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Abstract

This thesis focuses on developing a standard theoretical framework to study the bulk dynamics

and electromagnetic probes of ultra-relativistic heavy-ion collisions, which are presently studied ex-

perimentally at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC).

We developed a modular numerical package with different (exchangeable) modular describing dif-

ferent evolution stages of the expanding fireball created in these collisions. For each stage of

the collisions, we will give a detailed description of the theoretical model and its corresponding

numerical implementation, supplemented with code checking tests.

With this framework, we then perform a broad range of phenomenological studies of the bulk

dynamics of relativistic heavy-ion collisions from RHIC to LHC energies. Our simulations are

compared with various soft hadronic observables, in which the transverse momenta of the hadrons

are less than 3 GeV/c. (This includes more than 99% of all particles created in the collision.)

These comparisons help us to tightly constrain our theoretical modeling of the fireball evolution

and to extract information about the transport properties of the quark-gluon plasma (QGP) as

well as about the initial state fluctuation spectrum. We also explore the sensitivity of the hadronic

observables to a possible temperature dependence of the QGP specific shear viscosity. The collision

energy dependences of hadron spectra and elliptic flow coefficients are studied with our model,

providing a qualitative baseline for comparison with recent data from the RHIC Beam Energy

Scan (BES) program.

Due to the smallness of the electromagnetic coupling compared to the strong interaction,

electromagnetic probes in relativistic heavy-ion collisions can provide us with early dynamical

evolution information complementary to that obtained from hadronic observables. The emission

of direct photons from relativistic heavy-ion collisions is studied. We derive the off-equilibrium

corrections to thermal photon emission rates at leading order in O( π
µν

e+P ), where πµν , e, and P
are the system’s shear stress tensor, local energy density, and pressure, respectively. We perform

event-by-event simulations for direct as well as hadronic decay photons for relativistic heavy-ion

collisions and compare our results with experimental measurements. We map out the space-

time structure of thermal photon emission and find that the slope of the measured direct photon

spectrum is strongly blue-shifted by the hydrodynamic radial flow. The anisotropic flows of direct

photons show a larger sensitivity to the shear pressure tensor of the system than the analogous
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hadronic observables. This can be used as a sensitive viscometer for the QGP medium created in

relativistic heavy-ion collisions.
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Chapter 1: Introduction

The relativistic heavy-ion collision experiments conducted at the Relativistic Heavy-Ion Col-

lider (RHIC) and the Large Hadron Collider (LHC) create fireballs with temperatures that can

reach several trillion degrees Kelvin once they reach a state of approximate local thermal equi-

librium a short period (∼ 3 × 10−24s) after the collisions. These experiments open a privileged

window for studying strongly interacting nuclear matter under extremely hot and dense condi-

tions. These “little bangs” are almost point-like in size (V ∼ 10−42m3) and disappears almost

instantaneously (∼ 5 × 10−23s). Compared to the big bang of our universe, although they differ

dramatically in geometric size and are governed by different fundamental physics (gravity for the

big bang, but strong interaction for the little bang), the dynamical evolution of the little bangs

share a lot of similarities with the big bang [1].

1.1 The big bang and little bangs

In Fig. 1.1, we sketch the conceptual time-line of the evolution of the big bang and the little

bangs. For the little bangs, the fireballs are compressed into a hot and high density matter right

after the collision,. This generates huge pressure gradients pointing outward from the fireball

center, which leads to a rapid, explosive expansion. Such a strong collective expansion develops a

Hubble-like velocity profile which is similar to the expansion of our universe.

The rapid expansion causes both systems to exhibit a hierarchy of sequential decoupling pro-

cesses that are driven by the competition between the macroscopic expansion rate and the micro-

scopic interaction strength.

In both systems, chemical freeze-out happens before kinetic decouple. From about 10 seconds

to 20 minutes after the big bang, the process of big bang nucleosynthesis (BBN) take places,

resulting in the formation of most of the He and d nuclei in our universe [2]. As the universe

expands and cools during BBN, the relative ratio between the yields of protons and neutrons

freezes out at about 3 minutes after the big bang. A similar chemical freeze out process happens

during the hadronization stage of the little bang evolution. This happens at around a temperature

of T ∼ 165 MeV (∼ 2∗1012 K), corresponding to a time ∼ 10 fm/c (3×10−23s) after the collision.

1



! "

Figure 1.1: Artistic time line of the big bang and the little bangs. The plot for the big bang is
taken from http://en.wikipedia.org/wiki/Big_Bang.

After the chemical freeze-out, the relative yields of the stable hadrons remain fixed in the little

bangs.
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Even after their chemical compositions have been fixed, both systems continue to expand in

(approximate) thermal equilibrium and undergo a kinetic freeze out at lower density. In the

big bang, the universe becomes transparent to light at an age of 380,000 years caused by the

recombination of free charges into neutral atom. This freezes out the thermal distribution of the

CMB at that moment. By measuring the CMB to good precision, it enables us to reconstruct the

dynamical evolution of the early universe. In the little bangs, hadrons stop scattering elastically

with each other at around T = 100 − 120 MeV (∼ 15 fm/c after the collision) and free-stream

to the detectors afterward. There is a huge space-time gap between kinetic freeze-out and the

actual measurement of the event (about 15 orders of magnitude difference in time and space). By

analyzing the momentum correlations of identical particle pairs (a technique known as particle

“femtoscopy”), we can reconstruct quite a bit of the spatial information about the fireball at

kinetic freeze out [3].

Due to the short lifetime of the fireball between collision and freeze out, in conjunction with

the fast expansion rate, the fireball will never achieve global thermal equilibrium during the

heavy-ion collision. So the initial state quantum fluctuations are not completely washed out

but rather imprint their trace on the final observables. Similar to the way in which measuring

the polarization of the CMB can be traced back to the beginning of inflation in the Big Bang,

the measured particle momentum distribution and its anisotropic flow coefficients in relativistic

heavy-ion collisions contain valuable information about the initial state fluctuation and the viscous

dissipation of the medium.

However, unlike the big bang, the standard model of relativistic heavy-ion collision has not

been completely developed yet. The work that will be presented in my thesis are our contributions

towards building such a model for the little bangs. With such a model, there is even more to explore

in understanding the nuclear matter under extreme conditions.

The nuclei of todays ordinary atoms and the QGP represent two different phases of matter

whose constituents interact through the strong interaction. One of the main goal of relativistic

heavy-ion collisions is to explore and map out the phase diagram of the nuclear matter as illustrated

in Fig. 1.2. In particular, the current RHIC Beam Energy Scan (BES) experiments are now focused

on determining the phase boundary between the normal nuclear matter and QGP and search for

a possible critical end point of a first order phase transition at large net baryon density to a rapid

but smooth cross over at small net baryon density. In order to quantify this phase diagram and

turn it into a scientific plot, we need both precision measurements and state-of-the-art theoretical

model descriptions of relativistic heavy-ion collisions for a wide range of the collision energies from

RHIC to LHC. This is really a big challenge for both theory and experiment, but it drives our

field to move forward rapidly.
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Figure 1.2: Artistic sketch of the QCD phase diagram for nuclear matter. The picture is take from
http://www.bnl.gov/newsroom/news.php?a=11446

1.2 The standard model of relativistic heavy-ion collisions

The evolution of a relativistic heavy-ion collisions contain multiple stages which are governed

by different underlying physics. Right after the collisions, the system is dominated by gluons

characterized by an over populated phase-space distribution [4]. The number of gluons is of order

∼ 1
g2 with g < 1 and these gluons carry each a very small fraction of the longitudinal momentum

of the incoming nucleus (small-x gluons). During the first 1 fm/c, due to the large occupation

number of gluon at leading order in strong coupling g, these saturated small-x gluons will evolve

according to the classical Yang-Mills equation of motion. It is believed that the next-to-leading

order quantum corrections to the classical field evolution drive the system rapidly towards local

isotropy in momentum space [5, 6] and somewhat later to local thermal equilibrium. After 0.3−0.5

fm/c, the system achieves approximately local momentum isotropy; local thermal equilibrium is

reached after a few fm/c. The quarks and gluons that are produced after the collision form a
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Figure 1.3: Illustration of the evolution of the fireball created in the relativistic heavy-ion collisions
together with the theoretical model used in each stage.

strongly coupled plasma (QGP). The dynamics of the QGP can be described by macroscopic

viscous hydrodynamics where the viscous corrections account for the remaining deviation from

local isotropy and thermal equilibrium. As the system expands and cools, it will smoothly crossover

from the QGP phase to a hadron gas phase according to the equation of state (EOS) determined

from Lattice QCD calculations. At hadronization, the quark-gluon fluid will convert into hadrons
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due to confinement. In the hadronic phase, the hadron cascade model can provide us a detailed

microscopic description of the evolution.

As the fireball continues to expand and cool, the collision rates between the hadronic resonances

decrease. First, the inelastic collisions between particles cease and the system reaches chemical

freeze-out almost directly after hadronization. After this point, only resonance decays and baryon-

antibaryon annihilation can change the particle yields. Regeneration of baryon-antibaryon pairs

is a rare process that can be neglected. As the system evolves further, the density of the fireball

becomes so low that the mean free time of the particles becomes much larger than the Hubble time

(i.e. the time over which the inter particle spacing doubles.) [1]. The particles reach kinetic freeze

out and subsequently free-stream to the detectors. In Fig. 1.3, we schematically summarize the

theoretical models and the corresponding codes that we will use to simulate the different stages

of heavy-ion collisions. We will explain them in detail in Chapter 2.

Figure 1.4: The evolution of the fireball in the transverse plane for one collision event with the
local temperature color coded. The white contour indicates kinetic freeze-out at Tkin = 120 MeV,
and the purple one represents chemical freeze-out at Tchem = 165 MeV. Charged hadron emission
is illustrated in the upper panels by the red dots; thermal photon emission is plotted in the lower
panels indicated by green dots. The number of photons per event has been multiplied by hand by
a factor of 10, for better visibility in view of the much small emission rate for photons.

In relativistic heavy-ion collisions, rare electromagnetic observables like photons and dileptons

only interact with the medium through the electromagnetic interaction, which is much weaker than

the strong interaction. For this reason, their mean free path is much longer than the system size,

and hence they suffer negligible final state interactions after they are produced during the fireball

evolution. This advantage over strongly interacting probes makes them the cleanest penetrating

probe for the heavy-ion collisions. In Fig. 1.4, we illustrate the qualitative difference between the

charged hadron and thermal photon production in one typical heavy-ion collision. Hadrons can

only break free at the final kinetic freeze-out surface. Their measured momentum distribution

carries indirect time integrated evolution information about the fireball. On the other hand, a

large fraction of the thermal photons are produced early inside the fireball. Their momentum

distribution preserves the dynamical information of the medium directly at their birth points.
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Electromagnetic probes can thus provide us with constraints on the early dynamics of the fireball

that are complementary to those obtained from the much more abundant hadronic observables.

In Chapters 14 to 21, we will discuss in detail the study of these colorless penetrating probes in

relativistic heavy-ion collisions.

1.3 The road to precision: extraction of the specific QGP shear vis-
cosity

Figure 1.5: The fluid imperfection index 4π kB~
η
s

of various fluids as a function of temperature.
Picture taken from Tribble R (chair), Burrows A et al. 2013 Implementing the 2007 Long Range
Plan, Report to the Nuclear Science Advisory Committee, January 31, 2013. Available at http:

//science.energy.gov/np/nsac/reports/.

The anisotropic flow measurements at RHIC and LHC energies reveal that the created QGP

is strongly coupled and behaves almost like a “perfect” liquid. The quality of a fluid can be

characterized by its shear viscosity to entropy density ratio, η/s. We call this ratio the specific

shear viscosity. “Good” fluids are characterized by small η/s, η/s ≤ ~
kB

. In Fig. 1.5, we illustrate

schematically the specific shear viscosity η/s normalized by 1
4π

~
kB

, the minimum bound derived

from the limit of infinite strong coupling, for four different types of fluids. As we can see, the

QGP at the high temperature end of this Figure has the smallest value of η/s among all other

fluids occurring in nature. This finding has raised huge interest since 2000 in both theoretical

and experimental work to constrain this transport coefficient of the QGP in relativistic heavy-ion

collisions. Due to the short lifetime and explosive nature of the QGP created in such collisions,

the uncertainty in the extracted value of η/s and its temperature dependence is still large, as

indicated in Fig. 1.5.
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Figure 1.6: Time line of important experimental and theoretical developments leading towards
precise extraction of the specific shear viscosity of QGP. Plot taken from the “Hot & Dense
QCD White Paper”, solicited by the NSAC subcommittee on Nuclear Physics funding in the US.
Available at http://www.bnl.gov/npp/docs/Bass_RHI_WP_final.pdf.

On the theoretical side, the shear viscosity of QCD matter is challenging to calculate from

first principles. The relationship between transport coefficients and correlation functions in a

microscopic quantum field theory is provided by Kubo relations. In field theory, the shear viscosity
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can be computed using linear response theory from the following retarded correlation function,

η = lim
ω→0

lim
k→0

ρxy,xy(ω, k)

2ω

= lim
ω→0

lim
k→0

1

ω
Im

{
i

∫
dt

∫
d3xei(ωt−

~k·~x)Θ(t)

〈[
T xy(~x, t), T xy(~0, 0)

]〉}
, (1.1)

where ρxy,xy(ω, k) is called the spectral density. It can be related to the retarded correlation

function of the energy momentum tensor in the second line of Eq. (1.1) through the fluctuation-

dissipation theorem. At temperatures that are accessible in relativistic heavy-ion collisions at

RHIC and LHC energies, the strong coupling constant is not small. The leading order perturbative

results may contain large theoretical uncertainty when extrapolated to large values of gs. On the

other hand, since in Eq. (1.1) the shear viscosity depends on the spectral function ρxy,xy(ω, k)

in the real time formalism, it is very hard to compute this correlation function from Lattice

QCD, which is formulated in imaginary time and requires a non-trivial (ill-defined) analytical

continuation to real times, using limited information computed at a finite number of lattice points

along the imaginary time axis.

An alternative, phenomenological way of extracting the specific shear viscosity of the QGP is

to use macroscopic hydrodynamic simulations, and compare them with experimental data. Hy-

drodynamics is an effective approach which captures the low energy, long wavelength response

of the system, whose underlying dynamics is governed by the strong interaction. In this frame-

work, η/s is a free parameter in the model and can be constrained by fitting to the experimental

measurements. However, a precise extraction of η/s requires good control of all the other model

parameters at the same time and an overall consistent description of a large variety of observables

that have been measured in relativistic heavy-ion collisions. Again, this is challenging, but it is

the path I will pursue in this thesis.

Fortunately, through efforts in the development of the phenomenological models and improve-

ments in the precision of the anisotropic flows measurements, the extraction of the QGP η/s has

become increasingly accurate. Fig. 1.6 summarizes a time line of the developments on both theory

and experimental sides in our efforts to constrain η/s of the QGP over the past decade (left and

middle columns, respectively). In the right panel, we can see that the uncertainty of the value

of the QGP η/s has shrunk dramatically during the time period in which the work summarized

in this thesis was performed. The convergence is due to progress on both the theoretical and

experimental sides. At the current stage, theoretical models and experiment measurements are

both beginning to reach the sensitivity necessary to constrain even the temperature dependence

of (η/s)(T ), as well as that of other transport coefficients, such as the bulk viscosity and various

second-order transport coefficients.
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With higher statistics accumulated in the experiments, the anisotropic flow of rare probes,

like high-pT charged hadrons (pT > 10 GeV), direct photons, D mesons, J/ψ and etc., are being

measured to satisfactory precision. Compared to the bulk soft hadrons, the anisotropies of these

rare particles can probe earlier dynamics of the relativistic heavy-ion collisions. In principle,

they are more sensitive to the temperature dependence of η/s in the high temperature region. A

combined analysis of these rare observables with the anisotropic flow of charged hadrons will help

us to further constrain the theoretical model and improve the precision of our extraction of the

QGP transport coefficients.

However, in the past 3 years, a surprisingly large direct photon elliptic flow has been reported

by the PHENIX collaboration at RHIC and later on by the ALICE collaboration at LHC. All the

current theoretical models so far fail to describe the measured direct photon yield as well as its

anisotropy. This big challenge has become known in our field as the “direct photon flow puzzle”.

In the third part of my thesis (Chapters 14 to 21), we will discuss our recent improvements on the

theoretical side in the hopes of resolving this puzzle.

1.4 Notation

Throughout this thesis we adopt units in which ~ = c = kB = 1. The metric tensor in Cartesian

coordinates is taken to be gµν = diag(+1,−1,−1,−1) and in Milne coordinates (τ, x, y, η), gµν =

diag(+1,−1,−1,−τ 2), where τ =
√
t2 − z2 and η = 1

2
ln t+z

t−z . The projector onto the space

transverse to the fluid velocity uµ is defined by,

∆µν = gµν − uµuν . (1.2)

For any rank-2 tensor, a further double projection operator can be constructed as follows,

∆µν
αβ =

1

2
(∆µ

α∆ν
β + ∆µ

β∆ν
α)− 1

3
∆µν∆αβ. (1.3)

It picks out the part of the tensor that is orthogonal to uµ in both indices and traceless.

With ∆µν , the partial derivative ∂µ can be decomposed as:

∂µ = ∇µ + uµD, (1.4)

where ∇µ = ∆µν∂ν is the “transverse” component of the partial derivative ∂µ, and D = uµ∂µ

is the corresponding “longitudinal” component. In the fluid rest frame, D reduces to the time

derivative, and ∇µ reduces to the spacial gradient. In curvilinear Milne coordinates, the partial

derivative ∂µ in Cartesian coordinates should be replaced by the covariant derivative, dµ. For any

vector, dµA
ν = ∂µA

ν + ΓνµρA
ρ, where Γνµρ are the Christoffel symbols in the curved space. This
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procedure generalizes to tensors of higher rank as found in textbooks on differential geometry. In

Milne coordinates, the non-zero components of the Christoffel symbols are

Γτηη = τ, Γητη = Γηητ =
1

τ
. (1.5)

In the formalism for viscous hydrodynamics, we will have terms which involve derivatives of

flow velocity uµ:

θ ≡ ∂ · u scalar expansion rate,

σµν ≡ ∇〈µuν〉 = 1
2
(∇µuν +∇νuµ)− 1

3
∇µνθ velocity shear tensor

1.5 Outline

In this thesis, we build up a theoretical framework to model the relativistic heavy-ion collisions

from beginning to end. In Chapter 2, we will discuss in detail the theoretical models and their

corresponding numerical implementations for each stage of a relativistic heavy-ion collision. A

set of benchmark tests of the individual numerical codes are also included in this part of the

thesis. In Chapters 3 to 13, we will use this advanced tool to perform phenomenological studies

of the relativistic heavy-ion collisions in many different respects. We will discuss the comparisons

with the majority of the soft hadronic observables from RHIC to LHC, in which the momenta of

the hadrons are less than 3 GeV. These comparisons help us to tightly constrain our theoretical

modeling of the fireball evolution and to extract information about the transport properties of the

QGP and the initial state fluctuations. Chapters 14 to 21 of the thesis are devoted to the study

of the electromagnetic probes, in particular the thermal photon radiation in relativistic heavy-ion

collisions. Both theoretical developments in computing photon emission rates from first principles

and event-by-event phenomenological studies compared with experimental measurements will be

presented. Finally, we will highlight the most important conclusions in Chapter 22.
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Chapter 2: The iEBE code Package

This code package was developed together with Zhi Qiu, who shares equal credit for this effort.

2.1 Introduction

Relativistic heavy-ion collisions contain multi-phase dynamics, where each stage is governed by

different underlying physics. The iEBE package of dynamical simulation codes contains modules for

each of the different stages and interfaces them to form a complete dynamical evolution framework.

On the large scale, our package is modulated in terms of the different stages of the heavy-ion

collisions. Each component can be easily replaced by users’ own codes with minor changes in the

input/output(I/O) file formats. In order to utilize some advantages of each computation language

for different aspects of the package, our package contains codes in Fortran, C++, python, as well as

sqlite database. We have used a git repository for the daily development as well as maintenance.

In this chapter, we will start with an introduction of the general structure of our package, followed

by a detailed explanation of the underlying physics models that we employ to simulate the different

stages of relativistic heavy-ion collisions. For the different components, we also show some code

testing benchmark results for reference.

The entire integrated package is open source and can be freely downloaded from the following

git repository:

https://github.com/chunshen1987/iEBE.git

2.2 General Simulation Framework

Every relativistic heavy-ion collision is a multi-stage system. In our hybrid package, there is

a specific code simulating each stage of the evolution. A python shell script links all the individ-

ual programs together to perform large-scale event-by-event simulations of relativistic heavy-ion

collisions. The major components include the initial condition generator (superMC), a (2+1)-d

viscous hydrodynamic simulator (VISH2+1), a particle sampler (iSS), and a hadron cascade simu-

lator (UrQMD). In the next section, we will discuss in some detail the physics implemented in these

codes.
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To perform event-by-event simulations on multiple computing cores, for example using N cores

on a cluster, we divide the total number of events, Nev, into N jobs with M = Nev/N events in each

jobs. Then we submit these N jobs in parallel. The M events within each job run sequentially.

2.2.1 Work flow for a single sequential simulation

superMC 
Initial 

condition 
generator

VISHNew 
Hydrodynamics 

simulator

iSS 
Particle 
emission 
sampler

binUtilities 
Spectra and 

flow calculator

osc2u 
prepare 
UrQMD 

ICs

UrQMD 
Hadron 

rescattering 
simulator

multiple

M initial 
conditions

freeze-out 
surface info

Particle space-
time and 

momentum 
info

Particle space-time and 
momentum info

Finished all 
events?

no

yes

EbeCollector 
Collect data into SQLite database zip results and store to results folder

Hydrodynamic!
simulator

zip results and store in results folder

(multiple times)

Figure 2.1: The work flow for a single job with M events.

For each job, the work flow is summarized in Fig. 2.1. The job is started by generating M

fluctuating initial conditions with the Monte-Carlo generator superMC. Then each initial entropy

density profile is evolved with the viscous hydrodynamic model, VISH2+1. At the end of the

hydrodynamic simulation, a switching hypersurface is identified and fluid cells on this switching

hyper-surface are converted into individual particles using particle sampler, iSS. These particles

are fed into UrQMD, a hadronic rescattering cascade which follows the particles microscopically

until they stop interacting and (if unstable) decay1. In the end, we collect the final particle

information (momenta and position of their last interaction or decay) from all the M events using

1To accumulate statistics, the UrQMD casacade is optionally run multiple times (with different sampled particles
from iSS) for each hydrodynamic siulation.
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binUtilities, store the final analyzed results in the SQLite database using EbeCollector, and

zip everything.

2.2.2 Large scale event-by-event simulations

For large-scale event-by-event simulations, two additional python scripts are used to generate

and submit multiple jobs as illustrated in Fig. 2.2. Users specify the number of jobs and the

number of events within each job through generateJobs.py which sets up the entire simulation

and they use submitJobs local.py or submitJobs qsub.py to submit all the jobs to a local

cluster or to a qsub system on the OSC supercomputing center, respectively. Easy adjustments of

those latter python scripts can adapt the package to other supercomputing facilities or the Open

Science Grid.

Analyze the SQLite 
database

generateJobs.py

submitJobs_xxx.py

UHG utility 
(Python)

superMC

VISHNew

iSS

binUtilities

UrQMD

Job N

...

superMC

VISHNew

iSS

binUtilities

UrQMD

Job 2

superMC

VISHNew

iSS

binUtilities

UrQMD

Job 1

Figure 2.2: Work flow for multiply jobs in the large scale of event-by-event simulations.

After all N jobs are finished, the database files from each job will be combined into one for

future physics analysis of the output by users. A user friendly python package tool, UHG utility,

is provided for querying the database and computing experimental observables and performing

various statistical analyses.
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2.3 Initial condition generator SuperMC

SuperMC generates fluctuating initial conditions using the Monte-Carlo Glauber (MC-Glauber)

or Monte-Carlo Kharzeev-Levin-Nardi (MCKLN) models. These models can be run in several

distinct modes as selected by the users.

2.3.1 Collision geometry

In relativistic heavy-ion collisions, the colliding nuclei are accelerated almost to the speed of

light. Due to time dilation, nucleons’ intrinsic orbital motion is frozen during the interaction

period. Thus we can use a Monte Carlo procedure to sample the position of every nucleon inside

the projectile and target nuclei according to their Woods-Saxon distribution.

We take into account the finite size for each individual nucleon. The density distribution of

strongly interacting matter for each nucleon is given by

ρn(~r) =

{
θ(r⊥−rn)

πr2
n

θ(L−|z|)
L

, cylindrical nucleon,
1

(2πB)3/2 e
−r2/(2B), gaussian nucleon.

(2.1)

The approximation of a homogeneous cylindrical nucleon density distribution has been popular

in the past since it leads to a very simple collision criterium. In this approximation, the trans-

verse radius rn = 1
2

√
σinel

NN

π
, where the factor of 2 accounts for the quantum mechanical nature

of the nucleon-nucleon scattering process. Along the z direction, L = 2rn. A more realistic

modeling takes a gaussian density distribution for the nucleon with an energy-dependent width

B = B(
√
sNN) =

σin
NN(
√
sNN)

14.30
.[7] The corresponding nucleon thickness functions in the transverse

plane are,

Tn(r⊥) =

{
θ(r⊥−rn)

πr2
n

, cylindrical nucleon,
1

(2πB)
e−r

2/(2B), gaussian nucleon.
. (2.2)

With the finite size of each nucleon, in order to reproduce the correct Woods-Saxon distribution

for the density of the entire nucleus, we need to sample the nucleon positions according to a

modified Woods-Saxon distribution such that, when folded with the nucleon density distribution,

it reproduces the correct experimentally measured Woods-Saxon distribution:

ρexp.
WS (~r) =

∫
d3r′ρ̃WS(~r′)ρn(~r− ~r′). (2.3)

ρ̃WS(~r) =
ρ0

1 + exp
(
r−RAΩ(θ)

ξ

) , (2.4)

where ρ0 is the nucleon number density in infinite nuclear matter, RA is the rms charge radius of

nucleus A, and ξ is the surface width parameter. For a deformed nucleus with non-zero quadrupole

and hexadecupole ground state deformation R(θ) = RAΩ(θ) = RA(1 + β2Y
2

0 (θ) + β4Y
4

0 (θ)), where
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Element Atomic Mass ρ0 (fm−3) RA (fm) ξ (fm) β2 β4

Cu 63 0.1686 4.28 0.50 0.162 0.006
Au 197 0.1695 6.42 0.45 -0.130 -0.030
Pb 208 0.1610 6.67 0.44 0 0
U 238 0.1660 6.86 0.44 0.280 0.093

Table 2.1: Parameters for the modified Woods-Saxon density distribution, ρ̃WS, for some heavy
nuclei that have been used in relativistic heavy-ion collisions.

Y 2
0 (θ) and Y 4

0 (θ) are the spherical harmonics, describes the angular dependence of the nuclear

radius. In Table 2.3.1, we list the parameters used in superMC for some typical colliding nuclei.

Note that our parameterization of the nuclear density distribution does not account for the ex-

istence of a neutron skin in large nuclei. Inclusion of a neutron skin is left for a future improvement

of the superMC code.

2.3.2 The MC-Glauber approach

The probability density for an inelastic nucleon-nucleon collision at impact parameter ~b is

P (~b) =

{
θ(2rn − b), cylindrical nucleon,

1− exp(−σggTnn(b)), gaussian nucleon.
(2.5)

where σgg is the inelastic gluon-gluon cross-section [7] and Tnn is the nucleon-nucleon overlap

function,

Tnn(b) =

∫
d2~r⊥Tn(~r⊥)Tn(~b−~r⊥) =

e−b
2/(4B)

4πB
. (2.6)

For unpolarized nucleons the nucleon density is spherically symmetric, so Tnn(b) has no directional

dependence. A binary collision involving nucleon pair (i, j) will deposit a certain amount of energy

in the medium around the collision point ~Rij,⊥ = 1
2
(~ri⊥ +~rj⊥). After thermalization, this energy

density is associated with a corresponding amount of entropy density computable from the equation

of state. For cylindrical nucleons, we choose a disk-like profile for the deposited energy or entropy

density in the transverse plane. For Gaussian nucleons, the deposited energy density is modeled by

a gaussian distribution. Thus, the entropy or energy density generated by all the binary collision

pairs in the transverse plane is proportional to,

BC(~r⊥) =

{ ∑
(i,j)∈pairs

θ(rn−|~r⊥−~Rij,⊥|)
πr2
n

, cylindrical nucleons,∑
(i,j)∈pairs

1
2πB

e−|~r⊥−
~Rij,⊥|2/(2B), gaussian nucleons.

(2.7)

The parameters rn and B are chosen to be the same as in the definition of the shape of the nucleon,

Eq. (2.1).

Every nucleon that participates in an inelastic collision is “wounded” and will “bleed” energy

density into the medium. In superMC, two distinct ways to distribute the energy deposited by the

wounded nucleons are implemented.
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The first option is to deposit the energy symmetrically around the center of the wounded

nucleon. The total energy or entropy density contributed by all wounded nucleons is then propor-

tional to,

WN(~r⊥) =

{ ∑
i∈wounded

θ(rn−|~r⊥−~ri⊥|)
πr2
n

, cylindrical nucleons,∑
i∈wounded

1
2πB

e−|~r⊥−~ri⊥|
2/(2B), gaussian nucleons.

(2.8)

where the index i runs over all wounded nucleons in both nuclei A and B.

In the second approach, the energy bled from each wounded nucleon is distributed evenly over

its binary collision partners and deposited symmetrically around their correspond binary collision

points. In this case, the total energy or entropy density contributed by all wounded nucleons is

proportional to

WN(~r⊥) =

{ ∑
i∈wounded

∑Nb,i
j=1

1
Nb,i

θ(rn−|~r⊥−~Rij,⊥|)
πr2
n

, cylindrical nucleon,∑
i∈wounded

∑Nb,i
j=1

1
Nb,i

1
2πB

e−|~r⊥−
~Rij,⊥|2/(2B), gaussian nucleon.

(2.9)

where Nb,i is the number of binary collision partners associated with wounded nucleon i. This way

of distributing the energy density is motivated by the idea that the inelastic collisions between

nucleons that generate wounded nucleons or binary collision events are fundamentally the same.

The second approach distributes the entropy or energy density of wounded nucleons over a

more compact transverse area, which in the end result increases the initial eccentricity of the

fireball created in the collision at large impact parameters. In central collisions, the difference in

eccentricity between the two energy deposition schemes is negligible.

In the MC-Glauber model, the total energy density produced in the transverse plane after

thermalization is taken to be a mixture of the wounded nucleon and binary collision density

profiles: {
s0(~r⊥)
e0(~r⊥)

}
=

{
κs
κe

}(
1− α

2
WN(~r⊥) + αBC(~r⊥)

)
, (2.10)

Here α is the binary mixing parameter and κ is an overall normalization factor κ is tuned to

reproduce to measured final charged multiplicity in the most central collisions, while α is adjusted

to reproduce its observed dependence on collision centrality. Due to viscous heating during the

hydrodynamic expansion, the normalization κ depends on the specific shear viscosity η/s. The

actual parameters we used for the relativistic heavy-ion collisions studied in this thesis are listed

in Table 2.2.
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Collision system η/s α κ
Au+Au 0.08 0.14 28.656

@200AGeV 0.10 0.144 27.474
Pb+Pb 0.08 0.118 56.763

@2760AGeV 0.10 0.128 53.868
0.16 0.131 48.405

Table 2.2: Parameters used in the MC-Glauber model for different choice of η/s at RHIC and
LHC energy.

2.3.3 The MCKLN approach

The MCKLN model [8, 9] is based on a kT -factorization ansatz [8, 9] in which the produced

gluon density distribution can be calculated as

dNg

dyd2p⊥d2x⊥
=

2π3Nc

N2
c − 1

∫ p⊥

0

d2k⊥
αs(max{((~p⊥ + ~k⊥)/2)2, ((~p⊥ − ~k⊥)/2)2})

p2
⊥

× φA

x1,

(
~p⊥ + ~k⊥

2

)2

;~x⊥ + ~b/2


× φB

x2,

(
~p⊥ − ~k⊥

2

)2

;~x⊥ − ~b/2

 , (2.11)

where αs is the strong coupling constant and φA and φB are the unintegrated gluon distribution

functions of the two colliding nucleus. ~p⊥ = ~p1⊥+~p2⊥
2

and ~k⊥ = ~p1⊥ − ~p2⊥, where ~p1(2)⊥ are

the transverse momenta of the fusing gluons from the two nuclei and x1(2) = p⊥√
sNN

e±y are their

corresponding light-cone momentum fractions. The unintegrated gluon distribution function is

parameterized as,

φ(x, k2;~x⊥) = κ
N2
c − 1

2Nc

Q2
s(x, ~x⊥)

2π3αs(Q2
s)

{ 1
Q2
s+Λ2 , k ≤ Qs

1
k2+Λ2 , k > Qs

, (2.12)

where Λ = ΛQCD = 0.2 GeV, and κ = 1.8 is a phenomenological parameter adjusted [10] to

fit the measured charged multiplicity at mid rapidity in the most central Au+Au collisions at
√
sNN = 200 GeV at RHIC. The saturation scale is given by the implicit relation,

Q2
s(x, ~x⊥) =

4π2Nc

N2
c − 1

αs(Q
2
s)xG(x,Q2

s)TA(~x⊥) (2.13)

The running coupling strength is parameterized as,

αs(k
2) =

{
4π

β0 ln((k2+Λ2)/Λ2
QCD)

, αs ≤ 0.5

0.5, αs ≥ 0.5
, (2.14)

with β0 = 11 − 2
3
Nf . Kharzeev, Levin, and Nardi [9] use the parameterization xG(x, k2) =

K ln(k
2+Λ2

Λ2
QCD

x−λ(1 − x)4 with λ = 0.2 and K = 0.7 adjusted such that the average Q2
s in the
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transverse plane of a central 200 A GeV Au + Au collision, 〈Q2
s(x = 0.01)〉 ' 2.0 GeV2.[10]

Inserting this into Eq. (2.13) and dropping the (1 − x)4 factor since x is small in the kinematic

region of interest leads to

Q2
s(x, ~x⊥) = 2GeV2

(
T (~r⊥)

T0

)(x0

x

)λ
, (2.15)

where T0 = 1.53 fm−2 and x0 = 0.01 [11].

2.3.4 Collision-by-collision Multiplicity Fluctuation

The entropy (or energy) density dumped into the medium from each binary collision and

wounded nucleon can fluctuate. These fluctuations lead to the measured multiplicity fluctuation

in pp collisions. We denote such fluctuation as collision-by-collision multiplicity fluctuations.

In 2012, the CMS collaboration measured flow observables in 0-0.2% ultra-central Pb + Pb

collisions at the LHC . For these extremely high multiplicity and extremely rare heavy-ion col-

lision events, the event selection is strongly biased towards upward fluctuations in the particles

production of the system. Thus, we would expect collision-by-collision multiplicity fluctuations to

become important for the event selection in such ultra-central collisions.

In superMC, we implement collision-by-collision multiplicity fluctuations in the MC-Glauber

model based on the phenomenological KNO scaling observed in pp collisions. In the MC-Glauber

model, we regard each binary collision and each wounded nucleon as an independent source of

energy with stochastic norm. This can be expressed through the following modification of Eq.

(2.7) and (2.8):

BC(~r⊥) =

{ ∑
(i,j)∈pairs γi,j

θ(rn−|~r⊥−~Rij,⊥|)
πr2
n

, cylindrical nucleons,∑
(i,j)∈pairs γi,j

1
2πB

e−|~r⊥−
~Rij,⊥|2/(2B), gaussian nucleon.

(2.16)

and

WN(~r⊥) =

{ ∑
i∈wounded γi

θ(rn−|~r⊥−~ri⊥|)
πr2
n

, cylindrical nucleon,∑
i∈wounded γi

1
2πB

e−|~r⊥−~ri⊥|
2/(2B), gaussian nucleon.

(2.17)

where the multiplicity scaling factors γi,j and γi are continuous random variables with unit mean

values. In practice, we use the Gamma distribution as the probability distribution for γi,j and γi.

The Gamma distribution for a random variable X is defined as

Gamma(X) =
1

Γ(k)θk
xk−1e−x/θ, (2.18)

where k and θ are the so-called shape and scale parameters of the Gamma distribution, respectively.

The Gamma distribution is positive semi-definite and has the following properties:

(1) If Xi = Gamma(ki, θ), then
∑

iXi = Gamma(
∑

i ki, θ).
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(2) If X = Gamma(k, θ), then cX = Gamma(k, cθ) for any c > 0.

By using these two properties of the Gamma distribution, we can assign two different sets of

(k, θ) parameters for γi and γi,j in Eqs. (2.16) and Eqs. (2.17), respectively, to ensure that the

final total entropy or energy density, which is a weighted sum of all the collisions in the event

according to Eq. (2.10) also fluctuates according a Gamma distribution with a desired shape and

scale. For WN(~r⊥), we write,

γi = Gamma (kWN , θWN) (2.19)

and for BC(~r⊥)

γi,j = Gamma (kBC , θBC) . (2.20)

Based on Eqs. (2.10), (2.16) and (2.17), we then have

s = κ

(
Gamma

(
Npart∑
i=1

kWN,i,
1− α

2
θWN

)
+ Gamma

(
Ncoll∑
i=1

kBC,i, αθBC

))
. (2.21)

By requiring 1−α
2
θWN = αθBC = θ, Eq. (2.21) can be further simplified to,{

s
e

}
=

{
κs
κe

}
(Gamma (NpartkWN +NcollkBC , θ)) . (2.22)

By further writing kWN = 1−α
2
k and kBC = αk, we finally obtain,{

s
e

}
=

{
κs
κe

}(
Gamma

((
1− α

2
Npart + αNcoll

)
k, θ

))
, (2.23)

which has the mean value 〈s〉 = κ
(

1−α
2
Npart + αNcoll

)
kθ. Similar expressions are obtained in case

where the energy density is parameterized as in Eq. (2.10). Setting kθ = 1 ensures that with the

perviously adjusted normalization κ the event-averaged total entropy continuous to reproduce the

value from the conventional MC-Glauber model (and thus the observed final charged multiplicity).

The actual value of θ with (k = 1/θ) in Eq. (2.23) can be fit to the multiplicity distribution

measured in pp collisions, where Npart = 2 and Ncoll = 1. At LHC energies, the multiplicity

fluctuations in pp collision have been measured at
√
s = 0.9, 2.36, and 7 TeV [12]. Additionally,

the UA5 Collaboration measured pp multiplicity distributions at
√
s = 200 GeV [13]. In Fig.

2.3, we show the results of a χ2 fit to the experimental data at all these collision energies with

θ = 0.9175. According to the KLN scaling hypothesis, 〈Nch〉P (Nch) should be a universal (energy

independent) function of the normalized multiplicity Nch/〈Nch〉. The left panel of Fig. 2.3 shows

that at central rapidity |η| < 0.5, the experimental data show very good KNO scaling for the pp

multiplicity distribution at all of these collision energies.

In the right panel of Fig. 2.3, we cross check that our implementation of the MC-Glauber model

with multiplicity fluctuations can reproduce the desired normalized multiplicity distribution in the

pp collision limit.
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Figure 2.3: Left Panel: KNO scaling of the pp multiplicity distribution in |η| < 0.5 for
√
s=

200, 900, 2360, and 7000 A GeV. The experimental data are taken from [12, 13]. Right Panel:
Numerical cross check that the MC-Glauber code in superMC correctly reproduces the Gamma-
distributed charged multiplicity distribution measured in pp collisions .

0 1 2 3 4 5 6 7
Nch/

〈
Nch

〉10-6

10-5

10-4

10-3

10-2

10-1

100

101

〈 N ch
〉 dP(

N
ch

)/
d
N

ch

CMS p+Pb data

MCGlb. with multi. fluct.

MCGlb. no multi. fluct.

MCKLN

Figure 2.4: Postdiction for the multiplicity distribution in p+Pb collisions at
√
sNN = 5.02ATeV

compared with the CMS measurements [14].

Once the parameters in the Gamma distribution are fixed by the phenomenological KNO scal-

ing, we use this model to make parameter-free postdiction for the multiplicity distribution in p+Pb

collisions at
√
sNN = 5.02 TeV. The comparisons with measurements from the CMS Collaboration

are shown in Fig. 2.4. The MC-Glauber model with collision-by-collision multiplicity fluctua-

tion can reproduce the shape of the measured multiplicity distribution very well. While without

the multiplicity fluctuation, both the MC-Glauber and the MCKLN models give too less upward

fluctuations.
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In appendix E, we show that at kinetic freeze out, the Monte-Carlo sampled particle numbers

fluctuate from event to event according to a Poisson distribution. By folding the Gamma distribu-

tion for the initial entropy density fluctuations with Poisson distribution for the fluctuating final

particle yield from a given hydrodynamic event, we find a negative binomial distribution (NBD)

for the final multiplicities from many hydrodynamic event, with fluctuating initial conditions.
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Figure 2.5: Left Panel: Root mean square of the n-th order initial spatial eccentricity as a function
of the harmonic order n. Right Panel: The variance of εn as a function of n.

In Fig. 2.5, we show a comparison of the initial spatial eccentricity εn{2} as a function of the

harmonic order n for 0-0.2% ultra-central Pb + Pb collisions at LHC energy. εn{2} =
√
〈ε2
n〉 is

the rms of εn, defined in terms of the fluctuating initial energy density profile e(r⊥, φ) as

εn =

∫
d2r⊥r

n
⊥e(r⊥, φ)ein(φ−Φn)∫
d2r⊥rn⊥e(r⊥, φ)

, for n ≤ 2. (2.24)

We can clearly see that the collision-by-collision multiplicity fluctuations increase the eccentric-

ity coefficients for all harmonic orders by 20-40%. The increase is larger for higher order n. The

multiplicity fluctuations also increase the variance of εn similar amount. The existence of such fluc-

tuations therefore changes the mean values and their variances of the initial fluctuation spectrum

of the MC-Glauber model dramatically.

In Fig. 2.6, we show ε2 to ε5 as functions of the collision centrality. We find that collision-by-

collision multiplicity fluctuations are not only important in ultra-central collisions, but that they

increase the spatial eccentricities at all collision centralities.

2.3.5 Centrality cut in theoretical calculations

Centrality is a key quantity that links the theoretical calculations with the experimental mea-

surements. It is introduced to characterize the collision geometry in the nucleus-nucleus collisions.

Experimentally, the centrality is typically defined by sorting the recorded events according to
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Figure 2.6: Centrality dependence of the root mean square initial spatial eccentricities ε2, ε3, ε4,
ε5.

their measured charged hadron multiplicity at mid-rapidity, dN ch/dη||η|<0.5. Applying the same

procedure theoretically is numerically expensive since, due to viscous heating, the final charged

multiplicity can not be determined directly from the initially produced entropy, but requires vis-

cous hydrodynamic evolution, event by event.

However, we can use the following shortcut to save simulation time: we cut centrality on the

initially produced total entropy in the transverse plane, dS/dy|y=0, assuming that, on average, the

final charged multiplicity , dN ch/dη, is monotonically related with dS/dy|y=0. This procedure is

illustrated in Fig. 2.7.

After having fixed the normalization constant κ in Eq. (2.10) such that, on average, the mea-

sured charged multiplicity in central collisions is correctly reproduced, we first sort the minimum

bias events generated by the MC-Glauber model according to the initial entropy dS/dy. Then,

we can classify their collision centrality through dividing their relative positions in the sorted ar-

ray. The events with largest total entropy define the most central collisions where the two nuclei

completely overlap each other. The 0-10% centrality bin includes the 10% of all events with the

largest initial dS/dy, 90-100% the 10% of all events with the smallest dS/dy values.
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Figure 2.7: Left Panel: Probability distribution of the total entropy density dS/dy|y=0 from MC-
Glauber model for Pb + Pb at

√
s = 2.76A TeV. Right Panel: Correlation between initial dS/dy

and final measured dN ch/dy at 0-5% most central collisions for MC-Glauber with η/s = 0.08.

This procedure ignores event-by-event fluctuations in the factional increase of the entropy due

to viscous heating during the hydrodynamic evolution. This extra entropy production depends on

the actual shape of the initial density profile as well as on the chosen value for the specific shear

viscosity, η/s. Event-by-event fluctuation of the viscous entropy production will de-correlate the

one-to-one correspondence between the initial total entropy, dS/dy and the final measured charged

multiplicity, dN ch/dy. However, as shown in the right panel of the Fig. 2.7, this decorrelation

is weak: For given dS/dy, the spread in final dNch/dy is very small. Therefore, our procedure

of defining collision centrality by cutting on the initial total dS/dy is a pretty good theoretical

approximation to the experimental centrality definition using final charged multiplicities.

2.4 (2+1)-d viscous hydrodynamics VISH2+1

2.4.1 Solving the hydrodynamic equations

The module VISH2+1 is an modified version of VISH2+1, (2+1)-d longitudinally boost-invariant

viscous hydrodynamic algorithm developed by H. Song. [15] It includes several improvements for

efficiency and stability which will be discussed in this section. We solve the following equation of

motion for second order viscous hydrodynamics (“Israel-Stewart equations”):

dµT
µν = 0, T µν = euµuν − (p+ Π)∆µν + πµν . (2.25)

The shear stress tensor πµν and bulk pressure Π satisfy the following transport equations,

∆µα∆νβDπαβ = − 1

τπ
(πµν − 2ησµν)− 1

2
πµν

ηT

τπ
dλ

(
τπ
ηT

uλ
)
, (2.26)

DΠ = − 1

τΠ

(Π + ζθ)− 1

2
Π
ζT

τΠ

dλ

(
τΠ

ζT
uλ
)
, (2.27)
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where D = uµdµ. The hydrodynamic equations need to be solved together with a given equation of

state (EOS). VISH2+1 supports three versions of the lattice-based equation of state, s95p-v0-PCE,

s95p-v1, and s95p-v1-PCE [16]. The differences among these three EOS are the different im-

plementations of partial chemical equilibrium in the hadronic phase [16, 17]. In general, Eq.

(2.25) must be supplemented by an evolution equation (conservation law) for the baryon current

jµ = nuµ. We start with the case n = 0.

