
1.75 1 0.977 | 0.0871 | 0.163
2 | 1.066 0] 0.269

Armed with these values of Rj4, we calculate J;4, as seen in Fig. Jga follows simply as Jya =
Raa,irig X Laa,irig- One can clearly see an even larger suppression in Jqa than Iqa because of the suppression

of Rgqa,irig in the forward direction.
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Figure 7.19: Jga versus N,y for all trigger and associate pr values. The systematic error on each point
is shown by the open boxes. The gray error band at the left on each panel represents a global systematic
scale error of 9.7%. Additional centrality-dependent systematic errors of 7.5%, 5.1%, 4.1%, and 4.8% for the
peripheral to central bins, respectively, are not shown. The (Ngo) values within a centrality selection are
offset from their actual values for visual clarity (see text for actual (Ncop) values).
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Chapter 8

Discussion

We have thus far presented an array of measurements in an attempt to understand different aspects of
forward-particle production and probe whether or not gluon saturation can be observed at RHIC. These new
single-particle Rqa measurements show an increasing suppression with increasing N, at forward rapidities
and add to knowledge from previous measurements at STAR [4] and BRAHMS [3]. As discussed in the

introduction, the different shadowing models alone cannot explain the observed suppression in Rga .

\s =200 GeV d+Au, p+p = n° + X

S T Bk s0b507 ]
0C 1.8 3.0<n<38 Qiu-Vitev Shad.
-V d+Au60-88% — <N >=32 °

1.6 ¢ d+Au0-100% —<N >=7.6 -

. ® d+Au0-20% — <N >=15.1

&t 5
0.2 '*‘mmlzlm E

0:11I]llllllllll{ltlll[lll:
0 0.5 1 1.5 2 2.5

P, (GeV/c)

Figure 8.1: Forward 7° Ry for peripheral, unbiased and central d+Au events compared with shadowing-
predictions from the Qiu-Vitev shadowing model [I0]. The systematic error on each point is shown by the
open boxes. The gray error band at the left represents a global systematic scale error of 9.7%. Additional
centrality-dependent systematic errors of 7.5%, 5.1%, 4.1%, and 4.8% for the peripheral to central bins,
respectively, are not shown.

In Fig. we show a comparison of the forward 7° Rqa measurement presented in this thesis with
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the higher-twist shadowing predictions from Qiu and Vitev [I0]. One can see that this shadowing cannot
account for the observed suppression in the central or unbiased (0-100%) curves, but does match well in the

peripheral case where shadowing effects are minimal.

Mld Forward

LR L L S LA L
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Figure 8.2: Pedestal-subtracted 7%-7° per-trigger correlation functions for, as indicated, p+p, d4+Au periph-
eral (60-88% centrality) and d+Au central (0-20% centrality) collisions at \/syn = 200 GeV; the associated

Os of pr = 0.5-0.75 GeV/c are measured at forward rapidity (3.0 < n < 3.8) and the triggered 7%’s are
measured at midrapidity (|n| < 0.35) for the indicated pr ranges. The subtracted pedestal values, by, are
also indicated.

In addition to the single-particle probes, we have also presented two sets of correlation functions (mid-
forward and forward-forward); a selection of correlation functions from p+p, peripheral d+Au and central
d+Au are shown in Figs. We quantify the di-jet modification in d+Au compared to p+p by using
Iqa and Jga. Several PHENIX measurements in both d+Au and Au+Au have been made using Igqa, the
ratio of conditional yields; however, few measurements exist for Jq4. One of the main reasons we use Jqa in
this measurement is that the value of Jya does not change if we arbitrarily switch the trigger and associate
appellations, as is the case with Iga. Also, Jqa is the correlated two-particle analogue of Rqa and hence one
might say that it is a more fundamental quantity than I4s. In Ref. [I0], the authors use their higher-twist
shadowing framework to make predictions for Jya for mid-forward correlations. In Fig. we show a
comparison with our calculated Jqa values and the shadowing predictions.

One can see that the suppression of Jj4 increases with increasing N.o; in a very similar manner to

the shadowing predictions. In the most central collisions (largest Ncon), the shadowing model seems to
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Figure 8.3: Pedestal-subtracted cluster-7° per-trigger correlation functions measured at forward rapidity
(3.0 < n < 3.8) for, as indicated, p+p, d4+Au peripheral (60-88% centrality) and d+Au central (0-20%
centrality) collisions at /syy = 200 GeV; the correlation functions are for associated 7%s of pr = 0.5~
0.75 GeV/c and trigger clusters over the indicated pr ranges. Systematic errors of up to 30% on the nearside
(|A¢| < 0.5) are not shown. The subtracted pedestal values, by, are also indicated.

underpredict the level of suppression observed, though the match is better than expected. It appears that
shadowing can account for much of the observed suppression, though not all of it. The correct theory must
be able to simultaneously explain the behavior of Rqa as well as Jga, and the shadowing model in question
still has a relatively large discrepancy with Rga and a smaller one with Jga.

As mentioned in the introduction, the addition of initial-state energy-loss to the Qiu-Vitev shadowing
model seems to be able to explain the suppression of the STAR Rga data [54], and it would be interesting
to see if it could explain both the PHENIX R4qs and Jqa data. The CGC theory, on the other hand, also
seems to be able to explain the suppression in Rgqa through gluon saturation effects (though there is some
question about why at high pr when Q% >> Q2 the suppression does not disappear) [52]. Though early
CGC predictions for the mid-forward correlations were produced [2], the newer theoretical advancements
focus on the forward-forward correlations [0, 90, 38|, as the mid-forward do not seem to have a small
enough Bjorken-z for the theorists to make accurate predictions [85].

What is interesting about this statement is that the most probable di-jet configuration where one jet is
forward is to have the other at midrapidity (the mid-forward system). Hence when calculating the forward-

particle cross sections used for the forward Rgqa, one would expect that CGC would integrate over the
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Figure 8.4: Midrapidity-hadron/forward-rapidity 7° Jqa measurements compared with shadowing-
predictions from the Qiu-Vitev shadowing model [I0]. The systematic error on each point is shown by
the open boxes. The gray error band at the left on each panel represents a global systematic scale error of
9.7%. Additional centrality-dependent systematic errors of 7.5%, 5.1%, 4.1%, and 4.8% for the peripheral
to central bins, respectively, are not shown. The (N.o1) values within a centrality selection are offset from
their actual values for visual clarity (see text for actual (Ncon) values).
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mid-forward di-jet cross sections (for the Rgqa predictions), or that these di-jet cross sections would be
accounted for in the calculations. However, as stated the theory can produce Rgqa predictions but does not
seem to be not applicable to the mid-forward di-jet system.

To make this point clearer, we now discuss a direct relationship between Jga and Rga. Assuming that all
hard-scattering interactions appear as di-jet systems (ignoring 3-jet events and different CGC diagrams), one
can define the hard-scattering component of Rga as a weighted integral of Jqa over one particle’s rapidity
and pp. First, we define Rqa in terms of the “hard” and “soft” components. Y*°ft and Y74 are defined
as the pr and 1 dependent invariant yields per Ny (eq. for the hard and soft components of the

differential cross section, and we have

Yhard(pT7 ) + Y;,th (pT7 ,'7) Rhard(pT, )Yha'rd + Rsoft (pT7 77)YpSpOft

Raa(pr,n) = o s (8.1)
Yhard(pT7 ) + YPP T (pT7 T/) Yp};)aTd(pT7 ) + Yp ft(pT7 7])
Next, we can define R4 as
dpb.dn®J ; ) hard , ,
Rhard(pe. pey J dprdn® Jaa (. 0, o, " )wpy ™ (0%, 1% P 1 )7 (8.2)

[ dpl.dn® wh‘“"d(pT,n D)

hard

where Wpp

is a weighting function (the correlated p+p di-hadron cross section) and @ and b are arbitrary
particle indices used to distinguish the two particles. In performing the integral over p% and 7°, one should
note that the largest weight is given to the lower values of p%. at midrapidity; this is where the correlated
di-hadron cross section is the largest.

In light of this discussion, we again note that in Fig. [8:4] we show both the mid-forward Jqa values as
well as the values of the forward Rga. We would naively expect the lower pr values of Jya to contribute

Rhard - Interestingly enough, one can see that in the lowest pi bin of 0.5 — 1.0 GeV/c for

the most to
the charged hadrons, the match between Jga and Rga is quite good. As p’md increases, the values of Jqa
increase and move farther away from the Rqa values. However, these values have a much smaller weight in
eq. and hence these values are not so important in determining Rqa”*". It is also interesting to note
that in the low-pr bins (pr < 1 GeV/c) one would expect to have a very large soft component to Rqa; even

so, we still have a good match between the low—p””d Jaa values and Rga.

One interesting aspect of the suppression is that it seems to increase with decreasmg trigger e, which

directly would correspond to a decrease in x, as for these kinematics x ~ \/7 Qualitatively speaking, this
phenomenon would be predicted by both nuclear shadowing models and CGC, as both indicate increasing

suppression with decreasing . However, the shadowing models do not seem to account for the observed level
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of the suppression, and hence there is likely more at work than leading- or higher-twist shadowing. One can
also see that Rg4 is consistently < Jg4, though for the small p?id values they are similar. This means that
per-detected forward particle there are more midrapidity particles produced in d+Au than in the analogous
p+p measurement, or in other words Iqa, fwd—trig > 1 if we trigger in the forward direction as opposed to
lga mid—trig < 1 for the midrapidity trigger. While these results follow naturally from the definition of Jqa
and the fact that Rga™" #* Raafvd (i.e. Jaa = 1A, fwd—trig ¥ R(];Xd = lqA,mid—trig X R;’fjd), this difference
in trigger-particle definitions created confusion early on (which probably still exists) when interpreting our
144 mid—trig Tesults as a suppression. Some thought that the suppression we observed proved CGC, while
others were more skeptical. Hence, it was decided that more measurements were needed, as this measurement

was not able to distinguish amongst the competing models.

Mid-Forward

Forward-Forward
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:

Figure 8.5: Jga versus (Neop) for forward rapidity (3.0 < n < 3.8) 7%’s paired with midrapidity (|n| < 0.35)
hadrons and 7%’s (left), and for forward rapidity (3.0 < n < 3.8) cluster-7® pairs (right) for the indicated
combinations of pr. Also plotted are the values of the forward 7 Rgqs. The systematic error on each point
is shown by the open boxes. The gray error band at the left on each panel represents a global systematic
scale error of 9.7%. Additional centrality-dependent systematic errors of 7.5%, 5.1%, 4.1%, and 4.8% for the
peripheral to central bins, respectively, are not shown. The (Ngon) values within a centrality selection are
offset from their actual values for visual clarity (see text for actual (Ncon) values).

We thus formed correlation functions between MPC 7°’s and hadrons detected in the Muon Arm Spec-
trometers (1.2 < |n| < 2.2)) to reach smaller values of z. However, after seeing a preliminary STAR result
from Les Bland wherein two 7%s were correlated at very forward rapidities (2.5 < 7 < 4.0) and what
appeared to be a significant modification, it was decided to pursue a similar measurement with the MPC.

Thus, in an attempt to observe the effects of gluon saturation, we constructed di-hadron correlation functions
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1.2)

where both particles were at forward rapidities, or (n ~ 3.3. The reason for choosing this measurement

is simple: it can probe the lowest values of x 4, achievable at RHIC. From eq we see that the value of

1/30x . .. _
T 4, becomes x4, ~ 1/30x(pratPr2) 41 hence the measurement is sensitive to = values around 5 x 1074,

SNN
The decrease in x causes an increase in the saturation scale Q5 and it is expected that we should be sensitive
to saturation effects [90]. In Fig. [8.5| (right panel), we show Jga for the forward-forward correlations versus
Neon for varying wo—pgf”d and cluster—péwd2 values. One can see that the suppression in Jga reaches a factor
10 in some bins. We also display the values of Rqa for the 7%’s and in the left panel show the mid-forward
correlations. This plot essentially summarizes all of the measurements presented in this thesis.

In order to show the explicit x dependence of Jya, in Fig. we plot Jqa against the variable :E‘J?T“ag,
which is essentially the same as x5 in eq. or

Au <pT71>67<y1> + <pT,2>€7<y2>

Thrag = 7 . (8.3)
This variable would be the momentum fraction of partons in the Au-nucleus given a z = 1 (z = %)
parion

fragmentation wherein all jet energies are deposited into the particles used in the correlation functions. At

Au

midrapidity, the values of 2 are ~ 0.5 — 0.75 [140], and we would thus expect that x4,

is slightly smaller
than the true value of z 4,, though not by more than a factor of 2. In Fig. we have plotted Jga for both
the forward-forward correlations (x‘}lr“ag < 1073) as well as the mid-forward correlations (m#‘ag > 1073). The
general trend seems to be that the suppression increases with decreasing & and increasing impact parameter,
which qualitatively would be predicted by CGC. Hence we have provided the x dependence of the correlated
di-hadron nuclear modification factor (one might even say di-jet nuclear modification factor), which is crucial
to distinguishing between the competing theories. It will be especially interesting to see if the CGC theory
predictions match our observed trends in the data. In Tables 8.4| we show the data tables of J 4 for

different values of x as determined by pr and n combinations of the two particles. The statistical errors,

asymmetric systematic errors (Sjow, Shign) and global systematic errors (sg;) are all listed.
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Figure 8.6: Jya versus 2528 for peripheral (60-88%) and central (0-20%) d+Au collisions at /Sy = 200
GeV. The systematic and statistical error bars are the same as in Fig. Above xiig > 1073, some data
points were offset from their true xzag to avoid overlap. The leftmost point in each group of three is at the
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correct T, °.
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Table 8.1: Jy4 vs x, systematic, statistical errors for 3.0 < nf*? < 3.8, d+Au 0-20%.

d+Au 0-20%
pp'? | passoc AP Jaa | ogaa | slow S%%h Sq1,7dA/JaA
1.25 | 0.625 | 3.46e-04 | 0.093 | 0.016 | 0.036 | 0.107 0.108
1.75 | 0.625 | 4.38e-04 | 0.090 | 0.021 | 0.037 | 0.088 0.108
2.53 | 0.625 | 5.82e-04 | 0.191 | 0.035 | 0.083 | 0.160 0.108
1.25 | 0.875 | 3.92e-04 | 0.077 | 0.017 | 0.024 | 0.097 0.108
1.75 | 0.875 | 4.84e-04 | 0.144 | 0.034 | 0.051 | 0.129 0.108
2.53 | 0.875 | 6.28¢e-04 | 0.174 | 0.037 | 0.069 | 0.137 0.108
1.25 | 1.250 | 4.61e-04 | 0.102 | 0.021 | 0.030 | 0.098 0.108
1.75 | 1.250 | 5.53e-04 | 0.235 | 0.060 | 0.082 | 0.168 0.108
2.53 | 1.250 | 6.97e-04 | 0.390 | 0.114 | 0.162 | 0.229 0.108
0.68 | 0.625 | 3.52e-03 | 0.233 | 0.023 | 0.062 | 0.062 0.108
1.29 | 0.625 | 6.57e-03 | 0.335 | 0.030 | 0.070 | 0.070 0.108
2.43 | 0.625 | 1.23e-02 | 0.407 | 0.122 | 0.067 | 0.067 0.108
2.71 | 0.625 | 1.37e-02 | 0.548 | 0.052 | 0.178 | 0.178 0.108
3.35 | 0.625 | 1.69e-02 | 0.486 | 0.055 | 0.126 | 0.126 0.108
4.67 | 0.625 | 2.35e-02 | 0.572 | 0.163 | 0.090 | 0.090 0.108
0.68 | 0.875 | 3.56e-03 | 0.252 | 0.035 | 0.062 | 0.062 0.108
1.29 | 0.875 | 6.61e-03 | 0.375 | 0.040 | 0.070 | 0.070 0.108
2.43 | 0.875 | 1.23e-02 | 0.445 | 0.128 | 0.067 | 0.067 0.108
2.71 | 0.875 | 1.37e-02 | 0.409 | 0.045 | 0.178 | 0.178 0.108
3.35 | 0.875 | 1.69e-02 | 0.531 | 0.064 | 0.126 | 0.126 0.108
4.67 | 0.875 | 2.35e-02 | 0.685 | 0.212 | 0.090 | 0.090 0.108
0.68 | 1.250 | 3.63e-03 | 0.365 | 0.048 | 0.062 | 0.062 0.108
1.29 | 1.250 | 6.68e-03 | 0.432 | 0.116 | 0.070 | 0.070 0.108
2.43 | 1.250 | 1.24e-02 | 0.478 | 0.162 | 0.067 | 0.067 0.108
2.71 | 1.250 | 1.38e-02 | 0.630 | 0.095 | 0.178 | 0.178 0.108
3.35 | 1.250 | 1.70e-02 | 0.748 | 0.121 | 0.126 | 0.126 0.108
4.67 | 1.250 | 2.36e-02 | 0.520 | 0.172 | 0.090 | 0.090 0.108
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Table 8.2: J4 vs X, systematic, statistical errors for 3.0 < nf*? < 3.8, d+Au 20-40%.

d+Au 20-40%
pr Y | pgeeoc 56,’:;:79 Jaa | 044 | S8 S}}il%h Sq1,7dA/JaA
1.25 | 0.625 | 3.46e-04 | 0.148 | 0.026 | 0.055 | 0.157 0.105
1.75 | 0.625 | 4.38e-04 | 0.160 | 0.033 | 0.062 | 0.153 0.105
2.53 | 0.625 | 5.82e-04 | 0.148 | 0.040 | 0.062 | 0.150 0.105
1.25 | 0.875 | 3.92e-04 | 0.220 | 0.031 | 0.069 | 0.192 0.105
1.75 | 0.875 | 4.84e-04 | 0.397 | 0.072 | 0.140 | 0.282 0.105
2.53 | 0.875 | 6.28¢e-04 | 0.391 | 0.070 | 0.153 | 0.272 0.105
1.25 | 1.250 | 4.61e-04 | 0.218 | 0.036 | 0.061 | 0.175 0.105
1.75 | 1.250 | 5.53e-04 | 0.476 | 0.108 | 0.169 | 0.278 0.105
2.53 | 1.250 | 6.97e-04 | 0.362 | 0.139 | 0.140 | 0.255 0.105
0.68 | 0.625 | 3.52e-03 | 0.342 | 0.034 | 0.091 | 0.091 0.105
1.29 | 0.625 | 6.57e-03 | 0.476 | 0.045 | 0.103 | 0.103 0.105
2.43 | 0.625 | 1.23e-02 | 0.527 | 0.164 | 0.104 | 0.104 0.105
2.71 | 0.625 | 1.37e-02 | 0.604 | 0.059 | 0.190 | 0.190 0.105
3.35 | 0.625 | 1.69e-02 | 0.641 | 0.066 | 0.176 | 0.176 0.105
4.67 | 0.625 | 2.35e-02 | 0.729 | 0.136 | 0.109 | 0.109 0.105
0.68 | 0.875 | 3.56e-03 | 0.374 | 0.051 | 0.091 | 0.091 0.105
1.29 | 0.875 | 6.61e-03 | 0.553 | 0.061 | 0.103 | 0.103 0.105
2.43 | 0.875 | 1.23e-02 | 0.570 | 0.170 | 0.104 | 0.104 0.105
2.71 | 0.875 | 1.37e-02 | 0.603 | 0.081 | 0.190 | 0.190 0.105
3.35 | 0.875 | 1.69e-02 | 0.765 | 0.111 | 0.176 | 0.176 0.105
4.67 | 0.875 | 2.35e-02 | 0.619 | 0.117 | 0.109 | 0.109 0.105
0.68 | 1.250 | 3.63e-03 | 0.488 | 0.066 | 0.091 | 0.091 0.105
1.29 | 1.250 | 6.68e-03 | 0.578 | 0.156 | 0.103 | 0.103 0.105
2.43 | 1.250 | 1.24e-02 | 0.737 | 0.230 | 0.104 | 0.104 0.105
2.71 | 1.250 | 1.38e-02 | 0.730 | 0.104 | 0.190 | 0.190 0.105
3.35 | 1.250 | 1.70e-02 | 0.852 | 0.161 | 0.176 | 0.176 0.105
4.67 | 1.250 | 2.36e-02 | 0.639 | 0.251 | 0.109 | 0.109 0.105
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Table 8.3: Jg4 Vs X, systematic, statistical errors for 3.0 < nf*? < 3.8, d+Au 40-60%.

d+Au 40-60%
pr Y | pgeeoc 56,’:;:79 Jaa | 044 | S8 S}}il%h Sq1,7dA/JaA
1.25 | 0.625 | 3.46e-04 | 0.221 | 0.039 | 0.072 | 0.187 0.110
1.75 | 0.625 | 4.38e-04 | 0.327 | 0.057 | 0.117 | 0.209 0.110
2.53 | 0.625 | 5.82e-04 | 0.460 | 0.079 | 0.186 | 0.309 0.110
1.25 | 0.875 | 3.92¢-04 | 0.337 | 0.046 | 0.086 | 0.200 0.110
1.75 | 0.875 | 4.84e-04 | 0.500 | 0.097 | 0.156 | 0.292 0.110
2.53 | 0.875 | 6.28¢e-04 | 0.453 | 0.090 | 0.160 | 0.291 0.110
1.25 1.250 | 4.61e-04 | 0.513 | 0.064 | 0.130 | 0.291 0.110
1.75 | 1.250 | 5.53e-04 | 0.556 | 0.140 | 0.177 | 0.263 0.110
2.53 | 1.250 | 6.97e-04 | 0.713 | 0.221 | 0.257 | 0.382 0.110
0.68 | 0.625 | 3.52e-03 | 0.435 | 0.046 | 0.111 | 0.111 0.110
1.29 | 0.625 | 6.57e-03 | 0.732 | 0.077 | 0.123 | 0.123 0.110
243 | 0.625 | 1.23e-02 | 0.642 | 0.197 | 0.110 | 0.110 0.110
2.71 | 0.625 | 1.37e-02 | 0.596 | 0.064 | 0.180 | 0.180 0.110
3.35 | 0.625 | 1.69e-02 | 0.749 | 0.086 | 0.235 | 0.235 0.110
4.67 | 0.625 | 2.35e-02 | 0.739 | 0.161 | 0.120 | 0.120 0.110
0.68 | 0.875 | 3.56e-03 | 0.597 | 0.096 | 0.111 | 0.111 0.110
1.29 | 0.875 | 6.61e-03 | 0.685 | 0.076 | 0.123 | 0.123 0.110
2.43 | 0.875 | 1.23e-02 | 0.746 | 0.210 | 0.110 | 0.110 0.110
2.71 | 0.875 | 1.37e-02 | 0.725 | 0.094 | 0.180 | 0.180 0.110
3.35 | 0.875 | 1.69e-02 | 1.073 | 0.184 | 0.235 | 0.235 0.110
4.67 | 0.875 | 2.35e-02 | 0.860 | 0.160 | 0.120 | 0.120 0.110
0.68 | 1.250 | 3.63e-03 | 0.655 | 0.100 | 0.111 | 0.111 0.110
1.29 | 1.250 | 6.68e-03 | 0.948 | 0.288 | 0.123 | 0.123 0.110
2.43 1.250 | 1.24e-02 | 0.809 | 0.253 | 0.110 | 0.110 0.110
2.71 | 1.250 | 1.38e-02 | 0.960 | 0.192 | 0.180 | 0.180 0.110
3.35 | 1.250 | 1.70e-02 | 0.828 | 0.146 | 0.235 | 0.235 0.110
4.67 | 1.250 | 2.36e-02 | 0.729 | 0.290 | 0.120 | 0.120 0.110
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Table 8.4: Jy4 vs X, systematic, statistical errors for 3.0 < nf*? < 3.8, d+Au 60-88%.

d+Au 60-88%
pr Y | pgeeoc 56,’:;:79 Jaa | 044 | S8 S}}il%h Sq1,7dA/JaA
1.25 | 0.625 | 3.46e-04 | 0.571 | 0.061 | 0.168 | 0.256 0.123
1.75 | 0.625 | 4.38e-04 | 0.607 | 0.091 | 0.192 | 0.297 0.123
2.53 | 0.625 | 5.82e-04 | 0.820 | 0.125 | 0.311 | 0.362 0.123
1.25 | 0.875 | 3.92¢-04 | 1.131 | 0.108 | 0.267 | 0.416 0.123
1.75 | 0.875 | 4.84e-04 | 0.816 | 0.143 | 0.228 | 0.308 0.123
2.53 | 0.875 | 6.28¢e-04 | 0.728 | 0.135 | 0.239 | 0.335 0.123
1.25 1.250 | 4.61e-04 | 0.570 | 0.075 | 0.114 | 0.218 0.123
1.75 | 1.250 | 5.53e-04 | 0.720 | 0.173 | 0.190 | 0.256 0.123
2.53 | 1.250 | 6.97e-04 | 1.549 | 0.408 | 0.538 | 0.532 0.123
0.68 | 0.625 | 3.52e-03 | 0.688 | 0.074 | 0.160 | 0.160 0.123
1.29 | 0.625 | 6.57e-03 | 0.821 | 0.079 | 0.162 | 0.162 0.123
2.43 | 0.625 | 1.23e-02 | 0.759 | 0.236 | 0.168 | 0.168 0.123
2.71 | 0.625 | 1.37e-02 | 0.887 | 0.103 | 0.245 | 0.245 0.123
3.35 | 0.625 | 1.69e-02 | 0.916 | 0.097 | 0.259 | 0.259 0.123
4.67 | 0.625 | 2.35e-02 | 0.918 | 0.151 | 0.142 | 0.142 0.123
0.68 | 0.875 | 3.56e-03 | 0.659 | 0.092 | 0.160 | 0.160 0.123
1.29 | 0.875 | 6.61e-03 | 1.019 | 0.117 | 0.162 | 0.162 0.123
2.43 | 0.875 | 1.23e-02 | 1.047 | 0.379 | 0.168 | 0.168 0.123
2.71 | 0.875 | 1.37e-02 | 1.103 | 0.195 | 0.245 | 0.245 0.123
3.35 | 0.875 | 1.69e-02 | 1.312 | 0.283 | 0.259 | 0.259 0.123
4.67 | 0.875 | 2.35e-02 | 1.047 | 0.220 | 0.142 | 0.142 0.123
0.68 | 1.250 | 3.63e-03 | 0.984 | 0.268 | 0.160 | 0.160 0.123
1.29 1.250 | 6.68e-03 | 1.054 | 0.293 | 0.162 | 0.162 0.123
2.43 | 1.250 | 1.24e-02 | 1.349 | 0.508 | 0.168 | 0.168 0.123
2.71 | 1.250 | 1.38e-02 | 1.090 | 0.215 | 0.245 | 0.245 0.123
3.35 | 1.250 | 1.70e-02 | 1.134 | 0.194 | 0.259 | 0.259 0.123
4.67 | 1.250 | 2.36e-02 | 0.930 | 0.367 | 0.142 | 0.142 0.123
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Appendix A

PYTHIA z-Distribution Study

9s in p+p PYTHIA simulations run

We have analyzed the forward-forward correlations between two m
through PISA. We have found that for the pr bins used in this analysis, the awayside correlation peak in
PYTHIA does not seem to arise from di-jets, but rather from some other momentum-conserving process.