Without baryon current

The hydrodynamic code evolves the components of energy stress tensor. In order to use the

EOS for determining the pressure in the liquid, we first need to solve for the local energy density

and velocity of the fluid cell. In the (2+1)-d case, we define a vector Mµ = (M0,Mx,My) =

(T ττ − πττ , T τx − πτx, T τy − πτy). Using the decomposition Eq. (2.25) for T µν , we find

M0 = (e+ P + Π)(u0)2 − P − Π, (2.28)

M1 = (e+ P + Π)u0u1, (2.29)

M2 = (e+ P + Π)u0u2, (2.30)

The local energy density thus satisfies the following equation:

e = M0 − (M1)2 + (M2)2

M0 + P + Π
. (2.31)

To solve Eq. (2.31) we define

f(e) = (M0 − e)(M0 + P + Π)− ((M1)2 + (M2)2). (2.32)

We first observe that f(M0) = −((M1)2 + (M2)2) ≤ 0. In order for Eq. (2.31) to have an odd

number of positive solutions, we need to require f(0) > 0. With a non-zero bulk viscous pressure,

this lead to the condition,

f(0) = (M0)2 − (M1)2 − (M2)2 +M0Π > 0. (2.33)

When this requirement is not fulfilled because Π (which is negative) is too large, we regulate Π

such that f(0) = 0. In this special situation one can further compute

df

de
(e = 0) = (c2

s − 1)M0 − Π. (2.34)

If df
de
|e=0 ≤ 0, e = 0 is the solution. For df

de
|e=0 > 0, there will be a positive energy density solution.

Without Π, df
de
|e=0 is always less than 0 because the square of the speed of sound is always smaller

than 1.
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Once these two boundary conditions are set up, it is guaranteed that there will be at least

one solution of Eq. (2.31) with positive energy density. Newton’s root finding method is a very

efficient in finding this solution with a minimal number of iteration. To ensure numerical stability

and optimal efficiency, we use the fact that to fairly good approximation the pressure is roughly

proportional to the energy density. We rewrite Eq. (2.32) as,

f(e) = (M0 − e)
(
M0 +

P

e
e+ Π

)
− ((M1)2 + (M2)2)

and use that c̃2
s = P

e
has a very weak dependence on e. This turns the condition f(e) = 0 into

approximately a quadratic equation with solution

e =
−(M0(1− c̃2

s) + Π)±
√

(M0(1− c̃2
s) + Π)2 + 4c̃2

s(M
0(M0 + Π)−M)

2c̃2
s

. (2.35)

To identify the correct sign, we note that for M = 0 we must recover e = M0. Therefore,

e =
−(M0(1− c̃2

s) + Π) +
√

(M0(1− c̃2
s) + Π)2 + 4c̃2

s(M
0(M0 + Π)−M)

2c̃2
s

. (2.36)

This equation is the most efficient satisfying form for applying Newton’s method, and it is imple-

mented in VISH2+1.

Once Eq. (2.25) has been solved for e, the flow velocity can be calculated from

u0 =

(
M0 + P + Π

e+ P + Π

)1/2

(2.37)

where P = P (e) is obtained from the EOS. Please note that calculating u0 instead of v is numer-

ically more stable when v → 1. Since u0 > 1, this requires M0 > e. So M0 should be set as an

upper limit for e when intreating e using Newton’s root finding routine. Similarly,

ui =
M i

√
M0 + P + Π

√
e+ P + Π

(i = 1, 2). (2.38)

One can check that if e is the exact solution of Eq. (2.31), the flow velocity components Eq. (2.37)

and Eq. (2.38) satisfy the normalization constraint

(u0)2 − (u1)2 − (u2)2 = 1. (2.39)

With baryon density current

The derivations above assumed zero net baryon density where the pressure is only a function

of the local energy density. In order to deal with the more general cases of non-zero conserved

charge current in the future, we now consider the situation where the baryon current is not zero.
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In this case the pressure is a function of both the local energy density and the local net baryon

density: P = P (e, n). For the baryon current, we have the additional hydrodynamic equation

∂µj
µ = 0 (2.40)

where (V µ is the heat flow vector)

jµ = nuµ + V µ. (2.41)

Now, the problem of implementing the EOS presents itself as follows: knowing j0, T 00, T 01, T 02, T 03

and the EOS, we would like to solve for 5 unknowns n, e, uµ. We have the following 5 equations:

M0 = (e+ P + Π)(u0)2 − P − Π, (2.42)

M i = (e+ P + Π)u0ui, (i = 1, 2, 3), (2.43)

j0 = nu0 + V 0. (2.44)

We can no longer solve for e easily, because the pressure now depends on both e and n. The

equations for e and n are coupled with each other. To decouple these two equations, we need to

know the actual functional dependence for P (e, n). In such a situation, it is easilier to solve for v

or u0 first. For v, we have solve the following equation:

v =
M

M0 + P + Π
(2.45)

where M =
√

(M1)2 + (M2)2 + (M3)2. For the pressure from the EOS, we need to work out

e = M0 − vM (2.46)

n = (j0 − V 0)
√

1− v2 (2.47)

To solve Eq. (2.45) we define

f(v) = v(M0 + P + Π)−M. (2.48)

We have the boundary conditions

f(0) = −M 6 0 (2.49)

and

f(1) = M0 + P + Π−M. (2.50)

Imposing f(1) > 0 will ensure an odd number of solutions. From Eqs. (2.46) and Eq. (2.47) we

see that e and n are roughly linear in v, which means that P is also roughly linear in v. So we

expect to have only one solution. Please note that since v is bounded between 0 and 1, we need

to ensure high precision of the solution, otherwise uµ will not be accurate, especially when v → 1.
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Once v is solved and thus e and n are known from Eqs. (2.46) and (2.47), vx, vy, vz can be

solved easily from M1,M2,M3,

vi =
M i

M0 + P (e, n) + Π
, (i = 1, 2, 3). (2.51)

In order to use Newton’s method to find the root of the key equation (2.45), we can reorganize

it as follows:

f(v) = v(M0 + c̃2
s(M

0 − vM) + Π)−M. (2.52)

Eq. (2.52) can be considered as an approximatly quadratic equation for v. The condition f(v) = 0

it has the solutions

v =
(M0(1 + c̃2

s) + Π)±
√

(M0(1 + c̃2
s) + Π)2 − 4c̃2

sM
2

2c̃2
sM

. (2.53)

The correct sign is found by checking the limit M → 0, when v approaches to zero. This selects

the negative sign in Eq. (2.53), which can thus be rewritten as

v =
2M

(M0(1 + c̃2
s) + Π) +

√
(M0(1 + c̃2

s) + Π)2 − 4c̃2
sM

2
. (2.54)

The advantage of Eq. (2.54) is that the right hand side is only very weakly dependent on v as

long as c̃2
s is approximately a constant which is true over a very wide range of energy densities

for s95p EOS. Additionally, it is numerically stable in the limit M → 0. Similarly, we can find a

solution for u0:

u0 =
1√

1− v2
=

1√
1−

[
2M

(M0(1+c̃2s)+Π)+
√

(M0(1+c̃2s)+Π)2−4c̃2sM
2

]2
. (2.55)

Eqs. (2.54) and (2.55) in principle give consistent solutions for v and u0. In practice, inevitable

numerical errors rends the use of Eq. (2.54) preferable for small velocities v → 0, which Eq. (2.55)

should be used for v → 1. Let us see why this is the case:

If we solve u0 from Eq. (2.55) and write the numerical solution as ũ0 = u0 + ∆u where u0 is

the exact solution and ∆u is the numerical error, the numerical error for v can be estimated as,

∆v =
dv

du0
∆u0 =

∆u0

(ũ0)2
√

(ũ0)2 − 1
(1 +O(∆u0)). (2.56)

In this situation, ∆v becomes small, ∆v � ∆u0, for large flow velocity, ũ0 → +∞. On the

other hand, when v → 0 and ũ0 → 1, the numerical error for v is amplified by a factor 1√
(ũ0)2−1

compared to ∆u0, which is not good. Therefore Eq. (2.55) is numerically stable for v → 1 and

unstable for v → 0.

28



The opposite is true for Eq. (2.54), Writing the numerical solution of Eq. (2.54) as ṽ = v+∆v,

we find,

∆u =
du0

dv
∆v =

ṽ(√
1− ṽ2

)3 ∆v. (2.57)

In this case, ∆u0 � ∆v for small ṽ → 0, ∆u0 � ∆v, which is favorable. On the other hand, for

large velocity, ṽ → 1, the error in u0, ∆u0 ∼ 1

(
√

1−ṽ2)
3 ∆v, is amplified by a factor 1

(
√

1−ṽ2)
3 relative

to ∆v, making u0 numerically unstable.

In the actual numerical implementation, we solve both Eq. (2.54) and Eq. (2.55), but we then

select the preferred solution according to the magnitude of the resulting velocity. The transition

point from one choice to the other happens at

ṽ(√
1− ṽ2

)3 =
1

(ũ0)2
√

(ũ0)2 − 1
, (2.58)

with the relation ũ = 1√
1−ṽ2 .The numerical solution of Eq. (2.58) is ṽ = 0.563624 or ũ0 = 1.21061.

For the velocities smaller than this critical value, we use the solution for v from Eq. (2.54) , while

for larger velocities, we should select the solution for u0 from Eq. (2.55) as the more reliable one.

2.4.2 Numerical check for VISH2+1 using semi-analytic solutions

In [18, 19], the authors derived SO(3)⊗SU(1, 1)⊗Z2 invariant (“Guber symmetric” solutions

of ideal relativistic conformal fluid dynamics which couple boost-invariant longitudinal expansion

with azimuthally symmetric transverse expansion. We first use this (1+1)-d solution to check the

ideal hydrodynamic mode in VISH2+1. We start our ideal hydrodynamic simulation with Gubser’s

solution for the energy density and flow velocity at τ = 1.0 fm/c and compare results at later

proper time with Gubser’s analytic solution. Fig. 2.8 shows excellent agreement between our

simulations and the analytical solution.

For viscous hydrodynamics, Marrochio et al. [20] have used the same symmetry argument

developed by Gubser and constructed a nontrivial semi-analytic solution of the Israel-Stewart

equations for (1+1)-d expansion with Gubser symmetry. In order to use this solution as a check

of the VISH2+1 code, we have to change the source term in the transport equation of shear stress

tensor as specified in [20],

∆µα∆νβDπαβ = − 1

τπ
(πµν − 2ησµν)− 4

3
πµνθ. (2.59)

The difference between Eqs. (2.26) and (2.59) only appears in third and higher orders in velocity

gradients. However, since these gradients are large for the Gubser profile, the difference is notice-

able and would be visible even if VISH2+1 woe a perfect numerical algorithm. We use the same

parameters as in [20] (described below) to test our viscous hydrodynamic simulations. We start
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Figure 2.8: Comparison of the numerical solution (dark dashed lines) for (1+1)-d ideal fluid
dynamical evolution with Gubser symmetry with Gubser’s analytical results (light solid lines).

the simulation at τ = 1.0 fm/c and use the semi-analytical solutions from [20] at τ = 1.0 fm/c as

the initial conditions for our simulations. We use an ideal massless gas equation of state e = 3P ,

with

e = Nc ×
(

16 +
7

2
× 3Nf

)
× π2

90
T 4, (2.60)

using Nc = 3 for the number of colors and Nf = 2.5 for the number of flavors. We set the specific

shear viscosity to η/s = 0.2 and its corresponding relaxation time to τπ = 5η/(Ts).
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Figure 2.9: Comparison of the temperature and flow velocity evolution from VISH2+1 (dark dashed)
with the semi-analytical solutions from [20] (light solid).

In Figs. 2.9 and 2.10, we compare our numerical calculations with the semi-analytical solutions

from [20] for the evolution of the local temperature, flow velocity, and shear stress tensor. For

all hydrodynamic quantities we find very good agreement of our VISH2+1 simulations with the

semi-analytical results.
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Figure 2.10: The evolution of individual components of the shear stress tensor from VISH2+1 (dark
dashed) compared with the semi-analytical solutions from [20] (light solid).

2.4.3 Stabilizing VISH2+1 against numerical fluctuation in the viscous
shear

VISH2+1 solves the minimum set of second order viscous hydrodynamic equations. The shear

stress tensor is evolved according Eq. (2.26), which only includes spatial gradients up to second

order. Such a truncation of the gradient expansion converges and gives good approximations only

when higher order gradient terms are negligible. When we perform event-by-event hydrodynamic

simulations, the fluctuating initial conditions usually feature large spatial gradients in the trans-

verse plane. Under such conditions, the missing higher order gradient corrections to Eq. (2.26)

have the potential to grow large during the hydrodynamic evolution, and not including them in

the code may eventually drive the whole numerical simulation into instability. However including

all the higher order gradient terms in the transport equation for πµν is not practical. It would

require the knowledge of the corresponding higher order transport coefficients, which are poorly

constrained both theoretically and experimentally.

Therefore, staying within the framework of second order viscous hydrodynamics, we apply a

regulation to the shear stress tensor that aims to suppress numerical instabilities caused by large
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spatial gradients. In general, for second order viscous hydrodynamics to be valid, πµν must to

satisfy the following criteria:

1. πµν should be smaller than the ideal part of the energy momentum tensor, T µν0 = euµuν −
P∆µν . To implement this we compare the following Lorentz invariant quantities,

Tr(π2) = πµνπµν and T µν0 T0µν = e2 + 3P 2.

Consistency for our theoretical framework requires

πµνπµν � e2 + 3P 2. (2.61)

2. πµν should be traceless:

πµµ = 0 (2.62)

3. πµν should be perpendicular to uµ:

πµνuν = 0 (2.63)

VISH2+1 evolves all seven non-vanishing components of πµν , παβ (where α, β = τ, x, y) and

πηη, independently without enforcing the conditions 2 and 3. Checking the validity of Eqs. (2.62)

and (2.63) for the numerically evolved πµν thus accounts to a check of the numerical accuracy of

our code. In actual calculations, there are limits to the numerical accuracy of πµν so we choose a

small number ξ0 � 1 as the “relative numerical zero” and replace conditions 2 and 3 by

πµµ ≤ ξ0

√
πµνπµν and πµνuν ≤ ξ0

√
πµνπµν ,∀µ (2.64)

The vector πµνuν should be component-wise zero (in any frame), therefore all its components

should be compared to the “relative numerical zero” multiplied by
√
πµνπµν(for dimensional rea-

sons). Here we use the scalar
√
πµνπµν as a measure for the magnitude of the πµν tensor that sets

the scale (via the factor ξ0) for how close the numerical result is to zero.

In practice, to ensure that Eq. (2.61) is satisfied, we choose a number ρmax � 1 and require

that2: √
πµνπµν ≤ ρmax

√
e2 + 3p2. (2.65)

In our simulations, we found, that this condition is sometimes violated during the early stage

and/or in the dilute regions outside the freeze-out surface (see at Fig. 2.13 for an example). The

violation of Eq. (2.61) in these regions do as not have much influence on the dynamical behavior

of the QGP in the physical region inside the freeze-out surface; however, if left untreated, such

2ρmax � 1 corresponds to the required “�” condition in Eq. (2.64); ρmax =∞ corresponds to no constraint at
all.
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violations lead to accumulating numerical errors that eventually cause the evolution code to break

down at later times. For these reasons, in the following we develop a systematic treatment that

suppresses large viscous terms. This stabilizes the code with negligible effects on the physics and

negligible extra numerical cost.

We enforce a continuous systematic regulation on πµν in each time step on the whole lattice

by replacing πµν by π̂µν :

πµν → π̂µν ≡ πµν
tanh(ρ)

ρ
, (2.66)

where ρ is the largest quantity at each lattice point among the following:

√
πµνπµν

ρmax

√
e2 + 3p2

,
πµµ

ξ0 ρmax
√
πµνπµν

, or
πµνuν

ξ0ρmax
√
πµνπµν

,∀µ

It is easy to check that π̂µν satisfies Eq. (2.65), and that it is close to πµν where no modifications

are needed; that is, when the left hand side of the inequality in Eq. (2.65) is small compared to the

right hand side, Only at those grid points where πµν violates or is close to violating the inequality

(2.65) it will be strongly modified; if this is the case, all components of πµν are suppressed by the

same factor.

Because smoother flow velocity profiles give smaller πµν , the systematic suppression of πµν can

be understood as locally replacing sharp jumps in the flow profile by smoother pieces; the regulation

process is therefore an implicit and automatic way of smoothing profiles. This treatment allows

us to perform hydrodynamic calculations using very bumpy initial conditions, including those

using disk-like nucleons that have density discontinuities. Without this regularization VISH2+1

breaks down for such initial conditions.We note that typically no regulations are required inside the

freeze-out surface at later times; shear viscosity leads to dynamical smoothing of initial fluctuation

by dissipation, suppressing sharp velocity gradients and large values of πµν as time proceeds.

Regulation remains necessary in the dilute region outside the freeze out surface where e and P

(which for massless degree of freedom both fall like T 4) fall faster than πµν (which falls only like

T 3).

In our calculations, we take ξ0 = 0.1. If we choose smaller ξ0 in the simulations, we overkill the

physical viscous damping effects. In the following section, we show tests invoking several choices of

ξ0 and their influence on the final observables. During our tests we found that ρmax is best chosen

to be a value between 1− 10. By choosing ρmax of order unity or larger, we reduce the regulation

strength in each step to the point where the code is numerically stable with minimum modification.

(Note that this implies that the code may run in a domain where the strong inequality Eq. (2.61)

is not satisfied, i.e. second order viscous hydrodynamics may not be strictly valid.)
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2.4.4 Hydrodynamic evolution with regulation

In this section, we study the sensitivity of final hadronic observables on the choice of the

ξ0 parameter used in the π regulation routine. For these tests, we choose MC-Glauber initial

conditions for Pb + Pb collisions at
√
s = 2760 A GeV at 20-30% centrality, using η/s = 0.20.

We simulate 200 events for every choice of ξ0.
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Figure 2.11: Thermal particles’ pT spectra for different choice of ξ0 used in the regulation trigger
routine.

In Fig. 2.11, we show the pT -spectra for thermal π+, K+, and protons, with different values

of ξ0 used in the trigger routine for the πµν regulation. We find that for 0.1 ≤ ξ0 ≤ 10, there is

no noticeable difference between different choices of ξ0 used in the simulations. Only for the very

small value ξ = 0.01 we see an effect: particle spectra get steeper, and the yield decreases. This

means that the system generates less entropy and radial flow during the evolution, which indicates

that the shear viscous effects in the simulations are suppressed too strongly by the regulations.

In Fig. 2.12, we show results for the pT -differential anisotropic flows v2 to v5. They show a

larger sensitivity to the choice of ξ0 than the single particle spectra. For 0.1 ≤ ξ0 ≤ 10, the vn

of thermal particles agree reasonably well with each other within the statistical error bands. But

for ξ0 = 0.01, the regulation again over-suppresses the viscous effects, which damp the anisotropic

flow of the system.

From this parameter study we conclude that the final hadronic observables are not sensitive

to the choice of ξ0 as long as we keep it in the range 0.1 ≤ ξ0 ≤ 10. For ξ0 larger than 10, the

code becomes numerically unstable due to too strong violations of the criteria that ensure validity

of the second order viscous hydrodynamic description. For ξ0 smaller than 0.1, the regulation

routine seems to over kill the shear viscous effects in the system. Thereby altering the physics by
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Figure 2.12: Thermal particles’ pT -differential vn for different choice of ξ0 used in the regulation
trigger routine. Statistical errors are indicate as shaded bands in the plots.

using an effective shear viscosity that is much smaller than the input value. In our application of

VISH2+1, we therefore always use ξ0 in the range 0.1 ≤ ξ0 ≤ 10.
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Figure 2.13: Contour plot for the evolution of the inverse Reynolds number in viscous hydrody-
namic simulations with η/s = 0.20 at 20-30% LHC energy. The white points indicate the kinetic
freeze surface at Tdec = 120 MeV.

35



In order to quantify the quality of reliability of our second order viscous hydrodynamic approach

we can monitor the inverse Reynolds number associated with shear stress, defined as,

R−1
π =

√
πµνπµν
P

, (2.67)

where P is the thermal pressure. As long as R−1
π is smaller than 1, the system behaves like a fluid

with low viscosity. For R−1
π � 1, the behavior is more dissipative and viscous hydrodynamics is

no long a good description. In Fig. 2.13, we show a contour plot of the evolution of the inverse

Reynolds number in our hydrodynamic simulation at y = 0 in the transverse plane. In the left

panel we start with a smooth event-averaged initial condition; in the right panel we show results

for a fluctuating initial profile. The white points indicate the position of the kinetic freeze-out

surface. We notice that the largest inverse Reynolds numbers are encountered at early times of

the hydrodynamic evolution or outside the freeze-out surface for both smooth and fluctuating

initial conditions. As time goes on, the magnitude of the shear stress tensor decreases, and the

relativistic hydrodynamic modeling becomes more and more reliable. At very early times the use

of viscous hydrodynamics becomes questionable, especially for fluctuating initial profiles.

2.5 Cooper-Frye freezeout using iS and particle sampler iSS

The name “iS” stands for “iSpectra”; iS is a fast Cooper-Frye particle momentum distri-

bution calculator along the conversion surface. Its output is a continuous function, evaluated at

discrete momenta provided by the user, for the invariant momentum distributions of the desired

hadron species. The code “iSS”, whose name stands for “iSpectraSampler”, goes one step further

to generate individual particles samples, using the calculated particle momentum distributions as

the relative emission probability. iSS is an “event generator” which generates a complete collision

event of emitted hadrons, similar to the events created in the experiment. Both codes are written

keeping the following factors in mind:

• Readability and extendability. The most important goal is to create a cleanly written

framework that calculates particle momentum distributions and performs sampling, whose

components and output can be used easily for further physics analyses and tests of new

physical ideas. To achieve this, the entire program is divided into modules according to

their functionalities, the structures and the algorithms are documented with comments, and

long but informative names are chosen for variables and function names.

• Efficiency. Both the iS and iSS codes are written aiming for intensive event-by-event

calculations where every CPU cycle counts. To achieve the necessary degree of efficiency,

much effort is put into optimizing the algorithms at different levels of the calculations.
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• Easy maintainability and re-usability. The framework is divided into different carefully

chosen functionality modules, for better interoperability and to maximize re-usability.

2.5.1 Cooper-Frye freeze-out

The particle emission function that implements sudden decoupling from a surface element d3σ

located on a freeze-out hyper-surface Σ(xµ) is given by the Cooper-Frye formula,

E
dN

d3p
(xµ, pµ) =

g

(2π)3
pµd3σµ (f0(xµ, p) + δf(xµ, pµ)) , (2.68)

where g is the spin degeneracy, d3σµ = (cosh ηs,−∂τ/∂x,−∂τ/∂y,− sinh ηs)τdxdydηs is the in-

finitesimal surface element on Σ(xµ) for systems with longitudinal boost-invariance, and f0(xµ, p)

is local thermal equilibrium distribution function. δf(xµ, pµ) represents the deviation from local

thermal equilibrium due to viscous effect and takes the following form,

δf(xµ, pµ) = f0(xµ, p)(1± f0(xµ, p))
πµν p̂

µp̂ν

2(e+ P )
χ
(p · u
T

)
, (2.69)

where p̂µ = pµ/(p · u) and χ(p · u/T ) = (p · u/T )α with 1 ≤ α ≤ 2. Integrating the emission

function over the freeze-out surface we obtain particle momentum distribution

dN

dypTdpTdφp
=

∫
Σ

g

(2π)3
pµd3σµ(f0(xµ, p) + δf(xµ, pµ)). (2.70)

The azimuthally averaged pT -spectrum is given by,

dN

2πdypTdpT
=

∫
dφp
2π

dN

dypTdpTdφ
(2.71)

while the anisotropic flow coefficients are computed from,

Vn ≡ vne
inΨn =

∫
pTdpTdφpe

inφpdN/(dypTdpTdφp)∫
pTdpTdφpdN/(dypTdpTdφp)

, (2.72)

Vn(pT ) ≡ vn(pT )einΨn =

∫
dφpe

inφpdN/(dypTdpTdφp)∫
dφpdN/(dypTdpTdφp)

. (2.73)

To optimize the efficiency of the numerical calculations, gaussian quadrature points are used for

the variables pT , φp, and ηs. Further optimization for performing the numerical integral in Eq.

(2.70) involves adjusting the order of the integration loops, using local variables, pre-tabulating

mathematical functions, etc. The resulting code iS is ∼ 7 times faster compared to its ancestor

AZSpectra [21].
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2.5.2 Methodology for particle sampling

The particle emission function from the Cooper-Frye formula Eq.(2.68) can be regarded as the

probability of emitting particle from a given freeze-out fluid cell with specified momentum. The

program iSS uses this probability to generate sets of momenta and positions for actual particles

emitted at the end of the hydrodynamic simulation. This information is then used as input for the

following microscopic hadron cascade simulation. In the sampling procedure, we employ two well-

known statistical sampling methods, the inverse cumulative distribution function (CDF) method

and the direct probability distribution function (PDF) method, the latter is also known as the

acceptance and rejection method.

Purely numerical approach

The straightforward (although not necessarily the fastest) approach is to compute all the

required quantities numerically.

For a given particle species, the average total number of particles per unit rapidity, dN/dy,

is calculated by numerically integrating Eq. (2.68) over all freeze-out fluid cells and all particle

transverse momenta ~pT . During the numerical integration, an inverse CDF can be built up with

negligible numerical cost for latter efficient sampling. However, in practice, the inverse CDF for

a full set of spatial and momentum variables is memory demanding. In order to sample such

a multi-dimensional probability distribution function, we divide the random variables into two

groups and use efficient specific sampling methods to handle each of them. It is natural to group

the spatial information (τ, ~x⊥, ηs) for the sampled particles into one set of random variables, and

their momenta (p⊥, φp, y) into the other, . Dividing the random variables into two groups allows

us to perform the sampling in different order and with different methods.

One way to proceed is to first sample the spatial information, (τ, ~x⊥, ηs), using the inverse

CDF method. Along with calculating the particle yield dN/dy, (see above) we build up the

inverse CDF for the particle’s spatial variables, (τ, ~x⊥, ηs), by integrating Eq. (2.68) over the

transverse momentum, (p⊥, φp). For a collision event at top RHIC energy, the typical size of the

array to store the inverse CDF is about 30,000 freeze-out fluid cells in the transverse plane times

40 points along the ηs direction. Once we have the particles’ spatial information, we can evaluate

Eq. (2.68) at any given point (τ, ~x⊥, ηs) for the particle’s probability distribution in momentum

space. To sample the particle’s transverse momentum (pT , φp) from this distribution we use the

the direct PDF method. In the end, since we assume longitudinal boost-invariance, the particle’s

rapidity can be sampled uniformly within given rapidity range. By sampling particles in this order,

we optimize the sampling of the particle’s spatial coordinates since the inverse CDF method has

zero rejection rate. The direct PDF method used in momentum space, on the other hand, allows
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us to use continuous random variables for p⊥ and φp instead of sampling them at some discrete

lattice points.

A second way to proceed is to first sample the particle’s momentum information with the

inverse CDF method. To this end we first build the inverse CDF for the particle’s momentum

variables, (p⊥, φp). Using 15 points in p⊥ and 48 points in φp. Once we have (p⊥, φp), Eq.(2.68)

is used as a probability distribution for the particle’s spatial coordinates (τ, ~x⊥, ηs) which is then

sampled with the direct PDF method.

Semi-analytic approach

In a given collision event the number of particles of species a being emitted from a given fluid

cell at xµ can be calculated analytically as follows:

∆Na(τf , ~x⊥, ηs) =
ga

(2π)3
∆3σµ

∫
d3p

E
pµ(f0(p) + δf(p)). (2.74)

Here the surface element of the given fluid cell is ∆3σµ = σµ∆2x⊥τ∆ηs with σµ = (cosh ηs,−∂τ/∂x,−∂τ/∂y,− sinh ηs).

The off-equilibrium correction δf originating from the shear stress tensor does not contribute to

the total particle yield, due to the properties that πµν is traceless and orthogonal to the flow

velocity. ∫
d3p

E
pµδf(p) =

∫
d3p

E
pµf0(p)(1± f0(p))

παβ p̂
αp̂β

2(e+ P )
χ
( p
T

)
= Auµ, (2.75)

where A = uµ
∫

d3p
E
pµδf(p) =

παβ
2(e+P )

∫
d3p
E

(u · p) pαpβ
(u·p)2χ( p

T
)f0(p)(1 ± f0(p)). In the local rest frame

of the fluid cell, it is easy to see that the integrand is proportional to δαβ, hence

A =

∫
d3pf0(p)(1± f0(p))

p2

3E2

πα α
2(e+ P )

χ
( p
T

)
= 0. (2.76)

Thus the particle yield is totally determined by its equilibrium distribution,

∆Na(τf , ~x⊥, ηs) =
ga

(2π)3
∆3σµ

∫
d3p

E
pµf0(p)

=
ga

(2π)3
∆3σµu

µ

∫
p2dp dφ d cos θ

1

eβ(E−µa) ± 1

=
ga

2π2
∆3σµu

µm
2
a

β

∞∑
n=1

(∓1)n−1

n
enβµaK2(nβma). (2.77)

With the assumption of boost invariance, the particle’s rapidity y and its space-time rapidity

ηs only enters in the combination y − ηs, and therefore dN
dηs

= dN
dy

. This leads to the following
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relation:

∆Na(τf , ~x⊥, ηs) =
gi

(2π)3
∆3σµ

∫
dy

∫
d2p⊥p

µf0(p)

=
gi

(2π)3

∫
dy∆2x⊥τ∆ηs

∫
d2p⊥

×(m⊥ cosh(y − ηs)− ~p⊥ · ~∇⊥τ)f0(p)

= ∆ηs
ga

(2π)3

∫
τdỹ∆2x⊥

∫
d2p⊥

×(m⊥ cosh(ỹ)− ~p⊥ · ~∇⊥τ)f0(p)

(2.78)

This integral is independent of ηs, so

∆Na(τf , ~x⊥, ηs) = ∆ηs
∆N

∆y
(τ, ~x⊥). (2.79)

In the numerical sampling procedure, we first consider all freeze-out fluid cells (τ, ~x⊥) in the

transverse plane and use (2.77) (together with (2.79)) to compute the total particle yield per unit

rapidity for particle species a, ∆N/∆y, for each cell. (If freeze-out occurs on a surface of constant

inverse temperature β and chemical potential µa, as will be the assumed in the rest of this thesis,

Eq. (2.77) can be written as,

∆Na(τf , ~x⊥, ηs) = nauµ(τf , ~x⊥, ηs)∆
3σµ(τf , ~x⊥, ηs). (2.80)

where na = ga
2π2

m2
a

β

∑∞
n=1 e

nβµaK2(nβma) is the freeze-out density of particle species a, which is the

same for all freeze-out cells. In this case, ∆Na/∆y depends on the position of the fluid cell only

through its freeze-out volume,

∆V (τf , ~x⊥, ηs) = uµ∆3σµ(τf , ~x⊥, ηs).) (2.81)

The we use (∆Na/∆y)(τf , ~x⊥) to build up an inverse CDF for the spatial variables (τf , ~x⊥). Their

sum over all (τf , ~x⊥) points gives the total rapidity density dNa
dy

of particle species a in a given

collision event. The constructed inverse CDF is then used to sample the positions (τf , ~x⊥) of

the particles of species a. Finally, we use the Cooper-Frye formula Eq. (2.68) at these sampled

positions (τf , ~x⊥) as the relative probability distribution for sampling the particle’s momentum

(pT , φp, y − ηs) using the direct PDF method:

P (p⊥, φp, y − ηs; τf , ~x⊥) =
gi

(2π)3
∆3σµp

µ(f0(p) + δf(p))

=
gi

(2π)3
τf∆

2x⊥∆ηs(m⊥ cosh(y − ηs)− ~p⊥ · ~∇⊥τ)

×(f0(p) + δf(p)). (2.82)
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Having obtained (y− ηs) by sampling Eq. (2.82), we use boost-invariance and sample y uniformly

from a given range specified by the user (e.g., -4 to 4) and then obtain ηs from the previously

determined y − ηs.
Since for every (τ, ~x⊥), the probability Eq. (2.82) for (pT , φp, y − ηs) is only sampled once,

building an inverse CDF for Eq. (2.82) would be excessively expensive, which is why we choose to

use the direct PDF method to sample (p⊥, φp, y − ηs). However, the direct PDF method requires

one to estimate the maximum value of the probability distribution function given in Eq. (2.82)

which is closely related to the function

G(E;A) =
EA

eβ(E−µ) ± 1
, A > 0. (2.83)

By setting its derivative to zero, the extrema can be found by solving

(1∓ f0) =
A

βE
⇐⇒

{
xex = y; x = βE − A, y = Aeβµ−A, fermions (upper),

xe−x = y; x = A− βE, y = Aeβµ−A, bosons (lower).
(2.84)

This equation is transcendental and cannot be solved algebraically; however, the solutions to the

equations xe±x = y in Eq. (2.84) can be pre-calculated and tabulated. For fermions (upper sign),

a solution always exists and it is expressed by the Lambert W-function; for bosons (lower sign)

the equation has real solutions only when y < 1/e, and the it yields two solutions; the physical

solution must satisfy x ∈ [0, 1]. In the following, the solution to Eq. (2.84) will be denoted as

E±max when it exists.

The maximum of G(E;A) with constraint E ≥ m will be denoted as G
(A)
max. It depends on

several conditions:

1. For fermions (upper sign), G(E) has a single peak at E+
max and the constraint maximum is

taken as G(E+
max) if E+

max > m and as G(m) otherwise.

2. For bosons (lower sign) with Aeβµ−A > 1/e, Eq. (2.84) has no solution and the maximum is

takes G(m).

3. For bosons (lower sign) with Aeβµ−A ≤ 1/e, G(E) has two extrema in (µ,∞), with the larger

one being the maximum and given by E−max. If E−max < m then the maximum is taken as

G(m); otherwise the maximum is taken as the larger one of the two numbers G(m) and

G(E−max).

In Eq. (2.82), an upper limit for the factor pµ∆3σµ can obtained using the Hölder inequality,

pµ∆3σµ = E∆3σ0 + pi∆σi ≤ (p · u)(|∆3σµu
µ|+

√
|∆3σµ∆3σν∆µν |). (2.85)
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For the equilibrium contribution, it is clear that the remaining part is to calculate the maximum

of the function

Ef0 =
E

e(E−µ)/T ± 1
= G(E; 1); (2.86)

the solution to this problem is G
(1)
max.

For the off-equilibrium correction, it is convenient to estimate its maximum in the local rest

frame of the fluid cell. We can further rotate the shear stress tensor in the transverse plane such

that πxy = 0. In such a coordinate system

pµpνπµν = (px)2πxx + (py)2πyy + (pz)2πzz ≤ E(|pxπxx|+ |pyπyy|+ |pzπzz|)
≤ E2

√
π2
xx + π2

yy + π2
zz = E2

√
πµνπµν . (2.87)

In the last step, we rewrote the expression again in Lorentz invariant form such that it is now

valid in any frame. With the form of δf in Eq. (2.69) and assuming f0 < 1,

Eα+1f0(1∓ f0) ≤ λEα+1f0 = λG(E;α + 1) ≤ λG(α+1)
max , (2.88)

where λ = 1 for fermions and λ = 2 for bosons. To summarize, the maximum of the PDF Eq.

(2.82) for (p⊥, φp, y − ηs) can be estimated as

P ≤ Pmax =
ga

(2π)3
τ(|∆3σµu

µ|+
√

∆3σµ∆3σν∆µν)

(
G(1)

max +

√
πµνπµν

2(e+ P )Tα
λG(α+1)

max

)
. (2.89)

For light mesons, the validity of the assumption f0 < 1 depends on the value of the freeze-out

temperature and chemical potential. Especially, kinetic freeze-out at temperature, much below

the chemical decoupling temperature can lead to large non-equilibrium chemical potentials than

can cause this assumption to break down in some of the fluid cells. We found that f0 < 1 almost

all the time, although there were some instances where it was violated. If a more rigorous result

is desired, the inequality (2.88) can be replaced by the following one:

Eα+1f0(1 + f0) ≤ |Eα+1f0|+ |Eγf0||Eα+1−γf0|
≤ G(α+1)

max +G(γ)
maxG

(α+1−γ)
max , (2.90)

where 0 ≤ γ ≤ α + 1.

The negative probability issue

For hyper-surface of constant temperature, the Cooper-Frye formula in Eq. (2.68) is not

positive semi-definite. This is because on an isothermal hyper-surface Σ, d3σµ can be a space-like

vector. So pµd3σµ can be negative in certain regions. Physically, such regions represent parts of the

switching surface through which more particles are flying into the fireball instead of being emitted.
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These negative contributions to the Cooper-Frye integral are essential to ensure the conservation

of energy across the hyper-surface. However, they become problematic when one wants to use Eq.

(2.68) as a probability distribution (which should always be positive). In the practical sampling

procedure, we insert a θ-function by hand to enforce positivity of the probability distribution

function. Since we group the random variables differently in the different sampling approaches

discussed above, insertion of the θ-function will be done slightly differently in each case, with

different consequences. In each case, a slight violation of energy-momentum conservation will

ensure. Let us therefore explore the implications of the θ-function in some detail, we first sample

particle’s spatial information using the purely numerical approach, we use a θ-function θ(uµdσµ) to

enforce positivity of the p⊥-integrated distribution function. This means that none of our sampled

particles will come from the spatial regions where uµdσµ < 0. In the second step, when sampling

the momenta we enforce the positivity of Eq. (2.68) at the already sampled spatial coordinates. In

this step, there are two possible quantities that can come negative. First, pµσµ may be negative for

some values of pµ. This represents the situation where a net number of particles with momentum

pµ flies into the fireball. Secondly, in the viscous case, when the off-equilibrium correction δf

becomes large, it may overwhelm the equilibrium term and turn the entire distribution function to

negative. This situation represents a breakdown of the Chapman-Enskog expansion keeping only

terms of first order in δf , Eq. (2.68) should not be trusted in such regions of momentum space.

With η/s = 0.20, we find that this problem usually occurs at high pT > 2.5 GeV. In the sampling

procedure, we enforce both terms to be always positive, by inserting a product of theta functions,

θ(f0 + δf)θ(pµd3σµ). θ(f0 + δf) should be always kept in the calculation, even for in the analytic

results. The second factor θ(pµdσµ) causes a deviation of the sampled momentum distribution

from the analytical result which will be studied below.

If we first sample the particle’s momentum information, we enforce positivity of the momentum

distribution dN/(dyp⊥dp⊥dφp) ≥ 0. In most cases, the total number of emitted particles with given

transverse momentum ~p⊥, integrated over the entire freeze-out surface, is positive. The positivity

constraint on dN/(dypTdpTdφp) therefore has almost no effect at all. The set of momentum

configurations obtained from this sampling procedure will reproduce momentum distributions and

flow coefficients that agree most closely with the analytical Cooper-Frye formalism. In the second

step, when we then additionally sample particle’s spatial information, we need to enforce positivity

of Eq. (2.68) at a given momentum ~p⊥. Regions on the hypersurface where Eq. (2.68) is negative

will thus not contribute to particle emission at that ~p⊥. The sampled spatial distribution will

therefore show some deviation from the analytic result.

For the semi-analytic approach, the situation is similar to the purely numerical approach when

sampling the positions first and the momenta second.
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Multiplicity fluctuations at freeze-out

The Cooper-Frye formula only yields the average number of particles emitted from a given hy-

drodynamic event. Each sampling of the Cooper-Fyre formula will, however, result in a number of

emitted particle that fluctuates around that mean value. In principle, these sampling fluctuations

are constrained by energy-momentum , baryon number and charge conservation. However, exact

implementation of these constraints is non-trivial and will have to be left for future studies.

We use an approximation based on the following procedure: We compute the integer value of

the number of particles of species as predicted by Cooper-Frye, sample such particles until that

number is exhausted, and then use the non-integers part of the predicted number to uniformly

sample for one additional particle. This sampling procedure introduces minimum fluctuations in

the total number of particles. In the current version of iSS, there are options for users to instead

fluctuate the particle number according to Poisson or negative Binomial distributions.

Performance

To demonstrate the performance of the iSS algorithm, we use an event-averaged hydrodynami-

cally evolved Pb+Pb profile at 20-30% centrality at LHC energy to obtain a rough estimate for the

average running time of our particle sampler. The two sampling approaches have their individual

advantages and disadvantages in dealing with different sampling requirements.

100 repeated samplings purly numerical approach semi-analytic approach
determining particle 21.84s for π+ negligible for π+

yield dN/dy ∼ ×100 for rest of particles 0.01s for all particles
actual sampling 1.25s for π0 2.65s for π+

faster for heavier particles faster for heavier particles
total 2463.75s 15.16s

50, 000 sampling 88.73s 1327.99s
(π+ only)

Table 2.3: Efficiency comparison between pure numerical and semi-analytic methods. The test
case has 32869 conversion surface cells in the transverse plane and dN/dy|π+ ∼ 144. The test is
done on a single core personal laptop.

The numerical performance of the code is summarized in Table. 2.3. The tests are done with

the Intel C++ compiler with -O3 optimization. Our code runs about a factor of 6 faster with the

Intel compiler compared to the GNU compiler (g++).

The purely numerical approach is most suitable when a large number of repeated samplings

of a single hydrodynamical event is desired. This is essential if one wants to study with good

statistical precision rare multi-strange hadrons very few of which are emitted in a single event.

On the other hand, the semi-analytic approach is extremely fast for small numbers of repeated
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samplings. This large gain in the numerical efficiency is due to the fact that it determines the

particle yields analytically using, Eq. (2.77). The drawback is that in this approach we need

to sample one additional dimension (the rapidity direction) using the direct PDF method, which

reduces the total sampling efficiency per simulation cycle.

2.5.3 Code verification

In this section, we show some test results from our particle sampler.
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Figure 2.14: For sampling method I in the purely numerical approach, the spatial distributions
of the sampled thermal particles (solid dots) are compared to the emission function calculated
from the Cooper-Frye Formula (lines). The left panel shows the particle distribution along the
ηs direction. The middle panel is the time emission function of the particles and the right panel
shows the particle distribution along the x-axis in the transverse plane. All results are from a
single hydrodynamic event with bumpy initial conditions.

In Figs. 2.14 and 2.15 we present the spatial and momentum distributions of thermally emitted

particles (pions, kaons, and protons) and compare them against the emission function calculated

directly from the Cooper-Frye Formula. We perform repeated samplings for a single hydrodynamic

simulation with fluctuating initial conditions which emits about 172 positive pions, 40 positive

kaons, and 11 protons. per unit rapidity thermally (i.e., not counting particles from resonance

decays). To obtain sufficient statistics, we sample 50,000 events for thermal pions, 150,000 events

for thermal kaons, and 500,000 events for thermal protons (these numbers account for the relative

yields per event of their particle species.) Samples are generated using the purely numerical

approach method I, which samples the spatial distributions first and then particle momenta.

We find that the particle samples generated from this method reproduce very accurately the

spatial distributions from the Cooper-Frye Formula. The regions where uµd
3σµ < 0 do not affect

the partially integrated emission functions shown in Fig. 2.14. In Fig. 2.15, we compare the

particle momentum distributions against the results from the Cooper-Frye formula. We find very

good agreements for the particle spectra as well as for the their anisotropy coefficients v2, v3, and

v4.

In Figs. 2.16 and 2.17, we show similar comparisons using the semi-analytic approach. Again

the spatial distributions in the transverse plane from directly integrating the Cooper-Frye formula
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Figure 2.15: Similar to Fig. 2.14, momentum distributions of the sampled particles are compared
with results from the Cooper-Frye formula. Particles’ pT -differential spectra, v2, v3, and v4 are
presented.
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Figure 2.16: Similar to Fig. 2.14, but for sampling method with the semi-analytic approach.

are very well reproduced but some slight differences are seen in the ηs and τ distributions. Fig. 2.17

shows that this method generates some noticeable disagreements in the higher order momentum

anisotropies of the particle momentum distribution, caused by the particular way we remove

negative contributions in this approach.

Finally, we shown in Figs. 2.18 and 2.19, our results from the sampling method II within the

purely numerical approach. In this method, since we first sample the momentum distributions of
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Figure 2.17: Similar to Fig. 2.15, but for sampling with the semi-analytic approach.
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Figure 2.18: Similar to Fig. 2.14, but for sampling method II of the purely numerical approach,
which samples particle momenta first.

the particles, the sampled results reproduce the directly calculated particle momentum distribu-

tions from the Cooper-Frye formula very well. The spatial distributions of the particles, on the

other hand, exhibit some noticeable deviations from the Cooper-Frye results, due to the removal

of negative contributions.

Overall, we show that our particle sampler can very well reproduce the desired particle distri-

butions from the Cooper-Frye formula. Due to the negativity issue in the Cooper-Frye integral,

the final particle samples deviate from the desired distributions either in momentum or coordinate
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Figure 2.19: Similar to Fig. 2.15, but for sampling method II of the purely numerical approach,
which samples particle momenta first.

space, or both. But the deviations are small and quite acceptable for all three sampling methods.

For the users who aim at high precision for the anisotropic flow coefficients, we recommend to

choose method II from the purely numerical approach. For those who is focus on particle inter-

ferometry, where the spatial distributions of the particles maybe more important, method I from

the purely numerical approach is preferred.

2.6 Event-by-event flow analysis with finite numbers of particles

Particle event generators (such as iSS and UrQMD) produce Monte-Carlo samples with a finite

number of particles per event. As is true in the actual experiments, this limits the resolution of

the flow anisotropy distributions, especially the resolution of the n-th order harmonic flow angle

Ψn. For each individual event, the true underlying azimuthal particle distribution can be written

as

E
d3N

d3p
=

1

2π

d2N

dypTdpT

(
1 +

∞∑
n=1

2vn(pT , y) cos[n(φ−Ψn(pT , y))]

)
, (2.91)

48



where vn is the n-th order anisotropic flow coefficient and Ψn is its corresponding flow plane angle.

Both depend on the particles’ transverse momentum and rapidity. They can be combined into a

complex number by writing

Vn(pT , y) = vn(pT , y)einΨn(pT ,y). (2.92)

In the experimental measurement, one can estimate the true Vn(pT , y) by constructing the event

flow vector Qn(pT , y) from the finite number of measured particles. The n-th order event flow

vector Qn(pT , y) is defined as

Qn(pT , y) = |Qn(pT , y)|einΨ̃n(pT ,y) =
1

Nparticle

Nparticle∑
i=1

wi cos(nφi), (2.93)

where the sum goes over all the selected particles. wi is the weight for each particle which is

taken to be 1 or pi,T in most cases, times an acceptance correction. The limited event plane

angle Ψ̃n(pT ) extracted from the Q vector takes values in the range
[
0, 2π

n

)
. When Nparticle →∞,

Qn(pT ) → Vn(pT ) for wi = 1. So the true underlying anisotropic flow Vn(pT ) can be regarded as

the limit of the measured flow vector as the number of particles per event approaches infinity.