We correlate two 7%’s in PYTHIA, and hence in what follows particle 1 refers to a particle with a
pseudorapidity of 3.0 < 11 < 4.0, while particle 2 has a pseudorapidity that is allowed to vary. We also look
at the PYTHIA event record and find the two outgoing partons that initiate the final-state reaction (both
jet and non-jet events).

In Fig. we show the 7y versus xo distribution of particle 2 given that particle 1 is in the forward
region with 3.0 < m < 4.0, pr1 > 2.0 GeV/c and particle 2 has pro > 1.0 GeV/c. One can see a strong
correlation between xo and 75. However, as one goes to the largest (and smallest) pseudorapidities on the
vertical axis, this correlation weakens and there is no longer a strong peak in the x5 distribution. In Fig.
we show )2 slices of the xo distribution, and see that the distribution flattens out in the larger 7, bins.

In Fig. We show the PYTHIA A¢ distributions for 3.0 < 712 < 4.0, pr1 > 2.0 GeV/c, pra > 1.0
GeV /c given different cuts on the leading partons. This shows that the awayside correlations do not arise from
a di-jet source, as the fraction of the correlations originating from the case when both partons are forward
is very small (red and blue histograms) compared to the full correlation function (black). To rephrase, this
means that much of the awayside correlation comes from a non-dijet source. On the other hand, this effect
seen in simulation could arise from constraints in momentum conservation that were introduced in PYTHIA
Tune A to match the underlying event background [124].

Hence when interpreting the forward-forward correlations, one needs to be careful about the interpre-
tation, as PYTHIA suggests these are not di-jet correlations at small z; if this is actually true, CGC

phenomenology is not applicable for the correlations.
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PYTHIA 2-Particle Correlations
pri>2 GeV/ie m1=3.0-4.0; pr2 > 1 GeV/e; |A9| < 1.7
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Figure A.1: The 12 vs x2 distributions given that particle 1 has 3.0 < n; < 4.0, pr1 > 2.0 GeV/c and
particle 2 has ppo > 1.0 GeV/c.

PYTHIA 2-Particle Correlations
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Figure A.2: The xo distributions for different slices in 1, given that particle 1 has 3.0 < n; < 4.0, pr1 > 2.0
GeV/c and particle 2 has pro > 1.0 GeV/c.
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PYTHIA 1%’ A$¢ Correlations with Parton ID
pr12>2,1 GeV/c;ni2 =3.0-4.0
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Figure A.3: The PYTHIA A¢ distributions for 3.0 < 712 < 4.0, pr,1 > 2.0 GeV/c, pra2 > 1.0 GeV/c given
different cuts on the leading partons. This shows that the awayside correlations do not arise from a di-jet
source.
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Appendix B

MPC 7 Ry and Yield Tables and
Figures

B.1 Tabulated Results

In all subsequent tables, o represents a statistical error, while s represents a systematic error (type B), and

the global systematic error is sgiopai-

B.1.1 Yields, Efficiencies, Relative Statistical Errors

In this section, the terms that are present in the tables are as follows:

pr Transverse momentum of the bin center,
InvYield Invariant yield,
dN/dpt . . . . .
-~ Efficiency-corrected yield in pr bin normalized per event,
]\]f\;‘?w Uncorrected yield in py bin normalized per event,
0 . .
€ " reconstruction efficiency,
bcorr Up-down correction, or Cyp—down-
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Table B.1: Yields, efficiencies and relative stat errors for 3.0 < n < 3.4.

d+Au 0-20%, Neyents = 3.69e+08

pr | InvYield | orpey %j”t T4N/dpt N—;’: O Nraw € oc | beorr
0.375 | 1.79e4+00 | 0.164 | 4.68e-01 0.164 | 1.94e-04 | 0.024 | 4.14e-04 | 0.162 | 0.960
0.625 | 4.25e-01 | 0.023 | 1.85e-01 0.023 | 6.80e-03 | 0.003 | 3.68¢e-02 | 0.023 | 0.960
0.875 | 1.01e-01 | 0.020 | 6.19e-02 0.020 | 4.31e-03 | 0.003 | 6.97¢-02 | 0.019 | 0.956
1.125 | 3.19e-02 | 0.022 | 2.49e-02 0.022 | 1.60e-03 | 0.004 | 6.43e-02 | 0.022 | 0.963
1.375 | 1.12¢-02 | 0.030 | 1.06e-02 0.030 | 4.29¢-04 | 0.010 | 4.05e-02 | 0.028 | 0.970
1.625 | 4.43e-03 | 0.058 | 4.93e-03 0.058 | 6.47e-05 | 0.024 | 1.31e-02 | 0.053 | 0.975
1.875 | 1.37e-03 | 0.220 | 1.75e-03 0.220 | 2.65e-06 | 0.143 | 1.52e-03 | 0.167 | 0.979
d+Au 20-40%, Neyents = 3.68e+4-08
0.375 | 1.73e4+00 | 0.160 | 4.25e-01 0.160 | 1.90e-04 | 0.035 | 4.47e-04 | 0.156 | 0.960
0.625 | 4.10e-01 | 0.023 | 1.68e-01 0.023 | 6.55e-03 | 0.004 | 3.91e-02 | 0.023 | 0.960
0.875 | 9.97e-02 | 0.020 | 5.73e-02 0.020 | 4.06e-03 | 0.003 | 7.08e-02 | 0.019 | 0.956
1.125 | 3.13e-02 | 0.022 | 2.30e-02 0.022 | 1.49e-03 | 0.005 | 6.49¢e-02 | 0.022 | 0.963
1.375 | 1.10e-02 | 0.030 | 9.79e-03 0.030 | 3.97e-04 | 0.010 | 4.05e-02 | 0.028 | 0.970
1.625 | 4.13e-03 | 0.056 | 4.33e-03 0.056 | 5.83e-05 | 0.025 | 1.35e-02 | 0.051 | 0.975
1.875 | 1.69e-03 | 0.198 | 2.04e-03 0.198 | 2.86e-06 | 0.102 | 1.41e-03 | 0.170 | 0.979
d+Au 40-60%, Neyents = 3.68e+08
0.375 | 1.64e4+00 | 0.158 | 3.90e-01 0.158 | 1.81e-04 | 0.026 | 4.63e-04 | 0.155 | 0.960
0.625 | 3.51e-01 | 0.023 | 1.39e-01 0.023 | 5.81e-03 | 0.003 | 4.18e-02 | 0.022 | 0.960
0.875 | 8.70e-02 | 0.019 | 4.83e-02 0.019 | 3.49e-03 | 0.003 | 7.22e-02 | 0.019 | 0.957
1.125 | 2.68e-02 | 0.022 | 1.90e-02 0.022 | 1.25e-03 | 0.005 | 6.58¢e-02 | 0.022 | 0.964
1.375 | 9.63e-03 | 0.030 | 8.31e-03 0.030 | 3.26e-04 | 0.010 | 3.92e-02 | 0.029 | 0.968
1.625 | 3.11e-03 | 0.058 | 3.15e-03 0.058 | 4.68e-05 | 0.028 | 1.48e-02 | 0.051 | 0.972
1.875 | 2.07e-03 | 0.208 | 2.42e-03 0.208 | 2.27e-06 | 0.096 | 9.39¢e-04 | 0.184 | 0.976
d+Au 60-88%, Neyents = 5.16e4-08
0.375 | 9.59-01 | 0.118 | 2.29e-01 0.118 | 1.43e-04 | 0.024 | 6.24e-04 | 0.116 | 0.958
0.625 | 2.51e-01 | 0.019 | 9.99e-02 0.019 | 4.47¢-03 | 0.004 | 4.47e-02 | 0.018 | 0.958
0.875 | 6.10e-02 | 0.016 | 3.41e-02 0.016 | 2.57e-03 | 0.003 | 7.54e-02 | 0.016 | 0.954
1.125 | 1.79e-02 | 0.019 | 1.28e-02 0.019 | 8.65e-04 | 0.005 | 6.76e-02 | 0.018 | 0.959
1.375 | 6.08e-03 | 0.027 | 5.27e-03 0.027 | 2.12e-04 | 0.013 | 4.02e-02 | 0.024 | 0.966
1.625 | 2.15e-03 | 0.051 | 2.19e-03 0.051 | 2.95e-05 | 0.026 | 1.35e-02 | 0.043 | 0.973
1.875 | 1.14e-03 | 0.165 | 1.33e-03 0.165 | 1.59e-06 | 0.075 | 1.19e-03 | 0.147 | 0.979
d+Au MinBias, N.yenis = 1.62e+09
0.375 | 1.35e+00 | 0.076 | 3.72e-01 0.076 | 1.78e-04 | 0.021 | 4.78e-04 | 0.073 | 0.959
0.625 | 3.12e-01 | 0.011 | 1.44e-01 0.011 | 5.78e-03 | 0.003 | 4.02e-02 | 0.011 | 0.959
0.875 | 7.61e-02 | 0.010 | 4.93e-02 0.010 | 3.53e-03 | 0.003 | 7.18e-02 | 0.009 | 0.955
1.125 | 2.33e-02 | 0.011 | 1.93e-02 0.011 | 1.26e-03 | 0.005 | 6.56e-02 | 0.010 | 0.962
1.375 | 8.17e-03 | 0.017 | 8.20e-03 0.017 | 3.29e-04 | 0.009 | 4.02e-02 | 0.014 | 0.969
1.625 | 2.99e-03 | 0.036 | 3.52e-03 0.036 | 4.80e-05 | 0.026 | 1.36e-02 | 0.025 | 0.975
1.875 | 1.33e-03 | 0.125 | 1.80e-03 0.125 | 2.31e-06 | 0.091 | 1.28e-03 | 0.086 | 0.979
pP+Dp, Nevents = 4.21e4-08
0.375 | 5.68e-01 | 0.107 | 2.04e-01 0.107 | 1.09e-04 | 0.030 | 5.33e-04 | 0.103 | 0.950
0.625 | 1.21e-01 | 0.016 | 7.22e-02 0.016 | 3.11e-03 | 0.004 | 4.31e-02 | 0.016 | 0.950
0.875 | 2.61e-02 | 0.014 | 2.20e-02 0.014 | 1.67e-03 | 0.004 | 7.61e-02 | 0.013 | 0.947
1.125 | 7.21e-03 | 0.016 | 7.76e-03 0.016 | 5.11e-04 | 0.006 | 6.58e-02 | 0.015 | 0.952
1.375 | 2.18e-03 | 0.024 | 2.85e-03 0.024 | 1.14e-04 | 0.013 | 4.00e-02 | 0.020 | 0.959
1.625 | 6.73e-04 | 0.047 | 1.03e-03 0.047 | 1.42e-05 | 0.031 | 1.38e-02 | 0.035 | 0.966
1.875 | 3.04e-04 | 0.184 | 5.34e-04 0.184 | 6.68e-07 | 0.131 | 1.25e-03 | 0.128 | 0.972
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Table B.2: Yields, efficiencies and relative stat errors for 3.4 < n < 3.8.

d+Au 0-20%, N.pents = 3.69e+08

pr | InvYield | ornoy %j”t T4N/dpt M O Nraw € oc | beorr
0.375 6.95e-01 | 0.042 | 1.79e-01 0.042 | 2.38e-03 | 0.009 | 1.33e-02 | 0.041 | 0.972
0.625 1.70e-01 | 0.021 | 7.29e-02 0.021 | 6.36e-03 | 0.004 | 8.72e-02 | 0.021 | 0.972
0.875 5.45e-02 | 0.021 | 3.27e-02 0.021 | 2.93e-03 | 0.003 | 8.96e-02 | 0.021 | 0.975
1.125 1.85e-02 | 0.029 | 1.43e-02 0.029 | 7.43e-04 | 0.006 | 5.20e-02 | 0.029 | 0.971
1.375 6.05e-03 | 0.066 | 5.74e-03 0.066 | 7.84e-05 | 0.022 | 1.37¢-02 | 0.063 | 0.968
d+Au 20-40%, Neyents = 3.68e+08
pr | InvYield | ornoy %{j”t TN/ dpt ]YVT—“:’ ONraw € oe | beorr
0.375 8.24e-01 | 0.042 | 2.00e-01 0.042 | 2.46e-03 | 0.009 | 1.23e-02 | 0.041 | 0.969
0.625 1.90e-01 | 0.021 | 7.69e-02 0.021 | 6.34e-03 | 0.004 | 8.25e-02 | 0.021 | 0.969
0.875 5.63e-02 | 0.021 | 3.20e-02 0.021 | 2.85e-03 | 0.003 | 8.92e-02 | 0.021 | 0.969
1.125 1.97e-02 | 0.029 | 1.43e-02 0.029 | 7.18e-04 | 0.006 | 5.02e-02 | 0.028 | 0.973
1.375 7.24e-03 | 0.069 | 6.41e-03 0.069 | 7.44e-05 | 0.024 | 1.16e-02 | 0.065 | 0.975
d+Au 40-60%, Neyents = 3.68e+08
pr | InvYield | ornoy d%ijpt TN/ dpt ]\]fv—:;” ONraw € o. | beorr
0.375 8.08e-01 | 0.040 | 1.90e-01 0.040 | 2.41e-03 | 0.007 | 1.27e-02 | 0.040 | 0.969
0.625 1.78¢-01 | 0.020 | 6.99e-02 0.020 | 5.95e-03 | 0.004 | 8.51e-02 | 0.020 | 0.969
0.875 5.53e-02 | 0.021 | 3.03e-02 0.021 | 2.54e-03 | 0.003 | 8.41e-02 | 0.021 | 0.971
1.125 1.80e-02 | 0.030 | 1.27e-02 0.030 | 6.15e-04 | 0.008 | 4.84e-02 | 0.029 | 0.970
1.375 6.09e-03 | 0.067 | 5.26e-03 0.067 | 6.22e-05 | 0.023 | 1.18e-02 | 0.063 | 0.968
d+Au 60-88%, Neyents = 5.16e+08
pr | InvYield | orpoy %:ipt T4N/dpt NT—::’ ONraw € oc | beorr
0.375 6.77e-01 | 0.033 | 1.61e-01 0.033 | 2.11e-03 | 0.006 | 1.31e-02 | 0.032 | 0.963
0.625 1.52e-01 | 0.017 | 6.02e-02 0.017 | 5.02e-03 | 0.003 | 8.34e-02 | 0.016 | 0.963
0.875 4.18¢-02 | 0.018 | 2.31e-02 0.018 | 1.98e-03 | 0.003 | 8.57e-02 | 0.017 | 0.964
1.125 1.27e-02 | 0.025 | 9.05e-03 0.025 | 4.57e-04 | 0.007 | 5.05e-02 | 0.024 | 0.963
1.375 3.90e-03 | 0.060 | 3.39¢-03 0.060 | 4.09e-05 | 0.025 | 1.21e-02 | 0.054 | 0.963
d+Au MinBias, N.yenis = 1.62e+09
pr | InvYield | ornoy %jpt T4N/dpt % O Nraw € oc | beorr
0.375 6.68e-01 | 0.021 | 1.83e-01 0.021 | 2.33e-03 | 0.007 | 1.28e-02 | 0.019 | 0.968
0.625 1.51e-01 | 0.010 | 6.89e-02 0.010 | 5.83e-03 | 0.003 | 8.46e-02 | 0.010 | 0.968
0.875 4.53e-02 | 0.010 | 2.89e-02 0.010 | 2.52e-03 | 0.003 | 8.73e-02 | 0.010 | 0.971
1.125 1.50e-02 | 0.015 | 1.23e-02 0.015 | 6.19e-04 | 0.006 | 5.04e-02 | 0.014 | 0.969
1.375 4.86e-03 | 0.039 | 4.88e-03 0.039 | 6.07e-05 | 0.023 | 1.24e-02 | 0.031 | 0.967
p+p, Nevents = 4.21e+08
pr | InvYield | ornoy %{j”t TN/ dpt NT—“:’ O Nraw € o. | becorr
0.375 4.44e-01 | 0.026 | 1.59e-01 0.026 | 2.13e-03 | 0.007 | 1.33e-02 | 0.025 | 0.951
0.625 8.73e-02 | 0.014 | 5.22e-02 0.014 | 4.28e-03 | 0.004 | 8.19¢-02 | 0.013 | 0.951
0.875 2.00e-02 | 0.014 | 1.68e-02 0.014 | 1.49e-03 | 0.004 | 8.89e-02 | 0.014 | 0.948
1.125 5.43e-03 | 0.021 | 5.83e-03 0.021 | 3.07e-04 | 0.009 | 5.27e-02 | 0.019 | 0.954
1.375 1.61e-03 | 0.053 | 2.10e-03 0.053 | 2.59¢-05 | 0.030 | 1.23e-02 | 0.043 | 0.960
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Table B.3: Yields, efficiencies and relative stat errors for 3.0 < n < 3.8.

d+Au 0-20%, Neyents = 3.69e+08

pr | InvYield | orpey %j”t T4N/dpt N—;’: O Nraw € oc | beorr
0.375 | 1.24e4+00 | 0.041 | 6.47e-01 0.041 | 2.64e-03 | 0.009 | 4.08¢e-03 | 0.040 | 0.964
0.625 | 2.97e-01 | 0.016 | 2.57e-01 0.016 | 1.33e-02 | 0.002 | 5.18¢e-02 | 0.016 | 0.964
0.875 | 7.91e-02 | 0.015 | 9.61e-02 0.015 | 7.32e-03 | 0.002 | 7.62e-02 | 0.014 | 0.962
1.125 | 2.52e-02 | 0.018 | 3.92e-02 0.018 | 2.35e-03 | 0.004 | 5.98e-02 | 0.017 | 0.965
1.375 | 8.55e-03 | 0.027 | 1.62e-02 0.027 | 5.03e-04 | 0.010 | 3.11e-02 | 0.026 | 0.969
1.625 | 3.32e-03 | 0.058 | 7.41e-03 0.058 | 6.47e-05 | 0.024 | 8.74e-03 | 0.053 | 0.973
1.875 | 9.97e-04 | 0.220 | 2.56e-03 0.220 | 2.65e-06 | 0.143 | 1.04e-03 | 0.167 | 0.976
d+Au 20-40%, Neyents = 3.68e+4-08
0.375 | 1.33e4+00 | 0.041 | 6.48e-01 0.041 | 2.71e-03 | 0.008 | 4.19¢-03 | 0.040 | 0.964
0.625 | 2.93e-01 | 0.016 | 2.39e-01 0.016 | 1.28e-02 | 0.002 | 5.34e-02 | 0.015 | 0.964
0.875 | 7.84e-02 | 0.014 | 8.95e-02 0.014 | 6.91e-03 | 0.002 | 7.72e-02 | 0.014 | 0.963
1.125 | 2.54e-02 | 0.018 | 3.71e-02 0.018 | 2.20e-03 | 0.004 | 5.94e-02 | 0.017 | 0.966
1.375 | 8.67e-03 | 0.028 | 1.55e-02 0.028 | 4.65e-04 | 0.009 | 3.01e-02 | 0.026 | 0.969
1.625 | 3.15e-03 | 0.056 | 6.62e-03 0.056 | 5.83e-05 | 0.025 | 8.81e-03 | 0.051 | 0.972
1.875 | 1.26e-03 | 0.199 | 3.03e-03 0.199 | 2.86e-06 | 0.102 | 9.43e-04 | 0.171 | 0.976
d+Au 40-60%, Neyents = 3.68e+08
0.375 | 1.20e4+00 | 0.039 | 5.65e-01 0.039 | 2.61e-03 | 0.007 | 4.62¢e-03 | 0.038 | 0.964
0.625 | 2.55e-01 | 0.015 | 2.01e-01 0.015 | 1.15e-02 | 0.002 | 5.73e-02 | 0.015 | 0.964
0.875 | 7.12e-02 | 0.014 | 7.84e-02 0.014 | 6.01e-03 | 0.002 | 7.66e-02 | 0.014 | 0.965
1.125 | 2.24e-02 | 0.018 | 3.17e-02 0.018 | 1.86e-03 | 0.004 | 5.88¢-02 | 0.017 | 0.966
1.375 | 7.73e-03 | 0.028 | 1.34e-02 0.028 | 3.83e-04 | 0.009 | 2.87e-02 | 0.026 | 0.967
1.625 | 2.46e-03 | 0.058 | 5.00e-03 0.058 | 4.68e-05 | 0.028 | 9.35¢-03 | 0.051 | 0.969
1.875 | 1.59e-03 | 0.208 | 3.73e-03 0.208 | 2.27e-06 | 0.096 | 6.09¢-04 | 0.184 | 0.973
d+Au 60-88%, Neyents = 5.16e4-08
0.375 | 8.65e-01 | 0.031 | 4.11e-01 0.031 | 2.24e-03 | 0.006 | 5.46e-03 | 0.031 | 0.961
0.625 | 1.96e-01 | 0.013 | 1.55e-01 0.013 | 9.22e-03 | 0.002 | 5.94e-02 | 0.012 | 0.961
0.875 | 5.12e-02 | 0.012 | 5.70e-02 0.012 | 4.53e-03 | 0.002 | 7.95e-02 | 0.012 | 0.960
1.125 | 1.52e-02 | 0.015 | 2.17e-02 0.015 | 1.31e-03 | 0.004 | 6.04e-02 | 0.014 | 0.961
1.375 | 4.88e-03 | 0.025 | 8.48e-03 0.025 | 2.47e-04 | 0.012 | 2.91e-02 | 0.022 | 0.964
1.625 | 1.71e-03 | 0.051 | 3.50e-03 0.051 | 2.95e-05 | 0.026 | 8.45e-03 | 0.043 | 0.969
1.875 | 8.77e-04 | 0.166 | 2.06e-03 0.166 | 1.59e-06 | 0.075 | 7.72e-04 | 0.148 | 0.974
d+Au MinBias, N.yenis = 1.62e+09
0.375 | 1.02e+00 | 0.020 | 5.63e-01 0.020 | 2.54e-03 | 0.007 | 4.51e-03 | 0.019 | 0.963
0.625 | 2.28e-01 | 0.008 | 2.09e-01 0.008 | 1.15e-02 | 0.002 | 5.51e-02 | 0.007 | 0.963
0.875 | 6.09e-02 | 0.007 | 7.84e-02 0.007 | 6.06e-03 | 0.002 | 7.73e-02 | 0.007 | 0.962
1.125 | 1.90e-02 | 0.009 | 3.14e-02 0.009 | 1.87e-03 | 0.004 | 5.97¢-02 | 0.008 | 0.965
1.375 | 6.45e-03 | 0.015 | 1.29e-02 0.015 | 3.86e-04 | 0.009 | 2.98e-02 | 0.013 | 0.968
1.625 | 2.30e-03 | 0.036 | 5.44e-03 0.036 | 4.80e-05 | 0.026 | 8.82e-03 | 0.025 | 0.972
1.875 | 9.94e-04 | 0.126 | 2.70e-03 0.126 | 2.31e-06 | 0.091 | 8.55e-04 | 0.086 | 0.975
pP+Dp, Nevents = 4.21e4-08
0.375 | 5.01e-01 | 0.026 | 3.59e-01 0.026 | 2.22e-03 | 0.007 | 6.17e-03 | 0.025 | 0.952
0.625 | 9.93e-02 | 0.011 | 1.19e-01 0.011 | 7.13e-03 | 0.003 | 6.00e-02 | 0.010 | 0.952
0.875 | 2.28e-02 | 0.010 | 3.83e-02 0.010 | 3.12¢-03 | 0.003 | 8.15e-02 | 0.010 | 0.950
1.125 | 6.25e-03 | 0.013 | 1.35e-02 0.013 | 8.11e-04 | 0.005 | 6.02e-02 | 0.012 | 0.952
1.375 | 1.83e-03 | 0.022 | 4.77e-03 0.022 | 1.37e-04 | 0.013 | 2.87e-02 | 0.018 | 0.958
1.625 | 5.57e-04 | 0.047 | 1.71e-03 0.047 | 1.42e-05 | 0.031 | 8.33e-03 | 0.035 | 0.964
1.875 | 2.46e-04 | 0.183 | 8.65e-04 0.183 | 6.68e-07 | 0.131 | 7.72e-04 | 0.128 | 0.971
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B.1.2

Invariant Yields and Relative Errors

In this section, the terms that are present in the tables are as follows:

pr
InvYield
Smass
Sspec
Sescale
SGEANT
Stot

Sglobal

Transverse momentum of the bin center,

Invariant yield,

Systematic error from yield extraction,

Systematic error from shape of input spectrum,
Systematic error from energy scale,

Systematic error from GEANT description of MPC,

Total sum of type B systematic errors (those listed above),

Global systematic error.
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Table B.4: Yields, relative systematic errors for 3.0 < n < 3.4.

d+Au 0-20%
pr | InvYield | Ornoy | Smass Sspec | Sescale | SGEANT Stot | Sglobal
0.375 | 1.79e+00 0.164 | 0.057 | 0.078 0.050 0.070 | 0.130 0.011
0.625 4.25e-01 0.023 | 0.037 | 0.045 0.070 0.070 | 0.115 0.011
0.875 1.01e-01 | 0.020 | 0.020 | 0.015 | 0.090 0.070 | 0.116 | 0.011
1.125 3.19e-02 0.022 | 0.026 | 0.016 0.101 0.070 | 0.127 0.011
1.375 1.12e-02 | 0.030 | 0.048 | 0.015 | 0.109 0.070 | 0.139 | 0.011
1.625 4.43e-03 | 0.058 | 0.071 | 0.009 | 0.116 0.070 | 0.154 | 0.011
1.875 1.37e-03 0.220 | 0.168 | 0.048 0.121 0.070 | 0.224 0.011
d+Au 20-40%
0.375 | 1.73e+00 0.160 | 0.080 | 0.052 0.050 0.070 | 0.128 0.006
0.625 4.10e-01 0.023 | 0.040 | 0.045 0.070 0.070 | 0.116 0.006
0.875 9.97e-02 | 0.020 | 0.018 | 0.014 | 0.089 0.070 | 0.116 | 0.006
1.125 3.13e-02 | 0.022 | 0.031 | 0.018 | 0.101 0.070 | 0.128 | 0.006
1.375 1.10e-02 | 0.030 | 0.052 | 0.015 | 0.110 0.070 | 0.141 | 0.006
1.625 4.13e-03 0.056 | 0.071 | 0.010 0.116 0.070 | 0.153 0.006
1.875 1.69e-03 0.198 | 0.169 | 0.046 0.121 0.070 | 0.224 0.006
d+Au 40-60%
0.375 | 1.64e+00 0.158 | 0.096 | 0.053 0.050 0.070 | 0.139 0.016
0.625 3.51e-01 | 0.023 | 0.044 | 0.029 | 0.070 0.070 | 0.112 | 0.016
0.875 8.70e-02 | 0.019 | 0.017 | 0.020 | 0.089 0.070 | 0.116 | 0.016
1.125 2.68e-02 0.022 | 0.027 | 0.022 0.102 0.070 | 0.128 0.016
1.375 9.63e-03 0.030 | 0.055 | 0.023 0.113 0.070 | 0.146 0.016
1.625 3.11e-03 0.058 | 0.053 | 0.004 0.122 0.070 | 0.151 0.016
1.875 2.07e-03 | 0.208 | 0.136 | 0.028 | 0.129 0.070 | 0.203 | 0.016
d+Au 60-88%
0.375 9.59e-01 | 0.118 | 0.100 | 0.043 | 0.051 0.070 | 0.139 | 0.053
0.625 2.51e-01 | 0.019 | 0.042 | 0.021 0.071 0.070 | 0.110 | 0.053
0.875 6.10e-02 | 0.016 | 0.015 | 0.022 | 0.093 0.070 | 0.119 | 0.053
1.125 1.79e-02 0.019 | 0.024 | 0.031 0.106 0.070 | 0.133 0.053
1.375 6.08e-03 0.027 | 0.051 | 0.027 0.113 0.070 | 0.145 0.053
1.625 2.15e-03 | 0.051 | 0.060 | 0.006 | 0.117 0.070 | 0.149 | 0.053
1.875 1.14e-03 | 0.165 | 0.183 | 0.053 | 0.120 0.070 | 0.235 | 0.053
d+Au MinBias
0.375 | 1.35e4+00 | 0.076 | 0.074 | 0.058 | 0.050 0.070 | 0.128 | 0.001
0.625 3.12e-01 | 0.011 | 0.039 | 0.032 | 0.070 0.070 | 0.111 | 0.001
0.875 7.61e-02 0.010 | 0.018 | 0.019 0.090 0.070 | 0.117 0.001
1.125 2.33e-02 0.011 | 0.027 | 0.020 0.102 0.070 | 0.128 0.001
1.375 8.17e-03 | 0.017 | 0.050 | 0.017 | 0.110 0.070 | 0.141 | 0.001
1.625 2.99¢-03 | 0.036 | 0.053 | 0.004 | 0.116 0.070 | 0.145 | 0.001
1.875 1.33e-03 | 0.125 | 0.158 | 0.047 | 0.119 0.070 | 0.215 | 0.001
p+p
0.375 5.68e-01 | 0.107 | 0.111 | 0.050 | 0.053 0.070 | 0.150 | 0.097
0.625 1.21e-01 0.016 | 0.031 | 0.032 0.076 0.070 | 0.112 0.097
0.875 2.61e-02 0.014 | 0.013 | 0.025 0.099 0.070 | 0.124 0.097
1.125 7.21e-03 | 0.016 | 0.023 | 0.034 | 0.114 0.070 | 0.140 | 0.097
1.375 2.18e-03 | 0.024 | 0.048 | 0.037 | 0.125 0.070 | 0.155 | 0.097
1.625 6.73e-04 | 0.047 | 0.031 | 0.017 | 0.132 0.070 | 0.153 | 0.097
1.875 3.04e-04 0.184 | 0.072 | 0.023 0.136 0.070 | 0.170 0.097
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Table B.5: Yields, relative systematic errors for 3.4 < n < 3.8.

d+Au 0-20%
pr InvYield O InvY Smass Sspec Sescale SGEANT Stot Sglobal
0.375 6.95e-01 | 0.042 | 0.100 | 0.112 | 0.045 0.070 | 0.171 | 0.011
0.625 1.70e-01 | 0.021 | 0.022 | 0.108 | 0.061 0.070 | 0.144 | 0.011
0.875 5.45e-02 | 0.021 | 0.023 | 0.041 | 0.077 0.070 | 0.114 | 0.011
1.125 1.85e-02 | 0.029 | 0.041 | 0.045 | 0.098 0.070 | 0.135 | 0.011
1.375 6.05e-03 | 0.066 | 0.101 | 0.071 | 0.116 0.070 | 0.183 | 0.011
d+Au 20-40%
pr InvYield OInvY Smass Sspec Sescale SGEANT Stot Sglobal
0.375 8.24e-01 | 0.042 | 0.073 | 0.086 | 0.046 0.070 | 0.140 | 0.006
0.625 1.90e-01 | 0.021 | 0.031 | 0.073 | 0.063 0.070 | 0.123 | 0.006
0.875 5.63e-02 | 0.021 | 0.023 | 0.039 | 0.079 0.070 | 0.115 | 0.006
1.125 1.97e-02 | 0.029 | 0.043 | 0.043 | 0.092 0.070 | 0.130 | 0.006
1.375 7.24e-03 | 0.069 | 0.096 | 0.082 | 0.104 0.070 | 0.178 | 0.006
d+Au 40-60%
pT InvYield OInvY Smass Sspec Sescale SGEANT Stot Sglobal
0.375 8.08e-01 | 0.040 | 0.047 | 0.071 | 0.046 0.070 | 0.120 | 0.016
0.625 1.78e-01 | 0.020 | 0.018 | 0.058 | 0.064 0.070 | 0.112 | 0.016
0.875 5.53e-02 | 0.021 | 0.024 | 0.038 | 0.079 0.070 | 0.115 | 0.016
1.125 1.80e-02 | 0.030 | 0.037 | 0.046 | 0.098 0.070 | 0.134 | 0.016
1.375 6.09e-03 | 0.067 | 0.093 | 0.084 | 0.116 0.070 | 0.184 | 0.016
d+Au 60-88%
pr InvYield O InvY Smass Sspec Sescale SGEANT Stot Sglobal
0.375 6.77e-01 | 0.033 | 0.042 | 0.036 | 0.049 0.070 | 0.101 | 0.053
0.625 1.52e-01 | 0.017 | 0.015 | 0.034 | 0.068 0.070 | 0.104 | 0.053
0.875 | 4.18e-02 | 0.018 | 0.020 | 0.036 | 0.087 0.070 | 0.119 | 0.053
1.125 1.27e-02 | 0.025 | 0.038 | 0.045 | 0.106 0.070 | 0.140 | 0.053
1.375 3.90e-03 | 0.060 | 0.079 | 0.080 | 0.121 0.070 | 0.179 | 0.053
d+Au MinBias
pr InvYield OInvY Smass Sspec Sescale SGEANT Stot Sglobal
0.375 6.68e-01 | 0.021 | 0.057 | 0.073 | 0.047 0.070 | 0.125 | 0.001
0.625 1.51e-01 | 0.010 | 0.017 | 0.068 | 0.064 0.070 | 0.118 | 0.001
0.875 | 4.53e-02 | 0.010 | 0.022 | 0.040 | 0.080 0.070 | 0.116 | 0.001
1.125 1.50e-02 | 0.015 | 0.041 | 0.045 | 0.099 0.070 | 0.136 | 0.001
1.375 4.86e-03 | 0.039 | 0.091 | 0.072 | 0.117 0.070 | 0.179 | 0.001
pP+p
pr InvYield O InvY Smass Sspec Sescale SGEANT Stot Sglobal
0.375 | 4.44e-01 | 0.026 | 0.053 | 0.010 | 0.053 0.070 | 0.103 | 0.097
0.625 8.73e-02 | 0.014 | 0.019 | 0.027 | 0.075 0.070 | 0.108 | 0.097
0.875 2.00e-02 | 0.014 | 0.026 | 0.030 | 0.097 0.070 | 0.127 | 0.097
1.125 5.43e-03 | 0.021 | 0.036 | 0.048 | 0.113 0.070 | 0.146 | 0.097
1.375 1.61e-03 | 0.053 | 0.075 | 0.083 | 0.124 0.070 | 0.181 | 0.097
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Table B.6: Yields, relative systematic errors for 3.0 < n < 3.8.

d+Au 0-20%
pr | InvYield | Ornoy | Smass Sspec | Sescale | SGEANT Stot | Sglobal
0.375 | 1.24e+400 0.041 | 0.090 | 0.113 0.048 0.070 | 0.168 0.011
0.625 2.97e-01 0.016 | 0.020 | 0.031 0.067 0.070 | 0.104 0.011
0.875 7.91e-02 | 0.015 | 0.021 | 0.009 | 0.086 0.070 | 0.113 | 0.011
1.125 2.52e-02 0.018 | 0.032 | 0.012 0.101 0.070 | 0.127 0.011
1.375 8.55e-03 | 0.027 | 0.054 | 0.029 | 0.112 0.070 | 0.146 | 0.011
1.625 3.32e-03 | 0.058 | 0.071 | 0.051 0.121 0.070 | 0.165 | 0.011
1.875 9.97e-04 0.220 | 0.168 | 0.078 0.128 0.070 | 0.236 0.011
d+Au 20-40%
0.375 | 1.33e+00 0.041 | 0.065 | 0.095 0.048 0.070 | 0.143 0.006
0.625 2.93e-01 0.016 | 0.020 | 0.023 0.067 0.070 | 0.102 0.006
0.875 7.84e-02 | 0.014 | 0.022 | 0.011 0.085 0.070 | 0.113 | 0.006
1.125 2.54e-02 | 0.018 | 0.035 | 0.011 0.100 0.070 | 0.127 | 0.006
1.375 8.67e-03 | 0.028 | 0.056 | 0.032 | 0.112 0.070 | 0.147 | 0.006
1.625 3.15e-03 0.056 | 0.071 | 0.052 0.122 0.070 | 0.166 0.006
1.875 1.26e-03 0.199 | 0.169 | 0.084 0.130 0.070 | 0.240 0.006
d+Au 40-60%
0.375 | 1.20e+00 0.039 | 0.046 | 0.095 0.048 0.070 | 0.136 0.016
0.625 2.55e-01 | 0.015 | 0.017 | 0.018 | 0.067 0.070 | 0.100 | 0.016
0.875 7.12e-02 | 0.014 | 0.021 | 0.013 | 0.084 0.070 | 0.112 | 0.016
1.125 2.24e-02 0.018 | 0.032 | 0.012 0.102 0.070 | 0.128 0.016
1.375 7.73e-03 0.028 | 0.057 | 0.032 0.117 0.070 | 0.151 0.016
1.625 2.46e-03 0.058 | 0.053 | 0.055 0.128 0.070 | 0.165 0.016
1.875 1.59e-03 | 0.208 | 0.136 | 0.084 | 0.135 0.070 | 0.221 | 0.016
d+Au 60-88%
0.375 8.65e-01 | 0.031 | 0.042 | 0.094 | 0.050 0.070 | 0.134 | 0.053
0.625 1.96e-01 | 0.013 | 0.015 | 0.015 | 0.069 0.070 | 0.101 | 0.053
0.875 5.12e-02 | 0.012 | 0.017 | 0.011 0.089 0.070 | 0.115 | 0.053
1.125 1.52e-02 0.015 | 0.028 | 0.011 0.106 0.070 | 0.131 0.053
1.375 4.88e-03 0.025 | 0.047 | 0.032 0.119 0.070 | 0.149 0.053
1.625 1.71e-03 | 0.051 | 0.060 | 0.055 | 0.128 0.070 | 0.167 | 0.053
1.875 8.77e-04 | 0.166 | 0.183 | 0.106 | 0.133 0.070 | 0.260 | 0.053
d+Au MinBias
0.375 | 1.02e4+00 | 0.020 | 0.053 | 0.095 | 0.049 0.070 | 0.138 | 0.001
0.625 2.28e-01 | 0.008 | 0.019 | 0.020 | 0.068 0.070 | 0.101 | 0.001
0.875 6.09e-02 0.007 | 0.020 | 0.011 0.087 0.070 | 0.114 0.001
1.125 1.90e-02 0.009 | 0.031 | 0.012 0.102 0.070 | 0.128 0.001
1.375 6.45e-03 | 0.015 | 0.053 | 0.031 0.114 0.070 | 0.147 | 0.001
1.625 2.30e-03 | 0.036 | 0.053 | 0.054 | 0.124 0.070 | 0.161 | 0.001
1.875 9.94e-04 | 0.126 | 0.158 | 0.088 | 0.130 0.070 | 0.234 | 0.001
p+p
0.375 5.01e-01 | 0.026 | 0.052 | 0.116 | 0.053 0.070 | 0.154 | 0.097
0.625 9.93e-02 0.011 | 0.013 | 0.029 0.075 0.070 | 0.107 0.097
0.875 2.28e-02 0.010 | 0.019 | 0.008 0.097 0.070 | 0.122 0.097
1.125 6.25e-03 | 0.013 | 0.027 | 0.013 | 0.115 0.070 | 0.138 | 0.097
1.375 1.83e-03 | 0.022 | 0.045 | 0.035 | 0.127 0.070 | 0.156 | 0.097
1.625 5.57e-04 | 0.047 | 0.031 | 0.073 | 0.134 0.070 | 0.171 | 0.097
1.875 2.46e-04 0.183 | 0.072 | 0.121 0.138 0.070 | 0.209 0.097
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B.1.3 R, 4 and Relative Errors

In this section, the terms that are present in the tables are as follows:

pr

Raa
Smass
Sspec
Sescale
SGEANT
Stot

Sglobal

Transverse momentum of the bin center,

Single hadron nuclear modification factor,

Systematic error from yield extraction,

Systematic error from shape of input spectrum,
Systematic error from energy scale,

Systematic error from GEANT description of MPC,

Total sum of type B systematic errors (those listed above),

Global systematic error.
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Table B.7: R44, p+p cross-section, relative stat, sys errors for 3.0 < n < 3.4.

d+Au 0-20%
pr Rga ORda | Smass Sspec | Sescale | SGEANT Stot | Sglobal
0.375 2.10e-01 | 0.196 | 0.125 | 0.093 0.040 0.040 | 0.165 | 0.108
0.625 2.34e-01 | 0.028 | 0.048 | 0.055 0.040 0.040 | 0.093 | 0.108
0.875 2.58e-01 | 0.024 | 0.024 | 0.029 | 0.040 0.040 | 0.068 | 0.108
1.125 2.94e-01 | 0.027 | 0.035 | 0.037 | 0.040 0.040 | 0.076 | 0.108
1.375 3.41e-01 | 0.039 | 0.067 | 0.040 | 0.040 0.040 | 0.097 | 0.108
1.625 4.37e-01 | 0.075 | 0.078 | 0.019 | 0.040 0.040 | 0.098 | 0.108
1.875 2.99e-01 | 0.287 | 0.183 | 0.053 0.040 0.040 | 0.199 | 0.108
d+Au 20-40%
0.375 2.98e-01 | 0.193 | 0.137 | 0.072 0.040 0.040 | 0.164 | 0.105
0.625 3.32e-01 | 0.028 | 0.051 | 0.056 0.040 0.040 | 0.094 | 0.105
0.875 3.73e-01 | 0.024 | 0.023 | 0.029 | 0.040 0.040 | 0.067 | 0.105
1.125 4.24e-01 | 0.027 | 0.038 | 0.038 | 0.040 0.040 | 0.078 | 0.105
1.375 4.92e-01 | 0.039 | 0.071 | 0.040 | 0.040 0.040 | 0.099 | 0.105
1.625 5.99e-01 | 0.073 | 0.077 | 0.019 0.040 0.040 | 0.098 | 0.105
1.875 5.43e-01 | 0.270 | 0.184 | 0.051 0.040 0.040 | 0.199 | 0.105
d+Au 40-60%
0.375 4.40e-01 | 0.191 | 0.146 | 0.073 0.040 0.040 | 0.173 | 0.110
0.625 4.43e-01 | 0.028 | 0.054 | 0.043 | 0.040 0.040 | 0.089 | 0.110
0.875 5.06e-01 | 0.024 | 0.021 | 0.032 | 0.040 0.040 | 0.068 | 0.110
1.125 5.64e-01 | 0.027 | 0.036 | 0.040 | 0.040 0.040 | 0.078 | 0.110
1.375 6.71e-01 | 0.039 | 0.072 | 0.044 | 0.040 0.040 | 0.102 | 0.110
1.625 7.01e-01 | 0.075 | 0.062 | 0.017 | 0.040 0.040 | 0.085 | 0.110
1.875 | 1.04e+00 | 0.277 | 0.154 | 0.037 | 0.040 0.040 | 0.168 | 0.110
d+Au 60-88%
0.375 5.29e-01 | 0.160 | 0.149 | 0.066 | 0.040 0.040 | 0.173 | 0.123
0.625 6.52e-01 | 0.025 | 0.052 | 0.039 | 0.040 0.040 | 0.086 | 0.123
0.875 7.31e-01 | 0.021 | 0.020 | 0.033 | 0.040 0.040 | 0.069 | 0.123
1.125 7.76e-01 | 0.025 | 0.033 | 0.046 0.040 0.040 | 0.080 | 0.123
1.375 8.71e-01 | 0.036 | 0.070 | 0.046 0.040 0.040 | 0.101 | 0.123
1.625 | 1.00e+00 | 0.069 | 0.068 | 0.018 | 0.040 0.040 | 0.090 | 0.123
1.875 | 1.17e+00 | 0.247 | 0.196 | 0.058 | 0.040 0.040 | 0.212 | 0.123
d+Au MinBias
0.375 3.12e-01 | 0.132 | 0.133 | 0.077 | 0.040 0.040 | 0.164 | 0.103
0.625 3.41e-01 | 0.020 | 0.050 | 0.045 | 0.040 0.040 | 0.088 | 0.103
0.875 3.84e-01 | 0.017 | 0.022 | 0.031 0.040 0.040 | 0.069 | 0.103
1.125 4.26e-01 | 0.020 | 0.036 | 0.039 0.040 0.040 | 0.078 | 0.103
1.375 4.94e-01 | 0.029 | 0.069 | 0.041 | 0.040 0.040 | 0.098 | 0.103
1.625 5.85e-01 | 0.059 | 0.061 | 0.017 | 0.040 0.040 | 0.085 | 0.103
1.875 5.78e-01 | 0.222 | 0.174 | 0.052 | 0.040 0.040 | 0.190 | 0.103
p+p
pr X-section Ozc Smass Sspec Sescale SGEANT Stot Sglobal
0.375 | 2.39e+01 | 0.107 | 0.111 | 0.050 | 0.053 0.070 | 0.150 | 0.097
0.625 | 5.09e+00 | 0.016 | 0.031 | 0.032 | 0.076 0.070 | 0.112 | 0.097
0.875 | 1.10e+00 | 0.014 | 0.013 | 0.025 | 0.099 0.070 | 0.124 | 0.097
1.125 3.04e-01 | 0.016 | 0.023 | 0.034 | 0.114 0.070 | 0.140 | 0.097
1.375 9.20e-02 | 0.024 | 0.048 | 0.037 | 0.125 0.070 | 0.155 | 0.097
1.625 2.84e-02 | 0.047 | 0.031 | 0.017 | 0.132 0.070 | 0.153 | 0.097
1.875 1.28e-02 | 0.184 | 0.072 | 0.023 | 0.136 0.070 | 0.170 | 0.097
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Table B.8: Rja, p+p cross-section, relative stat, sys errors for 3.4 < n < 3.8.