In the iEBE package, we provide two python functional classes to filter out particle samples of

interests from the event generator outputs and perform a flow analysis on these particles.

2.6.1 Filtering particles

Since the size of the output files from the particle event generator are huge, we develop a

two-stage analysis framework to efficiently handle large numbers of Monte-Carlo events, described

in Fig. 2.20.

Figure 2.20: Work flow for analyzing the particle event generator outputs.

During the first stage, we first set up a particle filter which only selects only that particle

information from the event generator output files in which the users is actually interested. Since

the initial condition generator assigns the x-axis in the transverse plane to the direction of the

impact parameter, in order to randomize the reaction plane (i.e, to eliminate the trivial correlation

between any two Monte-Carlo particle samples from the same hydrodynamic background), we

generate a random rotation angle φ and apply it to all the selected particles in the event. We also

compute and store the n-th order event flow vector Qn(pT , y) of the user-selected particles into a
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database for the following second stage analysis. In a general flow analysis, we keep the Qn(pT )

vectors for all charged particles as well as for the stable identified particles with pseudo-rapidity

η between -2.5 to 2.5.

In the second stage of the analysis, we perform event averages according to various definitions

of the flow correlation functions , thereby obtaining different type of flow coefficients. As we

will see in the following sub-sections, all the flow correlation functions can be written as certain

combinations of the event flow vectors Qn. As a result, the computational complexity for any type

flow analysis is only O(Nev). This greatly improves the numerical efficiency in analyzing the final

results, especially for multi-particle correlation functions.

2.6.2 Anisotropic Flow Analysis

Event plane method

The most commonly used flow measurement quantity is the event-plane flow defined as [22]

vn{EP} =

〈
Qn · Q

?
nA

|QnA|

〉
√〈

Q?nA
|QnA|

· QnB|QnB |

〉 , (2.94)

where QnA and QnB are called sub-event flow vectors, constructed from particles in sub-events.

The event plane resolution factor is defined as the variance of the two sub-event plane angles [23],

Rn =

√〈
Q?
nA

|QnA|
· QnB

|QnB|

〉
. (2.95)

In order to avoid self-correlation in the calculations, we use particles from different pseudo-rapidity

regions to define Qn, QnA, and QnB. Particles from mid-rapidity, η ∈ [−0.5, 0.5], are used to

construct Qn, while QnA is calculated with particles from forward rapidity, η ∈ (0.5, 2.5] and

QnB is calculated with particles from backward rapidity, η ∈ [−2.5,−0.5). For event-plane flows

of identified particles, the reference flow vectors QnA and QnB are constructed using all charged

particles measured in the respective sub-events to gain the largest statistics.

Scalar product method

One disadvantage of the event-plane measurement is that the resolution factor Eq. (2.95)

depends on the actual physical properties of the detectors, which are hard to account for in the

theory. In order to remove such a bias [22, 24], one can alternatively measure the scalar product

anisotropic flow:

vn{SP} =
〈Qn ·Q?

nA〉√
〈Q?

nA ·QnB〉
. (2.96)

Note that the usual two particle cumulant method is identical to the scalar product method,

vn{2} = vn{SP} if QnA and QnB are the sub-event flow vectors for all charged particles.
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Two particle correlations

In both the event-plane and scalar product methods, the reference flow vectors QnA and QnB

are constructed from all charged particles measured within the given, disjoint pseudo-rapidity

ranges. To improve statistics, we can use the same set of particles used to construct Qn to also

calculate the reference flow vector. This is usually referred as the two particle correlation flow, or

vn[2]. It is defined as [22],

v2
n[2] = 〈{ein(φi−φj)}(i,j)〉, (2.97)

where {. . .}(i,j) represents averge over all the possible pairs of particle (i, j) (with i 6= j) within

the selected samples in a single event. Eq. (2.97) can be written in terms of the Qn flow vector as

[25]

v2
n[2] =

〈
N |Qn|2 − 1

N − 1

〉
, (2.98)

where −1 in the numerator subtracts the terms where i and j correpsond to the same particle.

4-particle cumulant method

The 4-particle cumulant flow, vn{4}, is constructed from 4-particle correlations by a procedure

that suppresses 2-particle non-flow correlations. It is defined as [22]

vn{4} =[
2〈{einφ1}{e−inφ3}ch〉〈{einφ2}ch{e−inφ4}ch〉 − 〈{einφ1}{e−inφ3}ch{einφ2}ch{e−inφ4}ch〉

(2〈{einφ1}ch{e−inφ3}ch〉〈{einφ2}ch{e−inφ4}ch〉 − 〈{einφ1}{e−inφ3}ch{einφ2}ch{e−inφ4}ch〉)3

]1/4

,

In terms of Qn vectors,

vn{4} =

[
2〈Qn ·Q?

nA〉〈QnA ·Q?
nB〉 − 〈Qn ·Q?

nAQnA ·Q?
nB〉

(2〈QnA ·Q?
nB〉2 − 〈QnA ·Q?

nAQnA ·QnB〉)3

]1/4

, (2.99)

Similar to the 2-particle cumulant method, we can also define the anisotropic flow from 4-particle

correlations where all 4 particles are taken from the same selected sample in the event. This flow

esitmate is denoted [25]

v4
n[4] = 2〈Qn ·Q?

n〉2 − 〈Qn ·Q?
nQn ·Q?

n〉. (2.100)

Please note that self-correlations still need to be subtracted in Eqs. (2.99) and (2.100). The

corrected expressions can be found in [26] and are more complicated. In the Appendix A, we

derive an induction formula that can help us to subtract the self correlations among any number

of Qn vectors.
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2.6.3 Flow plane correlations

One can further construct correlation functions involving more Qn vectors. The most general

correlation function involving all charged hadrons takes the form

C{c1n1, . . . , cknk} ≡ 〈{ein1φ1}c1 · · · {einkφk}ck〉, (2.101)

where 〈· · · 〉 runs over all charged hadrons in each event. This correlation function is non-zero

when the coefficients {ci} and {ni} satisfies the relation, c1n1 + c2n2 + · · ·+ cknk = 0. (Otherwise

the correlator averages to zero where summed over many events, due to the random orientation

of the reaction plane which drops out from the correlator only if c1n1 + c2n2 + · · · + cknk = 0.)

In experiment, such a correlation function was first introduced to extract the correlation between

event planes angles of different harmonic order [27, 28, 29]. In [28] the ATLAS Collaboration

studied a slight variation of Eq. (2.101) which, when expressed in Qn vector, reads,

C{c1n1, . . . , cknk}{EP} =

〈
Q
c1
n1

|Qn1 |c1
· · · Q

ck
nk

|Qnk |
ck

〉
√〈

Q
c1
n1

|Qn1 |c1
·
(

Q
c1
n1

|Qn1 |c1

)?〉
· · ·
〈

Q
ck
nk

|Qnk |
ck
·
(

Q
ck
nk

|Qnk |
ck

)?〉 , (2.102)

with the understanding that for ni < 0, Qni = Q?
−ni . Similar to the event-plane flow, such

an event-plane correlator suffers from resolution correction issues. One can remove this bias by

defining a scalar product correlator [28, 29],

C{c1n1, . . . , cknk}{SP} =
〈Qc1

n1
· · ·Qck

nk
〉√

〈Qc1
n1 · (Qc1

n1)?〉 · · · 〈Qck
nk · (Qck

nk)
?〉
. (2.103)

The removal of self-correlations from these expressions is most easily achieved by using disjoint

subevents for the Qn vectors, but less statistic hungry alternatives have been proposed [26].

The flow factorization ratio

The flow factorization ratio is defined as [24, 25],

rn ≡
Vn∆(p1, p2)√

Vn∆(p1, p1)Vn∆(p2, p2)
, (2.104)

where Vn∆(p1, p2) is the Fourier coefficients of the two particle correlation function,〈
E1E2

dN

d3p1d3p2

〉
=

1

2π

〈
dN

p1dp1dη1p2dp2dη2

〉(
1 + 2

∞∑
n=1

Vn∆(p1, p2) cos(n∆φ)

)
. (2.105)

In a single event, assuming that all particles are emitted independently, Vn∆(p1, p2) factors into

a product of vn(p1) and vn(p2). For a two particle correlation function measured by averaging

multiple events, Vn∆(p1, p2) can be calculated from the Qn vectors as [22]

Vn∆(p1, p2) = 〈Qn(p1) ·Q?
n(p2)〉. (2.106)
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Note that for the case p1 = p2 we need to subtract the self correlations. With Eq. (2.106), the

flow factorization ratio can be written as,

rn(p1, p2) =
〈Qn(p1) · (Qn(p2))?〉√

〈Qn(p1) · (Qn(p1))?〉〈Qn(p2) · (Qn(p2))?〉
= C{n, n}{SP}(p1, p2). (2.107)

This ratio can be understood as the correlation between the same-order flow plane angles at

different pT values.

Two-plane correlation (2PC)

The pT -integrated two-flow-plane correlation can be defined as

C{c1n1, c2n2}{SP} =
〈Qc1

n1
·Qc2

n2
〉√

〈Qc1
n1 · (Qc1

n1)?〉〈Qc2
n2 · (Qc2

n2)?〉
, (2.108)

where c1n1 + c2n2 = 0. The ATLAS Collaboration [28] constructs the event-plane correlation,

“〈cos k(Ψn1 −Ψn2)〉” ≡ 〈cos k(ΨA
n1
−ΨB

n2
)〉+ 〈cos k(ΨB

n1
−ΨA

n2
)〉

Res{kΨA
n1
}Res{kΨB

n2
}+ Res{kΨB

n1
}Res{kΨA

n2
}

=

〈(
QAn1

|QAn1
|

)c1
·
(
QBn2

|QBn2
|

)?c2〉
+

〈(
QBn1

|QBn1
|

)c1
·
(
QAn2

|QAn2
|

)?c2〉
2

√〈(
QAn1

|QAn1
|

)c1
·
(
QBn1

|QBn1
|

)?c1〉〈( QAn2

|QAn2
|

)c2
·
(
QBn2

|QBn2
|

)?c2〉 ,
(2.109)

where k = |c1n1| = |c2n2| and QA
n and QB

n are the flow vectors from two sub-events. In the

implementation, we choose one event containing particles with pseudo-rapidity η > 0.5 in the

forward rapidity and the other event with particles having η < −0.5 at backward rapidity.

Three-plane correlations (3PC)

The pT -integrated three-flow-plane correlations are defined as [28]

C{c1n1, c2n2, c3n3}{SP} =
〈Qc1

n1
·Qc2

n2
·Qc3

n3
〉√

〈Qc1
n1 · (Qc1

n1)?〉〈Qc2
n2 · (Qc2

n2)?〉〈Qc3
n3 · (Qc3

n3)?〉
, (2.110)

where c1n1 + c2n2 + c3n3 = 0. The event-plane correlations corresponding to Eq. (2.109) can be

defined in a similar fashion. In order to avoid subtracting the self-correlation in the calculation,

we usually define the three Qn vectors in three disjoint rapidity regions. In our implementation,

we choose sub-event A to contain particles with −1.5 6 η < −0.5, sub-event C has particles

with 0.5 < η 6 1.5, and sub-event B has particles with pseudo-rapidity, −2.5 6 η < −1.5 and

1.5 < η 6 2.5.
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Figure 2.21: Code checking for event plane and scalar product method of elliptic flow coeffi-
cients for thermal π+, K+ and p. The simulations contains 50,000 repeated samplings of a single
hydrodynamic fireball.

2.6.4 Benchmark code checking

In Fig. 2.21, we show a numerical check for the event-plane and scalar-product v2 from 50,000

events sampled from one underlying hydrodynamic freeze-out hyper-surface. As Nev → ∞, both

flow measurements will reproduce the true underlying v2, which can be calculated from freeze-out

hyper-surface using the Cooper-Frye formula. Within the statistical error, the v2 of thermal π+,

K+, and protons show in Fig. 2.21 agree quite well with the expected results calculated from the

Cooper-Frye formula. The larger statical error bars for thermal protons compared to thermal π+

are due to the roughly 10 times smaller proton yield in each event. For all three particle species,

due to the lack of the statistics at very low pT , pT < 0.2 GeV, the v2 results from the event

generator deviate from the Cooper-Frye results. For higher order vn, more events are needed.

2.6.5 Reconstructing HBT correlations from event generators

Particle event generators (iSS, UrQMD) assume that every individual particle in the event is

emitted independently. The final particle samples are made of classical particles, void of quantum

mechanical correction. For pairs of identical pions, wave functions symmetrization effects on their

joint emission probability are not included. Similarly, for protons pairs, their joint production

probability is not suppressed result from wave function (anti)-symmetrization.

In order to reconstruct the HBT correlations between identical particles, we need both mo-

mentum and spatial information of the emitted particles from the event generator.

Once we get a set {xµi , pµi } of identical particle emission coordinates in phase space, we can

reconstruct the HBT correlation between pairs of particles by the following formula [3],

C (q,K) = 1 +

∣∣∫ d4xeiq·xS(x,K)
∣∣2∣∣∫ d4xaS(xa, pa)

∣∣ ∣∣∫ d4xbS(xb, pb)
∣∣ , (2.111)
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where q = pa−pb and K = 1
2

(pa + pb) and S(x,K) is the particle emission probability in phase-

space. This “emission function” is sampled by the coordinates {xµi , pµi } from the event generator.

In real experiments, due to the limited number of measured particles in each event, we can only

measure the event-averaged two-particle correlation function

〈C (q,K)〉 = 1 +

〈∫
d4xad

4xbe
iq·(xa−xb)S(xa, K)S∗(xb, K)

〉〈∣∣∫ d4xaS(xa, pa)
∣∣〉 〈∣∣∫ d4xbS(xb, pb)

∣∣〉 . (2.112)

Since the particle samples generated from the event generator reflect the underlying particle emis-

sion probability distribution S(x,K), we can probe the structure of the particle emission function

by averaging over large numbers of events.

Classical interpretation

If we interpret the sample {xµi , pµi } as the spatial positions and momenta of the emitted parti-

cles, we can write the particle emission function as,

S(x, p) =
N∑
i=1

δ4(x− xi)δ2 (p⊥ − p⊥,i) δ(y − yi). (2.113)

This emission function has already been normalized,

N =

∫
d3p

Ep
d4xS(x, p) =

N∑
i=1

1 = N.

In the numerical implementation, the δ functions need to be replaced by bin functions with a finite

width. We can use two types of bin functions:

δpi,p =

{ 1
πε2

1
ε∆y

, for |pi − p| < ε and |yi − y| < ε∆y/2

0, otherwise.
(2.114)

or

δpi,p =
1

π3/2ε2ε∆y

e−(pi−p)2/ε2e−(yi−y)2/ε2∆y . (2.115)

Both bin functions are normalized: ∫
d3p

Ep
δpi,p = 1, (2.116)

and as ε→ 0 and ε∆y → 0,

δpi,p → δ2 (p⊥ − p⊥,i) δ(y − yi). (2.117)

In order to construct the HBT correlation function from the particle sample, we can use the bin

function to discretize the Eq. (2.112). We first look at the denominator which is constructed by
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choosing the two particles from two different events n and m:〈
Ea

dN

d3pa
Eb

dN

d3pb

〉
mix

=

〈
Nm∑
i=1

Nn∑
j=1

δpi,paδpj ,pb

〉
(m,n)

=
1

Nev(Nev − 1)

[(
Nev∑
m=1

Nm∑
i=1

δpi,pa

)(
Nev∑
n=1

Nn∑
i=1

δpi,pb

)

−
Nev∑
m=1

(
Nm∑
i=1

Nm∑
j=1

δpi,paδpi,pb

)]
, (2.118)

where the second term in Eq. (2.118) removes the contribution of the first term from where events

are the same.

For numerator, the particle pairs are taken from the same event. The numerator of the second

term in Eq. (2.111) can be written as,〈
EaEb

dN

d3pad3pb

〉
=

1

Nev

Nev∑
m=1

Nm∑
i=1

∑
j 6=i

δpi,Kδpj ,Ke
iq·(xi−xj)

=
1

Nev

Nev∑
m=1

∣∣∣∣∣
Nm∑
i=1

δpi,Ke
iq·xi

∣∣∣∣∣
2

−
Nm∑
i=1

(δpi,K)2

 , (2.119)

where the last term subtracts the self-correlation between a particle and itself. The two-particle

correlation function Eq. (2.111) can thus be written as

〈C (q,K)〉 = 1 + (2.120)

+

(Nev − 1)
∑Nev

m=1

(∣∣∣∑Nm
i=1 δpi,Ke

iq·xi
∣∣∣2 −∑Nm

i=1 (δpi,K)2

)
[(∑Nev

m=1

∑Nm
i=1 δpi,pa

)(∑Nev

n=1

∑Nn
i=1 δpi,pb

)
−∑Nev

m=1

(∑Nm
i=1 δpi,pa

∑Nm
j=1 δpi,pb

)] .
If we use the smoothness approximation in the denominator δpi,paδpi,pb ' (δpi,K)2, we obtain

〈C (q,K)〉 = 1 +

1
Nev

∑Nev

m=1

(∣∣∣∑Nm
i=1 δpi,Ke

iq·xi
∣∣∣2 −∑Nm

i=1 (δpi,K)2

)
1

Nev(Nev−1)

[(∑Nev

m=1

∑Nm
i=1 δpi,K

)2

−∑Nev

m=1

(∑Nm
i=1 δpi,K

)2
] . (2.121)

2.7 Interface for Thermal Photon Emission

In the iEBE package, we provide a separate branch to allow users to perform calculations for

electromagnetic probes from relativistic heavy-ion collisions. In Fig. 2.22, we illustrate the work

flow of such integrated calculations.

In order to compute thermal photon emission from an evolving viscous hydrodynamic medium,

we need to output the evolution history of the local temperature, flow velocity and shear stress
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Figure 2.22: Work flow for event-by-event hydrodynamic simulation with photon emission.

tensor and fold them with thermal photon emission rates to compute electromagnetic observables.

Since the hydrodynamic evolution information is very demanding in terms of storage space, we

output it in HDF5 binary format to minimize the storage requirement and increase the I/O efficiency.

HDF5 format (Hierarchical Data Format) is a data model, library, and file format for storing and

managing data. It supports an unlimited variety of datatypes, and is designed for flexible and

efficient I/O and for high volume and complex data. The HDF5 library also provides multi-language

support, which enables us to build our interface in both Fortran and C++ for future support.

The momentum spectrum of thermal photons emitted from the expanding fireball can be

written as

E
dNγ

d3p
=

∫
d4x

(
Γ0 +

πµν

2(e+ P )
Γµν

)
, (2.122)

where the integral goes over the space-time volume occupied by the radiating hot medium, Γ0

is the thermal equilibrium emission rate, and the second term ∼ πµν describes the shear viscous

correction to the thermal emission rate. We can decompose Γµν in a complete tensor basis and

use the properties of the shear stress tensor, πµν = ∆µν
αβπ

αβ, to write Eq. (2.122) in the form

E
dNγ

d3p
=

∫
d4x

(
Γ0(u · q, T ) +

πµν q̂µq̂ν
2(e+ P )

aαβΓαβ(u · q, T )

)
, (2.123)

where q̂µ = qµ/(u · q), aαβ is a projection operator:

aαβ =
3

2(u · q)2
qαqβ + uαuβ + gαβ −

3

2(u · q)(qαuβ + qβuα). (2.124)
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The use of tensor decomposition in Eq. (2.123) is particularly efficient numerically, because the

anisotropic correction factors into a product of Lorentz scalars of which the first, πµν q̂µq̂ν , is most

easily evaluated in the laboratory frame (where we know πµν from the solution of the hydrodynamic

equations) while the second, Γ1 ≡ aαβΓαβ, is best worked out in the local rest frame of the fluid cell

(where u · q reduces to the local rest frame energy of the photon). This helps to avoid performing

extensive Lorentz boosts and 3-D rotations of πµν for each fluid cell when coupled to hydrodynamic

simulations. Besides speeding-up the calculation, it allows us to tabulate the viscous corrections

into one convenient table that can easily be used for phenomenological studies.

Please note that the work flow in Fig. 2.22 is generic for the calculation of all rare probes

coupled to the evolving bulk medium that probe its temperature and flow velocity, such as jet

energy loss and heavy quark diffusion.

2.8 Pre-equilibrium dynamics

Up to now, the iEBE code misses a module to describe the pre-equilibrium evolution of the

energy momentum tensor before the onset of viscous hydrodynamics. Such a module, together with

a Landau matching algorithm that matches the pre-equilibrium T µν to the viscous hydrodynamic

form Eq. (2.25), at the hydrodynamic starting time, is presently being developed by Jia Liu.
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Chapter 3: Phenomenological Studies of hadronic observables:

introduction and overview

Heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Col-

lider (LHC) offer a privileged window to study the physics of the quark-gluon plasma (QGP)

under extremely hot and dense conditions. Measurements of large anisotropic flow of hadrons

serve as a hallmark that the QGP generated in the collisions is strongly coupled and reaches

near local thermal equilibrium. Transport coefficients such as the shear viscosity represent the

fundamental properties of this QCD matter created in the relativistic heavy-ion collisions. Re-

cently, interest in the theoretical and phenomenological determination of the QGP transport pa-

rameters, in particular its specific shear viscosity η/s, has soared. Over the past decade, rel-

ativistic hydrodynamics has established itself as an indispensable component in modeling the

collective dynamics of the quark-gluon plasma (QGP) produced in relativistic heavy ion collisions

[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. In this part of my

thesis, we will apply relativistic viscous hydrodynamics to perform phenomenological studies of a

variety of different aspects of relativistic heavy-ion collisions.

In Chapter 4, we will start our journey by exploring the sensitivity of the final experimental

observables to the input parameters in hydrodynamic simulations. We then proceed to perform a

global fit to the measured single particle spectra and their elliptic flows at top RHIC energy and

use it as a starting point to extrapolate to higher LHC energies. This well-constrained prediction

for the LHC flow measurements will be discussed in detail in Chapter 5.

The extraction of the specific shear viscosity of the QGP from phenomenological studies has

received a lot of attention and recent effort [51, 33, 35, 36, 37, 40, 52, 41, 42, 43, 44, 45, 46,

47, 17]. Based on both pure hydrodynamic simulations and more advanced modeling using a

hydrodynamic + cascade hybrid approach, it has been established that now the remaining largest

uncertainty lie in the initial conditions [40]. An estimated O(20%) uncertainty in the initial

ellipticity of the energy density profiles was found to translate into a O(100%) uncertainty in the

extracted value of the η/s of the QGP. In Chapter 6 we will discuss that with the discovery and

meanwhile precise measurement of higher order anisotropic harmonic flow coefficients, especially

the triangular flow v3, a combined analysis of measured v2 and v3 data can help us disentangle
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the initial state fluctuations from the medium transport properties. In a following event-by-event

viscous hydrodynamic study at LHC energy in Chapter 7, where higher order anisotropic flow

coefficients, vn(n > 3), will be compared with experimental data, we will further demonstrate the

discriminating power provided by a complete measurement of all flow harmonics.

In general, the specific shear viscosity is expected to change with temperature [53, 54]. In

Chapter 8, we will further explore the sensitivity of the flow observables to the temperature

dependence of (η/s)(T ).

One of the major goals of heavy-ion collision experiments at RHIC is to explore the QCD

phase diagram. For this purpose, in the last few years the Beam Energy Scan (BES) program has

been carried out at RHIC. By combining the measurements from RHIC to LHC energies, we will

focus on studying the collision energy dependence of the flow observables in Chapter 9. Due to

the current limitations in our model, we ignore the effects from the dynamical evolution of the

non-zero net baryon density that characterizes the lower-energy collisions, and from corrections

arising from the voilation of boost-invariance for the longitudinal expansion in our simulations.

These effects are expected to become more and more important for quantitative comparisons with

experimental measurements at lower collision energies at RHIC. Nonetheless our study can be

regarded as the first step towards a more precise phenomenological studies of the RHIC BES

program. The qualitative behavior of our results yields a number of key theoretical insights for

understanding the phenomena that manifest themselves in the low energy runs at RHIC.

Chapters 10 and 11 are devoted to studying flow fluctuations in heavy-ion collisions. From

event-by-event hydrodynamic simulations we know that both the magnitude and direction (“flow

plane angle”) of the anisotropic flow fluctuate as functions pT and η and from event to event.

Such fluctuations manifest themselves in flow correlation measurements. In Chapter 10, we will

show that our event-by-event viscous hydrodynamic simulations successfully describe (and in a

few cases even predicted) these flow correlations measured in the experiments. Finally, in Chapter

11 we study the anisotropic flows in ultra-central Pb+Pb collisions at the LHC, where the initial

state fluctuations entirely dominate the final vn spectrum.

We will wrap up this phenomenological part of my thesis by discussing a collection of small

but interesting projects that I finished while following my main research stream.
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Chapter 4: Systematic parameter study of hadron spectra and elliptic

flow from viscous hydrodynamic simulations

4.1 Chapter introduction

The specific shear viscosity of the QGP can be extracted as a model fitting parameter in the

comparisons between the measured hadron spectra and their azimuthal anisotropies and viscous

hydrodynamical simulations of the collision dynamics. However, in practice, a reliable extraction

procedure requires highly constrained simulations of all dynamical stages of the collision from the

initial non-equilibrium phase, which describes the initial geometry and early evolution towards

local thermalization, to the viscous hydrodynamic expansion of the QGP fireball and to the final

off-equilibrium hadronic rescattering stage after its hadronization [55, 56].

This chapter is a contribution to help prepare the path for such a phenomenological extraction

of (η/s)QGP. We would like to first build intuition for systematic trends and parameter dependences

that will be useful in forthcoming more ambitious fit attempts. This work reported here is based

on Ref. [17].

4.2 Setups: Hydrodynamic parameters, initial and final conditions

To initialize the hydrodynamic evolution, we must specify the following parameters,

• The starting time τ0 at which the system is sufficiently close to the local thermal equilibrium.

We here consider τ0 as a tunable parameter and vary it between 0.2 and 0.8 fm/c in order

to study how it affects the final hadron spectra and elliptic flow.

• Initial energy density profile

For the initial energy density profile we study both Glauber [57, 30, 58, 38] and color

glass condensate motivated (CGC-fKLN) initializations [59, 60, 61, 62]. In contrast to later

chapters, we here use the optical limit. We do not account for event-by-event fluctuations

[11, 63, 45, 64, 65].
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• Initial flow velocity and viscous stress tensor πµν

The shear viscous pressure tensor πµν is initialized with its Navier-Stokes profile πµν = 2ησµν0

where σµν0 is the velocity shear tensor at time τ0, calculated from the initial Bjorken velocity

profile, uµ = (uτ , ux, uy, uη) = (1, 0, 0, 0). Since η/s is taken constant here, πµν ∼ s follows

the initial entropy density profile in the transverse plane. A more systematic study of the

initial transverse flow velocity and the πµν tensor requires a model description of the pre-

equilibrium stage. We leave this for a future study.

• The equation of state (EOS)

The equation of state of the QGP is a key property that we would like to study in relativistic

heavy-ion collisions. It also serves as an essential ingredient when we solve the hydrodynamic

equations. We will explore the dynamical consequences of three different types of EOS in

our study. The details for them will be explained in the next section.

• The specific shear viscosity η/s

At the top RHIC energy, the initial peak temperature of the fireball reaches around 350-

400 MeV. Within the temperature range explored in heavy-ion collisions, the temperature

dependence of η/s is expected to be weak. So for the following exploratory study we use

of a constant ratio η/s, tuned from 0.08 to 0.24 which, as we will see, covers the physical

range allowed by the experimental data, in order to study the effects of shear viscosity on

the hadron spectra and elliptic flow. We will perform a systematic study of the effects from

a temperature dependence of (η/s)(T ) in Chapter 8.

• The kinetic decoupling temperature Tdec

At the end of the hydrodynamic evolution, we use the Cooper-Frye formula (see Eq. (4.1)

below) to convert the energy contained in each fluid cell into individual particles. This pro-

cedure is implemented on a constant temperature hyper-surface. In our pure hydrodynamic

simulation framework, we let the converted particles stream freely to the detectors without

any further interactions 3. We call the temperature on the conversion surface the kinetic

decoupling temperature, Tdec. We will tune Tdec between 100 and 160 MeV and study how

it affects the hadron spectra and elliptic flow.

Figure 4.1 shows a comparison of typical initial energy density profiles generated from the

Glauber and CGC initializations. In the Glauber model we assume a mixture of 85% wounded

3A more realistic approach would be to feed these particles into a microscopic hadronic cascade model to further
propagate them according to the relativistic Boltzmann equation, untill all collisions have stopped.
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Figure 4.1: A comparison of initial energy density profiles at τ0 = 0.4 fm/c for “central” (b =
2.33 fm, bottom) and “semi-peripheral” (b = 7.5 fm, top) Au+Au collisions from the Glauber and
CGC-fKLN models. Shown are cuts along the x-axis (right panels) and y-axis (left panels). The
two profiles are normalized to the same total entropy at b = 2.33 fm, using the EoS s95p-v0-PCE

to convert energy to entropy density.

nucleon and 15% binary collision contributions to the entropy production [34]. For the CGC model

we assume that the entropy density is proportional to the produced gluon density distribution,

computed with the publicly available fKLN code [66]. In central Au+Au collisions, both profiles

are normalized to the same total entropy (adjusted to reproduce the total final charged hadron

multiplicity dNch/dy in these collisions) and converted to energy density using the equation of state

s95p-v0-PCE [16]. With this normalization, both initializations correctly describe the centrality

dependence of dNch/dy for ideal fluid dynamics.

With non-zero specific shear viscosity, viscous heating produces additional entropy, resulting

in larger final multiplicities which we must correct for by renormalizing the initial entropy density

profile in such a way that the final multiplicity is held fixed. This renormalization is performed in

0-5% most central Au+Au collisions. We keep the normalization factor fixed for the other non-

central collisions. Since the viscous effects depend on the system size [67], the fractional increase
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of the final entropy over its initial value is expected to be larger in peripheral than in central

Au+Au collisions. We have checked that the centrality dependence of viscous entropy production

is sufficiently weak so that it does not strongly modify the centrality dependence of dNch/dy.

Figure 4.1 shows that the energy density profile from the CGC initialization has a steeper

surface gradient than the Glauber profile. This leads to larger radial acceleration (i.e. radial flow

develops more quickly) and is also in part responsible for the larger spatial eccentricity of the CGC

profiles at nonzero impact parameters when compared to the Glauber eccentricities [34, 68].

Final state hadron spectra are calculated from the hydrodynamic output via the Cooper-Frye

procedure [69],

E
d3Ni

d3p
=

gi
(2π)3

∫
Σ

p · d3σ(x) fi(x, p), (4.1)

where Σ is the isothermal freeze-out surface with normal vector d3σµ(x). After computing the

spectra of all 319 hadronic resonances included in EoS s95p-v0-PCE from Eq. (4.1), we use the

resonance decay program [70, 71] from the AZHYDRO package4 to let the unstable resonances decay.

The pion and proton spectra shown in this work include all strong decay products from strong

decays.

4.3 Equation of State

Hydrodynamic equations have to be solved together with the equation of state P(e, nB) (EoS)

of the medium. To study how the EoS affects the hadron spectra and elliptic flow, we employ

three different EOS for our hydrodynamic simulations.

• SM-EOS Q [38] : It implements a (slightly smoothed) first order phase transition between an

ideal massless parton gas and a hadron resonance gas (HRG). It assumes the system to be

in chemical equilibrium all the way down to kinetic freeze-out at temperature Tdec.

• EOS L [67] : It is a rough attempt to match lattice QCD (LQCD) data [72] above Tc to the

HRG in a smooth crossover transition. It assumes chemical equilibrium for the system at

all temperatures.

• s95p-v0-PCE [16] : It interpolates between the HRG at low temperature and the lattice EoS

at high temperatures, but the matching procedure is more sophisticated than the one used

to construct EOS L, and the lattice EoS is based on the results by the hotQCD collaboration

[73, 74]. Furthermore, below Tchem = 165 MeV temperature, the EoS is that of a chemically

frozen HRG. We have considered as stable particles those with half-life larger than 40 fm/c.

The matching procedure using a chemically equilibrated HRG is explained in detail in [16].

4AZHYDRO is available at the URL: http://www.physics.ohio-state.edu/~froderma/.
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The procedure for the chemically frozen HRG is identical since the chemical freeze-out tem-

perature is below the temperature where the interpolated EoS deviates from the HRG EoS.

In the hadron resonance gas part, we included all resonances listed in the summary of the

2004 edition of the Review of Particle Physics [75] up to 2 GeV mass.
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Figure 4.2: The three equations of state s95p-v0-PCE, SM-EOS Q, and EOS L used in this paper.
The lower panel shows the squared speed of sound c2

s = ∂p
∂e

as a function of energy density e
whereas p(e) is shown in the upper panel.

The partial chemical equilibrium in s95p-v0-PCE is built using the standard procedure in the

literature: Below Tchem the ratios of stable hadron yields are fixed to their chemical equilibrium

values at Tchem by finite non-equilibrium chemical potentials µi(T ) [76, 77, 78, 79, 80]. It is worth

noting that the ratios of individual particle densities are not conserved. What is conserved are the

ratios of the total densities of stable particles, n̄i, where total density means the sum of the actual

density of species i and the additional density of the same species that would arise if all unstable

resonances in the system were allowed to immediately and irreversibly decay. The rapid processes

that form and decay resonances through strong interactions are still in equilibrium, and thus the

resonance populations are in equilibrium with the populations of their daughter particles (see

[76, 77] for a detailed discussion). We describe the numerical implementation of partial chemical

equilibrium in the EOS in Appendix D.
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In practice the chemically frozen EoS is evaluated assuming that the evolution is isentropic

and the ratios n̄i/s stay constant. Strictly speaking this is not the case in viscous hydrodynamics

since dissipation causes an increase in entropy. However, the viscous entropy production in the

region where T < Tchem = 165 MeV was checked and found to be small (∼ 4% of the total entropy

production for η/s = 0.16 in Au + Au collisions at 20-30% centrality). So our EoS is a good

approximation of the physical EoS.

We compare the three equations of state in Fig. 4.2. The upper panel shows the pressure

and the lower panel the squared speed of sound as a function of the local energy density e.

The discontinuity in c2
s(e) at e ∼ 0.5 GeV/fm3 for s95p-v0-PCE is due to a sudden breaking of

chemical equilibrium at Tchem = 165 MeV. We have checked that it has negligible consequences

for the expansion dynamics. Fig. 4.2 shows that in the QGP phase s95p-v0-PCE is much softer

than SM-EOS Q. It approaches the Stefan Boltzmann limit more slowly than EOS L in the high

temperature limit. But s95p-v0-PCE is much harder in the phase transition region around Tc and

below, which will cause the fireball to expand and cool rapidly through the phase transition [81].

The EOS s95p-v0-PCE has a rapid crossover transition between quarks and hadrons according to

lattice QCD calculation. Contrary to SM-EOS Q and EOS L, there is no well-defined “softest point”

[82] which would cause the fireball to spend an extended time period in the critical region.

4.4 Spectra and elliptic flow

In this section, we study the dependence of the transverse momentum spectra in central

200AGeV Au+Au collisions (0-5% centrality, b = 2.33 fm) and the elliptic flow v2(pT ) in semi-

peripheral collisions (20-30% centrality, b = 7.5 fm) for pions, protons and (for v2) all charged

hadrons, on the EoS and various input parameters discussed in Secs. 4.2 and 4.3. We have also

checked that everything we find below for central collision spectra also applies, at the same level

of precision, to the azimuthally averaged spectra in semi-peripheral collisions.

We use the PHENIX results [83, 84] as guidance for only a qualitative comparison. A serious

dynamical model fit to the RHIC data will be presented in Chapter 5.

In the following we show hadron spectra and elliptic flow up to transverse momenta of 3 GeV/c

only for illustrative purposes, which does not necessarily imply that hydrodynamics can provide

a valid description up to such large pT . We will focus on the comparison with the experimental

data below pT < 1.5 GeV for pions and pT < 2.5 for protons [85]. Specifically for pions, since

the hard (pQCD) physics becomes dominant at high pT > 2.5 GeV (experimental spectra transit

from a exponential to a power-law shape), we will discard the discrepancy in the spectra above

pT ∼ 1.5 GeV.
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4.4.1 η/s-dependence at fixed τ0 = 0.4 fm/c and Tdec = 140 MeV

Transverse momentum spectra of pions and protons with different η/s used in the hydrody-

namic simulations are are shown in Fig. 4.3 (and in the upper left panel of Fig. 4.4) for the most

central Au+Au collisions. We find that larger η/s-values result in flatter spectra; the effect is

particularly strong for protons at low pT . This is because larger shear viscosity helps the system

to develop more radial transverse flow from the positive shear viscous contribution to the effective

transverse pressure gradients at early times [86, 87, 88].
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Figure 4.3: Pion spectra for 200A GeV Au+Au collisions at 0-5% centrality from VISH2+1, com-
pared with PHENIX data [84]. Results for two different constant values of η/s (0.08 and 0.24) are
shown; strong resonance decays are included. Solid and dashed lines show the spectra calculated
from the full distribution function f = feq + δf (“with δf”) and from the equilibrium part only
(“without δf”). The hydrodynamic evolution starts at τ0 = 0.4 fm/c with an initial CGC energy
density profile and ends at Tdec = 140 MeV. The EoS is s95p-v0-PCE.

Figure 4.3 shows a detailed study of how the shear viscosity affects the hadron spectra. Using

large η/s = 0.16 or 0.24 with s95p-v0-PCE, we find that the viscous correction due to the non-

equilibrium deviation δf of the distribution function on the freeze-out surface further hardens

the particle spectra at pT & 1 GeV/c5. The sign of the δf contribution is sensitive to the EOS

and the value of η/s used for the hydrodynamic evolution. s95p-v0-PCE gives the same sign

5As we have shown in Chapter 2.5, the Landau matching conditions require the δf correction to integrate to
zero when summing over all momenta, so a positive δf contribution at high pT implies a negative δf contribution
at low and/or intermediate pT .
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for δf as found in [89] (for a different EoS) but opposite to what had been found earlier with

VISH2+1 for smaller values of η/s using SM-EOS Q (i.e. for a first order phase transition) [38].

(For η/s = 0.08 Fig. 4.3 shows a negative δf correction for pions at large pT , of same sign but

much smaller magnitude than found earlier [38] with Glauber initial conditions and SM-EOS Q).

Our finding confirms the fragility of the sign of δf that was already discussed in [38]6.

The total shear viscous correction to hadron spectra comes from the time-integrated effects

of the shear viscous pressure on the radial flow and the “instantaneous” effect of the viscous

correction δf to the distribution function on the freeze-out surface.

For η/s = 0.08 we see in Fig. 4.3 that with s95p-v0-PCE the δf correction to the pion spectrum

is almost negligible, but the upper left panel in Fig. 4.4 shows that the pion and proton spectra

are still flatter than for the ideal fluid, reflecting the larger radial flow caused by the shear viscous

increase of the transverse pressure gradients [38]. Thus both the effect of viscosity on radial flow

and δf contribute to the flattening of the hadron spectra.

With s95p-v0-PCE, pion and proton spectra in Fig. 4.4 prefer a relatively large shear viscosity,

η/s = 0.16 ∼ 0.24 when compared with the PHENIX measurements.

Now, we proceed to discuss the elliptic flow. For the charged hadron v2 in the lower left panel

of Fig. 4.4, a larger shear viscosity leads to a smaller elliptic flow. The shear viscosity acts to

reduce the differences between the fluid velocity components along different directions, hence it

suppresses the development of the momentum anisotropy during the hydrodynamic evolution. In

the right panels in Fig. 4.4, we further study this suppression in detail by performing additional

calculations of the elliptic flow keeping only the equilibrium distribution function in the Cooper-

Fyre formula (dotted lines in Fig. 4.4). The comparison between the full results (dashed and

dash-dotted lines) and the results without δf helps us to disentangle the suppression from the

viscous reduction of the time-integrated buildup of anisotropic collective flow and the additional

viscous suppression of v2 caused by the δf correction.

We find that both suppression effects increase monotonically with shear viscosity. Each effect

contributes about 50% to the suppression seen in the final results. (This is not the case for thermal

photon elliptic flow as will be shown in Chapter 19.)

Compared to the measured charged hadron elliptic flow, we find that the data favor a small

η/s = 0.08− 0.16 in our calculations. This is in contrast to the preferred large η/s = 0.16− 0.24

6For EOS L and SM-EOS Q and η/s > 0.08, we find a negative sign of the δf contribution to both pion and proton
spectra at high pT , while the corresponding contribution is positive in the case of s95p-v0-PCE. The negative sign
appears to be correlated with the use of an EoS with a “softest point”. From ideal fluid dynamic simulations with
such first-order or almost-first-order phase transitions we know that the rapid change of c2s in the transition region
generates strong structures in the radial velocity profile in fireball regions that are close to the critical temperature
[30], and that these structures partially survive until the matter has reached decoupling. We suspect that velocity
gradients associated with these structures play an important role in generating for EOS L and SM-EOS Q a negative
δf contribution to the spectra at high pT .
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Figure 4.4: Upper left panel: Transverse momentum spectra dN/(2π dypT dpT ) (GeV−2) for posi-
tive charged pions and protons in the 0-5% most central Au+Au collisions (b = 2.33 fm), compared
with experimental data from the PHENIX Collaboration [84]. Lower left panel: Differential el-
liptic flow v2(pT ) for charged hadrons from Au+Au collisions at 20-30% centrality (b = 7.5 fm),
compared with PHENIX data [83]. Right panels: v2(pT ) for pions (top) and protons (bottom).
Results of elliptic flow computed with only equilibrium part of the distribution function are in-
dicated as the dotted lines for comparisons. All strong resonance decays are included; charged

hadrons comprise π±, K±, p, p, Σ±, Σ
∓

, Ξ−, Ξ
+

, Ω−, and Ω
+

. The EoS, initial and final conditions
are the same as in Fig. 4.3.

from the measured slope of the pT spectra. However, please note that our calculations are based on

using the initial conditions from the optical models which do not include initial state fluctuation

effects. As will be shown in the later chapters, fluctuation effects largely remove this tension

between particle pT spectra and v2.

4.4.2 Tdec-dependence at fixed τ0 = 0.4 fm/c and η/s = 0.16

In Fig. 4.5 we explore the sensitivity of spectra and elliptic flow on the value of the decoupling

temperature Tdec, holding all other parameters fixed. We choose τ0 = 0.4 fm/c, η/s = 0.16, and

EOS s95p-v0-PCE for the calculations.
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Figure 4.5: Similar to Fig. 4.4, but for fixed η/s = 0.16 and varying decoupling temperature Tdec

ranging from 100 to 160 MeV as indicated.

In the top left panel, we find that the pion and proton spectra react differently to the freeze-out

temperature. The pion spectra become steeper as Tdec is lowered (this agrees with [90]). This is

because pions can be considered as almost massless on the scale of measured transverse momenta

(〈pT 〉 ∼ 0.6 GeV). The inverse slope of their pT -spectrum receives relativistic blueshift effect from

hydrodynamic radial flow. It can be estimated as Tslope = Tdec

√
1+〈v⊥〉
1−〈v⊥〉

where 〈v⊥〉 is the average

radial flow at Tdec [91, 92]. As the Tdec decreases, the cooling effect overwhelms the flattening

effects resulting from the associated increase of 〈v⊥〉, causing a net softening of the pion spectra

for lower freeze-out temperatures. On the other hand, a lower freeze-out temperature leads to a

flatter proton spectra. This is because the heavier protons receive a larger push to higher pT from

radial flow than the lighter pions, which is well known from [91, 92]. In contrast to pions, the

relatively large rest mass of proton can not be neglected anymore. Thus, its spectrum is dominated

by the growing radial flow over the temperature cooling. The additional radial flow built up during

the extra time the fireball needs to cool down to lower Tdec makes the proton spectra flatter.
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From the lower left panel of Fig. 4.5 one sees that lower decoupling temperatures lead to larger

elliptic flow v2(pT ) for charged hadrons. To fully understand this systematics it is worth comparing

charged hadrons to the pT -spectra and v2(pT ) of pions (upper left and right panels, respectively)

which dominate the charged hadron yield. The observed tendency reflects a combination of three

effects:

(i) Since the pT -spectrum of pions (which dominate the charged hadrons) gets steeper, even the

same hydrodynamic momentum anisotropy would lead to a larger slope of v2(pT ), to compensate

for the lower yield at high pT .

(ii) Since the fireball hasn’t lost all of its eccentricity by the time the QGP converts to hadrons

[38], additional momentum anisotropy is generated during the hadronic stage. Lower decoupling

temperatures give the system time to develop more momentum anisotropy, leading to a larger v2.

If the pT -spectrum stays unchanged or gets steeper (as is the case for pions in Fig. 4.5), a larger v2

must lead to a larger v2(pT ). The combination of effects (i) and (ii) is seen in the dotted lines in the

upper right panel, which reflect the hydrodynamic flow anisotropy at decoupling, undistorted by

viscous corrections δf to the local equilibrium distributions at freeze-out. The effect (ii) decreases

with increasing η/s in the hadronic phase (not shown here), so the combined effect may be weaker

than seen in Fig. 4.5 if viscous hydrodynamics is replaced by a microscopic hadron cascade such

as UrQMD in the hadronic phase.

(iii) The (negative) viscous corrections from δf to v2 are smaller at lower temperatures, due to

the general decrease of the viscous pressure components [38]. This contributes the largest fraction

of the observed increase of v2(pT ) with decreasing Tdec, especially at large pT .

Combining the information from the two left panels in Fig. 4.5 we conclude that both the proton

spectra in central collisions and charged hadron v2(pT ) in peripheral collisions favor decoupling

temperatures near the lower end of the window studied here (i.e. Tdec = 100 MeV works better than

Tdec = 140 MeV). The pion spectra are affected by variations of Tdec mostly at pT ∼ 1− 1.5 GeV/c

where they fall increasingly below the experimental data as we lower Tdec. However, this is

also the region where the hydrodynamic description of the pion spectra is known to begin to

break down [85], due to the gradual transition from soft to hard physics which causes the pion

spectrum to change from an exponential to a power-law shape. Focusing therefore on the region

pT < 1.5 (2.5) GeV/c for pions (protons), we conclude that a purely hydrodynamic description of

the experimental data favors freeze-out temperatures near 100 MeV.

The right panels of Fig. 4.5 show how Tdec affects the elliptic flow of different identified hadrons.

Charged hadrons mostly reflect the behavior of the dominating pions whose v2(pT ) increases with

decreasing freeze-out temperature. But protons behave differently: At low pT < 1 GeV, their

elliptic flow decreases with decreasing decoupling temperature, while at high pT it increases with

decreasing Tdec. The latter feature reflects the increasing hydrodynamic momentum anisotropy
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and decreasing magnitude of the δf correction, just like it is reflected in the pion and charged

hadron v2. The decrease of proton v2 at low pT , on the other hand, is a consequence of having

larger radial flow at lower Tdec which pushes the protons to larger pT . So, rather than thinking of

this effect as a decrease of proton v2 at fixed pT , we should think of it as shifting the elliptic flow

to larger pT .

4.4.3 τ0-dependence at fixed η/s = 0.16 and Tdec = 140 MeV
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Figure 4.6: Similar to Fig. 4.4, but for fixed η/s = 0.16 and varying starting time τ0 for the
hydrodynamic evolution, ranging from 0.2 to 0.8 fm/c as indicated.

The upper left panel of Fig. 4.6 shows that the pion and proton spectra react similarly to a

change of the starting time τ0 of the hydrodynamic evolution. Since both pion and proton spectra

get flatter with a smaller τ0, we conclude that the system develops more radial flow if we start

the hydrodynamic evolution earlier. An earlier starting time allows the fireball the generate radial

flow earlier, but it also cools down the fireball faster. The net effect is still a slight increase of the

average radial flow at freeze-out.
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For soft momenta pT < 1.5 GeV/c, the effect of τ0 on v2(pT ) is negligible. This is true even for

protons, showing that the increase of radial flow with decreasing τ0 is a small effect and not enough

to visibly push the proton v2 to larger pT . At higher pT , the dependence of the charged hadron, pion

and proton v2 on τ0 is non-monotonic. The right panels of Fig. 4.6 show that this non-monotonic

behaviour is the result of two counteracting tendencies which both depend on τ0 monotonically:

(i) The elliptic flow computed from the local equilibrium part feq of the distribution function at

freeze-out increases monotonically with increasing τ0, reflecting the longer total fireball lifetime

(and thus the longer time available to build up momentum anisotropy) when the hydrodynamic

evolution starts later. (ii) The v2-suppression resulting from the viscous correction δf at freeze-out

also increases monotonically with increasing τ0. We don’t have a complete understanding of why

starting (and thus also ending) the hydrodynamics later leads to a larger δf on the decoupling

surface; we suspect that since the hydrodynamical flow would eventually settle into a three-

dimensional spherically symmetric Hubble flow with no shear stress, starting earlier leads to a

stronger transverse flow, and thus to a flow profile which is closer to a spherically symmetric flow

at the time of decoupling.

4.4.4 EoS dependence at fixed τ0 = 0.4 fm/c, η/s = 0.16, and Tdec =
140 MeV

In Fig. 4.7 we study the sensitivity of hadron spectra and elliptic flow on the equation of

state, holding all other hydrodynamic parameters fixed (except for the normalization of the initial

energy density profile which is again adjusted to ensure constant final multiplicity in central

Au+Au collisions).

We first note a lower proton yield from the hydrodynamic runs with EOS L and SM-EOS Q

compared to the case using s95p-v0-PCE. This is because with the chemical equilibrium EOS

(EOS L and SM-EOS Q), we allow protons to annihilate with anti-protons all the way down to

kinetic freeze-out, whereas such annihilation processes are forbidden in the partial chemical equi-

librium s95p-v0-PCE below Tchem = 165 MeV. To explore how this affects the hydrodynamic flow,

we should concentrate on the shape (i.e. inverse slopes) of the pion and proton spectra. EOS

L produces the flattest spectra, followed by SM-EOS Q, whereas the spectra from s95p-v0-PCE

are steepest. This is because for fixed freeze-out temperature, we find s95p-v0-PCE produces

the weakest radial flow averaged over the freeze-out surface, EOS L generates the strongest flow,

with SM-EOS Q falling in between.7 The reasons for s95p-v0-PCE generating less radial flow than

the other two equations of state are an interplay between a few subtle effects. The key differ-

ence lies in the partial chemical equilibrium that, at a fixed freeze-out temperature, causes the

7We have checked that the viscous δf correction do not change the hierarchy of the slope of particle pT spectra.
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Figure 4.7: Similar to Fig. 4.4, but for fixed η/s = 0.16 and different equations of state (SM-EOS
Q, EOS L, and s95p-v0-PCE) as indicated. Since SM-EOS Q and EOS L have different chemical
composition than s95p-v0-PCE at Tdec = 140 MeV, they yield fewer protons than s95p-v0-PCE

when normalized to the same pion yield.

chemically frozen HRG embodied in s95p-v0-PCE to have a considerably larger energy density

(edec = 0.301 GeV/fm3 at Tdec = 140 MeV) than the chemically equilibrated HRG used in EOS L

and SM-EOS Q (which has edec = 0.143 GeV/fm3 at the same temperature) [77]. This is due to the

larger-than-equilibrium abundances of of baryon-antibaryon pairs and mesons that are prohibited

from annihilating as the system cools below Tchem. So the fireball has less lifetime when evolved

with s95p-v0-PCE, and its space-time volume is also smaller compared to the other two cases.

The differences in speed of sound during the evolution largely cancel out (see Ref. [16]).

The charged hadron, pion and proton elliptic flows v2(pT ) exhibit quite large sensitivity to the

EoS, especially at high pT . Most of this sensitivity comes in through the δf correction at freeze-out

which is particularly large for SM-EOS Q. The reason for this is that the first-order phase transition

leads to large velocity gradients at the QGP-to-mixed-phase and mixed-phase-to-HRG interfaces

[30] which are largely but not completely washed out by viscous effects [38] and leave traces on
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the decoupling surface. δf effects are weaker with the smoother EOS L than with SM-EOS Q even

though EOS L generates on average more radial flow.

To discuss the contribution from collective flow anisotropies to pion and proton v2(pT ) we

focus on the dotted lines in the right panels of Fig. 4.7. We see that, while s95p-v0-PCE creates

less radial flow, it generates a larger flow anisotropy (we checked this by direct computation),

resulting in larger v2(pT ) for both pions and protons than with the other two equations of state.

For EOS Q it was found in [78, 77, 80] that if the kinetic freeze-out temperature Tdec is adjusted

to reproduce the pT -spectra, the correct implementation of chemical freeze-out at Tchem in the

HRG phase increases the mass-splitting between v2(pT ) of pions and protons at low pT . On the

other hand, if the freeze-out temperature is kept constant, the mass-splitting at low pT decreases

[77]. Since we have kept the freeze-out temperature fixed in our calculations, we see a similar

phenomenon here: The elliptic flow mass splitting between pions and protons is weaker for the

chemically frozen s95p-v0-PCE than for the chemically equilibrated EOS L and SM-EOS Q. This is

a consequence of the weaker radial flow generated by s95p-v0-PCE.

4.4.5 Dependence on the shape of the initial energy density profile
(CGC vs. Glauber)

We close with a discussion of the influence of the shape of the initial energy density profile

on the hadron spectra and elliptic flow, using the Glauber and CGC-fKLN models as examples.

Their energy density profiles are shown in Fig. 4.1.

The energy density gradient is slightly larger in the CGC profile compared to the Glauber one.

The spatial gradient of the pressure (or energy density) controls the acceleration of the fluid flow

velocity as shown in the ideal hydrodynamic equation

u̇ν =
∇νP
e+ P

' c2
s

1 + c2
s

∇νe
e
, (4.2)

where we approximate P = c2
se with c2

s = dP
de

. So the CGC energy density profile leads to a larger

radial acceleration compared to the Glauber one. Indeed, the upper left panel of Fig. 4.8 exhibits

slightly flatter pion and proton spectra for CGC-initialized simulations than for Glauber initial

conditions.

In Fig. 4.8, we find that the CGC-initialized runs give larger elliptic flow coefficients for charged

hadrons, pions and protons than for the Glauber initial conditions. This is due to the larger initial

eccentricity of the CGC density profiles [34, 61, 36, 68] which drives the system to develop a larger

momentum anisotropy. The influence on the pT -dependence of the proton v2 due to the slightly

stronger radial flow from the CGC initialization is negligible compared to the effects coming from

the larger initial eccentricity. The δf suppression of v2 is similar for CGC and Glauber initial

conditions.
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Figure 4.8: Similar to Fig. 4.4, but for fixed η/s = 0.16 and different initial energy density profiles
(Glauber vs. CGC) as indicated. The elliptic flow from an initial CGC density profile is larger
than for the Glauber initialization, due its larger initial eccentricity.

4.5 Chapter conclusion

In this chapter, we have performed a systematic study of the dependence of the pion and proton

transverse momentum spectra and their pT -dependent elliptic flow on the thermalization time τ0,

initial energy density profile, equation of state, freeze-out temperature and specific shear viscosity

in (2+1)-dimensional viscous hydrodynamic simulations. We find that the shear viscosity helps the

system to develop more radial flow but suppresses the momentum anisotropy. The final observed

particle spectra and v2 are affected from the viscous modification of the hydrodynamic evolution as

well as the off-equilibrium δf correction on the Cooper-Frye freeze-out surface. Both contributions

are important and increase with η/s. The kinetic freeze-out temperature Tdec affects pion spectra

differently than proton spectra. A lower Tdec gives the system more time to develop hydrodynamic

radial and elliptic flow. The system’s momentum anisotropy is monotonically related to the

charged hadron pT -integrated elliptic flow coefficient. The particle pT -differential elliptic flow

coefficient is a result of the interplay between hydrodynamic radial and integrated elliptic flow.
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We saw very little sensitivity to the choice of the termalization time τ0, but for larger values of τ0

we did not allow for the development of pre-equilibrium flow and the pre-equilibrium evolution of

the shear stress tensor, that would be expected in a more realistic description. A more detailed

study on the pre-equilibrium stage evolution is needed in the future, especially if the beginning of

the hydrodynamic stage were delayed by slow thermalization to times τ0 > 1 fm/c.
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Chapter 5: Radial and elliptic flow in Pb+Pb collisions at the Large

Hadron Collider from viscous hydrodynamics

5.1 Chapter introduction

In this chapter, we will perform a global fit of the particle spectra and elliptic flow coefficients at

top RHIC energy based on our systematic study of hydrodynamic simulations in Chapter 4. Then

we will consider this as our starting point for an extrapolation to Pb + Pb collisions at
√
s = 2.76

and 5.5 A TeV. We would like to explore to what extent the present and future LHC elliptic flow

data can tell us novel facts about the transport behavior of hot QCD matter at temperatures that

exceed those accessible at RHIC but are within reach at the LHC. This work reported here is

based on Ref. [48].

5.2 Hydrodynamic fit of RHIC Au+Au data

We employ (2+1)-d viscous hydrodynamics [39] with the lattice QCD based equation of state

s95p-v0-PCE [16, 17], which accounts for chemical freeze-out before thermal decoupling at Tchem =

165 MeV, to simulate the expansion of the collision fireball. Different from Chapter 4, we use the

initial energy density profiles generated from the Monte-Carlo KLN (MCKLN) model. We first

generate 10,000 fluctuating initial energy density profiles from MCKLN model, recenter and rotate

them such that the main axis of each event’s elliptic deformation lines up with each other. Then

we compute the event average of these profiles to get a smooth initial energy density profile. Due

to event-by-event fluctuations, this smooth density profiles has non-zero eccentricity even for fully

central (b = 0) collisions. We choose the value of η/s = 0.20 (corresponding to MC-KLN initial

conditions) for the effective specific shear viscosity of the strongly interacting fluid. Using the

insights obtained from the systematic parameter study presented in Chapter 4 [17], we initialize

the hydrodynamic expansion at time τ0 = 0.6 fm/c and decouple at Tdec = 120 MeV at both

RHIC and LHC energies. For Au+Au collisions at RHIC energies these parameters allow for a

good global description of the hadron pT -spectra and differential elliptic flow. Lacking strong

theoretical or phenomenological guidance how to adjust their values for Pb+Pb collisions at the
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LHC, we here decided to keep them unchanged. (We emphasize that this study was done before

the LHC data become available.) We initialize the shear stress tensor by its Navier-Stokes value

πµν = 2ησµν and assume zero initial flow, (uτ , ux, uy, uη) = (1, 0, 0, 0).
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Figure 5.1: Centrality dependence of the charged hadron multiplicity per unit pseudo-rapidity,
dN ch/dη/(Npart/2) as a function of Npart, in 200AGeV Au+Au collisions at RHIC (bottom panel)
and in (2.76− 5.5)ATeV Pb+Pb collisions at the LHC (top panel). Experimental data are from
the PHOBOS Collaboration [93] for Au+Au collisions at

√
s = 200AGeV, and from the ALICE

Collaboration [94] for Pb+Pb collisions at
√
s = 2.76ATeV. The lines are from the MC-KLN

model (see text). For Au+Au at RHIC the MC-KLN model was normalized to the measured
multiplicity in the 0-5% centrality bin; at the LHC, the lines bounding the shaded region were
normalized to dN ch/dη = 1548 and 1972 (or dN

dy
= 1800 and 2280) at 0-5% centrality, respectively.

79



Due to the viscous entropy production during the hydrodynamic evolution, we perform an

iterative renormalization of the initial entropy density profile until the measured charged hadron

multiplicity in the 0−5% most central 200AGeV Au+Au collisions at RHIC is reproduced. In the

lower panel of Fig. 5.1, we show our results of the centrality dependence of the charged multiplicity

compared with the PHOBOS measurements [93] at RHIC energy. The centrality dependence of

dNch/dη is controlled by the initial condition model. Our calculations contain extra viscous entropy

production which is relatively larger in peripheral than in central collisions [39]. But we find that

its effect is (at least at RHIC energies) sufficiently weak and does not destroy the agreement of the

model with experimental observations that was observed earlier in ideal fluid dynamical studies.

The reason for us to choose the MCKLN model over the MC-Glauber model for the initial

conditions of our hydrodynamic simulations is that the MCKLN model can describe the central-

ity dependence of charged hadron production without additional parameters, which help us to

eliminate one of the model parameter uncertainties when we extrapolate our calculations to LHC

energies. (In the MC-Glabuer model we would also need to guess the hard/soft ratio at LHC

energies.) It was recently shown [95] that this centrality dependence is robust against running

coupling corrections [96, 97, 98] in the Balitsky-Kovchegov evolution (on which the KLN model is

based) which were found to hardly affect its shape. They do, however, modify the collision energy

dependence of particle production, with the LHC Pb+Pb data being better described if running

coupling corrections are included [94]. Our version of the MC-KLN model does not include run-

ning coupling corrections,8 and we must normalize the initial entropy density profile for Pb+Pb

collisions at the LHC separately from Au+Au collisions at RHIC. Without such an independent

renormalization, we overpredict the measured charged multiplicity from central 2.76ATeV Pb+Pb

collisions [99, 94] by about 10%.

At LHC energy, after renormalization we obtain the solid lines bounding the shaded region

in the upper panel of Fig. 5.1, with the lower (upper) bound corresponding to Pb+Pb collisions

at 2.76 (5.5) AGeV, respectively. The data in that panel are from the ALICE Collaboration

for Pb+Pb at 2.76AGeV [99, 94]. (For 5.5AGeV Pb+Pb collisions we assumed dN
dy

= 2280

(corresponding to dN ch/dη = 1972), based on an extrapolation of Fig. 3 in Ref. [99].) We can

see that the centrality dependence of charged hadrons in our calculations is slightly flatter than

the experimental data. Part of the reason is due to the viscous entropy production, which is

relatively stronger in the peripheral collisions. But overall, the MCKLN model, even without

running coupling corrections, does a good job in describing the measured centrality dependence of

charged hadron production in Pb+Pb collisions at the LHC. This gives hope that the successful

description of the centrality dependence of hadron spectra and elliptic flow at RHIC energies

8The rcBK code in [95] includes running coupling corrections but it has not been renormalized to take into
account viscous entropy production at RHIC energies.
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(see below and Ref. [40]) translates into a reliable prediction of the corresponding centrality

dependences in Pb+Pb collisions at the LHC.
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Figure 5.2: pT -spectra of all charged hadrons (a), positive pions (b) and protons (c) for 200AGeV
Au+Au collisions of different centralities as indicated. The symbols show data from the STAR
([100, 101, 102], ×) and PHENIX ([103, 84], +) experiments. The lines are results from the viscous
hydrodynamic model for constant η/s = 0.20 and MC-KLN initial conditions. Particle spectra
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Figures 5.2 and 5.3 shows our global fits of the measured particle spectra and their elliptic

flow coefficients at top RHIC energy, which establish our baseline for the extrapolation to LHC

energies. The used parameter set τ0, η/s, Tchem, and Tdec is described above. Please note that

compared to the global fit with more advanced hydro + hadron cascade hybrid approach, the

starting time of our pure hydrodynamic simulation (τ0 = 0.6 fm/c) is 45% smaller than the value

of 1.05 fm/c used for η/s = 0.2 in the hybrid simulations in [40]. We think the earlier evolution

of hydrodynamic transverse flow arising from this smaller τ0 value compensates for the lack of

a highly dissipative hadronic phase in the purely hydrodynamic approach. Hadronic dissipation

leads to a significant broadening in particular of the proton pT -spectra during the hadronic stage

which (given the constraints from the elliptic flow data which prohibit us from simply lowering

Tdec) viscous hydrodynamics with temperature-independent η/s = 0.2 cannot replicate.

The fit to the hadron spectra measured in 200AGeV Au+Au collisions at RHIC is shown

in Fig. 5.2 for all the centrality bins from central to peripheral. On the logarithmic scale, our

calculations give a fairly good description of particle spectra in the central collision, but are too

flat in the peripheral cases. Fig. 5.2a shows the mid-rapidity transverse momentum spectra per

unit pseudo-rapidity for unidentified charged hadrons from the STAR [100] and PHENIX [103]

experiments compared with the hydrodynamical model. Figs. 5.2b,c show a similar comparison for

the pT -spectra per unit rapidity of identified pions and protons from STAR [101, 102] and PHENIX

[84]. In the experimental spectra, protons from weak decays were removed; STAR quotes a large

systematic error associated with this feeddown correction, and within that large error band the

two data sets agree with each other, even if the central values of the STAR proton data appear

to be up to 50% higher than PHENIX data. Our results agree well with the STAR protons for

pT > 0.6 GeV/c but overpredict the PHENIX protons by up to a factor 2. (We now know [104]

that baryon-antibaryon annihilation below Tc, which can be accounted for, in a hydrodynamic

+ cascade hybrid approach, decreases the normalization of the proton spectra by 35-40%, which

would lead to better agreement with the PHENIX than with STAR proton spectra.)

Figure 5.3 shows the charged hadron pT -differential elliptic flow comparison between our cal-

culation and the STAR v2{4}(pT ) data [105], for four centrality classes ranging from semi-central

to mid-peripheral collisions (10−50% centrality). Our viscous hydrodynamics gives an excellent

description of the STAR v2{4} data, even up to 3 GeV/c in transverse momentum.

In Chapter 4 [17], we noted a potential tension in fitting the proton pT -spectra and the charged

hadron differential elliptic vch
2 {2}(pT ) simultaneously using s95p-v0-PCE within a purely viscous

hydrodynamic approach. But in Figs. 5.2 and 5.3, we see that this tension is largely resolved when

using the v2{4}(pT ) data (Fig. 5.3) instead of v2{2}(pT ) (see Fig. 5.8 further below). Strictly speak-

ing, the v2{2} data (also known as the rms elliptic flow coefficient) receives positive contribution
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Figure 5.3: Differential elliptic flow v2(pT ) for charged hadrons from 200AGeV Au+Au collisions of
different centralities as indicated. Open symbols are experimental data from the STAR experiment
for v2{4}(pT ) [105], lines with filled symbols of the same shape are the corresponding hydrodynamic
fits with the same model as in Fig. 5.1. For the 40−50% centrality bin data and theory are vertically
offset by 0.1 for better visibility.

from the event-by-event fluctuation. So our current calculations should lie in between the v2{2}
and v2{4} measurements. The tension we saw in Chapter 4 is somewhat exaggerated.

Overall, the viscous fluid dynamic description of the hadron spectra and charged hadron elliptic

flow v2(pT ) shown here is of similar quality as the hybrid model description with presented in [40].

We will now use them to generate a broad range of predictions for soft hadron production in

Pb+Pb collisions at the LHC.

5.3 Predictions and follow-up comparisons for Pb+Pb collisions at the
LHC

Based on the global fit to the RHIC data, we now keep τ0, Tchem, Tdec and η/s fixed and

extrapolate to LHC energies. Our goal here is to use the comparison between our LHC prediction

with later on measured experimental data to search for indications from experiment that would

motivate changing these parameters. The first results for pT -spectra [106] as well as both the

pT -differential and pT -integrated elliptic flow of charged hadrons [52] were published and will be

compared with the theoretical predictions below. Further experimental measurements on identified

hadrons spectra and elliptic flow were reported in [107, 108] and will be compared with our

predictions [49] too.
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Figure 5.4: pT -spectra of all charged hadrons, positive pions, and protons for minimum bias
200AGeV Au+Au (thin red lines and data points) and (2.76−5.5)ATeV Pb+Pb collisions (black
lines with shaded area). The RHIC data are from the PHENIX experiment [84]. The shaded
bands for the LHC predictions are limited at the bottom (top) by lines for

√
s = 2.76 (5.5) ATeV,

corresponding to dN
dy

= 1800 (2280) (dNch/dη = 1548 (1972)). The calculations assume the same

constant η/s = 0.2 at all shown collision energies.

In Fig. 5.4 we show the transverse momentum spectra for all charged hadrons, as well as

for identified pions and protons, for minimum bias collisions of Au+Au at RHIC and Pb+Pb

at the LHC.9 Identified particle spectra at the top RHIC energy are compare with the PHENIX

measurements [84]. We indicate our prediction at
√
s = 2.76 and 5.5 A TeV as the upper and lower

bounds of the shaded areas. We find that the particle spectra at LHC energies are flatter than at

the top RHIC energy, reflecting stronger radial flow. This is due to a longer fireball lifetime at LHC

energies (about 19% and 24% longer than Au+Au at RHIC, respectively, for 0-5% most central

collisions at 2.76 and 5.5ATeV collision energies). The average radial flow velocity increases in

central collisions (0−5% centrality) by 5 and 7%, respectively, and in peripheral collisions (70−80%

centrality) by 9 and 11%.

Figure 5.5 shows the integrated charged hadron elliptic flow v2 as a function of collision central-

ity for Au+Au collisions at RHIC and Pb+Pb collisions at the LHC. Our results at RHIC energy

(lower red line) agrees nicely with v2{EP} except for the most peripheral collisions10. Since we do

9To simulate minimum bias collisions, we compute the spectra for the centrality classes shown in Figs. 5.2(b)
and 5.6 and average them. Any additional observables, such as the minimum bias elliptic flow in Fig. 5.8 below,
are calculated from these minimum bias spectra.

10In very peripheral collisions, v2 is not saturated due to the short fireball lifetime. In addition, the viscous
effects are stronger in the small fireballs created in peripheral collisions. The experimental v2{2} and v2{EP}
measurements are, however, contaminated by non-flow effects, in particular in very peripheral collisions.
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Figure 5.5: pT -integrated elliptic flow of charged hadrons for 200AGeV Au+Au collisions at
RHIC (open symbols are STAR data [105], the lower red line is the result from viscous hydro-
dynamics) and for 2.76ATeV Pb+Pb collisions at the LHC (filled symbols are ALICE data [52],
the upper magenta line shows the viscous hydrodynamic prediction). In both experiment and
theory the differential elliptic flow v2(pT ) (see Figs. 5.3 and 5.7) was integrated over the range
0.15 GeV/c< pT < 2 GeV/c for Au+Au at RHIC and over pT > 0.2 GeV/c for Pb+Pb at the LHC.

not include event-by-event fluctuations, our v2 overestimates the STAR v2{4} data by about 11%

in mid-central collisions.

At first sight, since we have an excellent description of the differential elliptic flow v2{4}(pT )

shown in Fig. 5.3, the overprediction of the pT -integrated v2{4} at RHIC is because our charged

hadron pT -spectra shown in Fig. 5.2 are somewhat harder than measured, thereby giving too much

weight in the pT -integral to the range 0.75 < pT < 2 GeV/c where v2{4}(pT ) is large.11

At LHC energy (
√
s = 2.76ATeV) our integrated v2 lies between the v2{2} and v2{4} values

measured by the ALICE Collaboration [52]. Again, we overpredict the pT -integrated v2{4} by

about 10−15%. We note that from RHIC to LHC the hydrodynamically computed integrated

v2 in mid-central to mid-peripheral collisions increases by about 30%, in agreement with the

experimental observations. This is due to reduced viscous suppression effects in the larger and

denser fireballs created at the LHC and a longer fireball lifetime which allows the momentum flow

anisotropy to approach saturation more closely than at lower energies [21, 110]. In very peripheral

collisions, even at LHC energies such a saturation of v2 does not happen; this is the reason why

11The agreement with the v2{EP} data is fortuitous and should, in fact, not happen since the measured v2{EP}
includes a positive contribution from event-by-event v2 fluctuations [109] while our hydrodynamic calculation yields
the average elliptic flow 〈v2〉 which is smaller.
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Figure 5.6: pT -spectra per unit pseudorapidity for charged hadrons (a) and per unit rapidity for
pions (b) and protons (c) for Pb+Pb collisions at the LHC. The lower and upper end of the shaded
bands represent viscous hydrodynamic predictions for

√
s = 2.76 and 5.5ATeV (corresponding to

dNch/dη = 1548 and 1972, or dN
dy

= 1800 and 2280), respectively. Experimental data in panel (a)

are from the ALICE experiment [106]. A full comparisons with the ALICE measured identified
particle spectra will be shown in Fig. 5.10.

in Fig. 5.5 the integrated v2 is seen to decrease at large collision centralities, both at RHIC and

LHC.

In Fig. 5.6 we present hadron transverse momentum spectra for Pb+Pb collisions at LHC

energies, from central to peripheral centralities. In panel (a) we compare the hydrodynamic

predictions with first data from the ALICE experiment [106]. Overall, we get a similar quality

agreement with the experimental data as we had at the top RHIC energy (see Fig. 5.2). The shape

of our charged hadron spectra at 2.76 A TeV agrees with the ALICE measurements quite well up

to pT = 3 GeV in the most central collisions, but is too flat in the very peripheral collisions.

We proceed to compare the differential vch
2 (pT ) for charged hadrons with the ALICE v2{4} data

[52] in Figure 5.7. For the 40-50% centrality, measurement of v2{2} is also available for comparison.

Our predictions agree nicely with the data at low pT < 1 GeV/c, but overshoot the experimental
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Figure 5.7: Differential elliptic flow v2(pT ) for charged hadrons (a) and identified pions (b) and
protons (c), for Pb+Pb collisions of 4 different centralities at the LHC. Experimental data for
charged hadron v2(pT ), denoted by solid symbols, are from the ALICE experiment [52]; they should
be compared with theoretical lines carrying open symbols of the same shape and color. The shaded
bands show the variation of the hydrodynamic predictions with collision energy between

√
s = 2.76

and 5.5 TeV (corresponding to dN
dy

= 1800 and 2280, respectively). The lines corresponding to the

lower collision energy (
√
s = 2.76 TeV) define the lower end of the shaded regions at pT = 3 GeV/c.

values by 10−20% at larger pT , especially in the more peripheral bins. In the 40−50% centrality

bin, the theoretical prediction happens to agree nicely with v2{2}(pT ) even though the latter

should be shifted upward by flow fluctuations that are not included in the theoretical calculation.

Panels (b) and (c) of Fig. 5.7 give predictions for the differential v2(pT ) of identified pions and

protons.

Please note the low-pT elliptic flow of protons is pushed to larger pT by the hydrodynamic

radial flow. As the collision energy increases from
√
s = 2.76 and 5.5ATeV, we see that this

“radial push” of the proton v2 also increases. So for higher
√
s the rise of v2(pT ) is shifted to

larger transverse momenta, while at fixed pT < 1.5 GeV/c the proton elliptic flow decreases with

increasing collision energy. This happens only for heavy hadrons but not for the much lighter

pions (see panel (b)).

To further emphasize this, we directly compare identified particle differential elliptic flows at

RHIC and LHC energies in Figs. 5.8 and 5.9. Fig. 5.8 shows the results for minimum bias collisions.

Our RHIC results are compared with data from STAR [111]. The elliptic flow of charged hadrons
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Figure 5.8: Differential elliptic flow v2(pT ) for all charged hadrons (a) and identified pions and
protons (b), for minimum bias 200AGeV Au+Au collisions at RHIC and (2.76−5.5)ATeV Pb+Pb
collisions at the LHC. Experimental data for v2{2} from Au+Au collisions at RHIC are from the
STAR experiment [111]. Solid lines are viscous hydrodynamic results for 200AGeV Au+Au
collisions with the same hydrodynamic parameters as in Figs. 5.1-5.4; note their disagreement
with the v2{2} data shown here (in contrast to their excellent agreement with v2{4} data shown
in Fig. 5.3). The shaded bands are LHC predictions and show the variation of the theoretical
expectations for Pb+Pb collisions at collision energies ranging from

√
s = 2.76 to 5.5ATeV

(corresponding to dN
dy

= 1800 and 2280, respectively). As in Fig. 5.7, the lines defining the lower

end of the shaded region at pT = 3 GeV/c correspond to the lower LHC energy
√
s = 2.76ATeV.

(which are strongly pion dominated) and charged pions increases from RHIC to LHC energy at all

pT , which is opposite for proton v2 at pT < 1.2 GeV. The shift of proton v2 to high pT increases

with hydrodynamic radial flow. In Fig. 5.9, we show how this shift depends on hadron species.

In both semi-central (10−20%) and peripheral (40−50%) collisions, the heavier the hadron the

stronger the push of v2 it receives towards higher pT . At sufficiently large pT , v2(pT ) is larger at

the LHC than at RHIC for all particle species, but at low pT this holds only for pions whereas all
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Figure 5.9: Comparison of the differential elliptic flow v2(pT ) for 200AGeV Au+Au collisions at
RHIC (dashed lines) and 2.76ATeV Pb+Pb collisions at the LHC (solid lines), at 10%−20% (a,b)
and 40%−50% (c,d) centrality, for a variety of different hadron species. Note the slightly negative
elliptic flow for the heavy Ω hyperons at low pT .

heavier hadrons show a decrease of v2(pT ) from RHIC to LHC at fixed pT . As the hadron rest

mass grows, the crossing point where the decrease of v2 at fixed pT with rising collision energy

turns into an increase shifts to larger pT values.

In view of Fig. 5.9, the experimental observation [52] that for charged hadrons vch
2 (pT ) hardly

changes at all from RHIC to LHC appears accidental:12 The increase of v2(pT ) at fixed pT for

pions is balanced by a corresponding decrease for all heavier hadrons leaving, as it happens, no

visible net effect once all charged hadrons are lumped together.

In Figs. 5.10 and 5.11, we show comparisons of our hydrodynamic predictions of identified

particle pT -spectra and differential v2 with the ALICE measurements from central to peripheral

12Contrary to the claim made in [42], the observation that the ratio between vch
2 (pT ) measured at LHC and at

RHIC is approximately independent of pT cannot be directly used to conclude that (η/s)QGP does not change from
RHIC to LHC. If that argument were correct, this ratio should be independent of pT not only for the sum of all
charged hadrons, but also for each identified hadron species separately. Our hydrodynamic calculations show that
the latter does not hold even if η/s remains unchanged from RHIC to LHC.
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Figure 5.10: Our prediction of the identified particle (π+, K+, and proton) spectra are compared
with the ALICE measurements [107] from central to peripheral Pb+Pb collisions at

√
s = 2.76 A

TeV.

collisions at LHC. We first notice that our proton yield is about a factor of 2 larger than the

ALICE data. This is similar to the case at top RHIC energy, where we overestimate the proton

yield measured by PHENIX by about a factor of 2. Our predictions for positive pion and kaon

spectra agree well with the ALICE measurements at pT . 1.5 GeV from central collisions to 40-50%

in centrality, but become too flat in the more peripheral centrality bins. However, the centrality

dependence of the slope of the proton spectra is not well predicted by our pure hydrodynamic

simulations. The slopes of the proton spectra are too steep in the central collisions and become

comparable with the data in 40-50% centrality and then turn to be too flat in the more peripheral

cases.

In Fig. 5.11, we compared our predictions of the differential elliptic flow with the ALICE

measurements. We find that our calculations using the MCKLN initial conditions with η/s = 0.20

successfully predict the charged pion and kaon pT differential flow coefficients from central up to

50-60% in centrality. However, our pure hydrodynamic simulations fail to correctly reproduce the

centrality dependence of the proton elliptic flow v2(pT ). Especially in central collisions, vp2(pT ) is

90



Figure 5.11: Our prediction fo the identified particle (π+, K+, and proton) differential v2 are
compared with the ALICE measurements [108] from central to peripheral Pb+Pb collisions at√
s = 2.76 A TeV.

overpredicted at small pT (i.e. our model does not generate strong enough radial flow to push

the elliptic flow to higher pT ). The lack of hydrodynamic radial flow already seen in the shape of

proton spectra in Fig. 5.10 thus also reflects itself in the proton pT differential elliptic flow. This

problem disappears in the more peripheral bins, indicating an incorrect centrality dependence of

the balance between radial and elliptic flow in our simulations. The main result that our pure

hydrodynamic simulations fail to predict proton spectra and v2 is because viscous hydrodynamics

can not capture the detailed microscopic dynamics in the (highly viscous) hadronic phase. A later

more robust viscous hydrodynamics + hadronic cascade hybrid approach has cured this problem

and provides a consistent centrality dependence of proton elliptic flow from central to peripheral

centrality [49].

5.4 Chapter conclusion

Based on a successful global fit of soft hadron production data in 200AGeV Au+Au collisions

at RHIC within the pure viscous hydrodynamic framework, we generated hydrodynamic predic-

tions for the pT -spectra and differential elliptic flow of charged hadrons and identified particles for

Pb+Pb collisions at the LHC. Our extrapolation from RHIC to LHC energies was based on the

assumption that the QGP shear viscosity η/s does not change with increasing fireball temperature

and stays fixed at the value η/s = 0.2 extracted from the RHIC data, assuming the MCKLN initial

conditions. The starting time τ0 for the hydrodynamic evolution and the freeze-out temperature

Tdec were held fixed, too. We find that such an extrapolation gives a good description of the
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centrality dependence of charged hadron production and the charged hadron pT -spectra in central

Pb-Pb collisions, but overpredicts the slope of the pT -differential elliptic flow and the value of its

pT -integrated value by about 10−15% in mid-central to mid-peripheral collisions. In the most

peripheral collisions, the predicted charged hadron pT -spectra are too flat, and the integrated

elliptic flow is too small compared to the experimental data. For identified particle observables,

our calculations successfully predicted charged pions and kaons spectra and pT differential elliptic

flow, but gave a slightly inconsistent centrality dependence of proton v2.
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Chapter 6: Extraction of η/s at RHIC and LHC

6.1 Chapter introduction

A major road block in extracting η/s of the QGP is insufficient knowledge of the initial shape

of the thermalized fireball created in these collisions, whose initial ellipticity is uncertain by about

20% [34, 61, 11, 68, 112]. This induces an O(100%) uncertainty in the value of (η/s)QGP extracted

from elliptic flow [36, 40].

Due to similar fluctuation mechanisms, the MC-KLN and MC-Glauber models generate sim-

ilar third-order eccentricities ε3 whereas the ellipticity ε2, which is mostly controlled by collision

geometry, folded with the (different) average density profiles from the two models, is about 20%

larger in the MC-KLN model. Event-by-event ideal [112] and viscous hydrodynamic simulations

with both realistically fluctuating and deformed smooth Gaussian initial conditions [113] (with

simultaneously non-zero ε2 and ε3 eccentricities) have shown that the hydrodynamic conversion

efficiencies for translating initial spatial eccentricities into final flow anisotropies [114, 115, 116],

although different for v2/ε2 and v3/ε3, are very similar in the MC-KLN and MC-Glauber models.

The similarities in ε3 and differences in ε2 between these two models should thus straightforwardly

reflect themselves in analogous differences in v2 and v3 [117, 113], allowing for an experimental

distinction between the models. The work reported in this chapter is based on Ref. [118].

In this chapter, we present a combined analysis of the elliptic and triangular flow coefficients

v2 and v3 which could disentangle the initial state fluctuations from the hydrodynamic medium

response. Such an analysis yields a more precise value for the QGP shear viscosity and thereby

reduces (or could even eliminate) the model uncertainty in the initial deformation of the QGP

fireball and its event-by-event fluctuations.

6.2 Transverse momentum spectra

Figure 6.1(b) shows the charged hadron pT -spectra for 2.76ATeV Pb-Pb collisions at different

centralities, for both MC-Glauber (η/s = 0.08) and MC-KLN (η/s = 0.2) initial conditions. For

the most central (0−5%) collisions the spectra from both models agree well with published ALICE
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Figure 6.1: (a) Centrality dependence of charged particle multiplicity density as a function of Npart

from the MC-Glauber (dashed) and MC-KLN (solid) models, compared with ALICE measure-
ments [94] for 2.76ATeV Pb-Pb collisions. (b) Charged particle pT -spectra from the MC-Glauber
and MC-KLN models for different centralities. The most central (0−5%) results are compared
with ALICE data [106].
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data. In more peripheral collisions the MC-KLN spectra are harder than those from MC-Glauber

initial conditions. This is a consequence of larger radial flow caused by larger transverse viscous

pressure gradients in the MC-KLN case where the fluid is taken to have 2.5 times larger shear

viscosity than for the MC-Glauber simulations, in order to obtain the same elliptic flow [36, 40].

In peripheral collisions these viscous effects are stronger than in more central collisions where the

fireball is larger [67]. As shown in [120, 112], event-by-event evolution of fluctuating initial con-

ditions generates, for small values of η/s, flatter hadron spectra than single-shot hydrodynamics,

especially in peripheral collisions, due to stronger radial flow driven by hot spots in the fluctuating

initial states. Proper event-by-event evolution of the latter is therefore expected to reduce the dif-

ference between the MC-Glauber and MC-KLN curves in Fig. 6.1(b) since this effect is relatively

strong for η/s = 0.08 (MC-Glauber) [112] but almost absent for η/s = 0.2 (MC-KLN) [113].

6.3 pT integrated elliptic and triangular flow

In Figure 6.2 we compare our pT -integrated v2 and v3 as functions of centrality with AL-

ICE v2{2}, v2{4}, v3{2}, and v3{4} data, extracted from 2- and 4-particle correlations [119]. To

compute v2(v3), we sample for each centrality calss 10,000 events, recenter their entropy density

distributions and align their elliptic (triangular) deformation axes and then average these entropy

distributions. These elliptically (triangularly) deformed almost smooth average initial entropy

density profiles are then evolved hydrodynamically. For both models, the computed v2,3 values

from the averaged smooth initial conditions lie between the experimental v2,3{2} and v2,3{4} val-

ues. This is consistent with the theoretical expectation [121, 122] that vn{2} (vn{4}) is shifted

up (down) relative to the average flow by event-by-event flow fluctuations and was also found
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Figure 6.4: Eccentricity-scaled, pT -differential elliptic and triangular flow for 2.76ATeV Pb-Pb
collisions from viscous hydrodynamics with MC-KLN (a,b) and MC-Glauber (c,d) initial condi-
tions. The ALICE data [119] are scaled according to their corresponding eccentricities, see text.

elsewhere [40, 46, 41]. Upon closer inspection, however, and recalling that ideal single-shot hydro-

dynamics with smooth initial condition was shown [112] to generate v2 similar to v2{2} from the

corresponding event-by-event evolution, it seems that the MC-KLN is favored since it produces v2

results closer to the v2{2} data. Unfortunately, a similar argument using v3 can be held against the

MC-KLN model. To eliminate the interpretation difficulties associated with a comparison of aver-

age flows from single-shot evolution of averaged initial conditions with data affected irreducibly by

naturally existing event-by-event fluctuations, we proceed to a comparison of eccentricity-scaled

flow coefficients.

Assuming linear response of v2,3 to their respective eccentricities ε2,3 (which was found to hold

with reasonable accuracy for v2 and v3 but not for higher order anisotropic flows [112]), we follow

[123] and scale the flow v2,3 from single-shot hydrodynamics by the eccentricity ε̄2,3 of the ensemble-

averaged smooth initial energy density, while scaling the experimental v2,3{2} and v2,3{4} data

by the corresponding fluctuating eccentricity measures ε2,3{2} and ε2,3{4}, respectively, calculated

from the corresponding models. In [113] we justify this procedure for v2,3{2} and v2{4} and also

show that it fails for v3{4}/ε3{4} since this ratio is found to differ strongly from v3/ε̄3.

The eccentricity-scaled elliptic and triangular flow coefficients for the MC-KLN and MC-

Glauber models are shown in Figs. 6.3(a,b) and 6.3(c,d), respectively, and compared with the

corresponding data from ALICE. The first thing to note is the impressively accurate agreement

between the experimentally measured v2{2}/ε2{2} and v2{4}/ε2{4}, showing that for elliptic flow

the idea of scaling “each flow with its own eccentricity” [123] works very well. The same is not true

for v3{2}/ε3{2} and v3{4}/ε3{4} for which the experimental measurements do not at all agree (not

shown), nor are they expected to [113]. Secondly, both v2{2}/ε2{2} and v2{4}/ε2{4} measured

by ALICE agree well with the viscous hydrodynamic calculations, for both the MC-Glauber and
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MC-KLN models, confirming that for each model the correct value of η/s has been used as far as

elliptic flow is concerned.

The bottom panels in Fig. 6.3 show the triangular flow v3. Clearly, with the viscosities needed

to reproduce v2, the MC-KLN model badly disagrees with the experimental v3 data. The measured

triangular flow is too big to accommodate a specific shear viscosity as large as 0.2. Within the

present approach, the only possibility to avoid this conclusion is that somehow the MC-Glauber

and MC-KLN models both underpredict the initial third-order eccentricity ε3 by about 50%.

With MC-Glauber initial conditions and η/s = 0.08, on the other hand, the ALICE data agree

well with viscous hydrodynamics, even if the measured centrality dependence of v3{2}/ε3{2} is

slightly steeper than the calculated one.

Summarizing Fig. 6.3, the ALICE data for the pT -integrated elliptic and triangular data

taken together strongly favor MC-Glauber initial conditions and, by implication, a small value

of η/s' 0.08 for the specific QGP shear viscosity.

6.4 pT -differential elliptic and triangular flow.

We now cross-check, at one collision centrality (30−40%) where v3(pT ) data are available [119],

the pT -differential anisotropic flows. The corresponding comparison between data and theory is

shown in Fig. 6.4; as in Fig. 6.3 we compare the eccentricity-scaled flows, plotting v2,3/ε̄2,3 for the

models and v2{4}/ε2{4} (v3{2}/ε3{2}) for the elliptic (triangular) flow data. As seen in the upper

panels, both initial state models describe the measured elliptic flow well up to pT ∼ 1−1.5 GeV/c;

at larger pT , they overpredict v2(pT ) for charged particles – a problem noticed before [47, 48] and

possibly related to an imperfect model description of the measured final chemical composition [49].

The disagreement at larger pT is worse for MC-Glauber initial conditions; this is likely related to

our earlier observation in Fig. 6.1(b) that our MC-Glauber pT -spectra are steeper than the MC-

KLN ones in peripheral collisions – an artifact of our single-shot approach and possibly remedied

by a proper event-by-event hydrodynamical simulation.

Figure 6.4(b) shows again the disagreement between theory and experiment for triangular flow

when we use MC-KLN initial conditions: the model strongly underpredicts the data at all pT , i.e.

it gives the wrong slope for v3(pT ). With MC-Glauber initial conditions and correspondingly lower

shear viscosity η/s = 0.08 (Fig. 6.4(d)), the measured v3(pT ) is well described up to pT ∼ 1 GeV/c

but overpredicted at larger pT . Again, the latter can be at least partially attributed to the fact

that the MC-Glauber pT -spectrum from our single-shot hydrodynamic approach is too steep at

this collision centrality, which can in future studies be corrected by performing the hydrodynamic

evolution properly event by event.
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6.5 Chapter summary

Using a well-calibrated single-shot viscous hydrodynamic approach without hadronic cascade

afterburner but properly implementing hadronic chemical freeze-out at Tchem ≈ 165 MeV and

including a full set of resonance decays, we have shown that a combined analysis of the ALICE

data for elliptic and triangular flow from 2.76ATeV Pb-Pb collisions leads to a strong preference

for initial conditions from the Monte-Carlo Glauber model, combined with a low value for the

QGP shear viscosity η/s' 0.08, and disfavors the considerably larger viscosities of η/s∼ 0.2 that

are required to reproduce the measured elliptic flow when assuming the more eccentric Monte-

Carlo KLN initial profiles. Final confirmation of these conclusions will require a proper event-by-

event evolution of the fluctuating initial density profiles and coupling viscous hydrodynamics to a

microscopic description of the dilute late hadronic stage where viscous hydrodynamics breaks down

[124], and a similar analysis of recently published PHENIX data at lower RHIC energies [125].

Given the large magnitude of the underprediction v3 in the MC-KLN model observed here we

expressed in [118], however, doubt that such more sophisticated approaches will be able to reverse

the conclusions drawn here. In the meantime we learnt, however, that subnucleonic color density

fluctuations as well as the inclusion of pp multiplicity fluctuations indeed have the potential to

drastically alter the initial εn spectrum, and that neither the MC-Glauber nor the MCKLN model

in the form presented here are able to describe simultaneously with a single common η/s value,

all measured vn coefficients (see Chapter 7).
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Chapter 7: Event-by-event simulations for LHC energies

In this chapter, we perform realistic event-by-event hydrodynamic simulations for Pb+Pb

collisions at
√
s = 2.76 A TeV at LHC, using the same hydrodynamic parameter set which was

tuned to the experimental data in the last two Chapters. The results for the mean charged

hadron elliptic and triangular flows are very close to our results using event-averaged smooth

initial conditions shown in the last Chapter. However, the event-by-event calculations allow us to

make an apple-to-apple comparison with the measured v2,3{SP} as well as higher order anisotropic

flow coefficients, all of which are crucially affected by event-by-event flow fluctuations. The work

presented in this chapter has not yet been published.