d+Au 0-20%
pr RdA O Rda Smass Sspec Sescale SGEANT Stot Sglobal
0.375 1.04e-01 | 0.049 | 0.113 | 0.112 | 0.040 0.040 | 0.169 | 0.108
0.625 1.29e-01 | 0.025 | 0.029 | 0.111 | 0.040 0.040 | 0.128 | 0.108
0.875 1.81e-01 | 0.026 | 0.035 | 0.051 | 0.040 0.040 | 0.084 | 0.108
1.125 2.26e-01 | 0.036 | 0.055 | 0.066 | 0.040 0.040 | 0.103 | 0.108
1.375 2.49e-01 | 0.085 | 0.126 | 0.109 | 0.040 0.040 | 0.176 | 0.108
d+Au 20-40%
pr RdA O Rda Smass Sspec Sescale SGEANT Stot Sglobal
0.375 1.81e-01 | 0.049 | 0.090 | 0.086 | 0.040 0.040 | 0.137 | 0.105
0.625 2.12e-01 | 0.025 | 0.036 | 0.078 | 0.040 0.040 | 0.103 | 0.105
0.875 2.75e-01 | 0.025 | 0.035 | 0.050 | 0.040 0.040 | 0.083 | 0.105
1.125 3.54e-01 | 0.036 | 0.056 | 0.065 | 0.040 0.040 | 0.103 | 0.105
1.375 4.38¢-01 | 0.087 | 0.122 | 0.117 | 0.040 0.040 | 0.178 | 0.105
d+Au 40-60%
pr RdA O Rda Smass Sspec Sescale SGEANT Stot Sglobal
0.375 2.77e-01 | 0.048 | 0.071 | 0.072 | 0.040 0.040 | 0.116 | 0.110
0.625 3.11e-01 | 0.025 | 0.026 | 0.064 | 0.040 0.040 | 0.089 | 0.110
0.875 4.21e-01 | 0.025 | 0.035 | 0.048 | 0.040 0.040 | 0.082 | 0.110
1.125 5.05e-01 | 0.036 | 0.052 | 0.067 | 0.040 0.040 | 0.102 | 0.110
1.375 5.74e-01 | 0.085 | 0.119 | 0.118 | 0.040 0.040 | 0.177 | 0.110
d+Au 60-88%
pr RdA O Rda Smass Sspec Sescale SGEANT Stot Sglobal
0.375 4.77e-01 | 0.042 | 0.067 | 0.037 | 0.040 0.040 | 0.095 | 0.123
0.625 5.45e-01 | 0.022 | 0.024 | 0.043 | 0.040 0.040 | 0.075 | 0.123
0.875 | 6.54e-01 | 0.023 | 0.033 | 0.047 | 0.040 0.040 | 0.081 | 0.123
1.125 7.32e-01 | 0.032 | 0.052 | 0.066 | 0.040 0.040 | 0.102 | 0.123
1.375 7.55e-01 | 0.080 | 0.109 | 0.115 | 0.040 0.040 | 0.168 | 0.123
d+Au MinBias
pr RdA O Rda Smass Sspec Sescale SGEANT Stot Sglobal
0.375 1.98e-01 | 0.033 | 0.078 | 0.074 | 0.040 0.040 | 0.121 | 0.103
0.625 2.28e-01 | 0.017 | 0.025 | 0.073 | 0.040 0.040 | 0.096 | 0.103
0.875 2.99¢-01 | 0.018 | 0.035 | 0.050 | 0.040 0.040 | 0.083 | 0.103
1.125 3.64e-01 | 0.026 | 0.054 | 0.066 | 0.040 0.040 | 0.103 | 0.103
1.375 3.97e-01 | 0.066 | 0.119 | 0.110 | 0.040 0.040 | 0.171 | 0.103
pP+p
pr X-section Ozc | Smass Sspec Sescale SGEANT Stot Sglobal
0.375 | 1.87e+01 | 0.026 | 0.053 | 0.010 | 0.053 0.070 | 0.103 | 0.097
0.625 | 3.68e+00 | 0.014 | 0.019 | 0.027 | 0.075 0.070 | 0.108 | 0.097
0.875 8.43e-01 | 0.014 | 0.026 | 0.030 | 0.097 0.070 | 0.127 | 0.097
1.125 2.29e-01 | 0.021 | 0.036 | 0.048 | 0.113 0.070 | 0.146 | 0.097
1.375 | 6.81e-02 | 0.053 | 0.075 | 0.083 | 0.124 0.070 | 0.181 | 0.097
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Table B.9: R44, p+p cross-section, relative stat, sys errors for 3.0 < n < 3.8.

d+Au 0-20%
pr Rga ORda | Smass Sspec | Sescale | SGEANT Stot | Sglobal
0.375 1.65e-01 | 0.048 | 0.104 | 0.162 0.040 0.040 | 0.201 | 0.108
0.625 1.98e-01 | 0.019 | 0.024 | 0.042 0.040 0.040 | 0.074 | 0.108
0.875 2.30e-01 | 0.018 | 0.028 | 0.012 | 0.040 0.040 | 0.064 | 0.108
1.125 2.68e-01 | 0.022 | 0.042 | 0.018 | 0.040 0.040 | 0.073 | 0.108
1.375 3.11e-01 | 0.035 | 0.070 | 0.046 | 0.040 0.040 | 0.101 | 0.108
1.625 3.96e-01 | 0.075 | 0.078 | 0.090 | 0.040 0.040 | 0.132 | 0.108
1.875 2.69e-01 | 0.287 | 0.183 | 0.144 | 0.040 0.040 | 0.240 | 0.108
d+Au 20-40%
0.375 2.58e-01 | 0.048 | 0.084 | 0.150 0.040 0.040 | 0.181 | 0.105
0.625 2.88e-01 | 0.019 | 0.024 | 0.037 | 0.040 0.040 | 0.071 | 0.105
0.875 3.35e-01 | 0.018 | 0.029 | 0.013 | 0.040 0.040 | 0.065 | 0.105
1.125 3.96e-01 | 0.022 | 0.044 | 0.017 | 0.040 0.040 | 0.074 | 0.105
1.375 4.63e-01 | 0.035 | 0.072 | 0.047 | 0.040 0.040 | 0.103 | 0.105
1.625 5.52e-01 | 0.073 | 0.077 | 0.090 0.040 0.040 | 0.132 | 0.105
1.875 4.99e-01 | 0.271 | 0.184 | 0.147 0.040 0.040 | 0.242 0.105
d+Au 40-60%
0.375 3.63e-01 | 0.047 | 0.069 | 0.150 0.040 0.040 | 0.175 | 0.110
0.625 3.91e-01 | 0.018 | 0.021 | 0.034 | 0.040 0.040 | 0.069 | 0.110
0.875 4.74e-01 | 0.017 | 0.029 | 0.015 | 0.040 0.040 | 0.065 | 0.110
1.125 5.44e-01 | 0.022 | 0.042 | 0.018 0.040 0.040 | 0.073 | 0.110
1.375 6.44e-01 | 0.035 | 0.072 | 0.047 | 0.040 0.040 | 0.103 | 0.110
1.625 6.70e-01 | 0.074 | 0.062 | 0.092 0.040 0.040 | 0.124 | 0.110
1.875 9.86e-01 | 0.277 | 0.154 | 0.148 | 0.040 0.040 | 0.221 | 0.110
d+Au 60-88%
0.375 5.40e-01 | 0.041 | 0.067 | 0.150 | 0.040 0.040 | 0.173 | 0.123
0.625 6.16e-01 | 0.016 | 0.020 | 0.033 | 0.040 0.040 | 0.068 | 0.123
0.875 7.02e-01 | 0.016 | 0.026 | 0.014 | 0.040 0.040 | 0.064 | 0.123
1.125 7.62e-01 | 0.020 | 0.039 | 0.017 | 0.040 0.040 | 0.071 | 0.123
1.375 8.36e-01 | 0.033 | 0.065 | 0.048 0.040 0.040 | 0.099 | 0.123
1.625 9.60e-01 | 0.069 | 0.068 | 0.092 | 0.040 0.040 | 0.127 | 0.123
1.875 | 1.12e+00 | 0.247 | 0.196 | 0.161 | 0.040 0.040 | 0.260 | 0.123
d+Au MinBias
0.375 2.69e-01 | 0.032 | 0.075 | 0.150 | 0.040 0.040 | 0.177 | 0.103
0.625 3.03e-01 | 0.013 | 0.023 | 0.035 | 0.040 0.040 | 0.071 | 0.103
0.875 3.52e-01 | 0.012 | 0.028 | 0.013 0.040 0.040 | 0.065 | 0.103
1.125 4.01e-01 | 0.016 | 0.042 | 0.017 | 0.040 0.040 | 0.072 | 0.103
1.375 4.65e-01 | 0.027 | 0.070 | 0.047 | 0.040 0.040 | 0.101 | 0.103
1.625 5.45e-01 | 0.059 | 0.061 | 0.091 | 0.040 0.040 | 0.123 | 0.103
1.875 5.33e-01 | 0.222 | 0.174 | 0.150 | 0.040 0.040 | 0.236 | 0.103
p+p
pr X-section Ozc Smass Sspec Sescale SGEANT Stot Sglobal
0.375 | 2.11e+01 | 0.026 | 0.052 | 0.116 | 0.053 0.070 | 0.154 | 0.097
0.625 | 4.19e+00 | 0.011 | 0.013 | 0.029 | 0.075 0.070 | 0.107 | 0.097
0.875 9.63e-01 | 0.010 | 0.019 | 0.008 | 0.097 0.070 | 0.122 | 0.097
1.125 2.64e-01 | 0.013 | 0.027 | 0.013 0.115 0.070 | 0.138 | 0.097
1.375 7.70e-02 | 0.022 | 0.045 | 0.035 0.127 0.070 | 0.156 | 0.097
1.625 2.35e-02 | 0.047 | 0.031 | 0.073 0.134 0.070 | 0.171 | 0.097
1.875 1.04e-02 | 0.183 | 0.072 | 0.121 | 0.138 0.070 | 0.209 | 0.097
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B.2 Invariant Mass Distributions and Background

Determination
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Figure B.1: pp, Rapidity = 3.0-3.4: This plot illustrates how the background was formed. The invariant
mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match simulation
to the data (red), and the background for this linear combination are all plotted together.
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Figure B.3: pp, Rapidity = 3.0-3.4: The minimization contours for the difference between invariant mass
shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background is determined
by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.4: dAu 0-20, Rapidity = 3.0-3.4: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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pp2

Figure B.6: dAu 0-20, Rapidity = 3.0-3.4: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.7: dAu 20-40, Rapidity = 3.0-3.4: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.

241



a5F o.0012]
aof [
E 0.001
350 [
30f- 0.0008]
255 [
E 0.0006]
20 L
150 0.0004
105 r
E 0.00021
5 [
=Y TR S PR AT A A Lol
% 01020304 05 06 0.7 0.8 09 % 01020304 05 0.6 0.7 0.8 09
M, [GeV] M, [GeV]
x10° x10° 10°
of 022 oosh
C 0.2 L f
0.6 E r .
E 018 E
F E 004
0.5 0.16- r .
E 014 L
F E 0.03-
o4r 0120 F .
03[ o1 F p
E 0.08F 0.021~ Y
C E = LY
0.2 0.06F r
F 0.040 001
o1 E L
E 0.02- L
N AT Lol obdl L T N AT P N ..
% 01020304 0506 07 0.8 09 % 01020304 0506 07 0.8 09 % 01020304 050607 0809 1
M, [GeV] M, [GeV] M, [GeV]
10° x10°
8F | 0.455
k(= I| D"?
E 0.35F
6 1 =
£ 03F
E ! 0250
a- 1 E
Eovy 0.2F
i 0.15F
= ! 01E
L 0.05E
oo b bl L L D e E
% 01020304 050607 0809 1 %™ 0.402 03704 05 0.6 0.7 0.8 0.9
M, [GeV] L [GeV]

Figure B.8: dAu 20-40, Rapidity = 3.0-3.4: Invariant mass foreground (black) and final background
(red) distributions.
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Figure B.9: dAu 20-40, Rapidity = 3.0-3.4: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.10: dAu 40-60, Rapidity = 3.0-3.4: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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(red) distributions.

Figure B.11:



Figure B.12: dAu 40-60, Rapidity = 3.0-3.4: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.

246



[Fe] MPG N: 0.25<p_ <0.50,E>7 [Fe] MPG N: 0.50 <p_<0.75,E>7

10°* 10°
F 07F
250 £
r 0.6
20— 0sE
. 0 E
LK E
L l. E
15— |2 0.4
£l E
L 0.3
-} 8 £
C 0.2
5 E
L 01F
obdoli iyl Ll obudol b LT Lol
0 0.1 02 03 04 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
M, , [GeVic’] M, , [GeVic’]
[Fe] MPCN: 0.75<p <1.00,E>7 [Fe] MPCN: 100 <p <1.25E>7 [Fe] MPCN:1.25<p <150,E>7
10° 10° 10°*
0.4F 0.2 L
E r 25
0.35 L L
E [ b
0.3F [ 20
0250 0.08F E
E F 15
0.2fF 0.06]- [
0.15F f 10[-
E 0.04F r
[R1= F L
£ 0.02 SC
0.055 F L
Bttt | o T L E
%™0.1"02 03704 0.5 0.6 0.7 0.8 0.9 %™ 0.4"02 03704 0.5 0.6 07 0.8 0.9 %™ 0.4702 0.370.4 0.5 0.6 07 0.8 09 1
M, , [GeVic’] M, , [GeVic’] M, , [GeVic’]
[Fe] MPCN: 150 <p <1.75,E>7 [Fe] MPCN: 1.75<p <2.00,E>7
45210° 10°*
52 0.25F
4 L
a5t 02
* i
250 0.15F
2t [
= 01—
1.5 L
* 0.05]-
0.5 [
%0102 0370.4 0.5 0.6 0.7 08 09 1 %
M, , [GeVic’]

Figure B.13: dAu 60-88, Rapidity = 3.0-3.4: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.15: dAu 60-88, Rapidity = 3.0-3.4: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.16: dAu MinBias, Rapidity = 3.0-3.4: This plot illustrates how the background was formed.
The invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that
match simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.18: dAu MinBias, Rapidity = 3.0-3.4: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.21: pp, Rapidity = 3.4-3.8: The minimization contours for the difference between invariant
mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background is
determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.22: dAu 0-20, Rapidity = 3.4-3.8: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.24: dAu 0-20, Rapidity = 3.4-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.25: dAu 20-40, Rapidity = 3.4-3.8: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.

259



1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M, [GeV]
M, [GeV]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10°*

ﬁ

0.0014—
0.0012—

0.001—
0.0008—
0.0006—
0.0004—
0.0002—

ﬁ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10°

1

Invariant mass foreground (black) and final background

i, [GeV]
i, [GeV]
260

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10°

Il ENENE AR SR N PN N PR
~ @ w hd hid ™ peg &
6 © © © o o o

ﬁ

1

| TR Y A PR AR v
M, [GeV]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10°

o

Figure B.26: dAu 20-40, Rapidity = 3.4-3.8

(red) distributions.



Figure B.27: dAu 20-40, Rapidity = 3.4-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.28: dAu 40-60, Rapidity = 3.4-3.8: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.30: dAu 40-60, Rapidity = 3.4-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.

264



[Fe] MPG N: 0.25<p_ <0.50,E>7 [Fe] MPG N: 0.50 <p_<0.75,E>7

10°
D.S_— D.umj
04l 0.00081
03[ 0.00061
02 0.0004-
01 0.0002
obdili b bl L Y PO TR PP TRV PORTA TR P
0 04 02 03 0.4 0.5 0.6 0.7 0.8 0.9 0 0102 03 0.4 05 0.6 0.7 08 09 1
M, , [GeVic’] M, , [GeVic’]
[F6] | MPCN:075<p <100,E>7 [F6] | MPCN:100<p <125E>7 [F6] | MPCN:125<p <150,E>7
10 10 10
0.355 £ £
E 0.06] E
0.3 E -
E 0.05 L
0.250 £ [
E E ar
£ 0.04F £
0.2 I L
E [ 3=
0150 003 r
F E of
0.4F 0.021~ r
0.05] 0.01- 1T
N A T A PP P P v o ok ok
0 0102 03 04 0.5 0.6 0.7 0.8 09 1 0 0

Figure B.31: dAu 60-88, Rapidity = 3.4-3.8: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.33: dAu 60-88, Rapidity = 3.4-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.34: dAu MinBias, Rapidity = 3.4-3.8: This plot illustrates how the background was formed.
The invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that
match simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.36: dAu MinBias, Rapidity = 3.4-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.37: pp, Rapidity = 3.0-3.8: This plot illustrates how the background was formed. The invariant
mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match simulation
to the data (red), and the background for this linear combination are all plotted together.
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Figure B.39: pp, Rapidity = 3.0-3.8: The minimization contours for the difference between invariant
mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background is
determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.40: dAu 0-20, Rapidity = 3.0-3.8: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.42: dAu 0-20, Rapidity = 3.0-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.43: dAu 20-40, Rapidity = 3.0-3.8: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.44: dAu 20-40, Rapidity = 3.0-3.8

(red) distributions.



Figure B.45: dAu 20-40, Rapidity = 3.0-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.47: dAu 40-60, Rapidity = 3.0-3.8

(red) distributions.



Figure B.48: dAu 40-60, Rapidity = 3.0-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.49: dAu 60-88, Rapidity = 3.0-3.8: This plot illustrates how the background was formed. The
invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that match
simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.50: dAu 60-88, Rapidity = 3.0-3.8
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Figure B.51: dAu 60-88, Rapidity = 3.0-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Figure B.52: dAu MinBias, Rapidity = 3.0-3.8: This plot illustrates how the background was formed.
The invariant mass distributions for data (black), linear combinations of 1pp, 2pp, and 3pp shapes that
match simulation to the data (red), and the background for this linear combination are all plotted together.
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Figure B.53: dAu MinBias, Rapidity = 3.0-3.8

(red) distributions.
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Figure B.54: dAu MinBias, Rapidity = 3.0-3.8: The minimization contours for the difference between
invariant mass shapes of the data and linear combinations 1pp, 2pp, and 3pp Pythia shapes. The background
is determined by using the linear combination of the Pythia background shapes that minimizes this quantity.
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Appendix C

Mid-Forward h* /7' Azimuthal
Correlations Tables and Figures

C.1 Tabulated Results

In all subsequent tables, o represents a statistical error, while s represents a systematic error (type B), and

the global systematic error is sgiopai-

C.1.1 Raw and Conditional Errors, Relative Stat. Errors

In this section, the terms that are present in the tables are as follows:

pr Transverse momentum of the bin center,

Y Number of correlated particle pairs,

(00 Conditional yield, or the area of the correlated di-hadron signal per trigger particle detected,
€ 70 reconstruction efficiency,

MLBMPC Fraction of counts in 7° mass window, 0.08 < m,,, < 0.18 GeV/c? that are actually signal

79s (as opposed to background counts),

Cleak Accounts for leakage of the 7° yield outside the defined window of 0.08 < mj,, < 0.18
GeV/c?,

Cheorr Up-down correction, or Clyp—down,

AprAn Corrects for pp and 7 bin widths (e.g. AprAn =0.25 x 0.8 = 0.2).
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Table C.1: Conditional and Raw Yields, N4, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, central h*pr = 0.5 — 1.0 GeV/c.

dtAu 0-20%, N, = 2.561¢ + 03
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 2.18e-02 | 0.048 | 1.71e405 | 0.046 | 0.052 | 0.016 0.34 1.04 0.96 0.20
0.875 | 9.58e-03 | 0.066 | 6.98e+04 | 0.065 | 0.076 | 0.014 0.54 1.02 0.96 0.20
1.250 | 3.15e-03 | 0.080 | 2.60e+04 | 0.078 | 0.051 | 0.015 0.70 1.04 0.88 0.40
d+Au 20-40%, Ny, = 1.806e + 08
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 3.09e-02 | 0.051 | 1.73e+05 | 0.048 | 0.053 | 0.015 0.34 1.03 0.96 0.20
0.875 | 1.37e-02 | 0.067 | 7.11e4+04 | 0.066 | 0.077 | 0.014 0.55 1.02 0.96 0.20
1.250 | 4.05e-03 | 0.085 | 2.30e+04 | 0.084 | 0.051 | 0.015 0.70 1.05 0.88 0.40
d+Au 40-60%, Ny = 1.236¢ + 08
pr cYy ocy Y Oy € Oc S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 3.75e-02 | 0.063 | 1.44e+05 | 0.061 | 0.057 | 0.015 0.37 | 1.03 0.96 0.20
0.875 | 2.09e-02 | 0.107 | 7.11e4+04 | 0.106 | 0.077 | 0.014 0.57 1.02 0.97 0.20
1.250 | 5.20e-03 | 0.111 | 1.97e+04 | 0.110 | 0.050 | 0.015 0.71 1.04 0.87 0.40
d+Au 60-88%, Nyrig = 8.957e + 07
pr oYy ocy Y Oy € Oe SJriBMPC Cleak: Cbcorr APTAU
0.625 | 5.38¢-02 | 0.068 | 1.36e+05 | 0.067 | 0.059 | 0.012 0.43 1.03 0.96 0.20
0.875 | 2.10e-02 | 0.072 | 4.92e+404 | 0.071 | 0.080 | 0.012 0.62 1.02 0.96 0.20
1.250 | 7.09e-03 | 0.251 | 1.96e+04 | 0.251 | 0.052 | 0.012 0.75 1.04 0.86 0.40
P+P, Nirig = 4.309e + 07
pr oYy ocy Y Oy € O¢ S-FLBMPC Cleak Cbcorr APTATI
0.625 | 6.15e-02 | 0.084 | 6.26e+04 | 0.083 | 0.060 | 0.010 0.52 1.03 0.95 0.20
0.875 | 2.50e-02 | 0.120 | 2.60e+-04 | 0.120 | 0.082 | 0.010 0.70 1.02 0.95 0.20
1.250 | 5.66e-03 | 0.105 | 7.28e+03 | 0.104 | 0.052 | 0.010 0.80 1.04 0.83 0.40
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Table C.2: Conditional and Raw Yields, N4, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, central h*pr = 1.0 — 2.0 GeV/c.

d+Au 0-20%, Nypig = 9.978e + 07
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 3.02e-02 | 0.047 | 9.22e404 | 0.044 | 0.052 | 0.016 0.34 1.04 0.96 0.20
0.875 | 1.31e-02 | 0.060 | 3.73e+04 | 0.058 | 0.076 | 0.014 0.54 1.02 0.96 0.20
1.250 | 4.50e-03 | 0.086 | 1.45e+04 | 0.085 | 0.051 | 0.015 0.70 1.04 0.88 0.40
d+Au 20-40%, Ny = 6.748¢ + 07
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 4.18e-02 | 0.056 | 8.78e+04 | 0.053 | 0.053 | 0.015 0.34 1.03 0.96 0.20
0.875 | 1.89¢-02 | 0.067 | 3.65e+04 | 0.065 | 0.077 | 0.014 0.55 1.02 0.96 0.20
1.250 | 5.86e-03 | 0.092 | 1.25e+04 | 0.091 | 0.051 | 0.015 0.70 1.05 0.88 0.40
d+Au 40-60%, Ny.;, = 4.351e + 07
pr cYy ocy Y Oy € Oc S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 6.27e-02 | 0.074 | 8.50e+04 | 0.073 | 0.057 | 0.015 0.37 | 1.03 0.96 0.20
0.875 | 2.28e-02 | 0.067 | 2.72e4+04 | 0.065 | 0.077 | 0.014 0.57 1.02 0.97 0.20
1.250 | 9.38e-03 | 0.168 | 1.25e+04 | 0.168 | 0.050 | 0.015 0.71 1.04 0.87 0.40
d+Au 60-88%, Ny.;, = 2.803¢ + 07
pr oYy ocy Y Oy € Oe SJriBMPC Cleak: Cbcorr APTAU
0.625 | 6.72e-02 | 0.061 | 5.30e404 | 0.059 | 0.059 | 0.012 0.43 1.03 0.96 0.20
0.875 | 3.24e-02 | 0.073 | 2.38e+04 | 0.072 | 0.080 | 0.012 0.62 1.02 0.96 0.20
1.250 | 9.97e-03 | 0.115 | 8.60e+03 | 0.115 | 0.052 | 0.012 0.75 1.04 0.86 0.40
P+Dp, Nirig = 1.163e + 07
pr oYy ocy Y Oy € O¢ S-FLBMPC Cleak Cbcorr APTATI
0.625 | 7.76e-02 | 0.075 | 2.13e+04 | 0.074 | 0.060 | 0.010 0.52 1.03 0.95 0.20
0.875 | 3.01e-02 | 0.089 | 8.45e+03 | 0.088 | 0.082 | 0.010 0.70 1.02 0.95 0.20
1.250 | 8.97e-03 | 0.253 | 3.11e+03 | 0.253 | 0.052 | 0.010 0.80 1.04 0.83 0.40
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Table C.3: Conditional and Raw Yields, N4, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, central h*pr = 2.0 — 3.0 GeV/c.