7.1 Charged hadron anisotropic flow coefficients
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Figure 7.1: Centrality dependence of charged hadron anisotropic pT -integrated flow coefficients,
vn{SP} (n =2-5) compared with the ALICE measurements in Pb+Pb collisions at

√
sNN =

2760 A GeV. pT is integrated from 0.2 to 3.5 GeV in our calculations. Calculations from the
MC-Glauber initial conditions using η/s = 0.08 are shown in the left panel. The right panel shows
the results using MCKLN model with η/s = 0.20.

We first show the charged hadron pT -integrated vn{SP} as a function of centrality in Fig.

7.1. With event-by-event calculations, both our MC-Glauber amd MCKLN runs underestimate

the data by about 5-10%. The MCKLN runs shows a better centrality dependence than runs
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with MC-Glauber initial conditions. However, the MC-Glauber model with η/s = 0.08 correctly

reproduce the measured v3,4{SP} data from central to peripheral collisions, while the MCKLN

initial conditions underestimate v3{SP} by almost 50% due to the 2.5 times larger η/s used for

the QGP in the hydrodynamic simulations. In short, in a combined comparisons of v2,3,4{SP} the

ALICE measurements, the experimental data favor the MC-Glauber initial conditions with QGP

η/s close to 1
4π

.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
pT  (GeV)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v n
{ 2}

MCGlb η/s=0.08 Pb+Pb 0-5% @ LHC

v2

v3

v4

v5

v6

ATLAS data

0.0 0.5 1.0 1.5 2.0 2.5 3.0
pT  (GeV)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v n
{ 2}

MCKLN η/s=0.20 Pb+Pb 0-5% @ LHC

v2

v3

v4

v5

v6

ATLAS data

Figure 7.2: Comparisons of charged hadron anisotropic flow coefficients, vn{2} (n =2-6), with
ATLAS measurements at 0-5% most central Pb+Pb collisions at

√
sNN = 2760 A GeV. Calculations

from the MC-Glauber initial conditions using η/s = 0.08 are shown in the left panel. The right
panel shows the results using MCKLN model with η/s = 0.20.

In Figs. 7.2 to 7.7, we show comparisons of the charged hadron pT -differential anisotropic flow

v2{2} to v6{2} with the ATLAS measurements from the 0-5% most central collisions all the way to

semi-peripheral collisions at 40-50% centrality. Both the MC-Glauber and MCKLN models with

their corresponding choices of η/s give good descriptions of the elliptic flow data at the LHC. Since

in Fig. 7.1 both models underestimate the pT -integrated vn{SP}, we think the good agreement

with v2{2}(pT ) is due to the fact that the computed charged hadron spectra are somewhat steeper

than the measured data (see comparisons of identified particle spectra below). The MCKLN model

does a better job than the MC-Glauber model in the region 2 < pT < 3 GeV. This is mostly because

the larger specific shear viscosity in the MCKLN runs helps the system to develop more radial

flow, which results in flatter charged hadron spectra compared with the MC-Glauber model. Once

the specific shear viscosity is fixed by the measured elliptic flow data, higher order anisotropic

flows are parameter-free predictions from event-by-event viscous hydrodynamic simulations. The

relative size of the higher order vn compared to v2 is now determined by the fluctuation spectrum

from the initial condition model. We find that the MC-Glauber model overpredicts the higher

order vn{2}(pT ), while the MCKLN model, on the other hand, underestimates the data. Since we

only consider the nucleon position fluctuations in the current implementation of the MC-Glauber
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and the MCKLN models, both of them do not contain the correct initial fluctuation spectrum

which controls the relative size between the initial eccentricities of different harmonic orders,

which translate themselves to final flow anisotropies through hydrodynamic evolution.

In short, the experimentally measured anisotropic flow coefficients place powerful constraints

on the extraction the specific shear viscosity of the QGP medium and initial fluctuation spectrum.

The MC-Glauber and MCKLN models, in their standard form, do need appear to give the correct

initial fluctuation spectrum. As shown in [126], in order to describe the all the measured vn

coefficients simultaneously, one needs to take into account sub-nucleonic quantum fluctuations in

the initial state, like IP-Glasma model.
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Figure 7.3: Similar to Fig. 7.2, but for 5-10% centrality bin.
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Figure 7.4: Similar to Fig. 7.2, but for 10-20% centrality bin.

7.2 Identified particle spectra and their elliptic flow coefficients

We complete this first event-by-event study of higher order charged hadron vn with a discussion

of the concomitant pT -spectra and elliptic flows of identified hadron species. Figs. 7.8 to 7.13,
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Figure 7.5: Similar to Fig. 7.2, but for 20-30% centrality bin.
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Figure 7.6: Similar to Fig. 7.2, but for 30-40% centrality bin.
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Figure 7.7: Similar to Fig. 7.2, but for 40-50% centrality bin.

we study the particle species dependence in comparison with experimental data from different

centrality bins. We find that the particle spectra from our hydrodynamic calculations are generally

too steep compared with the experimental data. The larger specific shear viscosity in the MCKLN
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Figure 7.8: Comparisons of identified pions, kaons, and protons spectra with ALICE measure-
ments at 0-5% most central Pb+Pb collisions at

√
sNN = 2760 A GeV. Results from MCGlb initial

conditions with η/s = 0.08 are shown in the left panel. Calculations with MCKLN model and
η/s = 0.20 are shown in the right panel.

runs helps the system to develop more radial flow, which gives somewhat flatter spectra than the

MC-Glauber ones, but not enough. The lack of radial flow also shows up in the proton v2{2}, where

the mass splitting in the experimental data is larger than in the calculations for central collisions.

We find that the more advanced hybrid calculations [124], which describe the hadronic phase with

a microscopic cascade model, help the system to develop more radial flow in the hadronic phase

and thereby improve the description of the measured data, especially for central collisions [49].
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Figure 7.9: Upper panels: Similar to Fig. 7.8, but for 5-10% centrality bin. Lower panels:
Comparisons of identified particle v2 with ALICE measurements at 5-10% most central Pb+Pb
collisions at

√
sNN = 2760 A GeV. Results from MCGlb initial conditions with η/s = 0.08 are

shown in the left panel. Calculations with MCKLN model and η/s = 0.20 are shown in the right
panel.
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Figure 7.10: Similar to Fig. 7.9, but for 10-20% centrality bin.
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Figure 7.11: Similar to Fig. 7.9, but for 20-30% centrality bin.
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Figure 7.12: Similar to Fig. 7.9, but for 30-40% centrality bin.
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Figure 7.13: Similar to Fig. 7.9, but for 40-50% centrality bin.
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Chapter 8: Temperature dependent (η/s)(T )

8.1 Chapter introduction

In this chapter, we explore the effects of considering temperature dependent specific shear

viscosity (η/s)(T ) on the final measured hadronic observables. This chapter is based on work

reported in [127, 48].

At temperatures well above the transition region, one would expect the QGP to approaches

weakly coupled limit, leading to an increase of η/s as the temperature increases. As we increase the

collision energy from RHIC to LHC, the created fireballs probe the QGP at a higher temperature.

We would like to study to what extent a larger value of η/s during the early high temperature

stage will manifest itself in the bulk flow observables at LHC energies. This question was first

addressed by H. Niemi et al. [128] and Schenke et al. [126].

On the other hand, the specific shear viscosity is also expected to again increase in the hadronic

phase as the temperature drops below the quark-hadron transition temperature. The mean free

path of the constituent hadrons increases as the system becomes more dilute. In order to deal

with the large viscosity in the late stage of the evolution, advanced hybrid models which switch

from a the macroscopic hydrodynamic modeling of the QGP fireball dynamics to a microscopic

Boltzmann description of the hadronic phase have been developed over the last years. However,

microscopic simulations of the late hadronic stage are numerically very expensive. A possible

effective macroscopic description with viscous fluid dynamics and an (η/s)(T ) that increases with

decreasing T would therefore be much preferred if valid. Here we will explore the temperature

dependence of (η/s)(T ) as well as of the shear relaxation time τπ(T ) within a pure hydrodynamic

framework below the transition temperature region and study systematically the consequences

of increasing shear viscosity and shear pressure relaxation time in the late hadronic stage on the

transverse momentum spectra and elliptic flow of soft (pT < 2 GeV/c) hadrons produced in Au+Au

collisions at RHIC.

This chapter is organized as follows: In Sec. 8.2 we briefly review the viscous hydrodynamic

model and discuss the specific ingredients used in the present study. The effects of a large hadronic
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specific shear viscosity (η/s)HG on the fireball evolution are discussed in Sec. 8.3. In Sec. 8.4 we

discuss the dependence of the transverse momentum spectra and elliptic flow of emitted hadrons

in Au+Au collisions on (η/s)HG, the decoupling temperature Tdec, and the collision centrality.

Section 8.5 is dedicated to a detailed discussion of the viscous corrections to the freeze-out phase-

space distribution and their effects on spectra and elliptic flow. All results up to this point

assume a constant factor κ = 3 in the relation τπT = κη
s

between the specific shear viscosity η/s

and the microscopic relaxation time τπ; in Sec. 8.6 we explore the consequences of making κ(T )

temperature dependent and letting it grow during the quark-hadron phase transition. In Sec. 8.7,

we discuss the effect of (η/s)(T ) at high temperatures that we may access at higher LHC collision

energies. A final discussion in Sec. 8.8 concludes this chapter.

8.2 Viscous hydrodynamics: specific ingredients for the present study

The key ingredients whose influence on the generation of radial and elliptic flow we want to

study here are the temperature dependence of the specific shear viscosity η/s and of the pro-

portionality constant between η/s and the temperature-scaled microscopic relaxation time τπT ,

κ = τπT
η/s

. Specifically, we will explore scenarios where η/s = 0.16 is a constant in the QGP phase

but increases by variable amounts during the transition from QGP to hadrons, using the following

parametrization for its temperature dependence:

η

s
(T ) =

(η/s)QGP + (η/s)HG

2
+

(η/s)QGP − (η/s)HG

2
tanh

(
40
T−Tc
Tc

)
. (8.1)

Here Tc = 170 MeV, and (η/s)QGP = 0.16 and (η/s)HG are (different) constants for the QGP

and HG (hadron gas) phases. We will explore the range 0.16≤ (η/s)HG ≤ 0.48, as illustrated

in Figure 8.1. In the next three sections κ will be held constant at κ = 3;13 consequences of a

temperature dependent κ(T ) = (e+p)/p will be explored in Sec. 8.6.

8.3 Hydrodynamic evolution

In order to study how the fireball evolves with a temperature dependent (η/s)(T ) that increases

in the HG phase, we graph the time evolution for the average transverse flow velocity 〈〈v⊥〉〉
(the average over the transverse plane being defined with the lab-frame energy density γ⊥e as

weight), the spatial eccentricity εx = 〈y2−x2〉
〈y2+x2〉 of the lab-frame energy density distribution, the flow

momentum anisotropy εp =
〈Txx0 −T

yy
0 〉

〈Txx0 +T yy0 〉
(where 〈. . . 〉 denotes simple integration over the transverse

plane and T µν0 is the ideal fluid part of the energy-momentum tensor, without viscous pressure

13The specific values (η/s)QGP = 0.16 and κ = 3 chosen here agree with those used by us in the earlier studies
[17, 40] while the recent work [128] assumes κ = 5.
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Figure 8.1: Five choices for the temperature dependent (η/s)(T ) studied in this work. The constant
values at low T are multiples of 0.08 ≈ 1

4π
.

contributions), and the total momentum anisotropy ε′p = 〈Txx−T yy〉
〈Txx+T yy〉 for different choices of the

temperature dependence of η/s.

Since shear viscosity leads to viscous heating which generates entropy, holding the finally

observed hadron multiplicity fixed requires that an increase in (η/s)(T ) must be accompanied

by a decrease of the initial entropy of the fireball. We implement this by a decrease of the

normalization of the initial entropy density distribution, keeping its shape fixed. Whereas for

fixed initial conditions an overall increase of η/s leads to stronger radial acceleration due to a

positive contribution from the viscous pressure tensor πµν to the transverse pressure gradients [51,

87, 129, 39, 38], this effect is largely compensated [130, 17, 128] after rescaling the initial entropy

density to ensure fixed final multiplicity. For our temperature-dependent η/s this compensation no

longer works in the same way: after rescaling the initial entropy density profile, to compensate for

increased viscous heating in the hadronic phase, the QGP core shrinks and the HG corona grows

in size. Since the viscous pressure is relatively larger in the hadronic phase than in the QGP, the

effective transverse pressure gradient is reduced when increasing η/s only in the hadronic phase,

leading to weaker radial acceleration. This can be seen in Fig. 8.1a, where we see a reduction

oof the growth rate of the average radial flow velocity 〈〈v⊥〉〉 with increasing values of (η/s)HG,

holding (η/s)QGP = 0.16 fixed.
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Figure 8.2: The average radial flow 〈v⊥〉, spatial eccentricity εx, and the flow and total momentum
anisotropies εp and ε′p for Au+Au collisions at b = 7.5 fm as functions of hydrodynamic evolution
time τ−τ0, for τ0 = 0.4 fm/c and kinetic freeze-out temperature Tdec = 120 MeV. Lines with
different symbols correspond to different temperature dependences of η/s as shown in Fig. 8.1.

The larger shear viscosity in the hadronic corona leads to a more rapid initial decay14 of the

spatial fireball eccentricity εx (see Fig. 8.2b) and a slower growth rate and lower asymptotic value

14We note that ε is defined by integrating at fixed time τ over the entire transverse plane, including both
thermalized and already decoupled matter. It is possible that the strong initial decay of ε seen in Fig. 8.2b arises
mostly from contributions in that part of the hadronic corona that has already decoupled.
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Figure 8.3: (a): Transverse momentum spectra for charged hadrons, pions, and protons from
VISH2+1 for the 5% most central Au+Au collisions (b = 2.33 fm). (b-c): Differential elliptic
flow v2(pT ) for charged hadrons (b), pions (c) and protons (d) from Au+Au collisions at 20-30%
centrality (b = 7.49 fm). Lines with different symbols correspond to different values of (η/s)HG as
shown in Fig. 8.1; Tdec = 120 MeV. Decay products from all strong resonance decays are included.
Charged hadrons include π+, K+, p, Σ±, Ξ−, Ω−, and their antiparticles.

of the flow momentum anisotropy εp (Fig. 8.2c, open symbols). The spatial eccentricity curves in

Fig. 8.2b all cross around τ−τ0 = 4.5 fm/c, indicating the transition from stronger decay of εx at

early times to weaker decay at late times for larger values of (η/s)HG. This is a consequence of

the reduced flow anisotropy εp shown in Fig. 8.2c.

The lines with filled symbols in Figure 8.2c show that the effects of increased hadronic viscosity

on the asymptotic values of the total momentum anisotropy ε′p are much stronger than on the flow

anisotropy εp: while the latter decreases by about 25% from (η/s)HG = 0.16 to (η/s)HG = 0.48,

the corresponding decrease for ε′p is almost twice as large. Also, most of the effect on ε′p happens at

late times τ−τ0> 4.5 fm/c when most of the matter has converted into hadron gas. This reflects
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the growth of the Navier-Stokes value πµνNS = 2ησµν of the viscous pressure contribution to T µν

in the hadronic phase where ηHG increases. In contrast to εp, the total momentum anisotropy ε′p

does not saturate at late times after the spatial eccentricity (which drives the flow anisotropy)

has essentially decayed to zero; its continued increase is due to the continuing decrease of the

magnitude of the πµν components whose contribution to ε′p is negative [38].
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Figure 8.4: Similar to Fig. 8.3, for fixed (η/s)HG = 0.48 and different decoupling temperatures
Tdec ranging from 160 to 100 MeV. In panels (b)-(d), dotted lines show v2(pT ) calculated without
the δf correction whereas the solid lines show the full calculations.

The large difference between the late-time values of εp and ε′p for high values of ηHG shows that,

for strong hadronic viscosity, the viscous corrections to the local thermal equilibrium distribution

on the kinetic decoupling surface at Tdec are big. We will explore this in more detail in Sec. 8.5.
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8.4 Spectra and elliptic flow

8.4.1 Central and semi-peripheral Au+Au collisions

Figure 8.3 shows the transverse momentum spectra for charged hadrons, pions and protons

from central Au+Au collisions (0−5% centrality) and their elliptic flows v2(pT ) for semiperipheral

Au+Au collisions (20−30% centrality) for different choices of the hadronic shear viscosity (η/s)HG.

The pT -spectra in Fig. 8.3a are seen to be completely insensitive to the value of (η/s)HG. From

the reduction of the radial flow seen in Fig. 8.2a one would have expected steeper spectra for

larger (η/s)HG since Tdec = 120 MeV is held fixed; clearly, for pT < 2 GeV/c, the viscous correction

δf to the local equilibrium distribution at freeze-out (which will be analyzed in greater depth in

Sec. 8.5) happens to almost exactly compensate for the loss of radial flow, over the entire range

of (η/s)HG values studied here.

This is not true for the elliptic flow which is strongly reduced when the hadronic viscosity

is increased (Figs. 8.3b-d). For protons a striking effect is seen for (η/s)HG > 0.32: The proton

elliptic flow turns negative (i.e. protons show stronger flow perpendicular than parallel to the

reaction plane) for low pT . This effect is caused entirely by the δf correction. δf grows not only

with pT , as is well known, but also with the mass of the hadron. For massive hadrons, the shear

viscous δf correction can be a strong effect even at pT = 0. In Fig. 8.3 negative v2(pT ) caused by

δf at low pT is not visible for pions, but for protons and would be much stronger for Ω hyperons

or J/ψ mesons if they also followed viscous hydrodynamical evolution down to Tdec = 120 MeV.

The effect of the δf correction is studied in Fig. 8.4, for various choices of the decoupling

temperature Tdec . We hold the hadronic shear viscosity fixed at (η/s)HG = 0.48, the largest value

studied here. The effect of variations in Tdec on the spectra in Fig. 8.4a is similar to what we

observed in [17]: lower decoupling temperatures cause flatter proton spectra due to larger radial

flow, steeper pion spectra due to the cooling effect which dominates for light particles, and almost

no change in the charged hadron spectra whose mix of light and heavy particles effectively balances

the counteracting cooling and radial flow effects.

In Figs. 8.4b-d we plot the differential elliptic flow for charged hadrons, pions and protons.

The dotted lines show a calculation that ignores the viscous δf correction at freeze-out and thus

only includes the Tdec-dependence of the pure flow effects. We see that lower Tdec values suppress

v2(pT ) for protons but increase it for pions at low pT . This is really a consequence of the ac-

companying change of the pT -spectra: Due to the large hadronic viscosity, very little additional

flow momentum anisotropy is generated at temperatures below Tc. However, due to cooling, the

pion spectra get steeper with decreasing Tdec, moving more of their momentum anisotropy to low

transverse momenta which leads to the increase of pion v2(pT ) at low pT . Conversely, the proton

spectra get flatter, in spite of cooling, due to additional radial flow developing between Tc and
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Tdec; consequently, their total momentum anisotropy gets shifted on average to larger transverse

momenta, causing a reduction of proton v2(pT ) at low pT (accompanied by an increase at high

pT < 2 GeV/c, beyond the range shown here). Both the flattening of the proton spectra and the

shifting of their elliptic flow to larger pT are stronger for the case of large hadronic shear viscosity

((η/s)HG = 0.48) studied here than for the case of temperature-independent η/s = 0.16 studied

in [17]: The large hadronic viscosity generates stronger additional radial flow but less additional

momentum anisotropy in the hadronic stage than does constant η/s = 0.16. Note that, without

δf , proton v2(pT ) never turns negative, even for the largest hadronic shear viscosity studied in

this work.

The solid lines in Figs. 8.4b-d show the full calculation of v2(pT ) including the δf correction. We

see larger δf effects for protons than pions, due to their larger rest mass [38]. The full calculations

feature a non-monotonic variation of pion and charged hadron v2(pT ) with decoupling temperature

Tdec: The suppression from δf is smaller for Tdec = 160 MeV than for Tdec = 140 MeV. The like

explanation is that Tdec = 160 MeV is so close to the inflection point Tc of the shear viscosity

(η/s)(T ) that, due to the finite relaxation time τπ ∼ 2 fm/c at this temperature, the viscous

pressure tensor has not yet had time to fully evolve to its (larger) hadronic Navier-Stokes value

whereas at Tdec complete relaxation has been achieved. At sufficiently low Tdec, δf decreases with

decreasing the decoupling temperature, since now η/s has reached its new, higher hadronic level

and πµν becomes smaller simply due to hydrodynamic expansion [38].

8.4.2 Minimum bias collisions

In Figure 8.5 we show pT spectra and differential elliptic flow for charged hadrons, pions and

protons from minimum bias Au+Au collisions with Tdec = 120 MeV. For these we summed our

calculated results over all collision centralities ≤ 80%. The dependence on collision centrality is

discussed in the next section.

Similar to what we saw in Fig. 8.3a for central Au+Au collisions, the spectra shown in Fig. 8.5a

exhibit almost no sensitivity at all to variations of the specific shear viscosity (η/s)HG in the hadron

gas stage. We did observe some flattening of the charged hadron spectrum in the most peripheral

(70−80%) centrality bin studied, where the viscous effects are strongest and the δf correction is

largest. Due to its low weight in the average, this weak effect is not visible in the minimum bias

result.

In Figures 8.5b and c, the minimum bias differential v2(pT ) of all charged hadrons, pions

and protons are shown for different (η/s)HG. We see that the features observed in Fig. 8.3 for

the specific 20−30% centrality bin carry over, qualitatively unchanged, to event samples without

centrality selection: a significant increase of η/s in the hadron gas phase has a strong suppression
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Figure 8.5: Transverse momentum spectra (a) and differential elliptic flow v2(pT ) for charged
hadrons (b) and pions and protons (c) from minimum bias Au+Au collisions at RHIC, for various
(η/s)(T ) as indicated (c. f. Fig. 8.1).

effect on v2(pT ). However, as shown in Sec. 8.4.1, the suppression arises mostly from the δf

correction at kinetic freeze-out, with a much smaller contribution accounting for the lack of growth

of the total momentum anisotropy in the hadronic phase when (η/s)HG becomes large. Hence, the
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strong suppression of differential elliptic flow by large hadronic shear viscosity shown here depends

critically on the validity of viscous hydrodynamics as the correct framework for evolving δf all the

way down to Tdec = 120 MeV. This is assumed here, but not supported by the analysis presented

in [124].

8.4.3 Centrality dependence of elliptic flow

The centrality dependence of the eccentricity-scaled elliptic flow v2/ε is shown in Fig. 8.6 where

we graph this quantity as a function of the final charged multiplicity density (1/S)dN ch/dy. for
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Figure 8.6: Eccentricity-scaled charged hadron elliptic flow v2/ε as a function of the multiplicity
density (1/S)(dN ch/dy), for different values of (η/s)HG. The overlap area S = π

√
〈x2〉〈y2〉 is

calculated from the same initial profiles as the spatial eccentricity ε.

different values of (η/s)HG. (We obtain v2 by integrating v2(pT ) over all pT , without regard to

possible pT cuts imposed by experimental constraints.) Strong suppression of v2/ε by hadronic

viscosity is observed even in the most central collisions, but the effect is stronger in peripheral

collisions. An increase of (η/s)HG thus not only decreases v2/ε, but also changes the slope of its

centrality dependence. We note in passing that in recent studies with the hydro+cascade hybrid

code VISHNU [40] this slope was fixed and controlled by the effective dissipation encoded in the

hadron cascade, and that in [124] an (unsuccessful) attempt was made to extract the temperature-

dependence of (η/s)HG (here assumed to be T -independent) by matching the magnitude and slope

of the corresponding v2/ε vs. (1/S)dN ch/dy curves from VISH2+1 to those from VISHNU. We also

observe that for the largest value of (η/s)HG studied here, (η/s)HG = 0.48, the total charged
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hadron elliptic flow turns negative in the most peripheral (70−80%) centrality bin. We found that

this is caused by negative pion v2(pT ) around pT = 0.5 GeV/c (i.e. close to their average pT ),

caused by large δf corrections at freeze-out.15
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Figure 8.7: The δf correction for constant η/s = 0.16 to the pT -spectra for charged hadrons (a),
pions (b) and protons (c) at 0−5% centrality, and to their differential elliptic flow (d-f) at 20−30%
centrality. Lines with different symbols denote individual contributions as described in the text.

15For 70−80% centrality and (η/s)HG = 0.32−0.48, we found for that for pions v2(pT ) first rises at very low pT ,
then turns negative for 0.25<pT < 0.75 GeV/c before turning positive again and continuing to grow approximately
linearly with pT . This is different from protons whose v2(pT ) turns negative right away at small pT , again with a
minimum around 0.5 GeV/c. All these effects are caused by large δf effects; in this centrality bin we do not trust
viscous hydrodynamic predictions to be very robust.
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Due to non-zero viscous pressure components πµν , the distribution function fi(x, p) for hadron

species i must deviate on the freeze-out surface from local equilibrium:

fi(x, p) = feq,i(x, p) + δfi(x, p). (8.2)

We use [51]

δfi = feq,i ·
1

2

pµpν

T 2

πµν
e+ p

, (8.3)

noting that also other forms have been suggested in the literature [131, 132]. The numerator can

be written as

pµpνπµν(x) =

πττ (x)

[
m2
T

(
2 cosh2(y−η)− 1

)
+
p2
T

v2
⊥

sin(2φp)

sin(2φv)
− 2

pT
v⊥
mT cosh(y−η)

sin(φp+φv)

sin(2φv)

]
+ Σ(x)

[
−m2

T sinh2(y−η) +
p2
T

2

(
1− sin(2φp)

sin(2φv)

)
+ pTmT cosh(y−η)v⊥

sin(φp−φv)
tan(2φv)

]
+ ∆(x)

[
pTmT cosh(y−η)v⊥

sin(φp−φv)
sin(2φv)

− p2
T

2

sin(2(φp−φv))
sin(2φv)

]
(8.4)

where Σ = πxx+πyy, ∆ = πxx−πyy. Because of boost-invariance, tracelessness and orthogonality

to uµ, only three components of πµν are independent; we take them as Σ, ∆, and πττ . mT =√
m2 + p2

T is the transverse mass of the particles, φp is the azimuthal angle of pT , and φv(x) is

the azimuthal angle of the fluid velocity v at point x.

We now discuss the individual contributions from Eq. (8.4) to the pT -spectra and elliptic flow,

for the cases of constant η/s = 0.16 (Figure 8.7) and temperature-dependent (η/s)(T ) (Figure 8.8).

In panels (a-c) we show the fractional contribution δN/Neq from δf to the Cooper-Frye spectra

of charged hadrons (a), pions (b) and protons (c). At low pT , the contributions proportional to

πττ and ∆ (first and last terms on the r.h.s. of Eq. (8.4)) are small and overshadowed by the

contribution from the average transverse viscous pressure Σ. The first (negative) term ∼ −m2
T in

the expression multiplying Σ dominates at low pT . It obviously grows with rest mass, leading to

large negative δN/Neq corrections at low pT for heavy hadrons such as Ω and J/ψ. For protons

the effect remains below 10% in central Au+Au collisions, i.e. δf corrections are small and the

calculation is reliable. At larger pT , all three contributions in Eq. (8.4) turn positive and δN/Neq

switches sign (around 0.5 GeV/c for pions and around 1 GeV/c for protons). Again, the term ∼Σ

first dominates, but since it grows only linearly at large pT it is eventually (at pT ∼ 2 GeV/c)

overtaken by the term ∼ πττ . For constant η/s = 0.16, |δN/Neq| remains below 25% up to

pT = 2 GeV/c for all three spectra shown,16 and the calculation is therefore reliable. For large

16The δf effects on charged hadron spectra can be qualitatively understood from those on pion and proton
spectra by noting that at low pT charged hadrons are dominated by pions whereas at larger pT heavier hadrons
become increasingly more important.
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Figure 8.8: Similar to Fig. 8.7, but for temperature dependent (η/s)(T ), Eq. (8.1), with (η/s)HG =
0.48.

hadronic viscosity (η/s)HG = 0.48 (Fig. 8.8) the δf corrections to the pT -spectra are larger, in

particular the term∼ πττ , and |δN/Neq| reaches 70−80% at pT = 2 GeV/c, indicating the imminent

breakdown of the viscous hydrodynamic expansion |δf |� feq.

In the lower panels of Figs. 8.7 and 8.8 we show the δf contributions to the differential v2(pT ) for

charged hadrons (d), pions (e), and protons (f), again separated into their individual contributions

according to Eq. (8.3). We see that for low pT all three terms in Eq. (8.4) contribute to the

suppression of elliptic flow, but that in this case at high pT the term proportional to the viscous

pressure anisotropy ∆ = πxx−πyy plays the dominant role, overshadowing the terms ∼Σ and

(except for the largest hadronic viscosities) also ∼ πττ . The latter grows quadratically with pT

and eventually wins over the term ∼Σ; for large hadronic viscosity (Fig. 8.8) it even exceeds the

anisotropy term ∼∆ at sufficiently large pT . The term proportional to the average transverse

viscous pressure Σ individually generates a positive elliptic flow correction at large pT (i.e. at

pT ∼ 2 GeV/c for constant η/s = 0.16 and at pT ∼ (1−1.5) GeV/c for T -dependent (η/s)(T ) with

(η/s)HG = 0.48). Similarly the anisotropy term∼∆ by itself increases proton elliptic flow at low pT
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if the hadronic viscosity is large enough (Fig. 8.8f). In the sum, however, these positive individual

corrections are always overwhelmed by the remaining two negative corrections, leading to an overall

suppression of v2(pT ) at all pT in all cases. Interestingly, the negative proton elliptic flow at low

pT and large (η/s)HG values noted earlier (Figs. 8.3-8.5) is not caused by the viscous pressure

anisotropy ∆, but by the average transverse viscous pressure Σ (green triangles in Fig. 8.8f). This

phenomenon is driven by the effect of Σ on the proton spectra (Figs. 8.7c and 8.8c): Σ suppresses

the spectra at low pT , leading (in extreme situations) to the formation of a shoulder in the proton

spectra which is known [32] to cause negative v2.

8.6 Large hadronic relaxation times
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Figure 8.9: The temperature dependent κ(T ) from Eq. (8.5) for EOS s95p-PCE (solid), compared
with the massless limit κ = 4 (dashed).

Motivated by the study of the VISHNU model in [124] we explore in this section the consequences

of very large relaxation times τπ in the hadronic phase. Specifically, we assume a relation proposed

in [133],

κ(T ) =
e+ p

p
(T ), (8.5)

which can be easily worked out for our EOS s95p-PCE and is shown in Fig. 8.9. In the massless

limit (i.e. at large T where the EOS approaches e = 3p), this expression approaches the value

κ = 4. To explore effects specifically related to the T -dependence of κ, we compare in this section

results from Eq. (8.5) with those for constant κ = 4 (and not κ = 3 as in the preceding sections).
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The QGP viscosity is kept at (η/s)QGP = 0.16 throughout, but we toggle (η/s)HG in Eq. (8.1)

between the two values 0.16 and 0.48 (see Fig. 8.1).
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Figure 8.10: Same as Fig. 8.2b,c, but for κ(T ) from Eq. (8.5) and constant κ = 4 instead of
κ = 3. For the QGP (η/s)QGP = 0.16 is used throughout whereas (η/s)HG is varied between 0.16
and 0.48 as indicated in the legend.

Figure 8.10 shows a similar analysis as Fig. 8.2, but now comparing constant with T -dependent

κ values. From Fig. 8.10a we conclude that the temperature dependence of κ has no visible

influence on the evolution of the spatial eccentricity εx, irrespective of whether the specific shear

viscosity η/s grows in the hadronic phase or not. On the other hand we see in Fig. 8.10b that

a κ(T ) that grows around and below Tc as shown in Fig. 8.9 reduces significantly the viscous

suppression of the total momentum anisotropy ε′p that is otherwise caused by a large hadronic

shear viscosity.17 Analyzing panel (b) of Fig. 8.10 in more detail, we observe that during the early

17Please note that the extremely rapid rise of κ(T ) below T ∼ 50 MeV seen in Fig. 8.9 is irrelevant in this context
because the fireball matter decouples already at Tdec = 120 MeV.
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stage of the evolution larger hadronic relaxation times have little effect on the flow momentum

anisotropy εp, consistent with the almost unchanged decay rate of the spatial eccentricity seen in

panel (a) that drives the anisotropic flow. At late times, however, the larger κ(T ) is seen to have a

small positive effect on the generation of anisotropic collective flow. Increasing the response time

τπ with which the viscous pressure tensor πµν can react to changes in the velocity shear tensor

apparantly allows the collective flow anisotropy to grow more easily, with less viscous damping,

than if πµν is allowed to relax to its Navier-Stokes value πµνNS = 2ησµν more quickly. This is a

cumulative effect that becomes visible most clearly at late times when most of the fireball matter

is affected by the larger κ(T ) values at lower temperatures.
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Figure 8.11: Differential elliptic flow v2(pT ) for charged hadrons, using a temperature dependent
κ(T ). Same parameters as in Fig. 8.10.

The total momentum anisotropy ε′p, on the other hand, is more strongly affected by a low-

temperature growth of κ(T ) (solid lines in Fig 8.10b). ε′p is suppressed relative to the flow

anisotropy εp by the non-equilibrium corrections ∼ πµν in the energy-momentum tensor. When

the relaxation time τπT is allowed to grow large in the hadronic phase, this suppression is found

to be reduced, and the reduction is relatively larger for large values of (η/s)HG (corresponding to

a larger Navier-Stokes value πµνNS) than for smaller (η/s)HG. We also note that this suppression of

the πµν-contribution to ε′p is visible already at early times when the larger κ(T ) values affect only

the fireball corona. In fact, for constant η/s = 0.16 (solid squares and circles) the low-temperature

growth of κ(T ) leads to a bigger increase of ε′p over εp at early than at late times; this is due to

the larger longitudinal expansion rates at early times which lead to larger Navier-Stokes values
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for ∆ = πxx−πyy everywhere, thus causing greater sensitivity to increased κ(T ) values in the

fireball corona. In the case of T -dependent η/s (solid upright and inverted triangles) the effects

from a delayed response τπ are larger at late times; in this situation, the Navier-Stokes values

for ∆ = πxx−πyy grow in the hadronic phase due the sudden increase of η/s below Tc, clearly

reflected by a “kink” in the growth of ε′p around τ−τ0 = 4 fm/c (see upright green solid triangles

in Fig 8.10b). This kink is largely washed out by a simultaneous rise of κ(T ) (inverted blue solid

triangles in Fig 8.10b).

The behavior of the total momentum anisotropy ε′p is directly reflected in the charged hadron

elliptic flow, shown in Fig. 8.11. We point especially to the reduction of the (negative) πµν

contributions to ε′p in the case of T -dependent (η/s)(T ), which manifests itself through reduced

δf corrections to v2(pT ) which again are most pronounced at large pT (green triangles and blue

inverted triangles in Fig. 8.11). For constant η/s, on the other hand, the larger hadronic relaxation

time has little effect on the differential v2(pT ), consistent with the very small effect on the total

momentum anisotropy ε′p at late times seen in Fig. 8.10b.

8.7 Temperature dependent (η/s)(T ) in the QGP phase

Now, we would like to change gear and explore the temperature dependence of (η/s)(T ) in the

high temperature QGP phase. From the study in Chapter 5, we found that we over-predict of

v2{4}(pT ) in Pb+Pb collisions at the LHC seen in Fig. 5.7a, together with the excellent description

of the same quantity in Au+Au collisions at RHIC seen in Fig. 5.3, thus suggests that the fireball

liquid formed in LHC collisions might be slightly more viscous (i.e. possess larger average η/s)

than at RHIC energies [128, 47]. In this section we present some results using a temperature

dependent specific shear viscosity, (η
s
)(T ), that were motivated by such considerations.

Figure 8.12 illustrates the following three trial functions explored in this section:(η
s

)
1

= 0.2 + 0.3
T−Tchem

Tchem

, (8.6)(η
s

)
2

= 0.2 + 0.4
(T−Tchem)2

T 2
chem

, (8.7)(η
s

)
3

= 0.2 + 0.3

√
T−Tchem

Tchem

. (8.8)

Here Tchem = 165 MeV is the chemical decoupling temperature and stands for the “transition

temperature” at which the hadronization of quarks and gluons is complete.

As pointed out in [128], the spectra and elliptic flow in Au+Au collisions at RHIC energies are

most sensitive to the average value of η/s in the temperature region below 220-230 MeV. We have

checked that altering η/s at higher temperatures as shown in Fig. 8.12 has little influence on the

results at RHIC energies shown in Sec. 5.2.
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√
s = 2.76ATeV, for different functional forms of

(η/s)(T ) and initial conditions for the shear stress tensor πµν (see text).

Figure 8.13 illustrates the influence of a linear temperature dependence of η/s as in Eq. (8.6) on

the centrality dependence of charged hadron production. The solid black line is the same as shown

in the upper part of Fig. 8.12 where it forms the lower bound of the shaded region; it corresponds
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to constant η/s = 0.2 and Navier-Stokes initial conditions for the shear stress tensor, πµν =

2ησµν at τ0 = 0.6 fm/c. The dashed and dash-dotted lines in Fig. 5.1 use (η/s)1(T ) with either

Navier-Stokes (dashed) or zero (dash-dotted) initial conditions for πµν . These last two lines were

normalized to the ALICE point for the 0−5% most central Pb+Pb collisions (dN ch/dη = 1584±80

[99]), whereas the black line was normalized to our best guess before the ALICE data became

available (dN ch/dy = 1800, corresponding to dN ch/dη = 1548). The centrality dependence is then

controlled by the predictions from the MC-KLN model, modified by viscous entropy production

during the hydrodynamic evolution.

We see that even a relatively modest temperature dependent increase of η/s in the QGP phase

leads to a significantly stronger non-linearity in the dependence of charged particle production on

the number of wounded nucleons. The reason is that an increase of η/s with temperature leads to

more viscous heating in central collisions (which probe higher initial temperatures and such larger

effective shear viscosities) than in peripheral ones (whose initial temperatures are lower). Since

the entropy production rate is given by

∂µS
µ =

πµνπµν
2ηT

, (8.9)

this effect is stronger for Navier-Stokes initial conditions (where πµν is proportional to the velocity

shear tensor σµν which at early times diverges like 1/τ) than for zero initial shear stress (where

πµν starts from zero and approaches its Navier-Stokes value 2ησµν only after several relaxation

times τπ when, due to its 1/τ decay, it has already decreased to much smaller values).18

If one were to postulate the validity of the MC-KLN model as the correct description of the

initial particle production, the ALICE data shown in Fig. 8.13 would exclude a temperature

dependence of η/s as given in Eqs. (8.6) and (8.7) for Naver-Stokes initial conditions. While we

are not prepared to make such a statement on the basis of Fig. 8.13 alone, we believe that it is

important to point out this relatively strong sensitivity of the centrality dependence of dN ch/dη

to the transport properties of the expanding fireball medium and to emphasize the constraints it

thus places on possible models for the QGP shear viscosity.

We now turn to the discussion of the influence of a possible temperature dependence of η/s on

the charged hadron pT -spectra and elliptic flow. Figure 8.14 shows LHC predictions for 2.76ATeV

Pb+Pb collisions of 20−30% centrality. To ensure comparability of the different cases studied in

this figure we simply normalized the initial entropy density profile such that we always obtain

dN ch/dy = 770, i.e. the same value that we had obtained before for constant η/s = 0.2 at this

centrality. We first note that for constant η/s = 0.2, we don’t observe any significant difference

18For reference we list the fractions of the finally measured entropy in the most central and most peripheral
centrality bins shown in Fig. 8.13 that are generated by viscous heating during the hydrodynamic expansion:
Constant η/s = 0.2: ∆S/Sfinal = 26% (0−5%) and 33% (70−80%); (η/s)1(T ) with πµν0 = 0: ∆S/Sfinal = 25%
(0−5%) and 15% (70−80%); (η/s)1(T ) with πµν0 = 2ησµν : ∆S/Sfinal = 60% (0−5%) and 49% (70−80%).
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Figure 8.14: Charged hadron transverse momentum spectra (top) and differential elliptic flow
(bottom) for 2.76ATeV Pb+Pb collisions at 20−30% centrality, for different models for the tem-
perature dependence of η/s and different initial conditions for πµν (Navier-Stokes (“NS”) or 0
(“Zero”)). The ALICE data in the bottom panel are from Ref. [52].

in the charged hadron spectra and elliptic flow between zero and Navier-Stokes initialization for

πµν . Turning to the temperature-dependent parametrizations (η/s)i(T ), we note that for zero

initialization of πµν (solid lines) our results agree with those reported in [128]: An increase of η/s

at higher QGP temperatures leads to somewhat harder charged hadron pT -spectra (i.e. somewhat

stronger radial flow, caused by the larger tranverse effective pressure gradients at early times)
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η/s model πµν0 s0 (fm−3) T0 (MeV)

η/s = 0.2
0

NS
191.6
172.4

427.9
413.9

(η/s)1(T )
0

NS
179.6
119.3

419.2
368.7

(η/s)2(T )
0

NS
179.6
115.6

419.2
365.1

(η/s)3(T )
0

NS
175.2
116.6

416.0
366.1

Table 8.1: Initial central entropy densities s0 and temperatures T0 for the viscous hydrodynamic
simulations of 20−30% centrality Pb+Pb collisions at the LHC (

√
s = 2.76ATeV) shown in

Fig. 8.14. The different models for the T -dependence of η/s are defined in Eqs. (8.6)–(8.8). “0”
stands for πµν0 = 0 at τ0, “NS” stands for Navier-Stokes initialization of the shear stress tensor,
πµν0 = 2ησµν at τ0.

and a suppression of the differential elliptic flow (due to an increase of the time-averaged effective

shear viscosity of the fluid). It is interesting to observe the hierarchy of the curves in Fig. 8.14

corresponding to the three parametrizations (8.6)–(8.8): For the pT -spectra, all three T -dependent

viscosities lead to almost identical hardening effects on the spectral slope, while for the differential

elliptic flow vch
2 (pT ) the curves are ordered not according to the η/s-values at the initial central

fireball temperature (see Table 8.1), but according to their hierarchy in the 165<T < 280 MeV

range. In fact, the observed magnitudes of the viscous v2 suppression for the three (η/s)(T )

functions suggest that, at this beam energy and collision centrality, the buildup of elliptic flow

is dominated by the QGP transport properties at 200 < T < 250 MeV. (At RHIC energies, the

transport properties for T ∼ 200−220 MeV dominate the generation of v2 [128].)

For Navier-Stokes initial conditions (dashed lines in Fig. 8.14), the increase in radial flow

caused by an increase of η/s at high temperature is stronger and the viscous v2 suppression is

weaker than for zero initial πµν . This is caused by the much larger initial shear stress tensor

components in the NS case, compared to the case of πµν0 = 0 where πµν approaches its (by that

time already much smaller) Navier-Stokes limit only after several relaxation times τπ [39]. The

increase of η/s with temperature generates a steeper initial transverse effective pressure gradient

(since πµν grows faster than the entropy density s when η/s increases with temperature), and this

generates stronger radial flow. It also causes a larger spatial eccentricity of the initial effective

pressure profile which (when compared to the case of πµν0 = 0) generates stronger elliptic flow.

In fact, we found that for earlier starting times τ0 (where the Navier-Stokes values for πµν are

even larger), the quadratic parametrization (η/s)2(T ) with NS initial conditions can lead to more

elliptic flow than a constant η/s = 0.2, in spite of the larger mean viscosity of the fluid.

We conclude from this exercise that a firm determination whether or not the ALICE data point

towards a temperature-dependent growth of η/s with increasing T , as expected from perturbative
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QCD [54] and (perhaps) from lattice QCD [134], is not possible without a better understanding of

the initial conditions for the energy momentum tensor (in particular the shear stress components)

at the beginning of the hydrodynamic evolution. Whereas generically larger viscosities cause a

suppression of the elliptic flow, temperature-dependent viscosities can influence the initial effective

pressure profile and its eccentricity in a way that counteracts this tendency and, for some models

such as Navier-Stokes initial conditions, can even overcompensate it.

8.8 Discussion and conclusions

Figure 8.11 has important implications: Comparing the blue line with inverted triangles to

the case of constant κ and η/s (black squares), we conclude that the suppression of v2(pT ) re-

flected in the blue line could have arisen in two different ways: (i) by a large increase of η/s in

the hadronic phase, accompanied by a similarly large increase of κ, as shown here, or (ii) by a

much less pronounced increase of the hadronic shear viscosity, compensated by a correspondingly

reduced increase of the hadronic relaxation time. In other words, the hadronic shear viscosities

and relaxation times extracted from a given charged hadron v2(pT ) are strongly correlated and

impossible to determine independently from a single elliptic flow measurement. Whether and how

the systematic exploration of differential elliptic flow for different particle species and different

collision systems at different centralities can help to resolve this ambiguity remains to be seen.

The study presented here shows that any discussion of large dissipative effects in the hadronic

phase of heavy-ion collisions, reflected by specific shear viscosities and (scaled) microscopic relax-

ation times that grow as the system cools below the critical quark-hadron transition temperature,

is really a discussion of δf , i.e. of the deviation of the freeze-out distribution function from its local

equilibrium form and its reflection in the final hadron spectra and anisotropies. As the system

cools and approaches kinetic freeze-out, dissipative effects become stronger and stronger, bringing

the framework of viscous hydrodynamics closer and closer to breakdown. In this sense, our results

have to be taken as qualitative insights but should not be confused with quantitative predictions.

Their main value, as we see it, is that they shed light on and help to classify and qualitatively

understand the late-stage dissipative effects on hadron spectra and their elliptic flow as seen in

a realistic microscopic approach (as embodied, for example, by VISHNU). The results presented

here do provide support to the conclusion of Ref. [124] that an effective viscous hydrodynamic

description of the hadronic stage in heavy-ion collisions, if valid at all, likely requires both large

shear viscosity and long relaxation times below Tc.

Our study of possible temperature dependent variations of η/s in the high temperature region

explored for at the LHC remained unconclusive but pointed to a clear need for better theoretical

control over the initial conditions for the hydrodynamic energy-momentum tensor, in particular
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its shear stress components. The development of detailed dynamical models for the pre-thermal

evolution of the collision fireball and their matching to the viscous hydrodynamic stage is a matter

of priority for continued progress towards quantifying the transport properties of the quark-gluon

plasma at different temperatures and densities.
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Chapter 9: Collision energy dependence

9.1 Chapter introduction

The recent Beam Energy Scan (BES) program [135, 136, 137, 138, 139, 140] at RHIC is

motivated by searching for the phase boundary between normal nuclear matter and sQGP as well

as for the theoretically predicted QCD critical point [141, 142, 143, 144]. The BES program at

RHIC together with Pb+Pb collisions at the Large Hadron Collider (LHC) provide us with a

unique opportunity to study systematically the collision energy dependence of relativistic heavy-

ion collision observables. In the mid-rapidity region, the dependence of elliptic flow on transverse

momentum and collision energy are crucial for our understanding of the properties of sQGP.

In [145] the collision energy dependence of particle transverse momentum spectra and elliptic

flow coefficients were studied using (2+1)-d ideal hydrodynamics with longitudinal boost invariance

and a bag-model equation of state. In this chapter (taken from Ref. [50]), we revisit this problem

using more realistic (2+1)-d viscous hydrodynamics coupled with a modern lattice QCD based

equation of state [17, 16].

Our work has some limitations which must be kept in mind before comparing them with ex-

perimental data. As the collision energy decreases, the Bjorken assumption of longitudinal boost

invariance will gradually break down [146]. Furthermore, since the fireball will spend less time in

the QGP phase, the hadronic phase becomes more important and occupies a larger part in its dy-

namical history. Curing these two major shortcomings will require (3+1)-d viscous hydrodynamic

simulations [45, 147] coupled with a microscopic hadronic afterburner [148, 40, 124]. Here we are

not aiming at extracting precise information of QGP transport properties from a comparison with

experimental data. Its main purpose is to expose systematic quantitative trends in observables as

a function of collision energy in the relativistic heavy-ion collisions.

In the next section, we will describe the setup of our model and discuss our parametrization

of the initial conditions as a function of
√
s. In Sec. 9.3, we will present trends for the transverse

momentum spectra and differential elliptic flow for charged hadrons as
√
s increases from 7.7AGeV

to 2760AGeV. Identified particle spectra and their elliptic flow v2 will be discussed in Sec. 9.4.
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In Sec. 9.5, we generalize the definition of the spatial eccentricity to an isothermal hyper-surface.

Based on this generalized formulation, we perform a shape analysis on the final kinetic freeze-out

surface and study the dependence of the final eccentricity on
√
s. Sec. 9.6 is devoted to some

concluding remarks.

9.2 Evolution of charged hadron multiplicity and total elliptic flow

To limit the numerical effort, we do not perform an event-by-event study here but use smooth

event averaged initial entropy density profiles from the MC-Glauber and MCKLN models and

perform only a single hydrodynamic evolution for each class of collisions. In the MC-Glauber runs

we take for the specific shear viscosity the value η/s = 0.08. The wounded nucleon (WN) to binary

collision (BC) mixing ratio α is adjusted to reproduce the measured centrality dependence of the

final charged hadron multiplicity density dNch/dη. For Pb+Pb collisions at
√
s = 2760AGeV

we use α = 0.118 as determined in [118]. For Au+Au collisions at RHIC energies, we fit to the

RHIC data at
√
s = 200AGeV [102, 93, 149, 150, 151] obtaining α = 0.14. For RHIC collisions

at lower
√
s we keep the mixing ratio fixed19 at x = 0.14, tuning only the normalization factor

κ to reproduce the charge multiplicity in the 0-5% most central collisions. For
√
s = 63AGeV,

the desired charged multiplicity is taken from experiment [102]. For
√
s < 63AGeV, we presently

lack experimental information and therefore use the empirical formula [145]

dNch

dη
= 312.5 log10

√
sNN − 64.8. (9.1)

The actually employed final charged multiplicities are listed in Table 9.1.
√
s (A GeV) T0 (MeV) τf−τ0 (fm/c) dNch/dη

AuAu@ 7.7 269.2/233.7 9.3/9.1 212.3/212.1
AuAu@ 11.5 287.5/252.0 10.0/9.8 266.7/266.4
AuAu@ 17.7 304.8/269.8 10.5/10.3 325.3/324.9
AuAu@ 19.6 308.7/274.3 10.6/10.4 339.2/338.8
AuAu@ 27 320.1/286.4 10.9/10.7 382.9/382.1
AuAu@ 39 332.2/298.9 11.2/11.0 432.7/432.3
AuAu@ 63 341.1/306.4 11.4/11.2 472.0/472.9
AuAu@ 200 378.6/347.0 12.2/12.1 661.9/690.0
PbPb@ 2760 485.2/443.9 14.2/14.2 1575.7/1597.2

Table 9.1: The initial temperature at the center of the fireball, fireball lifetime and final charged
hadron multiplicity of 0-5% most central collisions are listed. The results on the left are from
MC-Glauber initial conditions with η/s = 0.08, the right are for MCKLN with η/s = 0.2.

19The main reason of keeping the mixing ratio fixed is because the measured centrality dependence of charged
multiplicity for the lower energy runs had, at the time of this study, not yet been published. We do not expect
qualitative changes to the conclusions drawn in this paper once our assumed values will be replaced by actual
measurements.
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The MCKLN calculations are done using a Monte-Carlo sample of initial profiles with identical

properties as those used in [48]. These initial MCKLN profiles were evolved hydrodynamically

with a larger viscosity η/s = 0.2 to compensate for the larger initial eccentricities. For Au+Au at

200AGeV and Pb+Pb at 2760AGeV the normalization constant for the initial entropy density

was determined by an overall fit to the centrality dependence of dNch

dη
. These best fits result in

slightly different dNch

dη
values for the 0-5% most central collisions than obtained for the correspond-

ing MC-Glauber cases (see Table 9.1). At lower energies, the normalization factor was again fixed

to reproduce the desired charged hadron multiplicity density dNch/dη for the 0-5% most central

collisions for all
√
s (see Table 9.1).

We point out that we keep the value of the specific shear viscosity η/s unchanged as we go to

lower collision energies. As the highly viscous hadronic phase becomes more and more important

at lower collision energies, viscous hydrodynamic simulations with temperature independent η/s

will eventually break down. Worse, larger η/s values in the hadronic phase jeopardize the validity

of the viscous hydrodynamic approach altogether [127]. In this study, we are not trying to extract

the temperature dependence of η/s from a serious comparison with experimental data; our goal is

to present a systematic study of the
√
s dependence of hydrodynamic variables. For this reason,

we run viscous hydro all the way down to
√
s = 7.7AGeV with constant η/s; compared to [145],

our simulations are more realistic by including viscous effects in the hydrodynamic evolution and

using a better EOS.20 Also, we here study two different initialization models and include (at least

on average) the effects of event-by-event fluctuations whereas in [145] an optical Glauber model

was used for initialization which gives too small eccentricities in the most central collisions. We

will see that the different
√
s dependence from the two initialization models will help us to further

distinguish between the two initialization models.

In Table 9.1 we have summarized the global variables for our hydrodynamic simulations. At

higher collision energies the evolution starts with a higher peak initial temperature, thus probing

the nuclear matter at higher temperature and resulting in a longer lifetime of the fireball. At

LHC energy we find a peak temperature that is about twice as large as that reached at the lowest

collision energies at RHIC, and the lifetime is about 5 fm/c longer. MC-Glauber initial conditions

have about 30 MeV higher peak temperatures than MCKLN ones. This is mostly due to the fact

20It should be noted that our EOS assumes zero net baryon density – an assumption that is untenable in the
lower half of the collision energy range explored here. To include effects from non-zero baryon density would require
an upgrade of VISH2+1 to solve additionally for the space-time evolution of the conserved baryon current. This is
important for the correct prediction of the final baryon and meson abundances at lower

√
s which our present code

can not achieve. However, what matters for the evolution of radial and elliptic flow is the stiffness of the EOS,
embodied by the pressure (whose gradients supply the hydrodynamic acceleration) and its relation to the energy
density (inertia) of the fluid, p(e, n). Since, for not too large baryon densities n, this relation depends on n only
very weakly [30], the use of a baryon-free EOS is expected to work well for the systematic flow study presented
here.
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that the specific shear viscosity in the MCKLN runs is about 2.5 times larger than for MC-Glauber

runs, causing stronger viscous heating and larger entropy production during the hydrodynamic

evolution. The same final multiplicity dNch

dη
can thus be reached starting from less initial entropy.

A larger specific shear viscosity also helps the system to develop more radial flow in the transverse

plane, by speeding up the equalization between transverse and longitudinal velocity gradients (the

latter are initially very large). This larger transverse expansion rate compensates for the viscous

heating effects on the lifetime, resulting in a slightly shorter lifetime for the MCKLN runs.
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Figure 9.1: (a): Centrality dependence of final charged hadron multiplicity per participant nucleon
pair as a function of Npart for MC-Glauber initial conditions, with collision energies varying from√
s= 7.7AGeV to

√
s= 2760AGeV. (b): Centrality dependence of dNch

dη
from the lower energy

runs in (a) scaled up to the LHC results, for shape comparison. (c, d): Same as (a, b) but for
MCKLN initial conditions.

In Figs. 9.1(a,c) we show the centrality dependence of the charged hadron multiplicity for

both MC-Glauber and MCKLN models with collision energies from
√
s = 7.7 to 2760AGeV.

The reader should note that all results in Fig. 9.1 account for viscous entropy production during

the hydrodynamic evolution. We checked that at LHC and top RHIC energies (top two curves

in Figs. 1(a,c)) our results for both initialization models agree well with the experimental data

[102, 93, 149, 150, 151, 99, 94]. Our lower collision energy predictions can in the future be checked

against data collected in the RHIC BES program.
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Figure 9.2: Eccentricity-scaled pT -integrated v2 plotted as a function of the charged hadron mul-
tiplicity density for different collision energies, for MC-Glauber initial conditions with η/s = 0.08
(a) and MCKLN profiles with η/s = 0.2 (b), respectively.

In order to study how the centrality dependence changes with
√
s, we scale in Figs. 9.1b,d the

lower collision energy results by constant factors to align them with the LHC curve in central (0-

10%) collisions. For the MC-Glauber model we find good
√
s-scaling: the curves almost fall on top

of each other. For the low energy runs at RHIC this is, of course, sensitive to the fact that we keep

the mixing ratio between the wounded nucleons and binary collisions fixed, and it also reflects the

fact that viscous entropy production is small and has little effect on the centrality dependence. On

the other hand, for the MCKLN model the slope of the centrality dependence gets flatter as the

collision energy decreases. Only the top RHIC and LHC energy curves approximately fall on top

of each other; at lower energy this
√
s-scaling is broken. We found that this tendency originates in

the nature of the MCKLN model itself: Even though viscous entropy production is larger (due to

the larger η/s used in the MCKLN runs), its centrality dependence has only a minor effect on the

centrality dependence of dNch

dη
and cannot explain the different shapes of the curves in Figs. 9.1b,d.

Our MCKLN calculations thus predict a violation of the
√
s-scaling of the centrality dependence

of dNch

dη
at lower collision energies that is not seen with the MC-Glauber initial conditions. This

may help to discriminate experimentally between these models.

A “universal” scaling behavior of the eccentricity-scaled elliptic flow as a function of charged

hadron multiplicity density (“multiplicity scaling”) [152] was studied within viscous hydrodynam-

ics in [67] and was later used to extract the specific shear viscosity from
√
s = 200AGeV Au+Au

collisions at RHIC [40]. The authors of [44] and [48] found that this “universal” scaling breaks

down as
√
s increases but disagreed on the sign of the scaling breaking effects. In Fig. 9.2 we ex-

plore the breaking of “multiplicity scaling” over a wider range of
√
s, for both of the initialization

models. For MC-Glauber initial conditions (Fig. 9.2a) eccentricity-scaled elliptic flow shows sur-

prisingly good universality of the “multiplicity scaling” curve as the collision energy varies from 7.7

to 2760AGeV: The curves at different
√
s fall almost perfectly on top of each other. For MCKLN
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Figure 9.3: (a,c): Transverse momentum spectra of all charged hadrons from central (0-5% cen-
trality) Au+Au and Pb+Pb collisions at 0-5% centrality for different collision energies. (b,d): the
corresponding differential elliptic flow at 20-30% centrality.

(Fig. 9.2b), on the other hand, the “universal scaling” breaks in the same direction as previously

shown in [48]: lower collision energies result in larger v2/ε2 values at the same charged hadron

multiplicity density. We found that the main reason for the different collision energy dependence

between the MC-Glauber and MCKLN models lies in the different centrality dependences of the

initial overlap area in the two models. The initial overlap area is calculated as S = π
√
〈x2〉〈y2〉,

where 〈x2〉 =
∫
d2rγe(r)x2∫
d2rγe(r)

is evaluated with the initial energy density as weight function.21 As the

collisions become more peripheral, the overlap area in the MCKLN model decreases more rapidly

than in the MC-Glauber model. In Pb+Pb collisions at
√
s = 2760AGeV, the overlap area S

for MCKLN decreases from 23.6 fm2 in the 0-5% most central collisions to 4.7 fm2 in the 60-70%

centrality class; for MC-Glauber, S decreases instead from 22.8 fm2 to 6.5 fm2. This slightly faster

drop of the overlap area in the MCKLN model shifts the “universal” scaling curves in Fig. 9.2 to

the right and shrinks the covered range in (1/S)dNch/dη. We further checked that the centrality

dependence of the overlap area changes little as
√
s varies from 7.7 to 2760AGeV. The different

√
s-dependences of v2/ε2 as function of dNch/dη in Figs. 9.2a and 9.2b thus reflect primarily the

21The initial entropy density can also be used as weight. In [48] we showed that the scaling breaking behavior is
independent of the choice of weight function.
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fact that the shape of the initial profiles evolves differently with centrality in the two initializa-

tion models. Fig. 9.2 can thus be used to check experimentally the consistency of the centrality

dependence of the source size and shape in the initialization models.
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Figure 9.4: Evolution with
√
s of the average transverse momentum of charged hadrons from

central (0-5% centrality) Au+Au and Pb+Pb collisions, for MC-Glauber and MCKLN initial
conditions.

9.3 Charged particle pT -spectra and differential elliptic flow
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Figure 9.5: Evolution with
√
s of the differential charged hadron elliptic flow vch

2 (pT ,
√
s) at 5 fixed

pT values.

Figures 9.3a,c show the pT -spectra of all charged hadrons in the 0-5% most central collisions.

For both the MC-Glauber and MCKLN models the slopes of the pT -spectra get flatter as
√
s in-

creases: At higher collision energy the fireball lifetime is longer, which allows the system to develop
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more radial flow. The additional radial flow pushes more particles into the high-pT region, thus flat-

tening the spectra. From
√
s = 7.7 to 2760AGeV, the mean pT , 〈pT 〉 =

∫
dpTpT

dN
dηdpT

/
∫
dpT

dN
dηdpT

,

increases by 43% (from 0.48 to 0.68 GeV/c) for the MCKLN model and by 140% (from 0.29 to

0.63 GeV/c) for the MC-Glauber model (see Fig. 9.4).

The differential charged hadron elliptic flow is shown in Figs.9.3b,d, for 20-30% centrality.

With MC-Glauber initial conditions the differential elliptic flow for pT < 2 GeV remains almost

unchanged for
√
s ≥ 39AGeV. Below 39AGeV the slope of v2(pT ) begins to decrease. This

tendency is indeed observed in the RHIC BES experiments [138, 137, 140]. We emphasize that

our EOS s95p-PCE has no pronounced soft point in the phase transition region. This means that

the often highlighted “saturation” of v2(pT ) above
√
s = 39A GeV can not be associated with

a softest point in the transition region. It is rather caused by a subtle cancellation of opposite
√
s-dependences of the differential vs(pT ) from light and heavy particles (see Fig. 9.8 below).

For the MCKLN model, the slope of the differential v2(pT ) decreases monotonically and con-

tinuously with decreasing collision energy. For a temperature-independent specific shear viscosity,

η/s = 0.2, the collision energy dependence of the differential elliptic flow observed here is some-

what inconsistent with the experimental observation of a vch
2 (pT ) that does not change between

√
s = 39 and 2760AGeV. Within the MCKLN framework, this might be taken as an indication

for a possible temperature dependence of η/s [128, 127, 48]. Additional studies are, however, nec-

essary to fully address this issue [49]. For
√
s = 7.7 and 11.5AGeV, the differential v2 is seen to

increase more quickly above pT > 2.5 GeV. We find this to be caused by large δf corrections (i.e.

non-equilibrium corrections arising from non-zero shear stresses at freeze out [48]). The larger

δf corrections at lower collision energies indicate a narrowing of the temporal interval during

which viscous hydrodynamics is a valid description. At lower pT (pT < 2 GeV), our results show

monotonic
√
s dependence.

To further illustrate this point we plot in Fig. 9.5 the
√
s-dependence of vch

2 (pT ) at 5 fixed

pT points. In this representation one sees that for the MC-Glauber model vch
2 at any fixed pT -

value features as a function of
√
s a very broad maximum somewhere around top RHIC energy

(200AGeV); for low pT < 0.5 GeV/c, this maximum occurs at lower
√
s. A similar behavior

was seen in [145] for ideal hydrodynamics with a bag-model equation of state which features a

strong minimum (“softest point”) in the speed of sound at the phase transition temperature. We

see that the existence of this maximum does not depend on the appearance of a softest point

in the EOS. Compared to the earlier ideal fluid calculations, the position where vch
2 at fixed pT

assumes its largest value has been shifted to larger
√
s values by viscous effects. This shift is

seen to be even stronger in the MCKLN case (Fig. 9.5b) where the fluid is much more viscous.

For shear viscosities as large as those needed to describe the vch
2 measured in 200AGeV Au+Au
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collisions with MCKLN initial conditions (η/s' 2.5/(4π)) [37, 40], vch
2 (pT ,

√
s) at fixed pT has not

yet reached its maximum value even at top LHC energies (except for very small pT < 200 MeV/c).
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Figure 9.6: Identified particle spectra as a function of mT−m0 for the MCKLN model in the 0-5%
most central collisions, at

√
s= 7.7, 39, 200, and 2760AGeV. The spectra for MC-Glauber initial

conditions look qualitatively similar.

At the lower end of the
√
s-range studied in Fig. 9.5, the increase with collision energy of

v2(pT ,
√
s) at fixed pT is a consequence of increasing fireball lifetimes which allow the initial

spatial eccentricity of the fireball to convert more fully into anisotropic hydrodynamic flow. At

higher collision energies eventually the point is reached where this momentum anisotropy is fully

saturated before the system falls apart; longer fireball lifetimes will then no longer lead to more

anisotropic flow, only to more radial flow. Stronger radial flow, however, pushes the momentum

anisotropy out to larger pT , by generating flatter pT distributions. As a result, elliptic flow at fixed

pT begins to decrease. In practice, this radial flow driven decrease of v2(pT ) at fixed pT sets in

even before the pT -integrated total charged hadron elliptic flow vch
2 has reached saturation [153],

and it accelerates thereafter.
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9.4 pT -spectra and elliptic flow of identified hadrons

We now proceed to study how hydrodynamical flow affects identified particles.

It is well known that thermal spectra from a static fireball exhibitmT -scaling, dNi/(2πdymTdmT ) ∼
√
mT e

−mT /T [154], and that radial flow breaks this scaling. In order to isolate the radial flow effects

we therefore plot in Fig. 9.6 the mT -spectra of identified particles as a function of mT−m0, for four

selected
√
s values. Except for minor effects from the viscous δf corrections, resonance feed-down

and Bose statistics for pions, in the absence of flow the slopes of the mT -spectra would be the

same for all hadron species. To show the flow-induced slope difference, we scaled in Figs. 9.6 the

heavy particle spectra by constant factors to the same value at mT−m0 = 3 GeV. At large mT−m0

rest mass effects become negligible, and all hadrons have approximately the same inverse slope

Teff = Tdec

√
(1+〈v⊥〉)/(1−〈v⊥〉) [154]. In Fig. 9.6 we find that for low

√
s values mT -scaling is

significantly broken only at mT−m0 < 2 GeV, while at LHC energy the flow-induced breaking of

mT -scaling extends to 3 GeV of transverse kinetic energy. At low mT−m0 the spectra are split by

hadron mass effects, and this splitting increases with
√
s due to the increasing radial flow which

pushes heavier particles to larger pT . At the highest collision energy
√
s = 2760AGeV we observe

a particularly strong concavity of the pion spectra at low mT−m0, due to Bose statistics. For

other mesons, their heavy rest masses suppress Bose effects.

The flow-induced breaking of mT -scaling is seen even more clearly when one plots heavy-

to-light particle ratios (such as p/π+, Λ/K+) as a function of transverse kinetic energy. For a

static thermalized fireball, these ratios should be independent of mT−m0, up to small quantum

statistical corrections arising from the pion spectra at small mT−m0. Fig. 9.7 shows that for an

expanding fireball these ratios increase with increasing transverse kinetic energy, at a rate that

itself increases with
√
s, reflecting the larger radial flow at higher collision energies. A little more

careful inspection and thought reveal that, in fact, stronger radial flow increases the p/π+ and

Λ/K+ ratios at large mT−m0 while decreasing them at small mT−m0. This is so because in our

simulations the pT -integrated particle ratios are the same at all collision energies, as we assumed

zero baryon chemical potential and the same chemical and kinetic freeze-out temperatures at all
√
s. In addition, radial flow flattens the mT -dependence of these ratios at low mT−m0, due to

the “flow shoulder” developing in the heavy-particle mT -spectra at low transverse kinetic energy

when radial flow gets strong. This shoulder is weaker for protons than for Λ’s, but in the p/π+

ratio the more prominent Bose effect in the pion spectra at high collision energies additionally

helps to flatten out the p/π+ ratio at small mT−m0. Overall, Fig. 9.7 shows that these features

are all very similar for MC-Glauber and MCKLN initial conditions.

In Fig. 9.8 we show the differential elliptic flow of π+ and p for
√
s = 7.7 to 2760AGeV. For

pions, the differential v2 varies with
√
s very similarly to the total charged hadron elliptic flow
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Figure 9.7: The p/π+ (a,c) and Λ/K+ (b,d) ratios as functions of mT−m0, for MC-Glauber (a,b)
and MCKLN (c,d) initial conditions at 0-5% most central collisions, from

√
s = 7.7 to 2760AGeV.

Please note the dramatic increase of radial flow effects on these ratios between RHIC and LHC
energies.

shown in Figs. 9.3b,d. For protons the strong radial flow “blueshifts” the entire elliptic flow to

higher pT . So for higher collision energies, the values of v2 are smaller in the low pT -region and

larger in the high-pT region. We find that below 200AGeV the proton v2(pT ) at low pT is almost

independent of
√
s. At LHC energy, on the other hand, the blueshift is really dramatic, reflecting

the much stronger radial flow at this high collision energy. The total charged hadron elliptic flow

is the combination of contributions from light pions and less abundant heavy particles. Since with

increasing collision energy the elliptic flow of heavy particles decreases at low pT , they effectively

cancel the weak increase of the light pion v2. This results in the apparent saturation of charged

hadron differential elliptic flow over a wide pT range from
√
s = 39-2760AGeV that was seen in

Fig. 9.3b for MC-Glauber model. For the MCKLN model, this cancellation is less efficient because

the increase with
√
s of the pion v2 is stronger (see Fig. 9.8c,d). Therefore, for the MCKLN model

the total charged hadron elliptic flow keeps increasing as the collision energy increases.

142



0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

pT (GeV)

v
2

 

 

MC−Glb. η/s=0.08

π+ 20-30%

(a)

√
s = 7.7A GeV√
s = 11.5A GeV√
s = 17.7A GeV√
s = 19.6A GeV√
s = 27A GeV

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

pT (GeV)

v
2

 

 

MC−Glb. η/s=0.08

p 20-30%

(b)

√
s = 39A GeV√
s = 63A GeV√
s = 200A GeV

PbPb
√

s = 2760A GeV

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

pT (GeV)

v
2

 

 

MC−KLN η/s=0.2

π+ 20-30%

(c)

√
s = 7.7A GeV√
s = 11.5A GeV√
s = 17.7A GeV√
s = 19.6A GeV√
s = 27A GeV

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

pT (GeV)

v
2

 

 

MC−KLN η/s=0.2

p 20-30%

(d)

√
s = 39A GeV√
s = 63A GeV√
s = 200A GeV

PbPb
√

s = 2760A GeV

Figure 9.8: Differential elliptic flow of π+ (a,c) and p (b,d) at 20-30% centrality, for MC-Glauber
(a,b) and MCKLN (c,d) profiles.

9.5 Spatial eccentricity at freeze-out

We conclude this paper by presenting a novel shape analysis of the evolving fireball. Theoret-

ically, the spatial eccentricity εx is conventionally defined at fixed proper time τ by

εx(τ) =

∫
dx dy (y2−x2)γe(x, y; τ)∫
dx dy (y2+x2)γe(x, y; τ)

. (9.2)

The weight function γe(x, y; τ) is the energy density in the laboratory frame.22

Since the measured hadrons are only emitted from the final kinetic freeze-out surface, ex-

perimentalists can only infer the shape of that surface, by exploiting two-particle momentum

correlations among the emitted particles and their dependence on the azimuthal angle around the

beam axis [155, 156]. For comparison with such experimentally determined final source eccentric-

ities [157, 158, 159, 160], a more meaningful theoretical quantity would be the spatial eccentricity

22The entropy density s(x, y; τ) can also be used as weight function for calculating the eccentricity. The authors
of [112] concluded from a study of fluctuating initial conditions that these two definitions yield initial spatial
eccentricities that are linearly related to each other although the actual values are slightly different.
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of the final freeze-out surface Σ,

εx(Σ) =

∫
Σ
uµd3σµ (y2−x2)∫

Σ
uµd3σµ (y2+x2)

, (9.3)

instead of a constant proper time surface. In Eq. (9.3) uµ is the flow velocity on the surface Σ, and

we used the fact that for our EOS an isothermal freeze-out surface is also a surface of constant

local energy or entropy density, and that therefore the weight functions e(x, y, τ) or s(x, y, τ)

cancel between numerator and denominator.23 Thus the spatial eccentricity (9.3) defined on an

isothermal surface is independent of whether we weight εx with energy or entropy density.
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Figure 9.9:
√
s-dependence of the final spatial eccentricity εf of the isothermal kinetic freeze-out

surface at Tdec = 120 MeV, for 10-30% centrality. The initial eccentricity is 0.26 for the MC-Glauber
model and 0.32 for the MCKLN model. The experimental points indicate preliminary data [161]
from an azimuthal HBT analysis by the STAR Collaboration.

In Fig. 9.9, we show the final eccentricity calculated along the kinetic freeze-out surface, Tdec =

120 MeV, as a function of collision energy. For both MC-Glauber and MCKLN models, as the

collision energy increases, the final spatial eccentricity εf decreases monotonically. This is because

at higher collision energy the system lives longer, giving the fireball more time to decompress

and (due to anisotropic flow) become less deformed. For sufficiently large initial energy density,

the fireball has actually enough time to become elongated along the reaction plane, instead of its

original elongation perpendicular to it [162, 163]. In Fig. 9.9 we compare our results with recent

(preliminary) STAR data from an azimuthal HBT analysis [161]. MC-Glauber runs with η/s= 0.08

quantitatively reproduce the data at
√
s= 200AGeV while underpredicting the final eccentricity

by ∼10% at lower energies. MCKLN initial conditions with η/s= 0.2 result in 15-20% larger final

23If we do not cancel the weight function and replace Σ by a constant proper time surface, the definition (9.3)
reduces to Eq. (9.2) for longitudinally boost-invariant systems.
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eccentricities than both the MC-Glauber runs and the STAR data, due to the ∼20% larger initial

eccentricities of the MCKLN profiles. In Table 9.1 we see that, at the same
√
s, the fireball lifetimes

with MCKLN and MC-Glauber initial conditions are very similar. In spite of the faster evolution

of radial flow for the MCKLN initial conditions, the larger initial eccentricity in the MCKLN model

is preserved all the way to the end of the hydrodynamic evolution. Extending our calculations to

LHC energy we predict that εf will approach zero around
√
s = 2.76-5.5ATeV. Again, this is a

result of the longer fireball lifetime at LHC energies. For even larger
√
s, εf will turn negative, in

qualitative agreement with previous calculations in [162, 163] using ideal fluid dynamics and a less

realistic EOS. Contrary to our present work, the authors of [162, 163] calculated the azimuthal

HBT radii from the Cooper-Frye output of their hydrodynamic simulations. In future work we will

calibrate our definition (9.3) for εf against the final eccentricity value extracted from azimuthal

oscillations of HBT radii. Here we only note that an azimuthal HBT analysis at LHC energy will

help to further test predictions from the viscous hydrodynamic model.

The careful reader may have noticed that there is a small kink at
√
s = 63AGeV in the slopes

of the solid and dashed lines in Fig. 9.9 and earlier in Figs. 9.4 and 9.5. Unfortunately, this is

not a phase transition signature but rather an artifact from our normalization of the initial energy

density profile to experimentally measured final charged multiplicity data for
√
s ≥ 63AGeV and

to the empirical formula Eq. (9.1) for
√
s ≤ 39AGeV. At

√
s = 63AGeV the experimentally

measured dNch/dη is ∼ 5% smaller than the value obtained from Eq. (9.1). If we use Eq. (9.1)

instead of the measured value to normalize our initial energy density profiles at
√
s = 63AGeV, the

fireball lifetime increases slightly, decreasing the final eccentricity by a few precent and removing

the kink in the theoretical curves. The origin of an apparently similar kink in the STAR data

which happens to occur (we believe: accidentally) also around
√
s = 63AGeV deserves further

study.

9.6 Chapter summary

In this chapter, we have studied systematically the evolution of hydrodynamic observables

with collision energy in the range 7.7≤√s≤ 2760AGeV. Over this range of energies, the initial

peak temperature almost doubles and the fireball lifetime increases by about 60%. We find that

for temperature independent specific shear viscosity the MC-Glauber model shows almost perfect

“multiplicity-scaling” of the eccentricity-scaled charged hadron elliptic flow. For the MCKLN

model this scaling is broken: as
√
s increases, the vch

2 /ε2 vs. (1/S)(dNch/dy) curves shift to

the right (Fig. 9.2b). We found that this breaking of multiplicity scaling in the MCKLN model

originates from a steeper centrality dependence of the nuclear overlap area.
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For both initialization models, higher collision energies generate stronger radial flow which re-

sults in flatter hadron spectra and a corresponding increase of the mean pT of charged hadrons. For

the MC-Glauber model we observed an approximate “saturation” of the charged hadron differential

elliptic flow at fixed pT in the region
√
s≥ 39AGeV, similar to what is observed experimentally.

We believe, however, that the word “saturation” describes the observations incorrectly and that

what is seen is better described as a very broad maximum (as a function of
√
s) of the differential

elliptic flow at fixed pT , caused by the interplay of (i) growing total momentum anisotropy (which

increases v2) and increasing radial flow (which decreases v2 at fixed pT by shifting it to larger

pT ), and (ii) increasing v2(pT ) for pions and decreasing v2(pT ) for kaons, protons and other heavy

hadrons between RHIC and LHC energies. The mechanism (i) causes maxima of v2(pT ) at fixed

pT for all hadron species, but located at lower
√
s values for heavier than for lighter hadrons (due

to the mass-dependence of radial flow effects on the pT -spectra). The mechanism (ii) ensures that

the maximum for all charged hadrons is broader in
√
s than for each hadron species individually

and thus manifests itself as a broad plateau that (for η/s= 0.08) happens to span the collision

energy range from upper RHIC to LHC energies. The position in
√
s of the maximum of v2(pT ) at

fixed pT for each hadron species depends on the viscosity of the fluid (which controls the interplay

in the development of radial and elliptic flow during the fireball expansion) and increases with η/s.

For MCKLN initial conditions, which require ∼2.5 times larger η/s for a successful description of

elliptic flow data at RHIC and LHC, vch
2 (pT ) at fixed pT has not yet reached its maximal value

even at LHC energies.

Finally, we have proposed an improved measure for the final fireball eccentricity at kinetic

freeze-out and studied its evolution with collision energy. It is found to decrease monotonically

with increasing collision energy, at a rate that is roughly consistent with recent experimental

measurements. Its absolute value agrees with the data better for the MC-Glauber than for the

MCKLN model – the ∼20% larger initial eccentricities of the MCKLN profiles yield final freeze-out

eccentricities that again appear to be∼20% larger than those from MC-Glauber initial profiles, and

lie significantly above the measured values. Neither model describes the available data perfectly;

in view of the limitations of the purely hydrodynamic approach employed here (cf. our discussion

in the Introduction) this is not too surprising. The model predicts, however, robustly that at

top RHIC energies the final freeze-out source is still out-of-plane elongated (as experimentally

observed), but that at LHC energies the final eccentricity should approach zero. Measurements

that test this prediction should soon become available.
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Chapter 10: Flow fluctuations in heavy-ion collision

10.1 Chapter introduction

Due to quantum fluctuations of the distribution of strongly interacting matters inside the col-

liding nuclei, the produced energy density profile in every relativistic heavy-ion collision event

is highly inhomogeneous in the transverse plane. Event-by-event fluctuations in the initial state

density distribution will translate to fluctuations in the flow profile after the hydrodynamic evolu-

tion, which is imprinted on the momentum distributions of the finally emitted particles. Thus, the

measured anisotropic flow coefficients of hadrons, vn and their associated flow angles Ψn fluctuate

from collision to collision [164].

For each collision event the momentum distribution of finally emitted particles can be charac-

terized by a set of harmonic flow coefficients vn and flow angles Ψn through the complex quantities

Vn = vne
inΨn :=

∫
pTdpTdφ e

inφ dN
dypT dpT dφ∫

pTdpTdφ
dN

dypT dpT dφ

≡ {einφ}, (10.1)

Vn(pT ) = vn(pT )einΨn(pT ) :=

∫
dφ einφ dN

dypT dpT dφ∫
dφ dN

dypT dpT dφ

≡ {einφ}pT . (10.2)

Here φ is the azimuthal angle around the beam direction of the particle’s transverse momentum

pT, and the curly brackets denote the average over particles from a single collision.24 Eq. (10.1)

defines the flow coefficients and associated flow angles for the entire event, whereas Eq. (10.2) is

the analogous definition for the subset of particles in the event with a given magnitude of the

transverse momentum pT . We suppress the dependence of both types of flow coefficients on the

rapidity y. By definition, both vn and vn(pT ) are positive definite. Hydrodynamic simulations

show that in general the flow angles Ψn depend on pT , and that, as a function of pT , Ψn(pT )

wanders around the “average angle” Ψn that characterizes the integrated flow vn of the entire

event. Some theoretical and experimental definitions of v2 have yielded values that turn negative

over certain pT ranges; we will see that this is due to defining the flows of each event relative to a

24The average can include all charged particles or only particles of a specific identified species; we will not clutter
our notation to account for these different possibilities.
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fixed azimuthal angle (for example, relative to the direction of the impact parameter of the collision

in theoretical calculations, or relative to the “integrated” elliptic flow angle Ψ2 in experiment), and

that the same thing can happen for higher order harmonic flow coefficients when defining them

relative to a fixed (i.e. pT -independent) flow angle Ψn. The subject of this chapter is to elucidate

the origins of such differences between different anisotropic flow measures and, in particular, the

manifestation of event-by-event fluctuations of the pT -dependent flow coefficients vn(pT ) and flow

angles Ψn(pT ) in different experimental flow measures. Except for Figs 10.2 to 10.9 and their

discussion, which are new, the bulk of this chapter was previously published in Ref. [25].

10.2 Differential flows from the event-plane method and from two-
particle correlations

The key experimental difficulty is that, due to the finite number of particles emitted in a each

collision, the left hand sides of Eqs. (10.1) and (10.2) cannot be determined accurately for a single

event. The Vn are characterized by probability distributions that depend on the studied class

of events (system size, collision energy and centrality) from which each collision takes a sample.

Experimental flow measurements rely on a number of different methods that amount to taking

different moments of that probability distribution, by averaging over large numbers of events.

Understanding the nature of these moments and reconstructing them from theoretical event-by-

event dynamical simulations are essential steps in a meaningful comparison between theory and

experiment.

In this chapter we leave the fluctuations arising from finite sampling statistics to a future work

but rather focus on the hydrodynamical consequences of unavoidable event-by-event fluctuations

in the initial state.

The most extensively used experimental methods for measuring anisotropic flows are the event-

plane and two-particle correlation methods [165]. We begin with a discussion of the latter. Two-

particle azimuthal correlations receive contributions from the anisotropic collective flow as well

as from non-flow correlations; the latter can be minimized by appropriate experimental cuts and

corrected for [165, 109]. Again, we are not interested in non-flow correlations and will here simply

ignore their existence, assuming that they have been corrected for in the experimental analysis.

Two-particle correlation measures of anisotropic flow are based on correlators of the type

〈{ein(φ1−φ2)}〉 (10.3)

where φ1 and φ2 are the azimuthal angles around the beam direction of two particles with transverse

momenta pT1 and pT2, and 〈. . . 〉 denotes the average over Nev� 1 events from a set of given
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characteristics (e.g. of collisions in a certain centrality bin),

〈O〉 = 〈{O}〉 :=
1

Nev

Nev∑
i=1

{O}i, (10.4)

whereas {. . . }i is the average of the observable O over all (or a specified subset of all) particle

pairs in the event i:

{ein(φ1−φ2)}i =
1

N
(i)
pairs

∑
pairs∈i

ein(φ1−φ2) . (10.5)

Different chosen subsets for the event-wise average {. . . }i define different correlation measures for

the anisotropic flow coefficients as we will explain below. We note that throughout this paper

we will always correlate pairs of particles of the same kind (e.g. protons with protons or charged

hadrons with charged hadrons, but not protons with charged hadrons), unless specifically stated

otherwise. We will also assume that they have the same rapidity y; generalization to particles

with different rapidities is straightforward, following the procedure discussed below when we go

from particles with the same to particles with different pT .

The magnitudes vn(pT ) of the anisotropic flow coefficients defined in Eq. (10.2) fluctuate from

event to event according to some probability distribution P (vn(pT )). Let us denote the rms mean

of this distribution by vn[2](pT ) :=
√
〈v2
n(pT )〉, and similarly the rms mean for the integrated flow

vn by vn[2] :=
√
〈v2
n〉. These rms means can be obtained from two-particle correlators of the type

(10.3) as follows:

v2
n[2](pT ) = 〈{ein(φ1−φ2)}pT 〉 = 〈{einφ1}pT {e−inφ2}pT 〉,
v2
n[2] = 〈{ein(φ1−φ2)}〉 = 〈{einφ1}{e−inφ2}〉. (10.6)

Note that for the differential flow in the first line of equation (10.6), both particles are taken

from the same pT bin, and that the event-wise pair averages {ein(φ1−φ2)} factorize in each event

due to our assumptions (absence of non-flow two-particle correlations, independent hydrodynamic

emission of particles 1 and 2). Due to 1↔ 2 symmetry under particle exchange, the exponential

can be replaced by the cosine, and we get

v2
n[2](pT ) =

〈∫ d∆φ cos(n∆φ)
dNpairs

dy1dy2pT1dpT1pT2dpT2d∆φ

∣∣∣
pT1=pT2∫

d∆φ
dNpairs

dy1dy2pT1dpT1pT2dpT2d∆φ

∣∣∣
pT1=pT2

〉
,

v2
n[2] =

〈∫
d∆φ cos(n∆φ)

dNpairs

dy1dy2d∆φ∫
d∆φ

dNpairs

dy1dy2d∆φ

〉
, (10.7)

where ∆φ=φ1−φ2 and the pair distribution has already been integrated over the average angle

φ̃≡ (φ1+φ2)/2.
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Note that in Eqs. (10.7) the single-event averages are normalized by the number of pairs in the

event, before averaging over events. This is important: Since the pair multiplicity fluctuates from

event to event and within a multiplicity bin, and multiplicity anti-correlates with impact parameter

with which the magnitudes of some of the anisotropic flow coefficients are geometrically correlated,

this event-wise normalization avoids biasing the measured flow coefficients towards their values in

events with larger than average multiplicity.

Our definition of the integrated flow vn[2] agrees with the standard definition for the “two-

particle cumulant” flow vn{2} [166, 167, 168], but the same is not true for the differential flow

vn[2](pT ) which differs from vn{2}(pT ). The experimental definition of vn{2}(pT ) is [166, 167, 168]

vn{2}(pT ) = 〈{einφ1}pT1
{e−inφ2}〉/vn{2} =

〈
vn(pT )vn cos[n(Ψn(pT )−Ψn)]

〉
/vn[2] . (10.8)

Here only the first of the two particles within an event is taken from the desired pT bin and particle

species; it is correlated with all other particles detected in the event, with obvious statistical

advantages compared with vn[2](pT ) which requires both particles to be of the same kind and

from the same pT bin. The normalization factor is the total rms flow of all charged hadrons. The

last expression shows that vn{2}(pT ) reduces to vn[2](pT ) =
√
〈v2
n(pT )〉 if and only if the flow angle

Ψn does not depend on pT , the event-by-event fluctuations of vn(pT ) affect only its normalization

but not the shape of its pT dependence, and the vn fluctuations of the particle species of interest

are proportional to those of all hadrons. All of these assumptions are violated in hydrodynamic

simulations of bumpy expanding fireballs. The difference between vn{2}(pT ) and vn[2](pT ) is thus

sensitive to event-by-event fluctuations of the pT -dependent difference Ψn(pT )−Ψn between the

flow angle of particles with momentum pT and the average event flow angle,25 in addition to the

(largely independent) fluctuations in the magnitudes of vn and vn(pT ).

25More precisely, vn{2}(pT ) depends on the difference between Ψn(pT ) of the particles of interest and the average
flow angle Ψn of all detected particles. We checked numerically that the average hydrodynamic flow angles Ψn for
identified pions and protons agree with great precision with the average flow angles for all particles in the event:
Computing the ensemble average of 〈cos[n(Ψπ

n−Ψp
n)]〉 for all harmonics n and all collision centralities, we found

deviations of less than 1−2% in all cases except for some of the high-order harmonics with n> 6 whose calculation
is plagued by numerical errors at low pT . 0.2 GeV arising from the finite grid spacing of our square numerical grid
used in solving the hydrodynamic equations.
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Another approach to isolating effects arising from the pT -dependence of the flow angles is a

comparison of the pT -dependent rms flow vn[2](pT ) with the so-called event-plane flow26,27

vn{EP}(pT ) :=

〈∫
dφ cos[n(φ−Ψn)] dN

dypT dpT dφ∫
dφ dN

dypT dpT dφ

〉
= <

〈
{einφ}pT e−inΨn

〉
= <

〈
vn(pT )ein(Ψn(pT )−Ψn)

〉
=
〈
vn(pT ) cos[n(Ψn(pT )−Ψn)]

〉
. (10.9)

The equality in the second line arises from Eq. (10.2). Here for each event the “average flow angle”

Ψn is first obtained by computing the Qn vector [23]

Qn = Qne
inΨn :=

1

N

N∑
k=1

ωk e
inφk (10.10)

(where N is the number of detected particles in the event) and determining its phase. In principle,

different choices for the weights ωk can be considered [165], but for consistency with Eq. (10.9) one

must choose ωk = 1. The “average angle” Ψn for the event extracted from Qn in general depends

on the types of particles included in the sum in Eq. (10.10).

The last line in Eq. (10.9) makes it clear that the differential event-plane flows vn{EP}(pT )

are sensitive to the event-by-event fluctuations of the pT -dependent flow angles Ψn(pT ) around

the “average flow” angle Ψn. Just like the finite number statistical fluctuations28 of the flow angle

reconstructed from Qn around the “true” flow angle of the event, these fluctuations smear out

the azimuthal oscillations of the transverse momentum spectra and thus reduce the oscillation

amplitudes vn{EP}(pT ). In contrast to the former, they arise from fluctuations in the initial state

and thus cannot be eliminated by improving or accounting for the resolution of the measurement of

the final state. They carry valuable physical information about the initial state and the dynamics

of its evolution into the final state.

26One can replace the cosine function in this definition by the exponential, omitting taking the real part in the
second line, since the flow-angle fluctuations are symmetrically distributed such that the imaginary part vanishes
after taking the event average (this has been verified numerically).

27Note that we define the nth-order event-plane flow relative to the nth-order flow plane Ψn, and not relative to
the elliptic flow plane Ψ2 as sometimes done.

28Due to the finite number of particles detected in each event, the accuracy of determining Ψn is limited by finite
number statistics, and an accurate experimental estimation of the event-plane flow vn{EP} requires an “event-plane
resolution correction” [165]. As shown in [164, 109] (see also the discussion in [24]), which moment of the underlying
vn distribution is actually measured by the total event-plane flow vn{EP} depends on this event-plane resolution:
for perfect resolution vn{EP} approaches the average flow 〈vn〉 whereas in the case of poor resolution it is closer to
the rms flow vn[2] = vn{2} [164, 109]. The mathematical analysis in [109] applies only to the integrated flow which
allowed to ignore the pT -dependence of vn fluctuations as well as initial-state related, pT -dependent fluctuations
of the flow angles that are not caused by finite multiplicity in the final state. In view of the latter, event-plane
resolution effects on differential flow measurements and their correction require a new analysis.
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We can remove the sensitivity of the measured quantity to the pT -dependent fluctuations of

the flow angle by first computing for each event the magnitude vn(pT ) of {einφ}pT =Vn(pT ), before

summing over events:

〈vn(pT )〉 =
〈∣∣{einφ}pT e−inΨn

∣∣〉 =
〈∣∣{einφ}pT ∣∣〉

=
〈√
{cos(nφ)}2

pT
+ {sin(nφ)}2

pT

〉
. (10.11)

Since the quantity inside the event average does not depend on the average flow angle Ψn, this

observable is not subject to an event-plane resolution correction. However, due to finite multiplicity

in the final state, the right hand side will still in general be positive and non-zero experimentally

even if there is no underlying anisotropic flow in the event. Again, how to properly account for

such finite sampling statistical effects requires additional analysis.