dtAu 0-20%, N, = L165e + 07
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 4.31e-02 | 0.099 | 1.54e+4-04 | 0.097 | 0.052 | 0.016 0.34 1.04 0.96 0.20
0.875 | 1.83e-02 | 0.128 | 6.06e+03 | 0.127 | 0.076 | 0.014 0.54 1.02 0.96 0.20
1.250 | 4.53e-03 | 0.202 | 1.70e+03 | 0.202 | 0.051 | 0.015 0.70 1.04 0.88 0.40
d+Au 20-40%, Ny, = 7.668¢ + 06
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 5.61e-02 | 0.130 | 1.34e+404 | 0.129 | 0.053 | 0.015 0.34 1.03 0.96 0.20
0.875 | 2.35e-02 | 0.151 | 5.18e+03 | 0.150 | 0.077 | 0.014 0.55 1.02 0.96 0.20
1.250 | 7.02e-03 | 0.152 | 1.69e+03 | 0.151 | 0.051 | 0.015 0.70 1.05 0.88 0.40
d+Au 40-60%, N;.;, = 4.704¢ + 06
pr cYy ocy Y Oy € Oc S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 7.01e-02 | 0.122 | 1.03e+04 | 0.121 | 0.057 | 0.015 0.37 | 1.03 0.96 0.20
0.875 | 3.16e-02 | 0.114 | 4.09e+03 | 0.113 | 0.077 | 0.014 0.57 1.02 0.97 0.20
1.250 | 7.90e-03 | 0.154 | 1.14e+403 | 0.153 | 0.050 | 0.015 0.71 1.04 0.87 0.40
d+Au 60-88%, Nypig = 2.771e + 06
pr oYy ocy Y Oy € Oe SJriBMPC Cleak: Cbcorr APTAU
0.625 | 8.87e-02 | 0.133 | 6.92e+03 | 0.133 | 0.059 | 0.012 0.43 1.03 0.96 0.20
0.875 | 4.75e-02 | 0.254 | 3.45e+03 | 0.254 | 0.080 | 0.012 0.62 1.02 0.96 0.20
1.250 | 1.41e-02 | 0.260 | 1.20e+03 | 0.260 | 0.052 | 0.012 0.75 1.04 0.86 0.40
P+P, Nirig = 1.016e + 06
pr oYy ocy Y Oy € O¢ S-FLBMPC Cleak Cbcorr APTATI
0.625 | 1.21e-01 | 0.281 | 2.91e+03 | 0.281 | 0.060 | 0.010 0.52 1.03 0.95 0.20
0.875 | 4.71e-02 | 0.257 | 1.15e+03 | 0.257 | 0.082 | 0.010 0.70 1.02 0.95 0.20
1.250 | 1.09e-02 | 0.272 | 3.29¢+02 | 0.272 | 0.052 | 0.010 0.80 1.04 0.83 0.40
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C.1.2 Conditional Yields, Widths and Relative Errors

In this section, the terms that are present in the tables are as follows:

S w

Transverse momentum of the bin center,
Conditional yield, or the area of the correlated di-hadron signal per trigger particle detected,

0

Fraction of counts in 7° mass window, 0.08 < m,,, < 0.18 GeV/c? that are actually signal

79s (as opposed to background counts),

1 for charged hadrons,

Systematic error from yield extraction, input spectrum shape, energy scale, and GEANT,
Systematic error from contributions of the background under the 7° peak to the CF,
Total systematic error on the CY,

Gaussian width of the awayside peak,

Systematic error on the Gaussian width of the awayside peak.

Table C.4: Conditional Yields, widths, Relative sys, stat errors for MPC 7% 3.0 < n < 3.8, central
h*pr = 0.5 — 1.0 GeV/c.

d+Au 0-20%
pr CY | ooy | %5 upc | 558w | Serr | S| S| W[ ow]| s
0.625 | 2.18e-02 | 0.048 0.338 1.000 | 0.104 | 0.256 | 0.276 | 1.044 | 0.034 | 0.160
0.875 | 9.58e-03 | 0.066 0.545 1.000 | 0.113 | 0.173 | 0.207 | 1.024 | 0.049 | 0.108
1.250 | 3.15e-03 | 0.080 0.697 1.000 | 0.132 | 0.113 | 0.174 | 0.965 | 0.061 | 0.071
d+Au 20-40%
br cYy ocy S-FLB]WPC S-i-%tm'g Seff Ssb Stot w Ow Sw
0.625 | 3.09e-02 | 0.051 0.345 1.000 | 0.102 | 0.253 | 0.273 | 1.121 | 0.034 | 0.158
0.875 | 1.37e-02 | 0.067 0.548 1.000 | 0.113 | 0.171 | 0.205 | 1.107 | 0.046 | 0.107
1.250 | 4.05e-03 | 0.085 0.700 1.000 | 0.132 | 0.112 | 0.173 | 1.024 | 0.062 | 0.070
d+Au 40-60%
pr cY ocy »S-FLB]WPC S_i_iBtM.g Seff Ssb Stot 14 Ow Sw
0.625 | 3.75e-02 | 0.063 0.369 1.000 | 0.100 | 0.243 | 0.263 | 1.195 | 0.039 | 0.152
0.875 | 2.09e-02 | 0.107 0.567 1.000 | 0.112 | 0.164 | 0.198 | 1.269 | 0.062 | 0.102
1.250 | 5.20e-03 | 0.111 0.714 1.000 | 0.133 | 0.107 | 0.171 | 1.110 | 0.077 | 0.067
d+Au 60-88%
pr cY ocy S"'iB]WPC S-FiBtm'g Seff Ssb Stot w Ow Sw
0.625 | 5.38e-02 | 0.068 0.427 1.000 | 0.101 | 0.220 | 0.242 | 1.264 | 0.040 | 0.137
0.875 | 2.10e-02 | 0.072 0.622 1.000 | 0.115 | 0.142 | 0.183 | 1.155 | 0.048 | 0.089
1.250 | 7.09e-03 | 0.251 0.749 1.000 | 0.135 | 0.094 | 0.164 | 1.203 | 0.152 | 0.058
p+p
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 6.15e-02 | 0.084 0.519 1.000 | 0.107 | 0.186 | 0.214 | 1.281 | 0.048 | 0.116
0.875 | 2.50e-02 | 0.120 0.698 1.000 | 0.122 | 0.115 | 0.167 | 1.277 | 0.069 | 0.072
1.250 | 5.66e-03 | 0.105 0.803 1.000 | 0.142 | 0.075 | 0.160 | 1.111 | 0.073 | 0.047
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Table C.5: Conditional Yields, widths, Relative sys, stat errors for MPC 7% 3.0 < n < 3.8, central
h*pr = 1.0 — 2.0 GeV/c.

d+Au 0-20%
pr cYy ocy S-FLB]WPC S-i-%tm'g Seff Ssb Stot w Ow Sw
0.625 | 3.02e-02 | 0.047 0.338 1.000 | 0.104 | 0.256 | 0.276 | 0.990 | 0.034 | 0.160
0.875 | 1.31e-02 | 0.060 0.545 1.000 | 0.113 | 0.173 | 0.207 | 0.951 | 0.046 | 0.108
1.250 | 4.50e-03 | 0.086 0.697 1.000 | 0.132 | 0.113 | 0.174 | 0.947 | 0.067 | 0.071
d+Au 20-40%
pr cYy ocy S"'iBJWPC S_i_iBtM.g Seff Ssb Stot w Ow Sw
0.625 | 4.18e-02 | 0.056 0.345 1.000 | 0.102 | 0.253 | 0.273 | 1.094 | 0.038 | 0.158
0.875 | 1.89¢-02 | 0.067 0.548 1.000 | 0.113 | 0.171 | 0.205 | 1.044 | 0.048 | 0.107
1.250 | 5.86e-03 | 0.092 0.700 1.000 | 0.132 | 0.112 | 0.173 | 1.010 | 0.069 | 0.070
d+Au 40-60%
pr cYy ocy S"'iB]WPC S-FiBtm'g Seff Ssb Stot w Ow Sw
0.625 | 6.27e-02 | 0.074 0.369 1.000 | 0.100 | 0.243 | 0.263 | 1.233 | 0.045 | 0.152
0.875 | 2.28e-02 | 0.067 0.567 1.000 | 0.112 | 0.164 | 0.198 | 1.037 | 0.049 | 0.102
1.250 | 9.38e-03 | 0.168 0.714 1.000 | 0.133 | 0.107 | 0.171 | 1.227 | 0.100 | 0.067
d+Au 60-88%
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 6.72¢-02 | 0.061 0.427 1.000 | 0.101 | 0.220 | 0.242 | 1.152 | 0.040 | 0.137
0.875 | 3.24e-02 | 0.073 0.622 1.000 | 0.115 | 0.142 | 0.183 | 1.130 | 0.050 | 0.089
1.250 | 9.97e-03 | 0.115 0.749 1.000 | 0.135 | 0.094 | 0.164 | 1.151 | 0.076 | 0.058
p+p
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 7.76e-02 | 0.075 0.519 1.000 | 0.107 | 0.186 | 0.214 | 1.152 | 0.050 | 0.116
0.875 | 3.01e-02 | 0.089 0.698 1.000 | 0.122 | 0.115 | 0.167 | 1.097 | 0.063 | 0.072
1.250 | 8.97e-03 | 0.253 0.803 1.000 | 0.142 | 0.075 | 0.160 | 1.151 | 0.155 | 0.047
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Table C.6: Conditional Yields, widths, Relative sys, stat errors for MPC 7% 3.0 < n < 3.8, central
h*pr = 2.0 — 3.0 GeV/c.

d+Au 0-20%
pr cYy ocy S-FLB]WPC S-i-%tm'g Seff Ssb Stot w Ow Sw
0.625 | 4.31e-02 | 0.099 0.338 1.000 | 0.104 | 0.256 | 0.276 | 1.002 | 0.075 | 0.160
0.875 | 1.83e-02 | 0.128 0.545 1.000 | 0.113 | 0.173 | 0.207 | 0.942 | 0.102 | 0.108
1.250 | 4.53e-03 | 0.202 0.697 1.000 | 0.132 | 0.113 | 0.174 | 0.875 | 0.162 | 0.071
d+Au 20-40%
pr cYy ocy S"'iBJWPC S_i_iBtM.g Seff Ssb Stot w Ow Sw
0.625 | 5.61e-02 | 0.130 0.345 1.000 | 0.102 | 0.253 | 0.273 | 1.116 | 0.089 | 0.158
0.875 | 2.35e-02 | 0.151 0.548 1.000 | 0.113 | 0.171 | 0.205 | 1.023 | 0.113 | 0.107
1.250 | 7.02e-03 | 0.152 0.700 1.000 | 0.132 | 0.112 | 0.173 | 0.858 | 0.121 | 0.070
d+Au 40-60%
pr cYy ocy S"'iB]WPC S-FiBtm'g Seff Ssb Stot w Ow Sw
0.625 | 7.01e-02 | 0.122 0.369 1.000 | 0.100 | 0.243 | 0.263 | 1.101 | 0.085 | 0.152
0.875 | 3.16e-02 | 0.114 0.567 1.000 | 0.112 | 0.164 | 0.198 | 0.964 | 0.089 | 0.102
1.250 | 7.90e-03 | 0.154 0.714 1.000 | 0.133 | 0.107 | 0.171 | 0.805 | 0.128 | 0.067
d+Au 60-88%
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 8.87e-02 | 0.133 0.427 1.000 | 0.101 | 0.220 | 0.242 | 1.121 | 0.091 | 0.137
0.875 | 4.75e-02 | 0.254 0.622 1.000 | 0.115 | 0.142 | 0.183 | 1.168 | 0.157 | 0.089
1.250 | 1.41e-02 | 0.260 0.749 1.000 | 0.135 | 0.094 | 0.164 | 1.245 | 0.168 | 0.058
p+p
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 1.21e-01 | 0.281 0.519 1.000 | 0.107 | 0.186 | 0.214 | 1.242 | 0.154 | 0.116
0.875 | 4.71e-02 | 0.257 0.698 1.000 | 0.122 | 0.115 | 0.167 | 1.090 | 0.161 | 0.072
1.250 | 1.09e-02 | 0.272 0.803 1.000 | 0.142 | 0.075 | 0.160 | 1.056 | 0.187 | 0.047
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C.1.3 I4a, Jaa and Relative Errors

In this section, the terms that are present in the tables are as follows:

pr
Iga

Jaa

Seff,IdA

SSB,IdA

Stot, IdA
Sgl,IdA
Stot,JdA

Sql,JdA

Transverse momentum of the bin center,

Ratio of CYs between d+Au and p+p,

Correlated di-hadron nuclear modification factor formed by taking the ratio between mea-
sured di-hadron yields in d4+Au per Nco and di-hadron yields in p+p. In practice, the

formula Jaa = laa,trig X Raa rig is used,

Systematic error from yield extraction, input spectrum shape, energy scale, and GEANT

with cancellations taken into account for Iga,

Systematic error from contributions of the background under the 70 peak to the CF with

cancellations taken into account for Iqa,

Total systematic error on Iga,

Zero global systematic error for Iqa,

Total systematic error on Jya,

Global systematic error for Iga.

Table C.7: Ig4, Jya relative sys, stat errors for 3.0 < 1 < 3.8, central h*pr = 0.5 — 1.0 GeV/c.

d+Au 0-20%, Raa = 0.657 £ 0.0017 (stat) £0.032 (sys)
pr | laa | 01da | Jda | 0jdA | SeffIdA | SSB,IdA | Stot,1dA | Sglida | Stot,JdA | Sgl,JdA
0.625 | 0.354 | 0.097 | 0.233 | 0.097 0.074 0.256 0.267 | 0.000 0.269 0.100
0.875 | 0.383 | 0.137 | 0.252 | 0.137 0.064 0.173 0.184 | 0.000 0.187 0.100
1.250 | 0.556 | 0.132 | 0.365 | 0.132 0.078 0.113 0.137 | 0.000 0.141 0.100
d+Au 20-40%, Ry4a = 0.681 £ 0.0018 (stat) £0.032 (sys)
pr | laa | 0rda | Jda | 0gdA | SeffIdA | SSB,IdA | Stot,1dA | Sglida | Stot,JdA | Sgl,JdA
0.625 | 0.502 | 0.098 | 0.342 | 0.098 0.071 0.253 0.263 | 0.000 0.265 0.100
0.875 | 0.549 | 0.138 | 0.374 | 0.138 0.065 0.171 0.183 | 0.000 0.186 0.100
1.250 | 0.716 | 0.135 | 0.488 | 0.135 0.079 0.112 0.137 | 0.000 0.141 0.100
d+Au 40-60%, Raa = 0.714 £ 0.0020 (stat) £0.032 (sys)
pr | lia | 01da | Jda | 0ydA | SeffIdA | SSB,IdA | Stot,1dA | Sglida | Stot,JdA | Sgl,JdA
0.625 | 0.610 | 0.105 | 0.435 | 0.105 0.069 0.243 0.253 | 0.000 0.255 0.100
0.875 | 0.837 | 0.161 | 0.597 | 0.161 0.065 0.164 0.176 | 0.000 0.179 0.100
1.250 | 0.917 | 0.153 | 0.655 | 0.153 0.078 0.107 0.132 | 0.000 0.136 0.100
d+Au 60-88%, Rqa = 0.786 £ 0.0022 (stat) £0.032 (sys)
pr | lia | 0rda | Jda | 0gdA | SeffIdA | SSB,IdA | Stot,1dA | Sglida | Stot,JdA | Sgl,JdA
0.625 | 0.875 | 0.108 | 0.688 | 0.108 0.068 0.220 0.230 | 0.000 0.232 0.100
0.875 | 0.838 | 0.140 | 0.659 | 0.140 0.064 0.142 0.156 | 0.000 0.159 0.100
1.250 | 1.252 | 0.272 | 0.984 | 0.272 0.076 0.094 0.120 | 0.000 0.124 0.100
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Table C.8: Iy4, Jya relative sys, stat errors for 3.0 < 1 < 3.8, central h*pr = 1.0 — 2.0 GeV/c.

d+Au 0-20%, R 4 = 0.861 &+ 0.0025 (stat) £0.032 (sys)

pr | lia | 0rda | Jda | 0gdA | SeffIdA | SSB,IdA | Stot,1dA | Sglida | Stot,JdA | Sgl,JdA
0.625 | 0.389 | 0.089 | 0.335 | 0.089 0.074 0.256 0.267 | 0.000 0.269 0.100
0.875 | 0.436 | 0.107 | 0.375 | 0.107 0.064 0.173 0.184 | 0.000 0.187 0.100
1.250 | 0.502 | 0.267 | 0.432 | 0.267 0.078 0.113 0.137 | 0.000 0.141 0.100

d+Au 20-40%, R4 = 0.884 £ 0.0026 (stat) £0.032 (sys)

pr | laa | 0rda | JdA | OjdA | SeffidA | SSB,IdA | Stot,1dA | Sglida | Stot,JdA | Sql,JdA
0.625 | 0.539 | 0.093 | 0.476 | 0.093 0.071 0.253 0.263 | 0.000 0.265 0.100
0.875 | 0.625 | 0.111 | 0.553 | 0.111 0.065 0.171 0.183 | 0.000 0.186 0.100
1.250 | 0.654 | 0.270 | 0.578 | 0.270 0.079 0.112 0.137 | 0.000 0.141 0.100

d+Au 40-60%, Rqa = 0.907 £ 0.0028 (stat) £0.032 (sys)

Pr | laa | 01da | Jda | 0ydA | SeffIdA | SSB,IdA | Stot,1dA | Sglida | Stot,JdA | Sgl,JdA
0.625 | 0.807 | 0.106 | 0.732 | 0.106 0.069 0.243 0.253 | 0.000 0.255 0.100
0.875 | 0.755 | 0.111 | 0.685 | 0.111 0.065 0.164 0.176 | 0.000 0.179 0.100
1.250 | 1.046 | 0.304 | 0.948 | 0.304 0.078 0.107 0.132 | 0.000 0.136 0.100

d+Au 60-88%, Rqa = 0.949 £ 0.0030 (stat) £0.032 (sys)

Pr | lia | 01da | Jda | 0ydA | SeffIdA | SSB,IdA | Stot,1dA | Sglida | Stot,JdA | Sgl,JdA
0.625 | 0.865 | 0.097 | 0.821 | 0.097 0.068 0.220 0.230 | 0.000 0.232 0.100
0.875 | 1.074 | 0.115 | 1.019 | 0.115 0.064 0.142 0.156 | 0.000 0.159 0.100
1.250 | 1.111 | 0.278 | 1.054 | 0.278 0.076 0.094 0.120 | 0.000 0.124 0.100

Table C.9: Ig4, Jga relative sys, stat errors for 3.0 < < 3.8, central hpr = 2.0 — 4.0 GeV/c.

d+Au 0-20%, Ry = 1.147 £ 0.0086 (stat) £0.032 (sys)

T Ign | 0144 | Jaa | 05aa | Sepf1da | 5SB,1dA | Stot,1dA | SglIda | Stot,JdA | Sql,JdA
0.625 | 0.355 | 0.298 | 0.407 | 0.298 0.074 0.256 0.267 0.000 0.269 0.100
0.875 | 0.388 | 0.287 | 0.445 | 0.287 0.064 0.173 0.184 0.000 0.187 0.100
1.250 | 0.417 | 0.339 | 0.478 | 0.339 0.078 0.113 0.137 0.000 0.141 0.100

d+Au 20-40%, Ry — 1.141 £ 0.0089 (stat) £0.032 (sys)

T Ign | 0144 | Jaa | 05da | Seff1dA | 55B,1dA | Stot,1dA | SglIda | Stot,JdA | Sql,JdA
0.625 | 0.462 | 0.310 | 0.527 | 0.310 0.071 0.253 0.263 0.000 0.265 0.100
0.875 | 0.500 | 0.298 | 0.570 | 0.298 0.065 0.171 0.183 0.000 0.186 0.100
1.250 | 0.646 | 0.311 | 0.737 | 0.312 0.079 0.112 0.137 0.000 0.141 0.100

d+Au 40-60%, Rqa = 1.111 £0.0093 (stat) £0.032 (sys)

pr Ign | 014a JaA | 0jdA | Seff1dA | SSB,IdA | Stot,IdA | SglIda | Stot,JdA | Sgli,JdA
0.625 | 0.577 | 0.307 | 0.642 | 0.307 0.069 0.243 0.253 0.000 0.255 0.100
0.875 | 0.671 | 0.281 | 0.746 | 0.281 0.065 0.164 0.176 0.000 0.179 0.100
1.250 | 0.728 | 0.313 | 0.809 | 0.313 0.078 0.107 0.132 0.000 0.136 0.100

d+Au 60-88%, Rqa = 1.038 £0.0100 (stat) £0.032 (sys)

pr Iyn | O1a4a JaA | 0jdA | Seff1dA | SSB,IdA | Stot,IdA | SglIda | Stot,JdA | Sgli,JdA
0.625 | 0.731 | 0.311 | 0.759 | 0.312 0.068 0.220 0.230 0.000 0.232 0.100
0.875 | 1.008 | 0.362 | 1.047 | 0.362 0.064 0.142 0.156 0.000 0.159 0.100
1.250 | 1.299 | 0.376 | 1.349 | 0.377 0.076 0.094 0.120 0.000 0.124 0.100
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C.1.4 Central Arm h™ and MPC 7° R4 values

In this section, the terms that are present in the tables are as follows:

pr

Raa

SRdA
Raa,mpc

SRAA,MPC

Transverse momentum of the bin center,

Single hadron nuclear modification factor for central arm h*’s,

Systematic error for central arm h* Rga,

Single hadron nuclear modification factor for forward MPC 70’s,

Systematic error for forward MPC 7¥’s.