By comparing 〈vn(pT )〉 (10.11) with vn[2](pT ) (10.6,10.7), vn{2}(pT ) (10.8), and vn{EP}(pT )

(10.9), we can experimentally assess and separate the relative importance of event-by-event fluc-

tuations in the magnitudes and directions of the anisotropic flows as functions of pT .

Let us now proceed to two-particle correlations between particles of different (but specified)

momenta. Since in the first line of Eq. (10.7) both particles are taken from the same bin in pT ,

the flow angle Ψn(pT ) drops out from the expression. This is not true for azimuthal correlations

between two particles with different pT [24]. In this case one finds [24, 169]

Ṽn∆(pT1, pT2) :=
〈
{ein(φ1−φ2)}pT1pT2

〉
=
〈
{einφ1}pT1

{e−inφ2}pT2

〉
= 〈Vn(pT1)V ∗n (pT2)〉

=
〈
vn(pT1)vn(pT2)ein(Ψn(pT1)−Ψn(pT2))

〉
=
〈
vn(pT1)vn(pT2) cos[n(Ψn(pT1)−Ψn(pT2))]

〉
. (10.12)

Due to parity symmetry, Ṽn∆(pT1, pT2) is real: while the quantity inside the event average 〈. . . 〉
is in general complex for each individual event, its imaginary part averages to zero when summed

over many events.

To properly account for multiplicity fluctuations, in Eq. (10.12) the averages {. . . }pTi
within

an event are once again normalized by the total number of particles included in the average,

similar to Eq. (10.7). For this reason, Ṽn∆(pT1, pT2) = 〈{cos(n∆φ)}pT1,pT2
〉 defined in Eq. (10.12)

is not identical with the experimental quantity Vn∆(pT1, pT2) which is obtained from a Fourier

decomposition with respect to the difference angle ∆φ of the two-particle distribution obtained by

summing over many events, without normalizing the contribution from each event by the corre-

sponding event multiplicity [170, 171, 172, 169, 173]. For a meaningful comparison between theory

and experiment, one should either normalize on the experimental side the contribution from each

event to the two-particle distribution by the number of pairs in the event, or weight the theoretical
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prediction for vn(pT1)vn(pT2)ein(Ψn(pT1)−Ψn(pT2)) for each event i with a factor N
(i)
pairs/〈Npairs〉 before

summing over events. We prefer the first option since it avoids the geometric bias arising from

the correlation between collision geometry and particle multiplicity.

10.3 The effect of flow fluctuations on differential vn measures

In this section we compare the differential flows vn(pT ) extracted from the 20,000 viscous

hydrodynamic simulations per centrality bin of 2.76ATeV Pb+Pb collisions at the LHC (10,000

each with MC-Glauber and MC-KLN initial density profiles) that were generated in Ref. [174].

We use the Cooper-Frye prescription to compute from the hydrodynamic output on the freeze-out

surface the single-particle distributions dN/(dypTdpTdφ) as continuous functions of pT and φ (i.e.

we do not sample the distribution to generate a finite number of particles per event, but pretend

that the spectrum is sampled infinitely finely – this avoids the need to correct for effects arising

from finite number statistics, such as imperfect event-plane resolution). All resonance decays are

included in the final stable hadron spectra. The MC-Glauber (MC-KLN) initial conditions were

hydrodynamically evolved with specific shear viscosity η/s= 0.08 (0.2).
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Figure 10.1: Comparison between the different definitions of the differential flows vn[2](pT )
(10.6,10.7), vn{2}(pT ) (10.8), vn{EP}(pT ) (10.9), and 〈vn(pT )〉 (10.11), for pions and protons
from central (0−5% centrality) Pb+Pb collisions at

√
s= 2.76ATeV, computed with the viscous

hydrodynamic code VISH2+1. See text for discussion.

We first present results for pions and protons, representing light and heavy particle species.

Qualitatively, although not quantitatively, the same generic features are observed with MC-KLN

and MC-Glauber model initial density profiles, and we show examples of the MCKLN initial

conditions. Figures 10.1 shows elliptic and triangular flows in its left and right panels, for
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central Pb+Pb collisions. The reader should compare the curves for v2,3[2] and 〈v2,3〉, which

are not affected by flow angle fluctuations (c.f. Eqs. (10.6) and (10.11)), with those for v2,3{2}
and v2,3{EP}, which are affected by the pT -dependence of the flow angles Ψn and their event-

by-event fluctuations (c.f. Eqs. (10.8) and (10.9)): For protons with transverse momenta below

about 1 GeV, flow angle fluctuations are seen to cause a significant suppression of the latter (in

some cases even leading to negative elliptic flow values).29 For the much lighter pions flow angle

fluctuation effects are almost invisible at low pT .30

Event-by-event fluctuations of the magnitudes of v2,3 are accessible by comparing 〈v2,3〉 with

v2,3[2] = 〈v2
2,3〉1/2. For central (0−5% centrality) collisions, where anisotropic flows are caused ex-

clusively by fluctuations, with negligible geometric bias from a non-zero average deformation of the

nuclear overlap region, we find for both pions and protons a constant (i.e. pT -independent) value

of 2/
√
π≈ 1.13. This is expected [122, 22]: If the flow angle Ψn is randomly distributed relative

to the reaction plane, the components of Vn(pT ) along and perpendicular to the reaction plane

are approximately Gaussian distributed around zero, and the magnitude vn(pT ) of the complex

flow coefficient is Bessel-Gaussian distributed with
√
〈v2
n(pT )〉= 2√

π
〈vn(pT )〉 (see Eqs. (4) and (5)

in Ref. [122]). Interestingly, for central collisions we find approximately the same constant value

2/
√
π for the ratio v2,3{2}(pT )/v2,3{EP}(pT ) (except near the pT values where either the numerator

or denominator passes through zero). Looking at the definitions Eq. (10.8) and Eq. (10.9), this

suggests an approximate factorization of the pT -dependent flow angle fluctuations (which enter

through the factor cos[n(Ψn(pT )−Ψn)] that cancels between numerator and denominator if it fluc-

tuates independently) from the fluctuations of the magnitude vn(pT ), as well as an approximate

pT -independence of the v2,3 fluctuations.

In Fig. 10.1, the vn{EP} is calculated with infinite resolution, Rn → 1. However, in the real

experimental measurements, due to only finite emitted particles in each final state, the resolution of

vn{EP} is not perfect, especially for pT -differential vn{EP}. In the low resolution limit, Rn → κvn,

so vn{EP} → vn{2}. So the measured vn{EP} usually lies in between vn{2} and 〈vn〉 and its exact

position depends on the collision centrality, system size, physical condition of the detector, and so

on. Hence it is hard to extract the flow fluctuation information through the comparisons between

the well measured vn{EP} and vn{2} in the literature.

29Note that the factor cos[n(Ψn(pT )−Ψn)] in Eqs. (10.8) and (10.9) is maximal if Ψn(pT ) is always aligned with
Ψn. The suppression of, say, vn{EP}(pT ) relative to 〈vn〉(pT ) does therefore not indicate a definite momentum tilt
of the emitting source at a given pT relative to the average Ψn, but simply reflects a nonzero difference Ψn(pT )−Ψn

that fluctuates from event to event, suppressing the value of cos[n(Ψn(pT )−Ψn)] for either sign of the difference.

30The curves shown in Figs. 10.2, 10.3 include the decay products from unstable hadronic resonances. We have
observed that for protons the flow angle fluctuation induced difference at low pT between (v2,3[2], 〈v2,3〉) on the one
hand and (v2,3{2}, v2,3{EP}) on the other hand doubles if only directly emitted (“thermal”) particles are included
in the analysis. Resonance decays thus dilute the sensitivity of the proposed observables to flow angle fluctuations
by about 50%.
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Figure 10.2: Upper panels: Charged hadrons v2{2}(pT ) and v2[2](pT ) measurements by the ALICE
collaboration (preliminary results presented by You Zhou in Quark Matter 2014) are compared
with viscous hydrodynamic predictions at 0-5%, 20-30%, and 40-50% centrality bins in Pb + Pb
collisions at 2.76A TeV. Lower panels: The ratio v2{2}/v2[2] of charged hadrons as a function of
pT for the corresponding three centrality bins compared with hydrodynamic predictions.

In order to probe the fluctuations in the flow plane angle at different pT , recent measurements

of vn[2](pT ) for charged hadrons have been made by the ALICE collaboration at LHC. In the

upper panels of Fig. 10.2 and Fig. 10.3, we show the measured charge particle vn[2](pT ) and

vn{2}(pT ) compared with predictions from event-by-event viscous hydrodynamics. For the elliptic

flow data shown in Fig. 10.2, we find that MCKLN initial conditions with η/s = 0.20 can describe

the data fairly well up to 3.5 GeV. The theory calculations correctly predict qualitatively (even

quantitatively for MCKLN with η/s = 0.20) the measured difference between v2[2] and v2{2}. For

v3 and v4 in Fig. 10.3, the IP-Glasma model with η/s = 0.20 gives better description of the data.

Our results from the MCGlb (MCKLN) model overestimate (underestimate) the data. Neither of

these two models appears to produce the correct initial fluctuation spectra. In the lower panels

of Fig. 10.2, the ratio v2{2}/v2[2] is plotted to further show the difference between the two flow

measurements. Based on Eq. (10.6) and Eq. (10.8), we have

vn{2}
vn[2]

=
〈vn(pT )vn cos(n(Ψn(pT )−Ψn))〉√

〈v2
n(pT )〉

√
〈v2
n〉

. (10.13)
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Figure 10.3: Similar plots as Fig. 10.2, but for v3 and v4 of charged hadrons.

The ratio has an upper bound at 1. Any fluctuations in Ψn(pT ) deviating away from Ψn or in

the magnitude of vn will make this ratio smaller than 1. For charged hadrons, we find that the

ratio v2{2}/v2[2] deviates from 1 at high pT . This deviation is the largest in central collisions.

Our hydrodynamic simulations successfully predict the centrality dependence of this ratio. This

is because in the non-central collisions the flow plane angle is dominated by the geometric defor-

mation, which reduces the fluctuations of Ψn(pT ) away from Ψn. In the bottom two panels of Fig.

10.3, we find that the ratio for higher order flow is consistent with 1 within error bar through
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the whole pT range. The deviation from 1 for v3,4{2}/v3,4[2] is much smaller than for v2{2}/v2[2].

For MC-Glauber initial conditions and η/s = 0.08, our hydrodynamic predictions agree with the

experimental measurements within the experimental uncertainty bands. Except for the 40-50%

centrality bin, our calculations with MCKLN initial conditions with η/s = 0.20 disagree with

the measured values at high pT . We suspect this is due to large viscous δf corrections in the

Cooper-Frye freeze-out procedure. In Fig. 10.3, we notice that v3,4{2}/v3,4[2] is smaller than 1 at

the lowest pT point in 0-5% central collisions. Although this point carries relatively large error

bar, this qualitative feature was predicted by hydrodynamics. Recalling Fig. 10.1, where we find

a larger difference between vn{2} and vn[2] for identified protons in a wider pT range at low pT ,

we are interested to see possible future measurements of vn[2] for identified particles.

Based on Figs. 10.2 and 10.3, we can see that through a systematic comparisons between v2{2}
and v2[2] measurements and theoretical calculations from viscous hydrodynamic simulations it is

possible to extract new information about the vn(pT ) and Ψn(pT ) fluctuations. They can provide

us with new constraints on the spectrum of initial state fluctuations as well as for the extraction

of the specific shear viscosity.

10.4 Non-factorization of flow-induced two-particle correlations

The breaking of factorization of flow-induced two-particle correlations by flow fluctuations was

first emphasized by Gardim et al. [24]. Their study was based on simulations using ideal fluid dy-

namics, which are here repeated with viscous fluid dynamics. A comparison of Figs. 10.4, 10.5, 10.6

below with the plots shown in Ref. [24] shows that viscous effects reduce the amount by which

event-by-event fluctuations break factorization. We will study these flow factorization effects more

systematically over the whole range of centralities and explore the relative role played in this con-

text by fluctuations in the magnitudes and angles of the flows.

To this end we define the following two ratios, both symmetric in pT1 and pT2:

rn(pT1, pT2) =
Ṽn∆(pT1, pT2)√

Ṽn∆(pT1, pT1)Ṽn∆(pT2, pT2)

=
〈Vn(pT1)V ∗n (pT2)〉√
〈|Vn(pT1)|2〉〈|Vn(pT2)|2〉

(10.14)

=
〈vn(pT1)vn(pT2) cos[n(Ψn(pT1)−Ψn(pT2))]〉√

〈v2
n(pT1)〉〈v2

n(pT2)〉
;

r̃n(pT1, pT2) =
〈vn(pT1)vn(pT2) cos[n(Ψn(pT1)−Ψn(pT2))]〉

〈vn(pT1)vn(pT2)〉 . (10.15)

The ratio rn, first introduced and studied with ideal fluid dynamics in [24], is sensitive to fluctua-

tions of both the magnitudes vn(pT ) and angles Ψn(pT ) of the complex anisotropic flow coefficients
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Vn(pT ) defined in Eq. 10.2). The second ratio r̃n, on the other hand, differs from unity only on

account of flow angle fluctuations, rn ≤ r̃n. By comparing the two ratios with each other and with

experimental data we can isolate the role played by flow angle fluctuations in the breaking of fac-

torization of the event-averaged two-particle cross section. In the absence of non-flow correlations

both ratios are always ≤ 1.
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Figure 10.4: The ratios r2(ptrig
T , passo

T ) (solid lines) and r̃2(ptrig
T , passo

T ) (dashed lines), defined in
Eqs. (10.14) and (10.15), as functions of ptrig

T − passo
T for different ptrig

T ranges, as indicated. From
top to bottom, r2 and r̃2 results are shown in different centrality bins.

Figures 10.4, 10.5, and 10.6 show these ratios for all charged hadrons as functions of ptrig
T −passo

T

for fixed ranges of ptrig
T , indicated in different columns.31

31The pT ranges are adjusted to the CMS measurement for direct comparison and the ratios were computed by
first averaging the numerator and denominator over the given pT range.
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Figure 10.5: Similar to Fig. 10.4, but for r3 and r̃3.

The comparison of rn (solid lines) with r̃n (dashed lines) shows that a significant fraction

(∼ 50% or more) of the effects that cause the breaking of factorization arises from flow angle

fluctuations. This seems to hold at all the transverse momenta shown in the figures.

A comparison from the top to bottom rows of panels in Fig. 10.4(Fig. 10.6) shows that

factorization-breaking effects in r2(r4) are stronger in central collisions compared to in peripheral

ones. It is because the the magnitudes of v2,4 and the flow angles Ψ2,4 are mostly controlled by

the collision geometry in the peripheral collisions. The centrality dependence of r2 in MCGlb is

slightly stronger than MCKLN model. For r4, MCKLN initial conditions show big factorization-

breaking effects in the largest pT bin. The story is not completely the same for r3 in Fig. 10.5,

where the size of the factorization-breaking effect shows much less centrality dependence than for

r2. This is mainly due to the fact that the triangular flow is fluctuation driven at all centralities.
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Figure 10.6: Similar to Fig. 10.4, but for r4 and r̃4.

To explore the effects of shear viscosity of the expanding fluid on the breaking of factorization,

we compare the red and blue curves in each panel. Obviously, the MCKLN model produces a

different initial fluctuation spectrum than the MC-Glauber model, so not all of the differences

between the red and blue cures can be attributed to the larger viscosity used in the MCKLN runs.

However, in conjunction with the ideal fluid results reported in [24], the comparison of these two

figures strengthens the conclusion that increased shear viscosity tends to weaken the fluctuation

effects that cause the event-averaged two-particle cross section to no longer factorize.

Finally, in Figs. 10.7, 10.8, and 10.9, we show the comparisons of our event-by-event hydro-

dynamic predictions of the r2,3,4 ratios against the CMS measurements [175]. The results from

event-by-event hydrodynamic simulations successfully predict the qualitative features (even quan-

titatively for the MCKLN initial conditions with η/s = 0.20) in the experimental data.
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Figure 10.7: Hydrodynamic predictions of the flow factorization ratios r2 for Pb+Pb collisions at
the LHC are compared with the CMS measurements. From top to bottom panels, comparisons
are shown from central to semi-peripheral centrality bins. Figure is taken from Wei Li’s plenary
talk at Hard Probes 2013 and the data are published in [175].

10.5 Chapter summary

All experimental precision measures of anisotropic flow in relativistic heavy-ion collisions are

based on observables that average over many collision events. It has been known for a while

that both the magnitudes vn and flow angles Ψn of the complex anisotropic flow coefficients Vn

fluctuate from event to event, but only very recently it became clear that not only the vn, but

also their associated angles Ψn depend on pT , and that the difference Ψn(pT )−Ψn between the

pT -dependent and pT -averaged flow angles also fluctuates from event to event. In the present study

we have pointed out that these flow angle fluctuations leave measurable traces in experimental

observables from which the ensemble-averaged pT -dependent anisotropic flows are extracted. We

have introduced several new flow measures and shown how their comparison with each other and
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Figure 10.8: Similar to Fig. 10.7, but for r3. Figure is taken from Wei Li’s plenary talk at Hard
Probes 2013 and the data are published in [175].

with flow measures that are already in wide use allows to separately assess the importance of event-

by-event fluctuations of the magnitudes and angles of Vn = vne
inΨn on experimentally determined

flow coefficients.

Viscous hydrodynamic simulations show that flow angle fluctuations affect the pT -dependent

flow coefficients of heavy hadrons (such as protons) more visibly than those of light hadrons (pi-

ons). In near-central collisions, where anisotropic flow is dominated by initial density fluctuations

rather than overlap geometry, the effects from flow angle fluctuations appear to be strongest for

particles with transverse momenta pT .m. A precise measurement and comparison of 〈vn(pT )〉
(Eq. (10.11)), vn{EP}(pT ) (Eq. (10.9)), vn[2](pT ) (Eqs. (10.6,10.7)), and vn{2}(pT ) (Eq. (10.8)

for identified pions, kaons and protons with transverse momenta pT < 2 GeV should be performed

to confirm the hydrodynamically predicted effects from flow angle fluctuations. The theoretical

interpretation of these measurements requires a reanalysis of finite sampling statistical effects on

the pT -dependent differential flows, stemming from the finite multiplicity of particles of interest

in a single event, which we did not consider here. The proposed comparison holds the promise
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Figure 10.9: Similar to Fig. 10.7, but for r4. Figure is taken from Wei Li’s plenary talk at Hard
Probes 2013 and the data are published in [175].

of yielding valuable experimental information to help constrain the distribution of initial density

fluctuations in relativistic heavy ion collisions and may prove crucial for a precision determination

of the QGP shear viscosity.

We also showed that flow angle fluctuations are responsible for more than half of the hydrody-

namically predicted factorization breaking effects studied in Ref. [24] and in Sec. 10.4 above, and

that these effects are directly sensitive to the shear viscosity of the expanding fluid, decreasing

with increasing viscosity. By combining the study of various types of differential anisotropic flow

measures with an investigation of the flow-induced breaking of the factorization of two-particle

observables into products of single-particle observables one can hope to independently constrain

the fluid’s transport coefficients and the initial-state fluctuation spectrum.
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Chapter 11: Ultra-central Pb+Pb collisions at the LHC

11.1 Chapter introduction

In the effort to extract the specific shear viscosity phenomenologically, the currently biggest

road block lies in the large uncertainty of the initial conditions for the hydrodynamic simulations

[40]. The authors of [176] proposed to extract the specific QGP shear viscosity in ultra-central

collisions, where anisotropies from the geometric overlap of the colliding nuclei are minimized.

Furthermore, since the initial eccentricities {εn} are roughly equal in size for all n in ultra-central

collisions, the non-linear mode-coupling effects [112, 177] for higher order vn are also expected to

be suppressed [176]. Thus, the measured anisotropic flow coefficients can maximally expose the

intrinsic nucleon and sub-nucleon fluctuations at the beginning of the heavy-ion collisions. The

spectrum of final flow vn as a function of their harmonic order n in these ultra-central collisions

has discriminating power to constrain the initial conditions as well as the extraction of the specific

shear viscosity of the QGP medium. Because of these advantages, the CMS collaboration at LHC

has measured the anisotropic flow coefficients of charged hadrons in 0-0.2% ultra-central Pb+Pb

collisions at
√
s = 2.76ATeV [175].

In this chapter, we will simulate these ultra-central collisions using event-by-event viscous

hydrodynamics and conduct apple-to-apple comparisons with the experimental observables.

11.2 Event selection and initial state fluctuations in ultra-central col-
lisions

Experimentally, in ultra-central collision events are defined as those with the highest measured

final charged multiplicities. However, in theoretical calculations, using final charged multiplicities

to determine the event centrality is numerically very expensive. Especially for 0-0.2% ultra-central

collisions, the remaining 99.8% of the simulated events are wasted. So we would like to determine

(at least estimate) the event centrality of each initial profile before evolving them through viscous

hydrodynamics.
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Figure 11.1: The root mean square (rms) initial eccentricity εn{2} for n = 2 − 5 as a function
of centrality. The event centrality is determined using the number of participant nucleons Npart

(solid black), or the number of binary collisions Ncoll (red dashed), or impact parameter b (green
dotted), or initial total entropy dS/dy (dotted blue). Results are generated using 1 million events
from the MC-Glauber model for Pb + Pb collisions at

√
s = 2.76ATeV, with binary collision to

wounded nucleon ratio α = 0.118.

In Fig. 11.1, we try 4 popular choices of the collision parameters (Npart, Ncoll, b, dS/dy)

to categorize the event centrality of each initial density profile generated from the MC-Glauber

model. We check how the initial fluctuation spectrum {εn{2}} varies as we change the method for

cutting on centrality. Fig. 11.1 shows that {εn{2}} is insensitive to the method used for cutting

on centrality for centralities larger than 10%. Differences become noticeable when we select events

within the top 1%. {εn{2}} can differ by up to ∼ 10% if one cuts the centrality using initial

total entropy compared to using the number of participant nucleons. In Chapter 2.3.5, we argued

that the initial total entropy shows a good correlation with the final charged multiplicity. In

the following study in this chapter, we will use the total entropy of the initial profile to select

events belonging to the 0-0.2% centrality class of ultra-central collisions. We employ both MCGlb

and MCKLN initial conditions and evolve them using viscous hydrodynamics with three different
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specific shear viscosities, η/s = 0.08, 0.12, 0.20. We generate 200 events for each set of runs, which

is sufficient for a statistical analysis of anisotropic flows.

In order to capture the bias in ultra-central collisions towards events whose entropy production

fluctuates upward from the mean, we implement pp multiplicity fluctuations in the MC-Glauber

model, using a method that is motivated by the phenomenologically observed KNO scaling of

multiplicities in pp collisions. The detailed implementation is described in Chapter 2.3.4. The

shape fluctuations of the initial conditions can be characterized by a series of harmonic eccentricity

coefficients. For (n ≥ 2), the n-th order eccentricity of the initial condition is defined as the

modulus of the complex quantity

εne
inΦn =

∫
d2rrne(r, φ)einφ∫
d2rrne(r, φ)

, (11.1)

where e(r, φ) is the transverse energy density profile and the phase Φn of the complex quantity

(11.1) defines the n-th order participant plane angle. For n = 1,

ε1e
iΦ1 =

∫
d2rr3e(r, φ)eiφ∫
d2rr3e(r, φ)

. (11.2)
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Figure 11.2: The rms initial eccentricity εn{2} as a function of harmonic order n from MC-Glauber
and MCKLN models in 0-0.2% ultra-central Pb+Pb collisions at 2.76 ATeV.

In Fig. 11.2 we plot the initial fluctuation power spectrum εn{2} for the MC-Glauber and

MCKLN models in the ultra-central collisions at LHC. In these ultra-central collisions, fluctuations

dominate over geometric overlap effects in εn{2}. With the rn weighting factor in Eq. (11.1), the

absolute values of all orders of εn{2} (except for ε1{2}) are comparable with each other, for both

initial condition models. The εn{2} from the MCKLN model is about 30% smaller compared to

the MC-Glauber model, mostly due to the implementation of pp multiplicity fluctuations in the

former that are not included in the latter. (see comparisons in Fig. 2.5).
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11.3 Particle spectra and their flow anisotropies in ultra-central Pb+Pb
collisions
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Figure 11.3: Charged hadron pT -spectra from the MCGlb and MCKLN models for different specific
shear viscosities as indicated in the legend, for Pb+Pb collisions at

√
s = 2.76ATeV 0-0.2%

centrality.

Model dN/dη||η|<0.5 〈pT 〉 (GeV)
MCGlb. η/s = 0.08 1822.36 ± 2.75 0.721 ± 0.001
MCGlb. η/s = 0.12 1846.9 ± 2.65 0.723 ± 0.001
MCGlb. η/s = 0.20 1837.85 ± 3.02 0.729 ± 0.001
MCKLN η/s = 0.08 1806.7 ± 1.12 0.695 ± 0.001
MCKLN η/s = 0.12 1802.35 ± 1.13 0.696 ± 0.001
MCKLN η/s = 0.20 1774.9 ± 0.98 0.703 ± 0.001

Table 11.1: The total yield of charged hadrons and their mean pT in 0-0.2% in Pb+Pb collisions at
LHC. In each set of runs, we fixed the overall normalization factor to the experimental measured
charged hadron multiplicity at 0-5% centrality.

In Fig. 11.3, we show the transverse momentum spectra of charged hadrons from the MC-

Glauber and the MCKLN models evolved with different η/s in the hydrodynamic simulations. In

ultra-central collisions, we find that the shear viscosity has only minor effects on the slope of the

hadron spectra. The MC-Glauber initial conditions, which include multiplicity fluctuations in pp

collisions, result in slightly flatter particle spectra compared to the MCKLN model. In Table 11.1,

we summarize the total yield of charged hadrons and their mean pT in the 0-0.2% ultra-central

Pb+Pb collisions at LHC. A larger η/s results in only a slightly larger mean pT for the charged
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hadrons. This means that the amount of radial flow generated in the system is very similar in all

these runs.
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Figure 11.4: pT -integrated vn{2} of charged hadrons in 0-0.2% centrality from the MC-Glauber
(left panel) and the MCKLN (right panel) models compared to the CMS preliminary measurements
(data extracted from [175]). vn{2} is integrated from 0.3 to 3 GeV as measured in the CMS
experiments.
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Figure 11.5: The hydrodynamic conversion efficiency coefficients vn{2}/εn{2} are plotted a func-
tion of n2 from the MC-Glauber (left panel) and the MCKLN (right panel) models. Linear fits
performed for n = 2 − 6 are indicated as the dashed lines. We also scale the CMS flow data by
the εn{2} from two initial condition models. (The CMS vn data are extracted from [175]). vn{2}
is integrated from 0.3 to 3 GeV as measured in the CMS experiments.

In Fig. 11.4, we show the charged particle pT -integrated vn{2} as a function of its harmonic or-

der n for both the MC-Glauber and the MCKLN models for 0-0.2% ultra-central Pb+Pb collisions

at LHC. Since the initial eccentricity εn{2} ∼ 0.09− 0.12 for MCKLN and εn{2} ∼ 0.13− 17 for

MC-Glauber model, non-linear mode couplings involving the product of multiple εn are suppressed

in the higher order (n > 3) anisotropic flow coefficients vn. We expect a dominantly linear response

between the initial εn{2} and the final vn{2}. The conversion efficiency vn{2}/εn{2} is controlled
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Figure 11.6: MC-Glauber model calculations of the pT -differential 2-particle cumulant vn{2} (n ∈
[1, 6]) of charged hadrons compared to CMS preliminary measurements in 0-0.2% centrality Pb+Pb
collisions at

√
s = 2.76 A TeV (data extracted from [175]).

by the specific shear viscosity of the medium. Whereas all simulations capture the general trend

of increasingly strong suppression of vn for higher harmonics n, which is caused by the non-zero

shear viscosity of the medium, both initial condition models fail to quantitatively reproduce the

measured vn{2} spectrum (vn{2} as a function of n). This statement is valid for all the η/s values
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Figure 11.7: Similar to Fig. 11.6, but for MCKLN initial conditions.

explored in the simulations. In the CMS data, the magnitude of v2{2} is very close to v3{2},
which can not be reproduced using either MCGlb. or MCKLN initial models. In hydrodynamic

simulations, the conversion efficiency from initial εn{2} to final vn{2} decreases with increasing

order n, ∝ e−
η
s
n2

[178]. In Fig. 11.5 we find log(vn{2}/εn{2}) shows very good linear dependence

on n2 up to n = 6 in the ultra-central Pb+Pb collisions. The slope of the correspond linear fit
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increases with η/s used in the simulations. Starting with an initial fluctuation spectrum featuring

ε2{2} ∼ ε3{2}, as shown in Fig. 11.2, the final v2{2} will always be about 30% larger than v3{2}
in hydrodynamic calculations with reasonable η/s values. Any theoretical calculation using such

initial conditions will overestimate the measured v2/v3 ratio (at least as long as only shear viscous

effect are included). Within the current hydrodynamic framework, to reproduce a vn hierarchy

similar to the one observed by CMS, we need an initial condition model that provides a triangular

deformation ε3{2} that is significantly larger than ε2{2} in these ultra-central collisions. Both

MCGlb. and MCKLN models fail to give such a feature.

Comparing the absolute magnitude of vn{2}, we find that the CMS preliminary data prefer a

relatively large specific shear viscosity, for both MCGlb (η/s 0.3) and MCKLN (η/s 0.2) initial

conditions.

Since the anisotropic flow coefficients are dominated by the initial state fluctuation in the

ultra-central collisions, the fluctuations of the flow angles at different pT are important, especially

for v2 (see Fig. 10.4 in Chapter 10) and will affect pT -differential vn{2} measurements. In order

to have an apple-to-apple comparison to the CMS measurements, we calculate the pT -differential

2-particle cumulant flow of charged hadrons defined as

vn{2}(pT ) = 〈vn(pT )vref
n cos[n(Ψn(pT )−Ψref

n )]〉ev/
√
〈(vref

n )2〉 (11.3)

where the vref
n {2} and Ψref

n are the pT integrated flow for reference particles and its flow angle,

respectively. We choose all charged particles with transverse momentum between 1 and 3 GeV

as the reference particles, the same as in the CMS analysis, which optimize sensitivity for higher

order vn in the measurements.

In Figs. 11.6 and 11.7 we show the pT -differential flow vn{2}(pT ) at 0-0.2% centrality from the

MC-Glauber. and MCKLN models, compared with the CMS data. We find that the direct flow

v1{2} is insensitive to the η/s value used in the simulations. It flips from negative to positive

at pT ∼ 1.2 GeV due to global momentum conservation. Comparing v2{2} to v6{2} against the

CMS preliminary data, our results using MC-Glauber model with η/s = 0.20 give a fairly good

description of vn{2}(pT ) except for the differential elliptic flow v2{2}(pT ) which is overestimated

by the calculation. MCKLN initial conditions with η/s = 0.20 can describe v2{2}(pT ) better

but underestimate v3{2}(pT ). Although neither model describes all the data equally well, the

overall picture seems to favor a somewhat larger QGP shear viscosity (η/s)QGP ∼ 0.20 in the

hydrodynamic simulations.

11.4 Flow factorization

In Figs. 11.8,11.9 and 11.10, we calculate the flow factorization ratios r2,3,4 in 0-0.2% centrality

bin. We find that the ratio r2 shows a large factorization breaking behavior at large ptrig
T − passo

T .
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Figure 11.8: Flow factorization ratio r2(ptrig
T , passo

T ) from MCGlb (upper panels) and MCKLN
(lower panels) model calculations in 0-0.2% ultra-central Pb + Pb collisions at
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Figure 11.9: Similar to Fig. 11.8, but for the ratio r3.
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Figure 11.10: Similar to Fig. 11.8, but for the ratio r4.
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We have checked that about half of the contribution comes from the flow angle fluctuations. We

find that η/s affects r2 non-monotonically. This may indicate a non-trivial interplay between

initial state fluctuations and the viscous damping during the evolution. Comparing the upper

panels with the lower ones in Fig. 11.8, we find that, irrespective of the choice of η/s, the ratio

r2 deviates from 1 more strongly when we use MCKLN initial conditions than for MC-Glauber

profiles. This implies that the rn ratio is more sensitive to the initial state fluctuations than to

the specific shear viscosity of the medium.

Fig. 11.9, the breaking of flow factorization is significantly smaller for r3 than for r2. The

MCKLN model gives a smaller effect than MC-Glauber. For the ratios r3 and r4, a larger shear

viscosity monotonically reduces the the strength of the breaking behavior of flow factorization.

11.5 Chapter conclusion

In this chapter, we presented anisotropic flow studies for 0-0.2% ultra-central Pb+Pb collisions

at the LHC using the MC-Glauber and the MCKLN initial condition models with η/s = 0.08, 0.12,

and 0.20. In the MC-Glauber model, we implement multiplicity fluctuations in the initial state,

which boost the initial eccentricities εn{2} by 20-40%. A comparison with CMS preliminary data,

reveals that both MCGlb. and MCKLN models fail to reproduce the pT -integrated vn hierarchy,

especially the v2{2}/v3{2} ratio. Further comparisons with the pT -differential vn tend to favor a

large value of η/s ∼ 0.2 for the medium.

We found a large breaking of flow factorization for the elliptic flow coefficient in ultra-central

collisions. Both the fluctuations of the flow magnitude and of the flow angle are important.

Simulations show that the ratio r2 behaves non-monotonically as η/s increases, which needs further

investigation. For the ratios r3 and r4 measuring the breaking of flow factorization for triangular

and quadrangular flow, we found a monotonic decrease of the factorization breaking effects with

increasing η/s.
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Chapter 12: Viscous hydrodynamic scaling in p+Pb vs. Pb+Pb

collisions

In this chapter, we discuss the scaling properties of the hydrodynamic equations. This work is

based on unpublished notes from 2011 by Zhi Qiu and Ulrich Heinz. We find that for fixed final

charged multiplicity, a small system will show the same viscous effects as a large system. This

scaling property from viscous hydrodynamics has intriguing consequences for recent observations

of flow like features in high multiplicity p+Pb collision.

We introduce two scales to characterize our system at the initial starting time of the hydro-

dynamic simulations. One is the system size, Rsys and the other is an energy scale E0, which we

both allow to vary independently, but which are related to each other by the condition dN/dy =

constant. We fix that the shape of the initial profiles, i.e. assume the same {εn} distribution,

when we vary Rsys. At high energies where the initial state is dominated by gluons which show

universal scaling properties controlled by a (spatially averaged) saturation momentum. E0 can be

identified with this momentum scale. [179]

12.1 Scaling in ideal hydrodynamics

Ideal hydrodynamics solves the following equations:

De = −(e+ P )θ, (12.1)

Duµ =
∇µP

e+ P
, (12.2)

where D = uµ∂µ and ∇µ = ∆µν∂ν are the temporal and spatial derivatives in the comoving frame.

The expansion rate of the system is θ = ∂µu
µ. Using Rsys and E0, we can define the following

unitless variables,

τ̃ =
τ

Rsys

, x̃ =
x

Rsys

, ỹ =
y

Rsys

, η̃s = ηs, (12.3)

ẽ =
R3

sys

E0

e, P̃ =
R3

sys

E0

P, ũµ = uµ. (12.4)

According to Eq. (12.3) the derivatives scale as,

D̃ = RsysD, ∇̃µ = Rsys∇µ, θ̃ = Rsysθ. (12.5)
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Then the ideal hydrodynamic equations can be rewritten with these unitless quantities as follows:

D̃ẽ = −(ẽ+ P̃ )θ̃ (12.6)

D̃ũµ =
∇̃µP̃

ẽ+ P̃
(12.7)

With these scaled parameters, the ideal hydrodynamic equations and their solutions are indepen-

dent of the system size Rsys and E0 but only depend on the shape of the (unitless) initial energy

density profile ẽ(x̃µ), provided the pressure and energy density are linearly related.

12.2 Scaling in viscous hydrodynamics

Second order Israel-Stewart theory solves the following equations:

De = −(e+ P + Π)θ + πµνσµν , (12.8)

(e+ P + Π)Duµ = ∇µ(P + Π)−∆µν∇σπνσ + πµνDuν , (12.9)

Dπµν = − 1

τπ
(πµν − 2ησµν)− uµπνρDuρ

−1

2
πµν

ηT

τπ
∂ρ

(
τπ
ηT

uρ
)
− π(µ

ρ ω
ν)ρ, (12.10)

DΠ = − 1

τΠ

(Π + ζθ)− 1

2
Π
ζT

τΠ

∂µ

(
τΠu

µ

2ζT

)
, (12.11)

where πµν and Π are the shear and bulk pressures and σµν is the velocity shear tensor. ωµν is the

vorticity tensor.

Generalizing the scaling of variables introduced in ideal hydrodynamics, we can define addi-

tional scaled variables for the viscous quantities:

π̃µν =
R3

sys

E0

πµν , Π̃ =
R3

sys

E0

Π, σ̃µν = Rsysσ
µν , ω̃µν = Rsysω

µν . (12.12)

In order to fully scale out the Rsys and E0 dependence in the Eq. (12.10) and Eq. (12.11), we

have to additionally scale the shear and bulk viscosity and their corresponding relaxation times

as follows,

η̃ = η
R2

sys

E0

, ζ̃ = ζ
R2

sys

E0

, τ̃π =
τπ
Rsys

, τ̃Π =
τΠ

Rsys

. (12.13)

According to the first law of thermal dynamics, sT = e+P (in the absence of a chemical potential).

We scale the entropy density and temperature as,

s̃ = s
R

9/4
sys

E
3/4
0

, T̃ = T
R

3/4
sys

E
1/4
0

. (12.14)

Then we have,
η̃

s̃
=
η

s

1

R
1/4
sysE

1/4
0

,
ζ̃

s̃
=
ζ

s

1

R
1/4
sysE

1/4
0

. (12.15)
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If we compare two systems with different sizes with fixed E0, we have

(η/s)small

(η/s)large

=

(
(Rsys)large

(Rsys)small

)1/4

, (12.16)

which means that the small system has stronger viscous effects compared to a large system with

the same value of η/s.

The relaxation time are usually chosen to be τπ ∝ η
sT

and τΠ ∝ ζ
sT

, which is self-consistent

with Eq. (12.13).

In Eq. (12.14), we divided the power dependence of Rsys and E0 equally to s and T . We can

perform a more general analysis,

s̃ = sR3−α
sys E

−α
0 , T̃ = TRα

sysE
α−1
0 . (12.17)

Eq. (12.14) would be the case when α = 3/4. Then,

η̃

s̃
=
η

s

(
1

RsysE0

)1−α

,
ζ̃

s̃
=
ζ

s

(
1

RsysE0

)1−α

(12.18)

and
(η/s)small

(η/s)large

=

(
(Rsys)large

(Rsys)small

)1−α

. (12.19)

Note that, the combination ηθ
sT

is a size and energy rescaling invariant measure of the fluidity of

the matter.

12.3 Scaling in Cooper-Frye Freeze-out

The final observed particle spectra and their anisotropies can be calculated using the Cooper-

Frye Freeze-out procedure,

dN

dypTdpTdφ
=

∫
Σ

τdxdydηs

(
mT cosh(y − ηs)− pT · ∇T τf −

mT

τf
sinh(y − ηs)

∂τf
∂ηs

)
×(f0(p) + δf(p)), (12.20)

where Σ is the kinetic freeze-out surface taken here as an isothermal surface. The particle dis-

tribution function can be written as f0(p) = 1
e(E−µ)/T±1

with the deviation δf(p) = f0(p)(1 ±
f0(p)) pµpνπµν

2T 2(e+P )
.

If we now scale the particle’s 4-momentum and chemical potential according to temperature,

p̃µ = pµ
R

3/4
sys

E
1/4
0

, µ̃ = µ
R

3/4
sys

E
1/4
0

, (12.21)
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we can write Eq. (12.20) as,

dN

dỹp̃Tdp̃Tdφ
= E

3/4
0 R3/4

sys

∫
Σ̃

τ̃ dx̃dỹdη̃s

×
(
m̃T cosh(ỹ − η̃s)− p̃T · ∇̃T τ̃f −

m̃T

τ̃f
sinh(ỹ − η̃s)

∂τ̃f
∂η̃s

)
×(f0(p̃) + δf(p̃)) (12.22)

Eq. (12.22) has a lot of interesting consequences. First of all, if we integrate over pT and φ in Eq.

(12.20) we obtain,

N =
g

(2π)3

∫
Σ

d3σµ

∫
d3p

E
pµ(f0(p) + δf(p))

=
g

(2π)3

∫
Σ

d3σµu
µm

2

β

∞∑
n=1

(∓)n−1

n
enβµK2(nβm).

=
g

(2π)3
E

3/4
0 R3/4

sys

∫
Σ̃

d3σ̃µũ
µ m̃

2

β̃

∞∑
n=1

(∓)n−1

n
enβ̃µ̃K2(nβ̃m̃).

where −(+) is for fermions (bosons). So

dN

dy
∝ E

3/4
0 R3/4

sys , (12.23)

that is, the total charged hadron multiplicity scales with the 3/4 power of the product of the

system size with the initial energy scale. With the more general power dependence Eq. (12.17),
dN
dy
∝ (E0Rsys)

3−3α. More interestingly, combing with Eq. (12.18), we have,

(η/s)small

(η/s)large

=

(
(dN ch/dy)large

(dN ch/dy)small

)1/3

, (12.24)

which states that the shear viscous effects are the SAME for two systems of different size if the

final charged multiplicities are the same. So if we compare high multiplicity p+Pb collisions to

non-central Pb+Pb at the same multiplicity, the shear viscous effects will be the same, regardless

of the fact that the system size in p+Pb is much smaller than in the Pb+Pb collisions.

Eq. (12.22) also states that the pT integrated anisotropic flows, vn, will be the same for the

small and large system as long as the shape of the initial energy density profile, characterized by

{εn}, are the same. In the actual experiments, integrated vn are usually reported with a pT cut.

In this case comparisons between large and small systems should be made for vn integrated over

the same range of p̃T = pT
E0
∼ pT

Qs
(for fixed dN

dy
). Current experiments turn out to support this

statement for v3 (see Fig. 3 in [179]).

We can compute the mean p̃T from Eq. (12.22),

〈p̃T 〉 = 〈pT 〉
R

3/4
sys

E
1/4
0

. (12.25)
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So,

〈pT 〉small

〈pT 〉large

=

(
(Rsys)large

(Rsys)small

)3/4(
(E0)small

(E0)large

)1/4

. (12.26)

And more generally,
〈pT 〉small

〈pT 〉large

=

(
(Rsys)large

(Rsys)small

)α(
(E0)small

(E0)large

)α−1

. (12.27)

If we compare two systems with the same dN ch/dy, then RsysE0 is fixed,

〈pT 〉small

〈pT 〉large

=
(Rsys)large

(Rsys)small

. (12.28)

Please note that this ratio does not depend on the particle species. So Eq. (12.28) indicates that

the ratio of the mean pT between p-Pb and Pb-Pb should be the same for all hadron species.

For the differential vn(pT ), we know from Eq. (12.22) that vn(p̃T ) are the same between the

two systems. So if we scale vn(pT ) by its corresponding 〈pT 〉, the system size and initial energy

scale dependence will be gone. So we find that vn(pT/〈pT 〉) should be the same for small and large

systems, independent of multiplicity. This is also supported by the experimental data (see Fig. 5

in [179]).

One drawback of this Cooper-Frye analysis is that it introduces multiple mass scales for the

different particle species, breaking the simple conformal symmetry logic. One alternative way to

get around this is to instead calculate the total entropy crossing through the freeze-out surface

instead. The total entropy can be calculated as follows:

dS

dy
=

d

dy

∫
Σ

d3σµs
µ

=
d

dy

∫
Σ

d3σµu
µs

= (RE0)3/4 d

dy

∫
Σ̃

d3σ̃µũ
µs̃, (12.29)

Since y is scale invariant, for a conversion surface at T̃ , the total entropy per unit rapidity is also

proportional to (RsysE0)3/4. Converting both the small and large system at the same T̃ yields,

Tsmall

Tlarge

=

(
(Rsys)large

(Rsys)small

)3/4(
E0large

E0small

)1/4

=

(
(Rsys)large

(Rsys)small

)1/2

.

This is because that the expansion rate θ is larger in a small system which cause the kinetic

freeze-out to take place at a higher temperature.
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Chapter 13: Viscous hydrodynamics in 2 and 3 spatial dimensions – a

comparison

At top RHIC and LHC energies, (2+1) dimensional viscous hydrodynamic simulations with

assumed longitudinal boost invariance have achieved great successes in describing experimental

measurements near mid-rapidity in relativistic heavy ion collisions.

In this chapter, we perform a direct comparison between our (2+1)-d and a (3+1)-d viscous

hydrodynamic simulations from [45] (MUSIC) to check quantitatively how good the assumption

of longitudinal boost invariance is near mid-rapidity at RHIC and LHC energies. This so far

unpublished work was performed in collaboration with Bjoern Schenke and Ulrich Heinz.

13.1 Hydrodynamic Evolution

We use event averaged initial conditions in the transverse plane generated from the MCKLN

model. Along the longitudinal direction, the MCKLN model provides a non-boost-invariant initial

entropy distribution according to the color glass condensate (CGC) picture. In Fig. 13.1, the

−10 −5 0 5 10
0

500

1000

1500

η

d
S

/ 
d

η

Figure 13.1: Space-time rapidity dependence of the initial total entropy from MCKLN model at√
sNN = 200 GeV at RHIC.
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corresponding entropy density per unit space-time rapidity is shown and compare to the boost-

invariant case indicated as the dashed line. In order to study the net effects from the non-boost-

invariant initial conditions, we fix all other hydrodynamical parameters to be identical in the

simulations. We compare our results for the 0 − 5% most central AuAu collisions at
√
sNN =

200 GeV.
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Figure 13.2: Left panel: Temperature profile along x axis in the transverse plane at ηs = 0 from
ideal hydrodynamics. Right panel: Same quantities but from viscous hydrodynamic simulation
with η/s = 0.08. Blue lines are calculated from VISH2+1 and red curves are (3+1)-d hydrodynamic
results from MUSIC [45].