Table C.10: R4a relative sys, stat errors for central h*py = 0.5 — 1.0 GeV /c.

d+Au 0-20%
pr | Raga | 0raa | SrRiA | Ria,mpc | ORdA,MPC | SRdA,MPC
0.625 | 0.657 | 0.002 | 0.032 0.198 0.019 0.074
0.875 | 0.657 | 0.002 | 0.032 0.230 0.018 0.064
1.250 | 0.657 | 0.002 | 0.032 0.289 0.030 0.088
d+Au 20-40%
pr | Raga | 0Raa | SRiA | Ria,mpc | ORdA,MPC | SRdA,MPC
0.625 | 0.681 | 0.002 | 0.032 0.288 0.019 0.071
0.875 | 0.681 | 0.002 | 0.032 0.335 0.018 0.065
1.250 | 0.681 | 0.002 | 0.032 0.430 0.031 0.090
d+Au 40-60%
pr | Raa | 0raa | SrRaa | Ria,mpc | ORdA,MPC | SRAA,MPC
0.625 | 0.714 | 0.002 | 0.032 0.391 0.018 0.069
0.875 | 0.714 | 0.002 | 0.032 0.474 0.017 0.065
1.250 | 0.714 | 0.002 | 0.032 0.594 0.031 0.089
d+Au 60-88%
pr | Raa | 0raa | SrRiaa | Ria,mpc | ORdA,MPC | SRAA,MPC
0.625 | 0.786 | 0.002 | 0.032 0.616 0.016 0.068
0.875 | 0.786 | 0.002 | 0.032 0.702 0.016 0.064
1.250 | 0.786 | 0.002 | 0.032 0.799 0.028 0.085
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Table C.11: R4 relative sys, stat errors for central h*pr = 1.0 — 2.0 GeV/c.
d+Au 0-20%
pr | Ria | ORdA | SRaa | Raa,mpPc | ORdA,MPC | SRdA,MPC
0.625 | 0.861 | 0.003 | 0.032 0.198 0.019 0.074
0.875 | 0.861 | 0.003 | 0.032 0.230 0.018 0.064
1.250 | 0.861 | 0.003 | 0.032 0.289 0.030 0.088
d+Au 20-40%
pr | Raa | 0rRdA | SRia | Raa,mpc | OrdAa,MPC | SRiA,MPC
0.625 | 0.884 | 0.003 | 0.032 0.288 0.019 0.071
0.875 | 0.884 | 0.003 | 0.032 0.335 0.018 0.065
1.250 | 0.884 | 0.003 | 0.032 0.430 0.031 0.090
d+Au 40-60%
pr | Ria | OrRdA | SRaa | Raa,mpPc | ORd4A,MPC | SRdA,MPC
0.625 | 0.907 | 0.003 | 0.032 0.391 0.018 0.069
0.875 | 0.907 | 0.003 | 0.032 0.474 0.017 0.065
1.250 | 0.907 | 0.003 | 0.032 0.594 0.031 0.089
d+Au 60-88%
pr Rga | oRraa SRAA RdA,]\/IPC ORIA,MPC | SRIA,MPC
0.625 | 0.949 | 0.003 | 0.032 0.616 0.016 0.068
0.875 | 0.949 | 0.003 | 0.032 0.702 0.016 0.064
1.250 | 0.949 | 0.003 | 0.032 0.799 0.028 0.085
Table C.12: R4 relative sys, stat errors for central h¥py = 2.0 — 4.0 GeV /c.
d+Au 0-20%
pr | Ria | ORdA | SRaa | Raa,mpPc | ORdA,MPC | SRdA,MPC
0.625 | 1.147 | 0.009 | 0.032 0.198 0.019 0.074
0.875 | 1.147 | 0.009 | 0.032 0.230 0.018 0.064
1.250 | 1.147 | 0.009 | 0.032 0.289 0.030 0.088
d+Au 20-40%
pr Rga | OR4A | SRdA RdA,MPC ORdA,MPC | SRIA,MPC
0.625 | 1.141 | 0.009 | 0.032 0.288 0.019 0.071
0.875 | 1.141 | 0.009 | 0.032 0.335 0.018 0.065
1.250 | 1.141 | 0.009 | 0.032 0.430 0.031 0.090
d+Au 40-60%
pr | Rga | Orda | SRiA | Ria,mMPC | ORdA,MPC | SRAA,MPC
0.625 | 1.111 | 0.009 | 0.032 0.391 0.018 0.069
0.875 | 1.111 | 0.009 | 0.032 0.474 0.017 0.065
1.250 | 1.111 | 0.009 | 0.032 0.594 0.031 0.089
d+Au 60-88%
pr | Raa | OrdA | SrRia | Raa,mpc | OrRdA,MPC | SRiA,MPC
0.625 | 1.038 | 0.010 | 0.032 0.616 0.016 0.068
0.875 | 1.038 | 0.010 | 0.032 0.702 0.016 0.064
1.250 | 1.038 | 0.010 | 0.032 0.799 0.028 0.085
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C.2 Correlation Functions
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p+p, Rapidity = 3.0-3.8: Correlation functions and fits for all pp bins.
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Figure C.9: dAu 60-88%, Rapidity = 3.0-3.8: Correlation functions and fits for all pr bins.
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Figure C.10: dAu 60-88%, Rapidity = 3.0-3.8: Background subtracted correlation functions and fits
for all pr bins. The p+p reference is in blue.
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Appendix D

Mid-Forward 7'/7" Azimuthal
Correlations Tables and Figures

D.1 Tabulated Results

In all subsequent tables, o represents a statistical error, while s represents a systematic error (type B), and

the global systematic error is sgiopai-

D.1.1 Raw and Conditional Errors, Relative Stat. Errors

In this section, the terms that are present in the tables are as follows:

pr Transverse momentum of the bin center,

Y Number of correlated particle pairs,

(00 Conditional yield, or the area of the correlated di-hadron signal per trigger particle detected,
€ 70 reconstruction efficiency,

MLBMPC Fraction of counts in 7° mass window, 0.08 < m,,, < 0.18 GeV/c? that are actually signal

79s (as opposed to background counts),

Cleak Accounts for leakage of the 7° yield outside the defined window of 0.08 < mj,, < 0.18
GeV/c?,

Cheorr Up-down correction, or Clyp—down,

AprAn Corrects for pp and 7 bin widths (e.g. AprAn =0.25 x 0.8 = 0.2).
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Table D.1: Conditional and Raw Yields, Ny, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, central m'pr = 2.5 — 3.0 GeV/c.

d+Au 0-20%, Ny = 1.508e + 07
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 5.76e-02 | 0.076 | 2.66e+04 | 0.074 | 0.052 | 0.016 0.34 1.04 0.96 0.20
0.875 | 1.90e-02 | 0.080 | 8.18e+03 | 0.078 | 0.076 | 0.014 0.54 1.02 0.96 0.20
1.250 | 7.35e-03 | 0.126 | 3.58e+03 | 0.125 | 0.051 | 0.015 0.70 1.04 0.88 0.40
d+Au 20-40%, Niprig = 9.239¢ + 06
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 6.27e-02 | 0.079 | 1.80e+04 | 0.078 | 0.053 | 0.015 0.34 1.03 0.96 0.20
0.875 | 2.78e-02 | 0.110 | 7.38e+03 | 0.109 | 0.077 | 0.014 0.55 1.02 0.96 0.20
1.250 | 8.43e-03 | 0.115 | 2.45e+03 | 0.114 | 0.051 | 0.015 0.70 1.05 0.88 0.40
d+Au 40-60%, N;.;, = 5.442¢ + 06
pr cYy ocy Y Oy € Oc S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 6.31e-02 | 0.090 | 1.07e+04 | 0.089 | 0.057 | 0.015 0.37 | 1.03 0.96 0.20
0.875 | 3.41e-02 | 0.103 | 5.09e+03 | 0.102 | 0.077 | 0.014 0.57 1.02 0.97 0.20
1.250 | 1.13e-02 | 0.181 | 1.89e4-03 | 0.181 | 0.050 | 0.015 0.71 1.04 0.87 0.40
d+Au 60-88%, Nypig = 3.149¢ + 06
pr oYy ocy Y Oy € Oe SJriBMPC Cleak: Cbcorr APTAU
0.625 | 9.10e-02 | 0.100 | 8.07e+03 | 0.099 | 0.059 | 0.012 0.43 1.03 0.96 0.20
0.875 | 5.02e-02 | 0.158 | 4.14e+03 | 0.158 | 0.080 | 0.012 0.62 1.02 0.96 0.20
1.250 | 1.24e-02 | 0.178 | 1.20e+03 | 0.178 | 0.052 | 0.012 0.75 1.04 0.86 0.40
P+P, Nirig = 7.109¢ + 06
pr oYy ocy Y Oy € O¢ S-FLBMPC Cleak Cbcorr APTATI
0.625 | 1.08e-01 | 0.053 | 1.82e+404 | 0.052 | 0.060 | 0.010 0.52 1.03 0.95 0.20
0.875 | 4.80e-02 | 0.074 | 8.22e403 | 0.074 | 0.082 | 0.010 0.70 1.02 0.95 0.20
1.250 | 1.20e-02 | 0.080 | 2.55e+03 | 0.080 | 0.052 | 0.010 0.80 1.04 0.83 0.40
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Table D.2: Conditional and Raw Yields, Ny, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, central mpr = 3.0 — 4.0 GeV/c.

d+Au 0-20%, Nyiq = 1.306e + 07
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 4.87e-02 | 0.087 | 1.95e+04 | 0.085 | 0.052 | 0.016 0.34 1.04 0.96 0.20
0.875 | 2.22e-02 | 0.095 | 8.26e+03 | 0.094 | 0.076 | 0.014 0.54 1.02 0.96 0.20
1.250 | 8.47e-03 | 0.127 | 3.57e+03 | 0.127 | 0.051 | 0.015 0.70 1.04 0.88 0.40
d+Au 20-40%, Nypiy = 8.449¢ + 06
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 6.41e-02 | 0.074 | 1.68e+04 | 0.072 | 0.053 | 0.015 0.34 1.03 0.96 0.20
0.875 | 3.20e-02 | 0.124 | 7.76e+03 | 0.124 | 0.077 | 0.014 0.55 1.02 0.96 0.20
1.250 | 9.63e-03 | 0.160 | 2.56e+03 | 0.159 | 0.051 | 0.015 0.70 1.05 0.88 0.40
d+Au 40-60%, N;.;, = 5.160e + 06
pr cYy ocy Y Oy € O¢ S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 7.44e-02 | 0.089 | 1.20e+04 | 0.088 | 0.057 | 0.015 0.37 | 1.03 0.96 0.20
0.875 | 4.46e-02 | 0.154 | 6.32e+03 | 0.153 | 0.077 | 0.014 0.57 1.02 0.97 0.20
1.250 | 9.29e-03 | 0.145 | 1.47e+03 | 0.144 | 0.050 | 0.015 0.71 1.04 0.87 0.40
d+Au 60-88%, Nyrig = 3.097¢ + 06
pr oYy ocy Y Oy € O¢ SJriBMPC Cleak: Cbcorr APTAU
0.625 | 9.17e-02 | 0.075 | 7.99e+403 | 0.074 | 0.059 | 0.012 0.43 1.03 0.96 0.20
0.875 | 5.50e-02 | 0.202 | 4.46e+03 | 0.201 | 0.080 | 0.012 0.62 1.02 0.96 0.20
1.250 | 1.28e-02 | 0.137 | 1.22e+03 | 0.137 | 0.052 | 0.012 0.75 1.04 0.86 0.40
P+P, Nirig = 4.942e + 06
Pr CY | ocy Y oy € o | 525 upe | Creak | Cocorr | AprAn
0.625 | 1.06e-01 | 0.069 | 1.24e+4-04 | 0.068 | 0.060 | 0.010 0.52 1.03 0.95 0.20
0.875 | 4.45e-02 | 0.072 | 5.30e+03 | 0.071 | 0.082 | 0.010 0.70 1.02 0.95 0.20
1.250 | 1.20e-02 | 0.098 | 1.77e+03 | 0.098 | 0.052 | 0.010 0.80 1.04 0.83 0.40
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Table D.3: Conditional and Raw Yields, Ny, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, central ™pr = 4.0 — 7.0 GeV/c.

dAu 0-20%, N, — 4.684¢ + 06
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 5.51e-02 | 0.255 | 7.91e403 | 0.255 | 0.052 | 0.016 0.34 1.04 0.96 0.20
0.875 | 2.41e-02 | 0.282 | 3.21e+03 | 0.282 | 0.076 | 0.014 0.54 1.02 0.96 0.20
1.250 | 6.93e-03 | 0.181 | 1.05e+03 | 0.180 | 0.051 | 0.015 0.70 1.04 0.88 0.40
d+Au 20-40%, Nypig = 3.202¢ + 06
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 6.64e-02 | 0.136 | 6.61e4+03 | 0.135 | 0.053 | 0.015 0.34 1.03 0.96 0.20
0.875 | 2.05e-02 | 0.139 | 1.89e+03 | 0.139 | 0.077 | 0.014 0.55 1.02 0.96 0.20
1.250 | 8.04e-03 | 0.278 | 8.11e+02 | 0.277 | 0.051 | 0.015 0.70 1.05 0.88 0.40
d+Au 40-60%, Nyi, = 2.019¢ + 06
pr cYy ocy Y Oy € Oc S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 6.57e-02 | 0.177 | 4.14e+03 | 0.176 | 0.057 | 0.015 0.37 | 1.03 0.96 0.20
0.875 | 2.79e-02 | 0.134 | 1.55e+03 | 0.133 | 0.077 | 0.014 0.57 1.02 0.97 0.20
1.250 | 8.97e-03 | 0.284 | 5.57e+02 | 0.284 | 0.050 | 0.015 0.71 1.04 0.87 0.40
d+Au 60-88%, Nyprig = 1.263¢ + 06
pr oYy ocy Y Oy € Oe SJriBMPC Cleak: Cbcorr APTAU
0.625 | 8.24e-02 | 0.104 | 2.93e+03 | 0.104 | 0.059 | 0.012 0.43 1.03 0.96 0.20
0.875 | 3.43e-02 | 0.168 | 1.13e+03 | 0.167 | 0.080 | 0.012 0.62 1.02 0.96 0.20
1.250 | 1.16e-02 | 0.280 | 4.49e+02 | 0.280 | 0.052 | 0.012 0.75 1.04 0.86 0.40
pP+P, Nirig = 1.476e + 06
pr oYy ocy Y Oy € O¢ S-FLBMPC Cleak Cbcorr APTATI
0.625 | 9.81e-02 | 0.124 | 3.42e+03 | 0.124 | 0.060 | 0.010 0.52 1.03 0.95 0.20
0.875 | 3.57e-02 | 0.124 | 1.27e+403 | 0.124 | 0.082 | 0.010 0.70 1.02 0.95 0.20
1.250 | 1.36e-02 | 0.276 | 5.97e+02 | 0.276 | 0.052 | 0.010 0.80 1.04 0.83 0.40
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D.1.2 Conditional Yields, Widths and Relative Errors

In this section, the terms that are present in the tables are as follows:

pr
CY

S
S5 MPC

_S_

SBirig

Transverse momentum of the bin center,

Conditional yield, or the area of the correlated di-hadron signal per trigger particle detected,

0

Fraction of counts in 7° mass window, 0.08 < m;,, < 0.18 GeV/c? that are actually signal

70s (as opposed to background counts),

0

Fraction of counts in 7° mass window, 0.1 < m;n, < 0.18 GeV/c? that are actually signal

70’s (as opposed to background counts),

Systematic error from yield extraction, input spectrum shape, energy scale, and GEANT,
Systematic error from contributions of the background under the 7° peak to the CF,
Total systematic error on the CY,

Gaussian width of the awayside peak,

Systematic error on the Gaussian width of the awayside peak.
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Table D.4: Conditional Yields, widths, Relative sys, stat errors for 3.0 < 1 < 3.8, central 7% = 2.5 — 3.0
GeV/c.

d+Au 0-20%
pr cYy ocy S-FLB]WPC S-i-%tm'g Seff Ssb Stot w Ow Sw
0.625 | 5.76e-02 | 0.076 0.338 0.610 | 0.104 | 0.312 | 0.329 | 1.058 | 0.055 | 0.195
0.875 | 1.90e-02 | 0.080 0.545 0.610 | 0.113 | 0.261 | 0.285 | 0.849 | 0.063 | 0.163
1.250 | 7.35e-03 | 0.126 0.697 0.610 | 0.132 | 0.225 | 0.261 | 0.930 | 0.100 | 0.141
d+Au 20-40%
pr cYy ocy S"'iBJWPC S_i_iBtM.g Seff Ssb Stot w Ow Sw
0.625 | 6.27e-02 | 0.079 0.345 0.664 | 0.102 | 0.303 | 0.319 | 1.022 | 0.060 | 0.189
0.875 | 2.78e-02 | 0.110 0.548 0.664 | 0.113 | 0.248 | 0.273 | 0.996 | 0.086 | 0.155
1.250 | 8.43e-03 | 0.115 0.700 0.664 | 0.132 | 0.209 | 0.247 | 0.838 | 0.096 | 0.131
d+Au 40-60%
pr cYy ocy S"'iB]WPC S-FiBtm'g Seff Ssb Stot w Ow Sw
0.625 | 6.31e-02 | 0.090 0.369 0.706 | 0.100 | 0.289 | 0.306 | 1.011 | 0.068 | 0.181
0.875 | 3.41e-02 | 0.103 0.567 0.706 | 0.112 | 0.233 | 0.259 | 0.983 | 0.080 | 0.146
1.250 | 1.13e-02 | 0.181 0.714 0.706 | 0.133 | 0.193 | 0.235 | 1.028 | 0.134 | 0.121
d+Au 60-88%
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 9.10e-02 | 0.100 0.427 0.755 | 0.101 | 0.264 | 0.282 | 1.085 | 0.071 | 0.165
0.875 | 5.02e-02 | 0.158 0.622 0.755 | 0.115 | 0.205 | 0.236 | 1.140 | 0.107 | 0.128
1.250 | 1.24e-02 | 0.178 0.749 0.755 | 0.135 | 0.169 | 0.216 | 1.003 | 0.137 | 0.105
p+p
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 1.08e-01 | 0.053 0.519 0.835 | 0.107 | 0.221 | 0.246 | 1.093 | 0.038 | 0.138
0.875 | 4.80e-02 | 0.074 0.698 0.835 | 0.122 | 0.162 | 0.203 | 1.115 | 0.054 | 0.101
1.250 | 1.20e-02 | 0.080 0.803 0.835 | 0.142 | 0.128 | 0.191 | 0.965 | 0.068 | 0.080
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Table D.5: Conditional Yields, widths, Relative sys, stat errors for 3.0 < 1 < 3.8, central 7%pp = 3.0 — 4.0
GeV/c.

d+Au 0-20%
pr cYy ocy S-FLB]WPC S-i-%tm'g Seff Ssb Stot w Ow Sw
0.625 | 4.87e-02 | 0.087 0.338 0.788 | 0.104 | 0.287 | 0.305 | 1.027 | 0.064 | 0.179
0.875 | 2.22¢-02 | 0.095 0.545 0.788 | 0.113 | 0.221 | 0.248 | 0.948 | 0.074 | 0.138
1.250 | 8.47e-03 | 0.127 0.697 0.788 | 0.132 | 0.174 | 0.218 | 0.975 | 0.097 | 0.109
d+Au 20-40%
pr cYy ocy S"'iBJWPC S_i_iBtM.g Seff Ssb Stot w Ow Sw
0.625 | 6.41e-02 | 0.074 0.345 0.818 | 0.102 | 0.280 | 0.298 | 0.999 | 0.056 | 0.175
0.875 | 3.20e-02 | 0.124 0.548 0.818 | 0.113 | 0.213 | 0.241 | 1.093 | 0.087 | 0.133
1.250 | 9.63e-03 | 0.160 0.700 0.818 | 0.132 | 0.165 | 0.211 | 1.009 | 0.120 | 0.103
d+Au 40-60%
pr cYy ocy S"'iB]WPC S-FiBtm'g Seff Ssb Stot w Ow Sw
0.625 | 7.44e-02 | 0.089 0.369 0.839 | 0.100 | 0.268 | 0.286 | 1.055 | 0.065 | 0.168
0.875 | 4.46e-02 | 0.154 0.567 0.839 | 0.112 | 0.202 | 0.231 | 1.160 | 0.101 | 0.126
1.250 | 9.29e-03 | 0.145 0.714 0.839 | 0.133 | 0.154 | 0.204 | 0.843 | 0.128 | 0.096
d+Au 60-88%
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 9.17¢-02 | 0.075 0.427 0.861 | 0.101 | 0.245 | 0.265 | 0.983 | 0.058 | 0.153
0.875 | 5.50e-02 | 0.202 0.622 0.861 | 0.115 | 0.178 | 0.212 | 1.209 | 0.123 | 0.111
1.250 | 1.28e-02 | 0.137 0.749 0.861 | 0.135 | 0.136 | 0.192 | 0.913 | 0.116 | 0.085
p+p
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 1.06e-01 | 0.069 0.519 0.897 | 0.107 | 0.208 | 0.234 | 1.110 | 0.049 | 0.130
0.875 | 4.45e-02 | 0.072 0.698 0.897 | 0.122 | 0.144 | 0.189 | 1.030 | 0.056 | 0.090
1.250 | 1.20e-02 | 0.098 0.803 0.897 | 0.142 | 0.108 | 0.178 | 0.978 | 0.080 | 0.068
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Table D.6: Conditional Yields, widths, Relative sys, stat errors for 3.0 < 1 < 3.8, central 7%pp = 4.0 — 7.0
GeV/c.

d+Au 0-20%
pr cYy ocy S-FLB]WPC S-i-%tm'g Seff Ssb Stot w Ow Sw
0.625 | 5.51e-02 | 0.255 0.338 0.904 | 0.104 | 0.270 | 0.289 | 1.238 | 0.159 | 0.169
0.875 | 2.41e-02 | 0.282 0.545 0.904 | 0.113 | 0.194 | 0.225 | 1.101 | 0.186 | 0.121
1.250 | 6.93e-03 | 0.181 0.697 0.904 | 0.132 | 0.141 | 0.193 | 0.805 | 0.154 | 0.088
d+Au 20-40%
pr cYy ocy S"'iBJWPC S_i_iBtM.g Seff Ssb Stot w Ow Sw
0.625 | 6.64e-02 | 0.136 0.345 0.912 | 0.102 | 0.266 | 0.285 | 1.044 | 0.102 | 0.166
0.875 | 2.05e-02 | 0.139 0.548 0.912 | 0.113 | 0.192 | 0.222 | 0.768 | 0.121 | 0.120
1.250 | 8.04e-03 | 0.278 0.700 0.912 | 0.132 | 0.137 | 0.190 | 0.990 | 0.191 | 0.086
d+Au 40-60%
pr cYy ocy S"'iB]WPC S-FiBtm'g Seff Ssb Stot w Ow Sw
0.625 | 6.57e-02 | 0.177 0.369 0.917 | 0.100 | 0.256 | 0.275 | 1.082 | 0.123 | 0.160
0.875 | 2.79e-02 | 0.134 0.567 0.917 | 0.112 | 0.183 | 0.215 | 0.790 | 0.117 | 0.115
1.250 | 8.97e-03 | 0.284 0.714 0.917 | 0.133 | 0.131 | 0.187 | 1.035 | 0.198 | 0.082
d+Au 60-88%
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 8.24e-02 | 0.104 0.427 0.920 | 0.101 | 0.234 | 0.255 | 0.870 | 0.091 | 0.146
0.875 | 3.43e-02 | 0.168 0.622 0.920 | 0.115 | 0.163 | 0.200 | 0.878 | 0.147 | 0.102
1.250 | 1.16e-02 | 0.280 0.749 0.920 | 0.135 | 0.118 | 0.179 | 0.963 | 0.220 | 0.074
p+p
pr cYy ocy S"'LBMPC S-i-iBtm‘g Seff Ssb Stot w Ow Sw
0.625 | 9.81e-02 | 0.124 0.519 0.932 | 0.107 | 0.200 | 0.227 | 1.079 | 0.092 | 0.125
0.875 | 3.57e-02 | 0.124 0.698 0.932 | 0.122 | 0.135 | 0.181 | 0.860 | 0.121 | 0.084
1.250 | 1.36e-02 | 0.276 0.803 0.932 | 0.142 | 0.097 | 0.172 | 1.094 | 0.193 | 0.061
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D.1.3 EMC Cluster/MPC 7° Correlation Widths and Relative Errors

In this section, the terms that are present in the tables are as follows:

pr Transverse momentum of the bin center,

H%trig Fraction of counts in 7 mass window, 0.1 < m;,, < 0.18 GeV/c? that are actually signal
7%s (as opposed to background counts),

%4 Gaussian width of the awayside peak,

Sw Systematic error on the Gaussian width of the awayside peak.

Table D.7: Widths, Relative sys, stat errors for 3.0 < n < 3.8, central 7%p7 = 2.5 — 3.0 GeV /c.

d+Au 0-20%

pr HiBtrig w Tw Sw
1.300 0.609 | 1.010 | 0.051 | 0.159
1.650 0.609 | 0.978 | 0.077 | 0.159
2.300 0.609 | 0.927 | 0.127 | 0.159
d+Au 20-40%

pr SﬁLiBtrig w Ow Sw
1.300 0.662 | 0.923 | 0.054 | 0.151
1.650 0.662 | 0.832 | 0.066 | 0.151
2.300 0.662 | 0.735 | 0.092 | 0.151
d+Au 40-60%

pr SﬁLiBtrig w Ow Sw
1.300 0.704 | 0.958 | 0.058 | 0.144
1.650 0.704 | 0.805 | 0.065 | 0.144
2.300 0.704 | 0.689 | 0.090 | 0.144
d+Au 60-88%
pr S‘FiBtrig w Tw Sw
1.300 0.754 | 0.893 | 0.052 | 0.137
1.650 0.754 | 0.800 | 0.073 | 0.137
2.300 0.754 | 0.757 | 0.109 | 0.137
pP+p
pT S‘FiBtrig w Ow Sw
1.300 0.835 | 0.962 | 0.033 | 0.125
1.650 0.835 | 0.831 | 0.042 | 0.125
2.300 0.835 | 0.784 | 0.066 | 0.125
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Table D.8: Widths, Relative sys, stat errors for 3.0 < n < 3.8, central 7% = 3.0 — 4.0 GeV /c.

d+Au 0-20%

PT | 55y | W ow | sw
1.300 0.787 | 0.936 | 0.053 | 0.132
1.650 0.787 | 0.779 | 0.073 | 0.132
2.300 0.787 | 0.780 | 0.089 | 0.132
d+Au 20-40%

pr S-&-LBtrig w Ow Sw
1.300 0.817 | 0.927 | 0.053 | 0.128
1.650 0.817 | 0.906 | 0.071 | 0.128
2.300 0.817 | 0.859 | 0.099 | 0.128
d+Au 40-60%

pr S‘*‘%trig w Ow Sw
1.300 0.838 | 1.004 | 0.058 | 0.124
1.650 0.838 | 1.001 | 0.080 | 0.124
2.300 0.838 | 0.709 | 0.123 | 0.124
d+Au 60-88%

pr S"!‘iBtrig w Ow Sw
1.300 0.860 | 0.858 | 0.053 | 0.121
1.650 0.860 | 0.873 | 0.068 | 0.121
2.300 0.860 | 0.676 | 0.088 | 0.121
pP+p
pT S""iBtTig w Ow Sw
1.300 0.897 | 0.946 | 0.036 | 0.115
1.650 0.897 | 0.788 | 0.052 | 0.115
2.300 0.897 | 0.686 | 0.068 | 0.115

320



Table D.9: Widths, Relative sys, stat errors for 3.0 < n < 3.8, central 7% = 4.0 — 7.0 GeV /c.

d+Au 0-20%

PT | 55y | W ow | sw
1.300 0.904 | 0.910 | 0.072 | 0.114
1.650 0.904 | 0.943 | 0.138 | 0.114
2.300 0.904 | 0.736 | 0.171 | 0.114
d+Au 20-40%

pr S-&-LBtrig w Ow Sw
1.300 0.911 | 1.005 | 0.079 | 0.113
1.650 0.911 | 0.838 | 0.091 | 0.113
2.300 0.911 | 0.636 | 0.130 | 0.113

d+Au 40-60%

pr S‘*‘%trig w Ow Sw
1.300 0.916 | 0.925 | 0.093 | 0.113
1.650 0.916 | 0.845 | 0.112 | 0.113
2.300 0.916 | 0.798 | 0.147 | 0.113
d+Au 60-88%

pr S"!‘iBtrig w Ow Sw
1.300 0.920 | 0.861 | 0.086 | 0.112
1.650 0.920 | 0.742 | 0.102 | 0.112
2.300 0.920 | 0.532 | 0.101 | 0.112
pP+p
pT S""iBtTig w Ow Sw
1.300 0.931 | 0.967 | 0.067 | 0.110
1.650 0.931 | 0.869 | 0.096 | 0.110
2.300 0.931 | 0.788 | 0.097 | 0.110
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D.1.4 4, Jaa and Relative Errors

In this section, the terms that are present in the tables are as follows:

pr
Iga

Jaa

Seff,IdA

SSB,IdA

Stot, IdA
Sgl,IdA
Stot,JdA

Sql,JdA

Transverse momentum of the bin center,

Ratio of CYs between d+Au and p+p,

Correlated di-hadron nuclear modification factor formed by taking the ratio between mea-
sured di-hadron yields in d4+Au per Nco and di-hadron yields in p+p. In practice, the

formula Jaa = laa,trig X Raa rig is used,

Systematic error from yield extraction, input spectrum shape, energy scale, and GEANT

with cancellations taken into account for Iga,

Systematic error from contributions of the background under the 70 peak to the CF with

cancellations taken into account for Iqa,

Total systematic error on Iga,

Zero global systematic error for Iqa,

Total systematic error on Jya,

Global systematic error for Iga.

Table D.10: Ij4,J44 relative sys, stat errors for 3.0 < 1 < 3.8, central Opr =2.5-3.0 GeV/ec.

d+Au 0-20%, Rya = 1.020 £ 0.0198 (stat) £0.048 (sys)

pT Ijn | o144 JaA | 0jdA | Seff,1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgi,JdA
0.625 | 0.532 | 0.092 | 0.548 | 0.095 0.074 0.312 0.321 0.000 0.324 0.100
0.875 | 0.397 | 0.109 | 0.409 | 0.111 0.064 0.261 0.269 0.000 0.273 0.100
1.250 | 0.612 | 0.150 | 0.630 | 0.151 0.078 0.225 0.238 0.000 0.243 0.100

d+Au 20-40%, Rys = 1.040 £ 0.0214 (stat) £0.047 (sys)

T Iian | o1aa | Jaa | 05da | Seff1dA | SSB,IdA | Stot,1dA | Sgi,Ida | Stot,JdA | Sqi,JdA
0.625 | 0.580 | 0.095 | 0.604 | 0.097 0.071 0.303 0.311 0.000 0.315 0.100
0.875 | 0.580 | 0.133 | 0.603 | 0.135 0.065 0.248 0.257 0.000 0.261 0.100
1.250 | 0.701 | 0.140 | 0.730 | 0.142 0.079 0.209 0.223 0.000 0.228 0.100

d+Au 40-60%, Rqa = 1.021 £ 0.0234 (stat) +£0.046 (sys)

pT Ija | o144 JaA | 0jdA | Seff,1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgi,JdA
0.625 | 0.584 | 0.105 | 0.596 | 0.107 0.069 0.289 0.298 0.000 0.301 0.100
0.875 | 0.710 | 0.127 | 0.725 | 0.129 0.065 0.233 0.242 0.000 0.247 0.100
1.250 | 0.940 | 0.198 | 0.960 | 0.200 0.078 0.193 0.208 0.000 0.213 0.100

d+Au 60-88%, Rqa = 1.054 £+ 0.0262 (stat) +£0.046 (sys)

T Iia | 01aa | Jaa | 07da | Seff1dA | SSB,IdA | Stot,1dA | Sgi,Ida | Stot,JdA | Sqi,7dA
0.625 | 0.842 | 0.113 | 0.887 | 0.116 0.068 0.264 0.273 0.000 0.276 0.100
0.875 | 1.046 | 0.175 | 1.103 | 0.177 0.064 0.205 0.215 0.000 0.220 0.100
1.250 | 1.034 | 0.196 | 1.090 | 0.197 0.076 0.169 0.185 0.000 0.190 0.100
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Table D.11: I44,J44 relative sys, stat errors for 3.0 < < 3.8, central %7 = 3.0 — 4.0 GeV /c.

d+Au 0-20%, Rz4 = 1.063 £ 0.0191 (stat) +0.057 (sys)

pr Iyn | 01da JiA | 0jdA | Seff1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgl,JdA
0.625 | 0.458 | 0.111 | 0.486 | 0.112 0.074 0.287 0.296 0.000 0.302 0.100
0.875 | 0.499 | 0.119 | 0.531 | 0.120 0.064 0.221 0.230 0.000 0.237 0.100
1.250 | 0.704 | 0.161 | 0.748 | 0.162 0.078 0.174 0.191 0.000 0.199 0.100

d+Au 20-40%, Rya = 1.064 £ 0.0227 (stat) £0.057 (sys)

T Iga | o14a JiA | 0jdA | Seff,1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgl,JdA
0.625 | 0.603 | 0.101 | 0.641 | 0.104 0.071 0.280 0.289 0.000 0.295 0.100
0.875 | 0.719 | 0.144 | 0.765 | 0.145 0.065 0.213 0.223 0.000 0.230 0.100
1.250 | 0.801 | 0.188 | 0.852 | 0.189 0.079 0.165 0.183 0.000 0.191 0.100

d+Au 40-60%, Ry = 1.072 £ 0.0240 (stat) £0.056 (sys)

T Iin | o144 JaA | 0jdA | Seff,1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgli,JdA
0.625 | 0.699 | 0.113 | 0.749 | 0.115 0.069 0.268 0.277 0.000 0.283 0.100
0.875 | 1.001 | 0.170 | 1.073 | 0.171 0.065 0.202 0.212 0.000 0.219 0.100
1.250 | 0.772 | 0.175 | 0.828 | 0.177 0.078 0.154 0.172 0.000 0.181 0.100

d+Au 60-88%, Rys = 1.062 £ 0.0285 (stat) £0.056 (sys)

T Iia | o144 JiaA | 0jdA | Seff,IdA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgi,JdA
0.625 | 0.862 | 0.101 | 0.916 | 0.105 0.068 0.245 0.254 0.000 0.260 0.100
0.875 | 1.235 | 0.214 | 1.312 | 0.216 0.064 0.178 0.189 0.000 0.197 0.100
1.250 | 1.067 | 0.169 | 1.134 | 0.171 0.076 0.136 0.156 0.000 0.165 0.100

Table D.12: I 4,J44 relative sys, stat errors for 3.0 < 7 < 3.8, central 7% = 4.0 — 7.0 GeV/c.

d+Au 0-20%, Rys = 1.018 = 0.0236 (stat) £0.063 (sys)

T Ign | o144 JaA | 0jdA | Seff,1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgli,JdA
0.625 | 0.562 | 0.284 | 0.572 | 0.285 0.074 0.270 0.280 0.000 0.287 0.100
0.875 | 0.673 | 0.308 | 0.685 | 0.309 0.064 0.194 0.205 0.000 0.214 0.100
1.250 | 0.511 | 0.330 | 0.520 | 0.331 0.078 0.141 0.161 0.000 0.173 0.100

d+Au 20-40%, Ry = 1.078 £ 0.0286 (stat) £0.062 (sys)

T Ijn | o144 JaA | 0jdA | Seff,1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgli,JdA
0.625 | 0.677 | 0.184 | 0.729 | 0.186 0.071 0.266 0.276 0.000 0.283 0.100
0.875 | 0.574 | 0.187 | 0.619 | 0.189 0.065 0.192 0.202 0.000 0.212 0.100
1.250 | 0.593 | 0.392 | 0.639 | 0.393 0.079 0.137 0.158 0.000 0.170 0.100

d+Au 40-60%, Rq4 = 1.103 £ 0.0321 (stat) £0.062 (sys)

pr Ijn | o144 JaA | 0jdA | Seff,1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgi,JdA
0.625 | 0.670 | 0.216 | 0.739 | 0.219 0.069 0.256 0.265 0.000 0.273 0.100
0.875 | 0.780 | 0.183 | 0.860 | 0.186 0.065 0.183 0.195 0.000 0.204 0.100
1.250 | 0.661 | 0.396 | 0.729 | 0.397 0.078 0.131 0.153 0.000 0.165 0.100

d+Au 60-88%, Ry = 1.093 £ 0.0252 (stat) £0.062 (sys)

pT Ijn | o144 JaA | 0jdA | Seff,1dA | SSB,IdA | Stot,IdA | Sgl.Ida | Stot,JdA | Sgi,JdA
0.625 | 0.840 | 0.162 | 0.918 | 0.164 0.068 0.234 0.244 0.000 0.252 0.100
0.875 | 0.959 | 0.209 | 1.047 | 0.210 0.064 0.163 0.175 0.000 0.186 0.100
1.250 | 0.851 | 0.393 | 0.930 | 0.394 0.076 0.118 0.140 0.000 0.153 0.100
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D.1.5 Central Arm 7° and MPC 7° R4, values

In this section, the terms that are present in the tables are as follows:

pr

Raa
SRdA
Raa,mpc

SRAA,MPC

Transverse momentum of the bin center,

Single hadron nuclear modification factor for central arm =

Systematic error for central arm 7% Rga,

78’

Single hadron nuclear modification factor for forward MPC 70’s,

Systematic error for forward MPC 7¥’s.

Table D.13: Rga relative sys, stat errors for central 7°pr = 2.5 — 3.0 GeV/c.

d+Au 0-20%

pr | Rga | Orda | SRiA | Ria,mPC | ORdA,MPC | SRAA,MPC

0.625 | 1.029 | 0.020 | 0.048 0.198 0.019 0.074

0.875 | 1.029 | 0.020 | 0.048 0.230 0.018 0.064

1.250 | 1.029 | 0.020 | 0.048 0.289 0.030 0.088
d+Au 20-40%

pr | Rga | 0rda | SRiA | Ria,mPC | ORdA,MPC | SRAA,MPC

0.625 | 1.040 | 0.021 | 0.047 0.288 0.019 0.071

0.875 | 1.040 | 0.021 | 0.047 0.335 0.018 0.065

1.250 | 1.040 | 0.021 | 0.047 0.430 0.031 0.090
d+Au 40-60%

pr | Rga | Orda | SRiA | Ria,mpPC | ORdA,MPC | SRdA,MPC

0.625 | 1.021 | 0.023 | 0.046 0.391 0.018 0.069

0.875 | 1.021 | 0.023 | 0.046 0.474 0.017 0.065

1.250 | 1.021 | 0.023 | 0.046 0.594 0.031 0.089
d+Au 60-88%

pr | Raa | Oraa | SRia | Raa,mpc | ORdA,MPC | SRIA,MPC

0.625 | 1.054 | 0.026 | 0.046 0.616 0.016 0.068

0.875 | 1.054 | 0.026 | 0.046 0.702 0.016 0.064

1.250 | 1.054 | 0.026 | 0.046 0.799 0.028 0.085
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Table D.14: Rga relative sys, stat errors for central 7°pr = 3.0 — 4.0 GeV/c.
d+Au 0-20%
pr | Raa | Ordaa | SrRia | Raa,mpc | ORdA,MPC | SRiA,MPC
0.625 | 1.063 | 0.019 | 0.057 0.198 0.019 0.074
0.875 | 1.063 | 0.019 | 0.057 0.230 0.018 0.064
1.250 | 1.063 | 0.019 | 0.057 0.289 0.030 0.088
d+Au 20-40%
pr | Rga | Orda | SRiA | Ria,mpPC | ORdA,MPC | SRAA,MPC
0.625 | 1.064 | 0.023 | 0.057 0.288 0.019 0.071
0.875 | 1.064 | 0.023 | 0.057 0.335 0.018 0.065
1.250 | 1.064 | 0.023 | 0.057 0.430 0.031 0.090
d+Au 40-60%
pr | Rga | Orda | SRiA | Ria,mPC | ORdA,MPC | SRdA,MPC
0.625 | 1.072 | 0.024 | 0.056 0.391 0.018 0.069
0.875 | 1.072 | 0.024 | 0.056 0.474 0.017 0.065
1.250 | 1.072 | 0.024 | 0.056 0.594 0.031 0.089
d+Au 60-88%
pr | Raga | 0raa | SRiA | Ria,mpPC | ORdA,MPC | SRdA,MPC
0.625 | 1.062 | 0.029 | 0.056 0.616 0.016 0.068
0.875 | 1.062 | 0.029 | 0.056 0.702 0.016 0.064
1.250 | 1.062 | 0.029 | 0.056 0.799 0.028 0.085
Table D.15: Ry relative sys, stat errors for central m%p; = 4.0 — 7.0 GeV/c.
d+Au 0-20%
pr | Raa | OrRaa | SRia | Raa,mpc | ORdA,MPC | SRIA,MPC
0.625 | 1.018 | 0.024 | 0.063 0.198 0.019 0.074
0.875 | 1.018 | 0.024 | 0.063 0.230 0.018 0.064
1.250 | 1.018 | 0.024 | 0.063 0.289 0.030 0.088
d+Au 20-40%
pr | Raga | Oraa | SRiA | Ria,mpPc | ORdA,MPC | SRdA,MPC
0.625 | 1.078 | 0.029 | 0.062 0.288 0.019 0.071
0.875 | 1.078 | 0.029 | 0.062 0.335 0.018 0.065
1.250 | 1.078 | 0.029 | 0.062 0.430 0.031 0.090
d+Au 40-60%
pr | Raga | 0raa | SrRiA | Ria,mpPc | ORdA,MPC | SRdA,MPC
0.625 | 1.103 | 0.032 | 0.062 0.391 0.018 0.069
0.875 | 1.103 | 0.032 | 0.062 0.474 0.017 0.065
1.250 | 1.103 | 0.032 | 0.062 0.594 0.031 0.089
d+Au 60-88%
pr | Raga | ORaa | SrRiA | Ria,mpc | ORdA,MPC | SRdA,MPC
0.625 | 1.093 | 0.025 | 0.062 0.616 0.016 0.068
0.875 | 1.093 | 0.025 | 0.062 0.702 0.016 0.064
1.250 | 1.093 | 0.025 | 0.062 0.799 0.028 0.085
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D.2 Correlation Functions

D.2.1 EMC 7°/MPC 7° Correlations
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Figure D.1: p+p, Rapidity = 3.0-3.8: Correlation functions and fits for all pp bins.
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and pr bins.
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Figure D.3: d+Au 0-20%, Rapidity = 3.0-3.8: Correlation functions and fits for all py bins.
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Figure D.4: d+Au 0-20%, Rapidity = 3.0-3.8: Background subtracted correlation functions and fits
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Figure D.5: dAu 20-40%, Rapidity = 3.0-3.8: Correlation functions and fits for all py bins.
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Figure D.6: dAu 20-40%, Rapidity = 3.0-3.8: Background subtracted correlation functions and fits for
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Figure D.8: dAu 40-60%, Rapidity = 3.0-3.8: Background subtracted correlation functions and fits for
all pr bins. The p+p reference is in blue.
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Figure D.9: dAu 60-88%, Rapidity = 3.0-3.8: Correlation functions and fits for all py bins.
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Figure D.10: dAu 60-88%, Rapidity = 3.0-3.8: Background subtracted correlation functions and fits
for all pr bins. The p+p reference is in blue.
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D.2.2 EMC 7°/MPC Cluster Correlations
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p+p, Rapidity = 3.0-3.8: Correlation functions and fits for all pp bins.
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Figure D.12: Rapidity = 3.0-3.8: Background subtracted correlation functions and fits for all centralities
and pr bins.
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Figure D.13: d+Au 0-20%, Rapidity = 3.0-3.8: Correlation functions and fits for all pr bins.
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Figure D.15: dAu 20-40%, Rapidity = 3.0-3.8: Correlation functions and fits for all py bins.
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Figure D.17: dAu 40-60%, Rapidity = 3.0-3.8: Correlation functions and fits for all py bins.
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Figure D.19: dAu 60-88%, Rapidity = 3.0-3.8: Correlation functions and fits for all py bins.
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Appendix E

Forward-Forward Azimuthal
Correlations Tables and Figures

E.1 Tabulated Results

In all subsequent tables, o represents a statistical error, while s represents a systematic error (type B), and

the global systematic error is sgiopai-

E.1.1 Conditional and Raw Yields, Relative Statistical Errors

In this section, the terms that are present in the tables are as follows:

pr Transverse momentum of the bin center,

Y Number of correlated particle pairs,

(00 Conditional yield, or the area of the correlated di-hadron signal per trigger particle detected,
€ 70 reconstruction efficiency,

MLBMPC Fraction of counts in 7° mass window, 0.08 < m,,, < 0.18 GeV/c? that are actually signal

79s (as opposed to background counts),

Cleak Accounts for leakage of the 7° yield outside the defined window of 0.08 < mj,, < 0.18
GeV/c?,

Cheorr Up-down correction, or Clyp—down,

AprAn Corrects for pp and 7 bin widths (e.g. AprAn =0.25 x 0.8 = 0.2).
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Table E.1: Conditional and Raw Yields, V4, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, Cluster pr = 1.0 — 1.5 GeV/c.

dAu 0-20%, N, = 5.011e + 06
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 1.18e-02 | 0.258 | 1.48e+03 | 0.257 | 0.052 | 0.016 0.36 1.04 0.96 0.20
0.875 | 5.18e-03 | 0.303 | 6.27e+402 | 0.302 | 0.076 | 0.014 0.57 | 1.02 0.96 0.20
1.250 | 4.66e-03 | 0.212 | 6.56e+02 | 0.212 | 0.051 | 0.015 0.72 1.04 0.88 0.40
d+Au 20-40%, Nypiq = 4.762¢ + 06
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 9.32e-03 | 0.259 | 1.13e+03 | 0.259 | 0.053 | 0.015 0.37 1.03 0.96 0.20
0.875 | 1.13e-02 | 0.155 | 1.32e+03 | 0.155 | 0.077 | 0.014 0.57 | 1.02 0.96 0.20
1.250 | 5.08e-03 | 0.183 | 6.63e+02 | 0.182 | 0.051 | 0.015 0.72 1.05 0.88 0.40
d+Au 40-60%, N;.;, = 3.981c + 06
pr cYy ocy Y Oy € O¢ S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 1.54e-02 | 0.176 | 1.57e+03 | 0.175 | 0.057 | 0.015 0.39 1.03 0.96 0.20
0.875 | 1.30e-02 | 0.154 | 1.21e+03 | 0.153 | 0.077 | 0.014 0.59 1.02 0.97 0.20
1.250 | 7.75e-03 | 0.129 | 8.27e+02 | 0.129 | 0.050 | 0.015 0.73 1.04 0.87 0.40
d+Au 60-88%, Nyprig = 3.739¢ + 06
pr oYy ocy Y Oy € O¢ SJriBMPC Cleak: Cbcorr APTAU
0.625 | 2.81e-02 | 0.113 | 2.44e+403 | 0.112 | 0.059 | 0.012 0.45 1.03 0.96 0.20
0.875 | 3.33e-02 | 0.063 | 2.79¢+03 | 0.062 | 0.080 | 0.012 0.64 1.02 0.96 0.20
1.250 | 6.79e-03 | 0.138 | 6.84e4-02 | 0.138 | 0.052 | 0.012 0.77 1.04 0.86 0.40
P+P, Nirig = 1.716e + 06
pr oYy ocy Y Oy € O¢ S-FLBMPC Cleak Cbcorr APTATI
0.625 | 4.53e-02 | 0.099 | 1.55e+03 | 0.098 | 0.060 | 0.010 0.54 1.03 0.95 0.20
0.875 | 2.29¢-02 | 0.117 | 8.21e402 | 0.117 | 0.082 | 0.010 0.71 1.02 0.95 0.20
1.250 | 8.86e-03 | 0.123 | 4.01e+02 | 0.123 | 0.052 | 0.010 0.81 1.04 0.83 0.40
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Table E.2: Conditional and Raw Yields, V4, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, Cluster pr = 1.5 — 2.0 GeV/c.

d+Au 0-20%, Nypig = 1.312e + 06
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 1.96e-02 | 0.318 | 6.48e+02 | 0.318 | 0.052 | 0.016 0.36 1.04 0.96 0.20
0.875 | 1.52e-02 | 0.217 | 4.82e+402 | 0.217 | 0.076 | 0.014 0.57 | 1.02 0.96 0.20
1.250 | 1.01e-02 | 0.224 | 3.71e402 | 0.224 | 0.051 | 0.015 0.72 1.04 0.88 0.40
d+Au 20-40%, Nypig = 1.228¢ + 06
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 2.75e-02 | 0.250 | 8.65e+02 | 0.250 | 0.053 | 0.015 0.37 1.03 0.96 0.20
0.875 | 2.86e-02 | 0.132 | 8.56e+02 | 0.132 | 0.077 | 0.014 0.57 | 1.02 0.96 0.20
1.250 | 9.92e-03 | 0.195 | 3.34e+02 | 0.194 | 0.051 | 0.015 0.72 1.05 0.88 0.40
d+Au 40-60%, Ny.;, = 9.918¢ + 05
pr cYy ocy Y Oy € Oc S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 4.36e-02 | 0.142 | 1.11e4+03 | 0.142 | 0.057 | 0.015 0.39 1.03 0.96 0.20
0.875 | 2.57e-02 | 0.164 | 5.95e+02 | 0.163 | 0.077 | 0.014 0.59 1.02 0.97 0.20
1.250 | 5.02e-03 | 0.440 | 1.33e+02 | 0.440 | 0.050 | 0.015 0.73 1.04 0.87 0.40
d+Au 60-88%, Nypig = 8.714e + 05
pr oYy ocy Y Oy € Oe SJriBMPC Cleak: Cbcorr APTAU
0.625 | 4.70e-02 | 0.133 | 9.56e+02 | 0.133 | 0.059 | 0.012 0.45 1.03 0.96 0.20
0.875 | 3.53e-02 | 0.124 | 6.87e+02 | 0.124 | 0.080 | 0.012 0.64 1.02 0.96 0.20
1.250 | 1.02e-02 | 0.195 | 2.39e4-02 | 0.195 | 0.052 | 0.012 0.77 1.04 0.86 0.40
P+P, Nirig = 3.370e + 05
pr oYy ocy Y Oy € O¢ S-FLBMPC Cleak Cbcorr APTATI
0.625 | 8.57e-02 | 0.132 | 5.78e+02 | 0.132 | 0.060 | 0.010 0.54 1.03 0.95 0.20
0.875 | 3.99¢-02 | 0.155 | 2.81e+02 | 0.154 | 0.082 | 0.010 0.71 1.02 0.95 0.20
1.250 | 8.27e-03 | 0.357 | 7.33e+01 | 0.357 | 0.052 | 0.010 0.81 1.04 0.83 0.40
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Table E.3: Conditional and Raw Yields, V4, efficiencies, corrections, and Relative stat errors for 3.0 <
n < 3.8, Cluster pr > 2.0 GeV/c.

d+Au 0-20%, Nypig = 3.654e + 05
pr oYy ocy Y Oy € O¢ &FLBAIPC Cleak Cbcorr APTAU
0.625 | 4.39¢-02 | 0.241 | 4.05e+02 | 0.241 | 0.052 | 0.016 0.36 1.04 0.96 0.20
0.875 | 3.31e-02 | 0.203 | 2.93e+02 | 0.202 | 0.076 | 0.014 0.57 | 1.02 0.96 0.20
1.250 | 1.27e-02 | 0.264 | 1.30e4-02 | 0.263 | 0.051 | 0.015 0.72 1.04 0.88 0.40
d+Au 20-40%, Ny = 3.389¢ + 05
pr CY | ocy Y oy € oc | 525 upe | Crear | Cocorr | AprAn
0.625 | 2.82e-02 | 0.340 | 2.45e+02 | 0.339 | 0.053 | 0.015 0.37 1.03 0.96 0.20
0.875 | 4.03e-02 | 0.172 | 3.32e+02 | 0.172 | 0.077 | 0.014 0.57 | 1.02 0.96 0.20
1.250 | 6.80e-03 | 0.468 | 6.30e+01 | 0.467 | 0.051 | 0.015 0.72 1.05 0.88 0.40
d+Au 40-60%, N;.i, = 2.672¢ + 05
pr cYy ocy Y Oy € O¢ S-FLBJWPC Cleak Cbcorr APTAU
0.625 | 6.77e-02 | 0.167 | 4.67e+02 | 0.167 | 0.057 | 0.015 0.39 1.03 0.96 0.20
0.875 | 4.60e-02 | 0.182 | 2.87e+02 | 0.181 | 0.077 | 0.014 0.59 1.02 0.97 0.20
1.250 | 1.81e-02 | 0.217 | 1.29e+02 | 0.216 | 0.050 | 0.015 0.73 1.04 0.87 0.40
d+Au 60-88%, Nypig = 2.227¢ + 05
pr oYy ocy Y Oy € O¢ SJriBMPC Cleak: Cbcorr APTAU
0.625 | 8.81e-02 | 0.141 | 4.60e+4-02 | 0.141 | 0.059 | 0.012 0.45 1.03 0.96 0.20
0.875 | 4.78e-02 | 0.200 | 2.38e+02 | 0.200 | 0.080 | 0.012 0.64 1.02 0.96 0.20
1.250 | 2.13e-02 | 0.189 | 1.27e+02 | 0.189 | 0.052 | 0.012 0.77 1.04 0.86 0.40
P+P, Nirig = 7.558¢e + 04
Pr CY | ocy Y oy € o | 525 upe | Creak | Cocorr | AprAn
0.625 | 1.25e-01 | 0.169 | 1.89e+402 | 0.169 | 0.060 | 0.010 0.54 1.03 0.95 0.20
0.875 | 6.97e-02 | 0.217 | 1.10e402 | 0.217 | 0.082 | 0.010 0.71 1.02 0.95 0.20
1.250 | 9.96e-03 | 0.448 | 1.97e+01 | 0.448 | 0.052 | 0.010 0.81 1.04 0.83 0.40
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E.1.2 Conditional Yields and Relative Errors

In this section, the terms that are present in the tables are as follows:

pr Transverse momentum of the bin center,

CYy Conditional yield, or the area of the correlated di-hadron signal per trigger particle detected,

H%M PrPC Fraction of counts in 7° mass window, 0.08 < m;,, < 0.18 GeV/c? that are actually signal
70s (as opposed to background counts),

S_s_iBtm'g 1 for clusters,

Sefyf Systematic error from yield extraction, input spectrum shape, energy scale, and GEANT,

Ssb Systematic error from contributions of the background under the 7° peak to the CF,

Szyam Systematic error from ZYAM subtraction, some of which cancels when taking the ratio
between p+p and d+Au,

Stot Total systematic error on the CY,

W Gaussian width of the awayside peak.
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Table E.4: Conditional Yields, widths, Relative sys, stat errors for 3.0 < n < 3.8, Cluster pr = 1.0 — 1.5
GeV/ec.

d+Au 0-20%
pT oYy ocy S'JriB]MPC S’JriBt,,_ig Seff Ssb Szyam Stot w Ow
0.625 | 1.18e-02 | 0.258 0.360 1.000 | 0.104 | 0.256 | 2.705 | 0.276 | 0.754 | 0.303
0.875 | 5.18e-03 | 0.303 0.568 1.000 | 0.113 | 0.173 | 2.416 | 0.207 | 0.523 | 0.273
1.250 | 4.66e-03 | 0.212 0.717 1.000 | 0.132 | 0.113 | 1.503 | 0.174 | 0.852 | 0.241
d+Au 20-40%
pT gy ocy S'JriBA{PC S’JriBtrig Seff Ssb Szyam Stot w Ow
0.625 | 9.32e-03 | 0.259 0.367 1.000 | 0.102 | 0.253 | 2.345 | 0.273 | 0.428 | 0.291
0.875 | 1.13e-02 | 0.155 0.571 1.000 | 0.113 | 0.171 | 2.034 | 0.205 | 0.627 | 0.134
1.250 | 5.08e-03 | 0.183 0.720 1.000 | 0.132 | 0.112 | 1.767 | 0.173 | 0.675 | 0.189
d+Au 40-60%
pT oYy ocy SJrLB]uPC SJrLBtM,g Seff Ssb | Szyam Stot w Ow
0.625 | 1.540-02 | 0.176 0.392 | 1.000 | 0.100 | 0.243 | 1.627 | 0.263 | 0.446 | 0.210
0.875 | 1.30e-02 | 0.154 0.591 1.000 | 0.112 | 0.164 | 1.292 | 0.198 | 0.538 | 0.180
1.250 | 7.75e-03 | 0.129 0.733 1.000 | 0.133 | 0.107 | 1.539 | 0.171 | 0.650 | 0.136
d+Au 60-88%
pT oYy ocy SJrLBMPC SJrLBtri,g Seff Ssb Szyam Stot w Ow
0.625 | 2.81¢-02 | 0.113 0.451 1.000 | 0.101 | 0.220 | 1.955 | 0.242 | 0.656 | 0.113
0.875 | 3.33e-02 | 0.063 0.644 1.000 | 0.115 | 0.142 | 1.409 | 0.183 | 0.715 | 0.061
1.250 | 6.79e-03 | 0.138 0.766 1.000 | 0.135 | 0.094 | 1.386 | 0.164 | 0.682 | 0.140
pP+p
pr cYy ocy SJrLBMPC S'J’,LBtrig Seff Ssb Szyam Stot w Ow
0.625 | 4.53e-02 | 0.099 0.536 1.000 | 0.107 | 0.186 | 1.522 | 0.214 | 0.677 | 0.107
0.875 | 2.29e-02 | 0.117 0.712 1.000 | 0.122 | 0.115 | 1.198 | 0.167 | 0.774 | 0.128
1.250 | 8.86e-03 | 0.123 0.813 1.000 | 0.142 | 0.075 | 1.042 | 0.160 | 0.710 | 0.130
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Table E.5: Conditional Yields, widths, Relative sys, stat errors for 3.0 < n < 3.8, Cluster pr = 1.5 — 2.0
GeV/ec.

d+Au 0-20%
pT oYy ocy S'JriB]MPC S’JriBt,,_ig Seff Ssb Szyam Stot w Ow
0.625 | 1.96e-02 | 0.318 0.360 1.000 | 0.104 | 0.256 | 1.888 | 0.276 | 0.869 | 0.402
0.875 | 1.52e-02 | 0.217 0.568 1.000 | 0.113 | 0.173 | 1.063 | 0.207 | 0.520 | 0.235
1.250 | 1.01e-02 | 0.224 0.717 1.000 | 0.132 | 0.113 | 1.331 | 0.174 | 0.833 | 0.311
d+Au 20-40%
pT gy ocy S'JriBA{PC S’JriBtrig Seff Ssb Szyam Stot w Ow
0.625 | 2.75e-02 | 0.250 0.367 1.000 | 0.102 | 0.253 | 1.863 | 0.273 | 0.759 | 0.319
0.875 | 2.86e-02 | 0.132 0.571 1.000 | 0.113 | 0.171 | 1.548 | 0.205 | 0.671 | 0.145
1.250 | 9.92e-03 | 0.195 0.720 1.000 | 0.132 | 0.112 | 1.200 | 0.173 | 0.857 | 0.199
d+Au 40-60%
pT oYy ocy SJrLB]uPC SJrLBtM,g Seff Ssb | Szyam Stot w Ow
0.625 | 4.360-02 | 0.142 0.392 | 1.000 | 0.100 | 0.243 | 1.272 | 0.263 | 0.858 | 0.120
0.875 | 2.57e-02 | 0.164 0.591 1.000 | 0.112 | 0.164 | 1.575 | 0.198 | 0.759 | 0.153
1.250 | 5.02e-03 | 0.440 0.733 1.000 | 0.133 | 0.107 | 1.279 | 0.171 | 1.186 | 0.385
d+Au 60-88%
pT oYy ocy SJrLBMPC SJrLBtri,g Seff Ssb Szyam Stot w Ow
0.625 | 4.700-02 | 0.133 0.451 1.000 | 0.101 | 0.220 | 1.568 | 0.242 | 0.626 | 0.123
0.875 | 3.53e-02 | 0.124 0.644 1.000 | 0.115 | 0.142 | 1.257 | 0.183 | 0.711 | 0.123
1.250 | 1.02e-02 | 0.195 0.766 1.000 | 0.135 | 0.094 | 0.567 | 0.164 | 0.554 | 0.249
pP+p
pr cYy ocy SJrLBMPC S'J’,LBtrig Seff Ssb Szyam Stot w Ow
0.625 | 8.57e-02 | 0.132 0.536 1.000 | 0.107 | 0.186 | 1.175 | 0.214 | 0.794 | 0.153
0.875 | 3.99¢-02 | 0.155 0.712 1.000 | 0.122 | 0.115 | 1.132 | 0.167 | 0.738 | 0.169
1.250 | 8.27e-03 | 0.357 0.813 1.000 | 0.142 | 0.075 | 1.104 | 0.160 | 0.411 | 0.390
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Table E.6: Conditional Yields, widths, Relative sys, stat errors for 3.0 < n < 3.8, Cluster pr > 2.0 GeV/c.

d+Au 0-20%
pr oYy ocy S-FLBMPC S"‘iBtrig Seff Ssb Szyam Stot w Ow
0.625 | 4.39¢-02 | 0.241 0.360 1.000 | 0.104 | 0.256 | 1.203 | 0.276 | 1.012 | 0.257
0.875 | 3.31e-02 | 0.203 0.568 1.000 | 0.113 | 0.173 | 1.359 | 0.207 | 0.742 | 0.196
1.250 | 1.27e-02 | 0.264 0.717 1.000 | 0.132 | 0.113 | 0.883 | 0.174 | 0.912 | 0.238
d+Au 20-40%
pr oYy ocy SJrLBMPC SJFiBtrig Seff Ssb Szyam Stot w Ow
0.625 | 2.82e-02 | 0.340 0.367 1.000 | 0.102 | 0.253 | 1.905 | 0.273 | 0.645 | 0.275
0.875 | 4.03e-02 | 0.172 0.571 1.000 | 0.113 | 0.171 | 1.318 | 0.205 | 0.747 | 0.147
1.250 | 6.80e-03 | 0.468 0.720 1.000 | 0.132 | 0.112 | 1.254 | 0.173 | 0.609 | 0.530
d+Au 40-60%
pr oYy ocy SJrLBMPC SJFiBtrig Seff Ssb Szyam Stot w Ow
0.625 | 6.77e-02 | 0.167 0.392 1.000 | 0.100 | 0.243 | 1.395 | 0.263 | 0.701 | 0.161
0.875 | 4.60e-02 | 0.182 0.591 1.000 | 0.112 | 0.164 | 1.315 | 0.198 | 0.807 | 0.197
1.250 | 1.81e-02 | 0.217 0.733 1.000 | 0.133 | 0.107 | 0.574 | 0.171 | 0.571 | 0.256
d+Au 60-88%
pr gy ocy S'JrLBMPC S'JriBt”'g Seff Ssb Szyam Stot w Ow
0.625 | 8.81e-02 | 0.141 0.451 1.000 | 0.101 | 0.220 | 1.210 | 0.242 | 0.691 | 0.125
0.875 | 4.78e-02 | 0.200 0.644 1.000 | 0.115 | 0.142 | 1.182 | 0.183 | 0.867 | 0.233
1.250 | 2.13e-02 | 0.189 0.766 1.000 | 0.135 | 0.094 | 1.064 | 0.164 | 0.730 | 0.167
. . pP+p
pr cYy ocy S+B MPC mt’riy Seff Ssb | Szyam Stot w Ow
0.625 | 1.25e-01 | 0.169 0.536 1.000 | 0.107 | 0.186 | 0.995 | 0.214 | 0.729 | 0.178
0.875 | 6.97e-02 | 0.217 0.712 1.000 | 0.122 | 0.115 | 0.940 | 0.167 | 0.899 | 0.265
1.250 | 9.96e-03 | 0.448 0.813 1.000 | 0.142 | 0.075 | 1.124 | 0.160 | 0.300 | 0.201
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E.1.3 Ija, Jgao and Relative Errors

In this section, the terms that are present in the tables are as follows:

pr Transverse momentum of the bin center,

TETN Ratio of CYs between d+Au and p+p,

Jaa Correlated di-hadron nuclear modification factor formed by taking the ratio between mea-
sured di-hadron yields in d4+Au per N¢o and di-hadron yields in p+p. In practice, the
formula Jaa = laa,trig X Raarig is used,

Seff.IdA Systematic error from yield extraction, input spectrum shape, energy scale, and GEANT
with cancellations taken into account for Iga,

SSB,IdA Systematic error from contributions of the background under the 70 peak to the CF with
cancellations taken into account for Iqa,

SZY AM,IdA Asymmetric error from ZYAM subtraction to Iqa,

Stot,I1dA Total asymmetric systematic error on Iga,

Stot,JdA Total asymmetric systematic error on Jga.

Table E.7: Ij4,J44 relative sys, stat errors for 3.0 < n < 3.8, Cluster pr = 1.0 — 1.5 GeV/c.

d+Au 0-20%, Rz4 = 0.291 £ 0.0186 (stat) +0.080 (sys)

pr lga | o144 JdA | 07dA | Seff1dA | SSB,IdA | SZYAM,IdA Stot,IdA Stot,JdA

0.625 | 0.321 | 0.175 | 0.093 | 0.176 0.074 0.256 | -0.272/1.113 | -0.381/1.145 | -0.389/1.148

0.875 | 0.263 | 0.222 | 0.077 | 0.223 0.064 0.173 | -0.239/1.248 | -0.302/1.261 | -0.312/1.264

1.250 | 0.350 | 0.210 | 0.102 | 0.210 0.078 0.113 | -0.248/0.952 | -0.283/0.962 | -0.295/0.966
d+Au 20-40%, Rqa = 0.431 +0.0186 (stat) +0.082 (sys)

pT Iga | 0144 JdA | OjdA | Seff,1dA | SSBIdA | SzZYAM,IdA Stot,IdA Stot, JdA

0.625 | 0.343 | 0.173 | 0.148 | 0.174 0.071 0.253 | -0.254/1.023 | -0.366/1.057 | -0.375/1.060

0.875 | 0.511 | 0.141 | 0.220 | 0.142 0.065 0.171 | -0.239/0.849 | -0.302/0.869 | -0.312/0.873

1.250 | 0.505 | 0.163 | 0.218 | 0.164 0.079 0.112 | -0.230/0.788 | -0.268/0.800 | -0.280/0.804
d+Au 40-60%, Rqa = 0.589 £ 0.0186 (stat) £0.081 (sys)

pr lga | 0144 JaA | 07dA | Seff1dA | SSB,IdA | SZYAM,IdA Stot,IdA Stot,JdA

0.625 | 0.375 | 0.175 | 0.221 | 0.176 0.069 0.243 | -0.191/0.803 | -0.317/0.842 | -0.327/0.846

0.875 | 0.573 | 0.134 | 0.337 | 0.135 0.065 0.164 | -0.164/0.558 | -0.241/0.586 | -0.254/0.591

1.250 | 0.871 | 0.123 | 0.513 | 0.125 0.078 0.107 | -0.202/0.546 | -0.241/0.562 | -0.254/0.568
d+Au 60-88%, Rqa = 0.805 £ 0.0169 (stat) £0.078 (sys)

pr Tia | o144 JaA | 07dA | Seff.1dA | SSB,IdA | SZYAM,IdA Stot,IdA Stot,JdA

0.625 | 0.709 | 0.106 | 0.571 | 0.108 0.068 0.220 | -0.167/0.377 | -0.284/0.441 | -0.295/0.448

0.875 | 1.405 | 0.094 | 1.131 | 0.096 0.064 0.142 | -0.159/0.324 | -0.223/0.359 | -0.236/0.368

1.250 | 0.708 | 0.131 | 0.570 | 0.132 0.076 0.094 | -0.138/0.355 | -0.183/0.375 | -0.199/0.383
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Table E.8: Ij4,J44 relative sys, stat errors for 3.0 < n < 3.8, Cluster pr = 1.5 — 2.0 GeV/c.

d+Au 0-20%, Ry = 0.381 £ 0.1012 (stat) £0.164 (sys)

pr Iga | o144 JdA | 0jdA | Seff1dA | SSB,IdA | SZY AM,IdA Stot,IdA Stot,JdA
0.625 | 0.236 | 0.209 | 0.090 | 0.232 0.074 0.256 | -0.266,/0.927 | -0.377/0.965 | -0.411/0.979
0.875 | 0.377 | 0.213 | 0.144 | 0.236 0.064 0.173 —0.258/0.866 -0.317/0.886 —0.357/0.901
1.250 | 0.617 | 0.235 | 0.235 | 0.256 0.078 0.113 | -0.274/0.684 -0.306/0.698 -0.347/0.717

d+Au 20-40%, Rqa = 0.568 £ 0.0966 (stat) £0.165 (sys)

pr Iga OIdA Jaa | 044 Seff,IdA | SSB,IdA SZY AM,IdA Stot,IdA Stot,JdA
0.625 | 0.282 | 0.184 | 0.160 | 0.208 0.071 0.253 | -0.229/0.903 | -0.349/0.941 | -0.386/0.955
0.875 | 0.699 | 0.153 | 0.397 | 0.181 0.065 0.171 —0.251/0.665 -0.311/0.690 —0.352/0.710
1.250 | 0.838 | 0.206 | 0.476 | 0.228 0.079 0.112 —0.283/0.543 -0.315/0.560 -0.355/0.584

d+Au 40-60%, Rqa = 0.754 £ 0.0988 (stat) £0.153 (sys)

pr Iga OIdA Jaa OJdA | Seff,IdA | SSB,IdA SZY AM,IdA Stot,IdA Stot,JdA
0.625 | 0.434 | 0.144 | 0.327 | 0.175 0.069 0.243 | -0.203/0.564 | -0.324/0.618 | -0.359/0.637
0.875 | 0.663 | 0.168 | 0.500 | 0.194 0.065 0.164 —0.207/0.535 -0.272/0.564 —0.312/0.584
1.250 | 0.737 | 0.232 | 0.556 | 0.252 0.078 0.107 —0.246/0.427 -0.279/0.447 -0.319/0.473

d+Au 60-88%, Rqa = 0.978 £ 0.0891 (stat) £0.168 (sys)

T Iga | 0144 JdA | OjdA | Seff,ldA | SSBIdA | SzZYAM,IdA Stot,IdA Stot, JdA
0.625 | 0.621 | 0.120 | 0.607 | 0.149 0.068 0.220 | -0.138/0.398 | -0.268/0.460 | -0.316/0.490
0.875 | 0.835 | 0.151 | 0.816 | 0.175 0.064 0.142 —0.160/0.301 -0.223/0.339 —0.279/0.378
1.250 | 0.737 | 0.224 | 0.720 | 0.241 0.076 0.094 —0.163/0.289 -0.203/0.313 —0.263/0.355

Table E.9: I 4,J44 relative sys, stat errors for 3.0 < n < 3.8, Cluster pr = 2.0 — 5.0 GeV/c.
d+Au 0-20%, R4a = 0.427 £0.0000 (stat) +0.205 (sys)

PT lga | 0144 JdA | 0jdA | Seff1dA | SSBIdA | SzYAM,1dA Stot,IdA Stot,JdA
0.625 | 0.448 | 0.185 | 0.191 | 0.185 0.074 0.256 | -0.271/0.764 | -0.380/0.810 | -0.432/0.835
0.875 | 0.409 | 0.210 | 0.174 | 0.210 0.064 0.173 —0.281/0.736 -0.336/0.759 —0.394/0.786
1.250 | 0.914 | 0.293 | 0.390 | 0.293 0.078 0.113 —0.333/0.534 -0.360/0.551 -0.415/0.588

d+Au 20-40%, Rqa = 0.638 £ 0.0000 (stat) £0.232 (sys)

pT Iga | 0144 JdA | OjdA | Seff,ldA | SSB,IdA | SzZYAM,IdA Stot,IdA Stot, JdA
0.625 | 0.232 | 0.270 | 0.148 | 0.270 0.071 0.253 | -0.225/0.948 | -0.346/0.984 | -0.417/1.011
0.875 | 0.613 | 0.178 | 0.391 | 0.178 0.065 0.171 —0.256/0.629 -0.315/0.655 —0.391/0.695
1.250 | 0.567 | 0.385 | 0.362 | 0.385 0.079 0.112 —0.280/0.651 -0.312/0.666 —0.388/0.705

d+Au 40-60%, Rqa = 0.839 £ 0.0000 (stat) £0.239 (sys)

pT Iga | 0144 JdA | OjdA | Seff,ldA | SSB,IdA | SzYAM,IdA Stot,IdA Stot, JdA
0.625 | 0.549 | 0.171 | 0.460 | 0.171 0.069 0.243 | -0.207/0.575 | -0.327/0.628 | -0.405/0.672
0.875 | 0.540 | 0.199 | 0.453 | 0.199 0.065 0.164 | -0.191/0.570 | -0.260/0.597 | -0.353/0.643
1.250 | 0.850 | 0.309 | 0.713 | 0.309 0.078 0.107 —0.236/0.461 -0.271/0.480 —0.361/0.536

d+Au 60-88%, Rqa = 1.066 £ 0.0000 (stat) £0.253 (sys)

pT Iy | oraa JdA | OjdA | Seff,IdA | SSBIdA | SzZYAM,IdA Stot,IdA Stot, JdA
0.625 | 0.769 | 0.153 | 0.820 | 0.153 0.068 0.220 | -0.163/0.279 | -0.282/0.362 | -0.379/0.441
0.875 | 0.682 | 0.185 | 0.728 | 0.185 0.064 0.142 | -0.139/0.351 | -0.209/0.384 | -0.328/0.460
1.250 | 1.452 | 0.263 | 1.549 | 0.263 0.076 0.094 —0.205/0.198 -0.238/0.232 —0.347/0.343
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E.2 MPC Cluster/n’ Correlation Functions
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pr bins.
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Figure E.6: dAu 40-60%, Rapidity = 3.0-3.8: MPC Cluster/7° correlation functions and fits for all pr
bins.
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Figure E.7: dAu 40-60%, Rapidity = 3.0-3.8: MPC Cluster/m° Background subtracted correlation
functions and fits for all pr bins. The p+p reference is in blue.
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