0 2 4 6 8 10 12
0.1

0.15

0.2

0.25

0.3

0.35

τ − τ0 (fm/c)

T
(G

e
V

)

 

 

AuAu@RHIC 0~5% @(x=0, y=0, η
s
=0) Ideal

MUSIC3+1
VISH2+1

0 2 4 6 8 10 12
0.1

0.15

0.2

0.25

0.3

0.35

τ − τ0 (fm/c)

T
(G

e
V

)

 

 

AuAu@RHIC 0~5% @(x=0, y=0, η
s
=0) η/s=0.08

MUSIC3+1
VISH2+1

Figure 13.3: Temperature evolution at the center of the fireball at mid-rapidity. Left panel for the
ideal case and right panel for viscous calculations with η/s = 0.08.

We first compare the temperature evolutions at mid-rapidity in Fig. 13.2. Overall, (2+1)-d and

(3+1)-d hydrodynamics are found to give very close temperature evolution histories at ηs = 0. For

both ideal and viscous runs, the results from (3+1)-d hydrodynamic simulations show a slightly

faster cooling rate than the (2+1)-d evolution, which can be understood in terms of a more rapid

longitudinal expansion in the (3+1)-d case driven by the extra longitudinal pressure gradients.
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Figure 13.4: The ratio of the temperature evolution at the center of the fireball at mid-rapidity be-
tween (2+1)-d and (3+1)-d hydrodynamic simulations. Dashed lines represents the ratio between
VISH2+1 and MUSIC with identical boost-invariant initial conditions for numerical code checking
purpose.

In Fig. 13.3, we further focus on the temperature evolution at the center of the fireball. The

corresponding ratio between (2+1)-d and (3+1)-d results is shown in Fig. 13.4. The dashed lines

in Fig. 13.4 are the ratio between MUSIC with boost invariant initial conditions and VISH2+1. They

are used for code checking. The differences are within 0.2% for both the ideal and viscous case,

which means that the two hydrodynamic codes work consistently for identical initial conditions.

The solid lines represents the ratio between MUSIC with non-boost invariant initial conditions and

VISH2+1. We find the temperature drops about 1% more quickly in the non-boost invariant case.

The faster cooling rate at τ − τ0 ∼ 8 fm/c is an artifact generated by the implementation of

partially chemical equilibrium in the equation of state: due to the slightly faster cooling in the

(3+1)-d simulations, the breaking of chemical equilibrium (and the concomitant transition to a

stage of faster cooling) occurs earlier in MUSIC, resulting in the additional drop in the temperature

ratio shown in Fig. 13.4 around τ − τ0 ∼ 9 fm/c. For the viscous case, we observe small wiggles

in the temperature evolution in the (3+1)-d run. We found that they are caused by large viscous

corrections originating from the bumpy profiles caused by discretization errors at large rapidity;

and therefore unphysical.
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13.2 Thermal particle spectra and elliptic flow
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Figure 13.5: Upper panels: pT -spectra of thermal pions and protons at 0-5% most central collision
at top RHIC energy. Lower panels: The relative ratio of the thermal pion spectra between (3+1)-
d hydrodynamic simulation and (2+1)-d calculations. The left(right) panels show results form
ideal(viscous, η/s = 0.08) hydrodynamic simulations.

In Fig. 13.5, we compare the pT -spectra for thermal pions and protons from (3+1)-d and (2+1)-

d hydrodynamic simulations for both the ideal and viscous cases. On the logarithmic scale, this

difference is negligible. In order to compare them quantitatively, we show their ratio for thermal

poins in the lower panels of Fig. 13.5. For the purpose of code checking , we also plot as a blue

dashed line the ratio between the spectra from the two hydrodynamic codes obtained for identical

boost invariant initial conditions. In the ideal case, MUSIC and VISH2+1 agree with each other

quite well up to 2 GeV, while differences up to O(10%) are visible for the viscous run. We found

that this difference arises from the use of a too coarse lattice spacing in eta direction (∆η = 0.5)
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for the (3+1)-d runs. In order to estimate the physical difference caused by non-boost-invariant

initial profiles, we divide the non-boost invariant MUSIC results by the boost-invariant results from

the same code, using the same lattice spacing in ηs direction. This ratio is shown in Fig. 13.5

as the solid black curves. We find that the non-boost-invariant runs result in about 15% smaller

particle yield, due to the leakage of entropy from mid-rapidity to forward rapidity. For the viscous

case, we find that the non-boost invariant case results in flatter spectra than for boost-invarant

initial conditions, whereas for ideal hydrodynamics the breaking of boost-invariance makes the

pion spectra steeper. This is due to the large δf corrections in the non-boost-invariant case: the

red dashed curve, which represents the ratio between the spectra without δf corrections, shows

a similar shape as for ideal hydrodynamics. Obviously, the δf correction here exhibits a large

sensitivity to the breaking of longitudinal boost-invariance.
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Figure 13.6: pT differential elliptic flow coefficient for thermal pions and protons at 0-5% most
central collisions at top RHIC energy. Left panel is the results from ideal hydrodynamic calculation
and right panel is for the viscous case with η/s = 0.08.

In Fig. 13.6, we proceed to study the pT differential elliptic flow. Using the same boost-

invariant initial conditions in both codes, we find that VISH2+1 and MUSIC agree within 1%, for

both ideal and viscous cases. To further quantify effects from the violation of boost invariance in

the initial conditions, we observe that for MCKLN intial conditions ideal hydrodynamics produces

about 5% less v2 at high pT in the (3+1)-d case compared to VISH2+1. For the viscous case, the

δf corrections are again larger in the non-boost-invariant (3+1)-d case, enlarging the difference

between (3+1)-d MUSIC and VISH2+1 to about 8%.

13.3 Chapter conclusion

In summary, by comparing boost invariant results from VISH2+1 and MUSIC, we find numerical

differences that are at least an order of magnitude smaller than the physical effects on the two

hydrodynamic evolutions generated by initial conditions that violate longitudinal boost invariance.
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This holds for both pT -spectra and elliptic flow. This means that numerical errors in the two

numerical codes are under good control. By comparing results fro non-boost-invariant initial

conditions, we find that the hydrodynamic evolution and the pT spectra near mid rapidity show

good boost invariant behavior for ideal hydrodynamics, but less so for the for viscous case, where

the δf corrections exhibit some worrisome non-boost-invariant corrections for v2. A more detailed

analysis is needed to clarify whether this effect is caused by numerical inaccuracies or of physical

origin.
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Chapter 14: Electromagnetic probes in heavy-ion collisions:

Introduction and general framework

Electromagnetic probes such as photons and dileptons are considered to be clean and pene-

trating probes in relativistic heavy-ion collisions. Since they can only interact with the underlying

medium through electromagnetic interaction, they suffer negligible final state interactions after

they are born and fly almost freely to the detectors, preserving the valuable dynamical infor-

mation at their birth points. This wonderful advantage over the much more abundant hadronic

observables has generated great interest in calculating and measuring electromagnetic probes in

heavy-ion collisions.

Experiments measure the inclusive photons from relativistic heavy-ion collisions. The inclusive

photons are categorized into direct and decay photons. The decay photons are defined as the

photons generated from electromagnetic decays of hadrons. The main source of decay photons

are π0 and η decays. All other photons are called direct photons. At low transverse momenta,

pT < 4 GeV, the decay photons dominate the measured inclusive photon signals. The yield ratio

between direct and decay photons is about 1/9 at RHIC and 1/5 at LHC energies. This small ratio

poses a big challenge to the experimentalist: measuring the direct photon signal at low transverse

momenta with decent precision is very hard.

Simulating direct photon emission from relativistic heavy-ion collisions is realistically not an

easy job either. State-of-the-art calculations of direct photon signals include several ingredients.

At the initial nuclear impact, prompt photons generated from hard pQCD scatterings and photons

from jet fragmentation are emitted. Before the system reaches approximate local thermal equi-

librium, secondary scatterings between partons produce so-called pre-equilibrium photons. Once

the medium thermalizes sufficiently to be described hydrodynamically, thermal electromagnetic

radiations will shine through the QGP, the quark-hadron transition region, and the hot dense

hadronic phase. When an energetic jet passes through the hot medium, photons may also be

produced by jet-medium interactions. Last but not least, at a very late stage of the evolution,

photons will be produced from the dilute hadronic gas phase where the medium is falling out

of equilibrium. Currently, contributions from pre-equilibrium photons and jet-plasma conversion

photons have been estimated but are not fully integrated even in advanced dynamical evolution
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models. In general, thermal radiation from the fireball evolution dominates the direct photon

signals at low transverse momenta, pT < 4 GeV, while the hard prompt photon component takes

over at high pT .

In this part of my thesis, we will focus on the direct photon observables at low pT . We calculate

the thermal component of the direct photon observables by employing a macroscopic evolution of

the medium using viscous hydrodynamics and coupling it with photon emission rates computed

from thermal field theory. The thermal photon momentum distribution can be calculated as,

E
dNγ

d3p
=

∫
d4x

(
E
dRγ

d3p
(p · u(x)/T (x), {µi(x)}, πµν(x)pµpν})

)
. (14.1)

The space-time volume is controlled by event-by-event viscous hydrodynamic evolution. Infor-

mation on the local temperature, flow velocity, and shear stress tensor is needed for the photon

emission rates that control the local photon production from a given hydrodynamic fluid cell. In

order to calculate the photon momentum distribution correctly, we need to have good theoretical

control of both the underlying medium evolution and the thermal photon emission rates.

We use our (2+1)-d viscous hydrodynamic model to simulate the fireball evolution. The local

temperature, fluid velocity, and shear stress tensor are evolved according to second order Isarel-

Stewart hydrodynamic equations. Event-by-event hydrodynamic simulations takes into account

initial state fluctuations by propagating each bumpy initial energy density profile (generated from

either the MC-Glauber or the MCKLN model) separately. We use s95p-v0-PCE for the EOS. It

controls not only the conversion between the local energy density and pressure, which affects the

local expansion rate, but also the partial chemical freeze out, which ensures the correct chemical

abundances for the finally measured hadrons yields. These are important for a calculation of

the background of photons from hadron decays. Below chemical freeze-out at Tchem = 165 MeV

for s95p-v0-PCE, the non-zero non-equilibrium chemical potentials boost the local real photon

emission rates by the corresponding fugacity factors. Since our hydrodynamic modeling builds in

a sudden kinetic freeze-out at a given temperature, Tkin = 120 MeV, it can not fully capture the

out-of-equilibrium dynamics in the dilute hadronic phase. A more robust approach would be to

switch hydrodynamics to a microscopic hadronic cascade model where hadron freeze-out happens

gradually. In current implementations, we only take into account the photon contributions from

electromagnetic decay channels of short lived hadronic resonances whose lifetime is on the order

of a few fm/c, after the hydrodynamic kinetic freeze-out. Photons from electromagnetic decays

of long-lived hadrons are experimentally subtracted from the inclusive photons when determining

the direct photon signal, and therefore do not need to be computed.
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For the photon emission rates, the general calculation framework in real-time thermal field

theory is based on the in-medium correlator of the electromagnetic current, Jµ:

E
dRγ

d3p
=

i

2(2π)3
Π12,µ
µ (p). (14.2)

Here Π12,µ
µ (p) is the (12)-component of the photon polarization tensor,

Π12
µν(p) = i

∫
d4xe−ip·x〈j1

µ(x)j2
ν(0)〉, (14.3)

where 1 and 2 label the corresponding branch of the closed time-path contour [180] on which the

current operator is located, and 〈. . . 〉 represents an ensemble average over the density matrix of

the system. An alternative method is to use relativistic kinetic theory, where photon rates are

expressed through matrix elements for specific photon producing reactions,multiplied by phase-

space density factors describing the distribution of particles in the medium. In the QGP phase,

the emission rate was calculated to complete leading order in O(αemαs) at thermal equilibrium in

[181]; this rate is known as the AMY rate. In the hadronic gas phase, photon production rates have

been derived using Massive Yang-Mills effective theory. Mesonic reactions including the strange

sector are taken into account in the calculations. The equilibrium hadron gas rate was originally

derived in [182].

For the prompt photons, we use NLO pQCD prompt photon rates with nuclear parton dis-

tribution functions that are corrected for isospin and shadowing effects, folded with a smooth

event-averaged binary collision profiles. (we presently lack the technology for computing prompt

photons for fluctuating bumpy initial density profiles.) The pQCD rate is extrapolated to low

transverse momentum using a fit of the form A/(1 +pT/p0)n that was checked to describe well the

available low-pT p-p data at RHIC. Here we give the corresponding parametrization at the top

RHIC and LHC energies:

For Pb+Pb collisions at
√
s = 2.76ATeV:

dNγ
prompt

2πdypTdpT
= 12.8

1.21

(1 + pT/0.692)−5.5
for 0-40% centrality. (14.4)

For Au+Au collisions at
√
s = 200AGeV,

dNγ
prompt

2πdypTdpT
= 18.65

4.86

(1 + pT/0.517)6.42
for 0-20% centrality, (14.5)

dNγ
prompt

2πdypTdpT
= 7.16

4.86

(1 + pT/0.517)6.42
for 20-40% centrality. (14.6)

From Chapter 15 to Chapter 17, we will discuss how to derive photon emission rates and

their corresponding viscous corrections in the QGP and hadron gas (HG) phases. We also will

discuss about how to smoothly switch the QGP and HG rates in the quark-hadron transition

region. From Chapter 18 to Chapter 21, we proceed to perform a phenomenological study of

direct photon spectra and their anisotropic flow coefficients.
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Chapter 15: Thermal photon emission rates: QGP rates

15.1 Chapter introduction

Viscous hydrodynamics provides a successful macroscopic description of the dynamical evolu-

tion of the QGP created in the heavy-ion collisions [183, 184]. The non-vanishing viscosity leads

to deviations in particle momentum distributions from local thermal equilibrium as the medium

expands anisotropically. As a result, the momentum distributions of partons become anisotropic

in the local fluid rest frame and fall off faster along the directions in which the fireball expands

more rapidly. Existing known thermal photon emission rates at leading order (LO) [185] and next-

to-leading order (NLO) [186] from the QGP were derived assuming a static, homogeneous, weakly

coupled (gs� 1), and fully thermalized medium. In order to study the thermal radiation from an

evolving QGP fireball in relativistic heavy-ion collisions, we must derive the viscous corrections

to the QGP photon emission rates. We will do so at leading order of πµν in this Chapter.

Several previous attempts to calculate the off-equilibrium corrections to the QGP photon

emission rates have been published [187, 188, 189]. However, all these works considered only the

anisotropy in the local momentum distribution functions for the incoming and outgoing particles.

However, for scattering processes in a QCD medium, the dynamical Debye screening is essential to

regulate the infrared logarithmic divergence associated with the long range nature of the massless

quark and gluon exchange. In an anisotropic medium, the viscous corrections to this medium

effect can lead to important modifications to the collision matrix element, causing additional

anisotropies in the photon emission rate. This problem was first tackled in [190, 191, 192] for

simple parametrizations of the local momentum anisotropy. We extend this previous works to a

more general ansatz for the local momentum anisotropy, namely,

f(K) ≡ f0(k) + δf(k) = f0(k)

[
1 +

(
1±f0(k)

) πµν k̂µk̂ν
2(e+ P)

χ(k/T )

]
. (15.1)

Here e, P , T , and πµν are local energy density, pressure, temperature, and shear stress tensor

of the expanding medium. We define k̂µ = Kµ/(K · u) as a light-like unit vector pointing in

the direction of the parton momentum, and the scalar function χ(k/T ) = (k/T )λ with 1≤λ≤ 2
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controls the energy dependence of the off-equilibrium correction. The form (15.1) for the deviation

δf from local equilibrium can be derived from Grad’s 14 moment expansion [193]. Eq. (15.1) is

general enough to describe the momentum distribution of massless particles in a weakly coupled

plasma as long as its πµν is not too large [194].

We restrict our derivation of the photon emission rates from a static, infinite medium (with

the given values for T , πµν etc). In order to apply the derived rates to an evolving fireball in the

relativistic heavy-ion collision, we assume that the spatial and temporal variations of the medium

are small at the microscopic scale of the photon formation time.

In this chapter, we will compute the leading order corrections in the shear stress πµν for 2→ 2

scattering processes. The calculation and inclusion of viscous corrections for the family of soft

2 → n diagrams that are required for a complete leading order (in gs) calculation of the photon

emission rate that is complete to leading order in gs [185] is left for future work.

We will derive the viscous corrections to the QGP photon emission rate in Sec. 15.2 from both

the diagrammatic (in Sec. 15.2.2) and kinetic approaches (in Sec. 15.2.3). Numerical results for

the equilibrium rates and the viscous corrections are presented in Sec. 15.3 for both weak and

moderately (realistically) strong coupling gs. In the diagrammatic calculations, we explore the

sensitivity on the cut-off, which splits the kinematic regions between soft and hard exchanged

momentum. Comparing the two approaches quantitatively, we use the difference between the

corresponding equilibrium rates and viscous correction coefficients as a measure to gauge the

theoretical uncertainty of our leading-order result. Conclusions and final comments are offered in

Sec. 15.4.

15.2 Photon emission rates

15.2.1 General formalism

To calculate real photon production from a momentum anisotropic medium, we adopt the

real-time or Closed Time Path (CTP) formalism [195] where the rate of photon emission can be

expressed as [190, 180]

k
dR

d3k
=

i

2(2π)3
Πµ

12 µ(K). (15.2)

Based on the finite temperature cutting rules, such a diagrammatic approach is equivalent

[196, 197, 198] to a description in terms of relativistic kinetic theory as a process with m incoming
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particles and n outgoing particles plus a photon,

k
dR

d3k
= N

∫
d3p1

2E1(2π)3
· · · d3pm

2Em(2π)3
· · · d3pm+n

2Em+n(2π)3
(2π)4

×δ(4)

(
m∑
i=1

P µ
i −

m+n∑
j=m+1

P µ
j −Kµ

)
|M|2

×f(P1) · · · f(Pm)(1± f(Pm+1)) · · · (1± f(Pm+n)), (15.3)

where f(P ) are Bose (Fermi) distribution functions for bosons (fermions), and N is an overall

degeneracy factor that depends on the specific production channel.

Assuming the medium is near thermal equilibrium, δf � f0, with our choice of ansatz for

particle distribution in Eq. (15.1), the photon emission rates can be expanded around equilibrium

as,

k
dR

d3k
= Γ0 +

πµν

2(e+ P )
Γµν +O

((
πµν

2(e+ P )

)2
)
, (15.4)

where Γ0 stands for the thermal equilibrium emission rate while Γµν is the rate coefficient of the

first order viscous correction.

Γµν can be decomposed into an orthogonal tensor basis that is constructed from the photon

momentum Kµ, the flow velocity uµ and the metric tensor gµν . Since πµν is symmetric, traceless,

and orthogonal to the flow velocity, the only term surviving in this expansion after contraction

with πµν is ∝ k̂µk̂ν :

πµνΓµν = πµν∆αβ
µνΓαβ = Γ1π

µν k̂µk̂ν . (15.5)

The scalar coefficient Γ1 can be obtained from Γµν by contracting with

aµν =
1

2
∆µα∆νβ

(
gαβ + 3k̂αk̂β

)
. (15.6)

This leads to

k
dR

d3k
= T 2

(
Γ̃0(k, T ) +

πµν k̂µk̂ν
2(e+ P)

Γ̃1(k, T )

)
, (15.7)

with Γ̃0 = Γ0/T
2 and Γ̃1≡ aαβΓαβ/T 2. Both Γ̃0 and Γ̃1 are unitless functions of k/T , where k is

the local rest frame energy of the produced photon.

It is worth mentioning that the general structure of Eq. (15.7) does not depend on the details

of the collision kernel when evaluating Γαβ. It is valid not only in the QGP phase, at arbitrary

order in gs, but also in the hadronic phase, where one can compute the hadronic photon-producing

reaction cross sections using some effective field theory [182].

The use of the above tensor decomposition is particularly efficient numerically, because the

anisotropic correction in Eq. (15.7) is a product of two Lorentz invariant quantities each of which

is most easily calculated in a different frame: the laboratory frame for πµν k̂µk̂ν , the local rest
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frame of the fluid cell for aαβΓαβ. This helps to avoid performing extensive Lorentz boosts and

3-D rotations for each fluid cell when coupling the rate to hydrodynamic simulations. Besides

speeding-up the calculation, it allows us to tabulate the effect of viscous corrections in terms of

the photon energy and local temperature, which can easily be used in phenomenological studies.

15.2.2 Diagrammatic approach

Calculating the photon production rate in the diagrammatic approach (as in Eq. 15.2) involves

evaluating the off-diagonal photon self-energy Πµ
12 µ(K). The calculation is divided into two disjoint

kinematic phase-space regions, referred to as the soft and the hard parts. Both are evaluated in

this section, starting with the soft part.

The soft part is affected by an infrared singularity associated with distant collisions whose

regulation requires the evaluation of Πµ
12 µ(K) in the HTL formalism. In equilibrium, the use

of the Kubo-Martin-Schwinger (KMS) relation simplifies this task significantly (For the fermion

propagator this relation leads to [195, 199, 200] S12(Q) =−e−Q0/TS21(Q).) In what follows we show

that a similar approach can be used even if the emitting medium has a momentum anisotropy.

KMS-like relation for the fermionic self-energy with anisotropic momentum distribu-
tions

Here, we prove that for the one-loop dressed quark propagator, a similar relation between

S12(Q) and S21(Q) as the one derived from the KMS relation in thermal equilibrium still holds

at leading order gs, for an arbitrary particle distribution function that has reflection symmetry in

momentum space. We follow the strategy of [191]: we calculate the one-loop off-diagonal quark

self-energies Σ12(P ) and Σ21(P ) and check that the relation Σ12(P ) = −Σ21(P ) holds in the hard

loop approximation K0, |K| ∼T �P 0∼O(gsT )(see Fig. 15.1). (Note that in this approximation,

e−p
0/T ∼ 1.)

p k p

p−k

1 2

1 1 2 2

Figure 15.1: Off-diagonal component Σ12(P ) of the one-loop quark self energy.

We can write Σ12(P ) as

− iΣ12(P ) =

∫
d4K

(2π)4
(tata)(igγµ)iS12(K)(−igγν)(−igµν∆12(P −K)). (15.8)
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In the color space,

tata = CF I. (15.9)

So,

Σ12(P ) = −2ig2CF

∫
d4K

(2π)4
S12(K)∆12(P −K), (15.10)

where S(K) and ∆(K) are the free fermion and scalar propagators [201],

S(K) = /K

[(
1

K2+iε
0

0 −1
K2−iε

)
+ 2πiδ(K2)

(
fF (K) −θ(−k0)+fF (K)

−θ(k0)+fF (K) fF (K)

)]
,

(15.11)

∆(K) =

[(
1

K2+iε
0

0 −1
K2−iε

)
− 2πiδ(K2)

(
fB(K) θ(−k0)+fB(K)

θ(k0)+fB(K) fB(K)

)]
. (15.12)

Inserting the propagators into Eq. (15.10) we find

Σµ
12(P ) = −2ig2

sCF

∫
d4K

(2π)4
Kµ2πiδ(K2)[−θ(−K0) + fF (K)]

×(−2πi)δ((P −K)2)[θ(−(P 0 −K0)) + fB(P −K)]

≈ −2ig2
sCF

∫
d4K

(2π)2
Kµδ(K2)[−θ(−K0) + fF (K)]

×δ(2P ·K)[θ(K0) + fB(K)]. (15.13)

In the last step, we assumed P ∼ O(gsT ) and K ∼ O(T ). Similarly, we can compute Σ21(P ) and

get,

Σµ
21(P ) = −2ig2

sCF

∫
d4K

(2π)4
Kµ2πiδ(K2)[−θ(K0) + fF (K)]

×(−2πi)δ((P −K)2)[θ(P 0 −K0) + fB(P −K)]

≈ −2ig2
sCF

∫
d4K

(2π)2
Kµδ(K2)[−θ(K0) + fF (K)]

×δ(2P ·K)[θ(K0) + fB(K)]. (15.14)

We assumed g � 1. Now, we let Kµ → −Kµ and assume that the particle distribution functions

are invariant under such a change of variable, fF (B)(K) = fF (B)(−K), we can get,

Σµ
12(P ) = 2ig2

sCF

∫
d4K

(2π)2
Kµδ(K2)[−θ(K0) + fF (K)]δ(2P ·K)[θ(−K0) + fB(K)]

= −Σµ
21(P ). (15.15)

With Eq. (15.15) we have

Σ12(Q) =
Σ12(Q)− Σ21(Q)

2
=

ΣAdv(Q)− ΣRet(Q)

2
= −iImΣRet(Q). (15.16)
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With this KMS-like relation, we can further show that the fluctuation dissipation theorem [195,

200] still holds in the HTL regime. In order to see this, we start with the Dyson equation: the

self-energy resummed propagator in the real-time formalism can be written as

G = G0 +G0ΣG, (15.17)

where both the propagators and self-energy are 2×2 matrices. The (12)-component of the resumed

propagator can be written as [200, 202],

G12(P ) = GR(P )Σ12(P )GA(P )

= (−2i)
Σ12(P )

Σ21(P )− Σ12(P )
ImGR(P ). (15.18)

In thermal equilibrium, Eq. (15.18) can be simplified to,

G12(P ) =
2i

eP 0/T+1
ImGR(P ). (15.19)

This is (a variant of) the fluctuation-dissipation theorem. For our case, with the KMS-like relation

(15.15) we see that in the hard loop limit P 0 � T it reduces to the simple form

G12(P ) = iImGR(P ). (15.20)

The KMS-like relation in Eq. (15.15) will also help one to prove the generalization to anisotropic

situations of the application of the sum rule techniques developed in [186].

Retarded quark self-energy near thermal equilibrium

In the hard loop approximation the retarded quark self-energy can be calculated as follows

[203]:

ΣRet(P ) =
CF
4
g2

∫
d3k

(2π)3

f(K)

|~k|
K · γ

K · P + iε
≡ γµΣµ

Ret(P ). (15.21)

Here γµ are the Dirac matrices and f is the following combination of fermionic and bosonic

distribution functions:

f(K) = 2(fF (K) + f̄F (K)) + 4fB(K). (15.22)

In chemical equilibrium at zero net baryon density, fF (K) = f̄F (K). Hence,

ΣRet(P ) = CFg
2

∫
kdk

2π2

dΩk

4π
(fF (K) + fB(K))

k̂ · γ
k̂ · P + iε

, (15.23)

where k̂µ = Kµ/k. The corresponding expressions in the momentum isotropic case are available

in [204]. To perform the calculation in the present case we insert the anisotropic distribution
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function Eq. (15.3) into Eq. (15.23):

Σµ
Ret(p

0, p) =
CFg

2

2π2

∫
kdk(fF0(k) + fB0(k))

∫
dΩk

4π

k̂µ

k̂ · P + iε

+
CFg

2

2π2

παβ
2(e+ P)

∫
kdk

[
fF0(k)(1−fF0(k)) + fB0(k)(1+fB0(k))

]
χ
( k
T

)
×

∫
dΩk

4π

k̂αk̂βk̂µ

k̂ · P + iε
. (15.24)

Note that the additional term is linear in παβ. We write

Σµ
Ret(Q) = Σµ

0(Q) +
παβ

2(e+ P)
Σαβµ

1 (Q) (15.25)

with

Σαβµ
1 ≡ CFg

2

2π2

∫
kdk

[
fF0(k)(1−fF0(k)) + fB0(k)(1+fB0(k))

]
χ
( k
T

)
×

∫
dΩk

4π

k̂αk̂βk̂µ

k̂ · P + iε
. (15.26)

For a given choice of χ
(
k
T

)
, the k integral can be evaluated and yields a pure number that we

denote as Cneq:

Σαβµ
1 (P ) =

CFg
2T 2

2π2
Cneq

∫
dΩk

4π

k̂αk̂βk̂µ

k̂ · P + iε
. (15.27)

Using tensor decomposition and the tracelessness and transversality of παβ again, we write

παβΣαβµ
1 (P ) = παβ

[
A1(P )p̂αp̂β p̂µ +B1(P )p̂αp̂βuµ + C1(P )(p̂αgβµ + p̂βgαµ)

]
, (15.28)

where p̂µ =P µ/p with p = |P |. The coefficients A1, B1, and C1 can be calculated to be

A1(p0, p) = m2
∞

2Cneq

π2

1

2p3

[
(5(p0)2 − 3p2)Q0

(
p0

p

)
− 5(p0)2 +

4

3
p2

]
B1(p0, p) = m2

∞
2Cneq

π2

1

2p4

[(
−5(p0)3 + 6p0p2 − p

p0
p3

)
Q0

(
p0

p

)
+ 5(p0)3 − 13

3
p0p2

]
C1(p0, p) = m2

∞
2Cneq

π2

1

2p3

[ (
(p0)2 − p2

)
Q0

(
p0

p

)
− (p0)2 +

2

3
p2

]
, (15.29)

where m2
∞ = CFg

2
sT

2/4 is the leading order asymptotic thermal quark mass, and Q0(z) = 1
2

ln(1+z
1−z )

is the Legendre function of the second kind.

We have now derived all the essential ingredients for the calculation of the photon emission

rate (15.2).
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Figure 15.2: (12)-component of one-loop photon self-energy with one HTL-resummed quark prop-
agator

Soft contribution

The proof of the KMS relation with anisotropic distribution functions Eq. (15.15) greatly

simplifies the following calculations. We can now calculate the soft part of the photon emission

rates using Eq.(15.2). The Feynman diagrams for a one-loop photon self-energy are shown in

Fig.15.2.

At leading order in gs, only one of the two quark propagators in the loop requires hard loop

resummation, indicated by the blob [205, 206, 207, 208]. We can write down the photon self-energy

according to the Feynman rules:

iΠµ
12µ(K) = e2

(∑
s

q2
s

)
NC

∫
d4Q

(2π)4
Tr
[
γµiS̃?21(Q)γµiS12(Q+K)

+γµiS21(Q−K)γµiS̃
?
12(Q)

]
. (15.30)

Here S12(Q+K) and S21(Q−K) are free quark propagators as in Eq. (15.11) and S̃?12(Q)|HL and

S̃?21(Q)|HL are hard-loop resummed propagators [206, 204, 200, 202]:

S̃?12(21)(Q) = S̃?Ret(Q)Σ12(21)(Q)S̃?Adv(Q). (15.31)

Using this together with the relations derived in Sec. 15.2.2 in the hard loop approximation,

Σ12(Q) = −Σ21(Q) = −iIm ΣR(Q). (15.32)

we can rewrite Eq. (15.30) as

iΠµ
12µ(K) = −e2

(∑
s

q2
s

)
NC

8

k
fF (K)

∫ qcut d3q

(2π)3
Im
(
KνS̃

?ν
Ret(Q)

)
. (15.33)

We used the kinematic assumptions Q ∼ O(gsT ), K ∼ O(T ) and gs � 1, relevant in the hard

loop approximation. We introduced the cut-off qcut on the magnitude of the quark momentum. It

is assumed that gsT � qcut � T . The cut-off qcut is the parameter that divides the phase-space

in two. The contribution from above the cut-off is calculated in the following section.
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Inserting Eqs. (15.1) and (15.25) into Eq. (15.33) and linearizing in παβ/2(e+ P) we obtain

iΠµ
12µ(K) = −e2

(∑
s

q2
s

)
NC

8

k
fF0(K)

∫ qcut d3q

(2π)3

[
Im
{K ·Q0

Q0 ·Q0

}
+

παβ
2(e+ P )

(
Im
{
−KµΣαβµ

1

Q0 ·Q0

}
+ Im

{K ·Q0

Q0 ·Q0

2Q0µΣαβµ
1

Q0 ·Q0

}
+k̂αk̂β(1−fF0(K))χ

( k
T

)
Im
{K ·Q0

Q0 ·Q0

})]
, (15.34)

where we used the shorthand Q0 = Q − Σ0(Q). The equilibrium part of the emission rate thus

reads

Γ0(K) = − e2

2(2π)3

(∑
s

q2
s

)
NC

8fF0(K)

k

∫ qcut d3q

(2π)3
Im

{
K ·Q0

Q0 ·Q0

}
(15.35)

while the viscous correction coefficient is given by

Γαβ(K) = − e2

2(2π)3

(∑
s

q2
s

)
NC

8

k
fF0(K)

×
∫ qcut d3q

(2π)3

[
k̂αk̂β(1−fF0(K))χ

( k
T

)
Im
{K ·Q0

Q0 ·Q0

}
−Im

{KµΣαβµ
1

Q0 ·Q0

}
+ Im

{K ·Q0

Q0 ·Q0

2Q0µΣαβµ
1

Q0 ·Q0

}]
. (15.36)

In Eqs. (15.35) and (15.36), our final results only depend on the retarded quark self-energy

ΣRet.

Hard contribution

When the internal quark momentum is larger than the cut-off momentum qcut, which satisfies

gsT � qcut � T , we can neglect the medium corrections to the internal quark propagator [198].

In this kinematic region, the photon emission rates from 2 → 2 scattering processes can be easily

calculated from relativistic kinetic theory, resulting in the following expression [207]:

k
dR

d3k
=

∑
channels

∫
p,p′,k′

1

2(2π)3
(2π)4δ(4)(P+P ′−K−K ′)|M|2f(P )f(P ′)(1±f(K ′)). (15.37)

Here
∫
p

is a shorthand notation for 1
(2π)3

∫
d3p
2p

(all incoming and outgoing particles are on-shell

and massless). Note that this expression is identical to what one obtains in the kinetic approach

discussed in the following subsection [196]. This is a consequence of the finite temperature Cut-

cosky rules for computing the imaginary part of the loop diagrams in Fig. 15.2 (without the HTL

insertion on the internal quark lines.)

In Fig. 15.3, we show the Feynman diagrams for the scattering amplitudes of the two contribut-

ing processes, Compton scattering, q+g → q+γ, q̄+g → q̄+γ, and quark-antiquark annihilation
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Figure 15.3: Compton scattering and pair annihilation. Compton scattering can involve gluons
scattering off quarks (shown) or antiquarks (not shown).

q+q̄ → γ+g. For Compton scattering |M|2 ∝ − s
t
− t

s
, which for pair annihilation |M|2 ∝ u

t
. We

follow the treatment of the phase space integrals from [185] treating the t-channel terms together

and the s-channel one separately. For the t-channel parts, we make a change of variable Q = P−K
so that the cut-off momentum in the exchange quark phase space can be explicitly implemented.

There is no cut on the phase space for the s-channel case.

Here we first treat the t-channel terms. We define q =p−k and ω= p−k (where p= |p| etc.)

such that an infrared cut-off can be placed on the exchanged momentum q. In order to use

the maximum symmetry in the pahse-space integrals, we first consider the momentum-integrated

photon emission rate for a single scattering channel:

R =

∫
p,p′,k,k′

(2π)4δ(4)(P+P ′−K−K ′)|M|2f(P )f(P ′)(1± f(K ′)). (15.38)

The integrals are most easily evaluated in the local fluid rest frame, using a coordinate system

with its z axis aligned with the photon momentum k and the x−z plane spanned by k and q. In

this frame, the integrand in Eq. (15.38) is determined by the momentum magnitudes p, p′, and k

and three angles, θkq, θp′q, and φp′ . The remaining angular integrals give trivial factors. We use

δ(3)(p+p′−k−k′) to perform the integration over k′:

R =

∫
p′2dp′q2dq k2dk d cos θkp d cos θp′q dφp′

2(2π)2

(2π)824pp′kk′
δ(p+p′−k−k′).

× |M|2f(p)f(p′)
(
1±f(p+p′−k)

)
. (15.39)
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The remaining δ-function is split in two by introducing a dummy integration:

δ(p+p′−k−k′) =

∫ +∞

−∞
dω δ(ω+k−p) δ(ω+p′−k′), (15.40)

with each factor rewritten to perform one of the polar angle integrations:

δ(ω+k−p′) =
p

qk
δ

(
cos θqk −

ω2−q2+2ωk

2qk

)
θ(ω+k), (15.41)

δ(ω+p′−k′) =
k′

qp′
δ

(
cos θp′q −

ω2−q2+2ωp′

2p′q

)
θ(ω+p′). (15.42)

Doing so yields

R =

∫
dq dp′ dk dω dφp′

1

8(2π)6
|M|2f(ω+k)f(p′)

(
1±f(ω+p′)

)
θ(ω+k)θ(ω+p′). (15.43)

Now we can return to the differential photon emission rate for the selected channel:

k
dR

d3k
=

1

16(2π)7k

∫
dq dp′ dωdφp′|M|2f(ω+k)f(p′)

(
1±f(ω+p′)

)
θ(ω+k)θ(ω+p′). (15.44)

The Mandelstam variables in the matrix elements are expressed in terms of these integration

variables as

t = ω2 − q2, s = −t− u, (15.45)

u = −2p′k(1− cos θkq cos θp′q + sin θkq sin θp′q cosφp′), (15.46)

with cos θkq and cos θp′q given by the poles of the δ-functions in Eqs. (15.41) and (15.42).

With our anisotropic distribution function (Eq. (15.1)), the integral over φp′ can be done

analytically. Splitting f = f0+δf and ignoring all δf terms we obtain the equilibrium rate Γ0 in

Eq. (15.7) which, after adding all three t-channel contributions, summing over quark species s and

over quark- and antiquark contributions to the Compton channel, reads

Γ0 =
N

16(2π)6k

∫ +∞

qcut

dq

∫ q

max{q−2k,−q}
dω

∫ +∞

(q−ω)/2

dp′

×
[(

1− 2p′k

ω2−q2
(1− cos θkq cos θp′q)

)
fF0(ω+k)fB0(p′)

(
1−fF0(p′+ω)

)
− 2p′k

ω2−q2
(1− cos θkq cos θp′q)fF0(ω+k)fF0(p′)

(
1+fB0(p′+ω)

)]
, (15.47)

where we implemented the infrared cutoff qcut in the q integral, and where

N = 16NCCF e
2g2
s

∑
s

q2
s = 28πNCαem

m2
∞
T 2

∑
s

q2
s . (15.48)

In (15.47) the first term in the square brackets accounts for Compton scattering, the second for

qq̄ annihilation.
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Now we add all contributions linear in δf , write the result as in Eq. (15.4) and read off the

coefficient Γµν . Contracting with aµν to obtain the viscous correction coefficient Γ1 = aµνΓ
µν in

Eq. (15.7) we get from the − s
t

part of |M|2 the Compton scattering contribution,

Γ
(−s/t)
1 =

N
16(2π)6k

∫ +∞

qcut

dq

∫ q

max{q−2k,−q}
dω

∫ +∞

(q−ω)/2

dp′

× fF0(ω+k) fB0(p′)
(
1−fF0(p′+ω)

)
×

{(
1− 2p′k

ω2−q2
(1− cos θkq cos θp′q)

)
×
[(

1−fF0(ω+k)
)
χ
(ω+k

T

)(
−1

2
+

3

2

(q cos θkq+k

ω+k

)2)
−fF0(p′+ω)χ

(p′+ω
T

)(
−1

2
+

3

2

1

(p′+ω)2

(
(p′ cos θp′q + q)2 cos2 θkq

+1
2
p′2 sin2 θkq sin2 θp′q

))
+
(
1+fB0(p′)

)
χ
(p′
T

)
×
(
−1

2
+

3

2

(
cos2 θkq cos2 θp′q + 1

2
sin2 θkq sin2 θp′q

))]
+

2p′k

ω2−q2
sin θkq sin θp′q

×
[(

1+fB0(p′)
)
χ
(p′
T

)3

2
cos θkq cos θp′q sin θkq sin θp′q

−fF0(p′+ω)χ
(p′+ω

T

)3

2

1

(p′+ω)2

×
(
p′ sin θkq sin θp′q cos θkq(p

′ cos θp′q+q)
)]}

, (15.49)
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while the u
t

part gives the contribution from qq̄ annihilation:

Γ
(u/t)
1 =

N
16(2π)6k

∫ +∞

qcut

dq

∫ q

max{q−2k,−q}
dω

∫ +∞

(q−ω)/2

dp′

× fF0(ω+k) fF0(p′)
(
1+fB0(p′+ω)

)
×

(
− 2p′k

ω2−q2

){
(1− cos θkq cos θp′q)

×
[(

1−fF0(ω+k)
)
χ
(ω+k

T

)(
−1

2
+

3

2

(q cos θkq+k

ω+k

)2)
+
(
1−fF0(p′)

)
χ
(p′
T

)(
−1

2
+

3

2

(
cos2 θkq cos2 θp′q + 1

2
sin2 θkq sin2 θp′q

))
+fB0(p′+ω)χ

(p′+ω
T

)(
−1

2
+

3

2

1

(p′+ω)2

(
(p′ cos θp′q + q)2 cos2 θkq

+1
2
p′2 sin2 θkq sin2 θp′q

))]
+ sin θkq sin θp′q

×
[(

1−fF0(p′))χ
(p′
T

)3

2
cos θkq cos θp′q sin θkq sin θp′q

+ fB0(p′+ω)χ
(p′+ω

T

)3

2

1

(p′+ω)2

(
p′ sin θkq sin θp′q cos θkq(p

′ cos θp′q+q)
)]}

.

(15.50)

For the s-channel diagrams we define q =p+p′ and ω= p+p′ and follow the same procedure:

Γ0 =
N

16(2π)6k

∫ +∞

k

dω

∫ ω

|2k−ω|
dq

∫ (ω+q)/2

(ω−q)/2
dp′

× 2p′k

ω2−q2
(1− cos θkq cos θp′q) fB0(ω−p′) fF0(p′)

(
1−fF0(ω−k)

)
, (15.51)
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where now cos θkq = q2−ω2+2ωk
2qk

and cos θp′q = q2−ω2+2ωp′

2qp′
. The s-channel contribution to the viscous

correction coefficient is

Γ1 =
N

16(2π)6k

∫ +∞

k

dω

∫ ω

|2k−ω|
dq

∫ (ω+q)/2

(ω−q)/2
dp′ fB0(ω−p′) fF0(p′)

(
1+fF0(ω−k))

× 2p′k

ω2−q2

{
(1− cos θkq cos θp′q)

×
[(

1−fF0(p′)
)
χ
(p′
T

)(
−1

2
+

3

2

(
cos2 θkq cos2 θp′q + 1

2
sin2 θkq sin2 θp′q

))
−fF0(ω−k)χ

(ω−k
T

)(
−1

2
+

3

2

(q cos θkq−k
ω−k

)2)
+
(
1+fB0(ω−p′)

)
χ
(ω−p′

T

)
×
(
−1

2
+

3

2

(q−p′ cos θp′q)
2 cos2 θkq + 1

2
p′2 sin2 θkq sin2 θp′q

(ω − p′)2

)]
+ sin θkq sin θp′q

×
[
−
(
1−fF0(p′)

)
χ
(p′
T

) 3

2
cos θkq cos θp′q sin θkq sin θp′q

+
(
1+fB0(ω−p′)

)
χ
(ω−p′

T

) 3

2

p′ sin θkq sin θp′q cos θkq(q−p′ cos θp′q)

(ω−p′)2

]}
. (15.52)

The remaining three integrals are straightforward to evaluate numerically, using e.g. Gaussian

quadrature.

One should note that strictly speaking this calculation is only valid for internal quark momenta

q∼O(T )� gsT [206, 207, 208] whereas the soft part (15.35,15.36) is valid only for q∼O(gsT )�T .

In Sec. 15.3.1 we will explore to what extent there exists a “window of insensitivity” gsT � qcut�T

where both approximations are simultaneously valid and can be matched to each other without

strong dependence on the cutoff qcut.

15.2.3 Kinetic approach

Alternatively, photon emission rates at leading-log order can also be calculated through the

kinetic approach, which in the equilibrated case has been shown to be equivalent to the diagram-

matic approach, up to higher order corrections in gs [207, 208, 198, 209]. For Compton scattering

and pair annihilation, logarithmic infrared divergences will be generated in t and u channels if one

uses free fermion propagators for the internal exchanged quark. This infrared sensitivity is cut

off by using the retarded hard loop resummed self-energy Σ(Q) in the internal quark propagator,

where calculating |M|2 in Eq. (15.3)

Here we will include the quark self-energy only in the internal quark propagators in t and u

channels but not in the s channel neither any of the quark propagators. This is because in the s-

channel, if the HTL self-energies were included in the internal quark line, the time-like virtual quark
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could go on-shell and become a long-lived quasi-particle excitation in the medium [209]. This is,

however, kinematically allowed even with massless external particles, and in inclusion of the HTL

self-energy with s-channel quark propagator would double-count these “2 → 1 joining processes”,

which should be treated explicitly, including Landau-Pomeranchuk-Migdal (LPM) interference

effects. To avoid this double-counting problem, it is easiest to simply use bare quark propagators

in this channel which is infrared finite and does not require any HTL regulation.

We note that in the u and t channels HTL resummation is required for consistency at leading

order in the soft exchange region but not for hard scatterings where it contributes only at next-

to-leading order in gs. As mentioned earlier, using the HTL resummed propagators everywhere

is not a consistent approximation scheme, but the inconsistencies are restricted to subleading

order in gs. In the diagrammatic approach described in the preceding subsection, we used free

internal quark propagators for hard collisions, consistently matched to matrix elements using

resummed internal propagators in the soft region. In the kinetic approach described in the present

section, we use HTL resummed matrix elements for the entire kinematic range in order to avoid

introducing artificial momentum cut-off. The difference amounts to different prescriptions for a

partial resummmation of higher order terms that are subleading in gs. For sufficiently small gs,

both approaches are expected to yield identical results; for moderate values of gs, the differences

between the approaches can be taken as a (rough) indicator for the theoretical uncertainties

associated with the leading logarithmic approximation on which our analysis is based.

According to the labeling in Fig. 15.3, the matrix element for Compton scattering in the QGP

can be written as∑
spins

∑
colors

|MComp|2eq = e2g2(tata)

×
{

16

|Q ·Q|2
(

2Re
[
(K ′ ·Q)(P ·Q∗)

]
− (K ′ · P )(Q ·Q∗)

)
− 64(K ′ · P )Re

[ Q ·Q′∗
(Q ·Q)(Q′∗ ·Q′∗)

]
+

16

|Q′ ·Q′|2
(

2Re
[
(K ′ ·Q′)(P ·Q′∗)

]
− (K ′ · P )(Q′ ·Q′∗)

)}
,

(15.53)

202



where Qµ = P µ + P ′µ and Q′µ = P µ −Kµ −Σµ
R(P−K). And the pair annihilation channel gives,∑

spins

∑
colors

|Mpair|2eq = e2g2(tata)

×
{

16

|Q′ ·Q′|2
(

2Re
[
(P ′ ·Q′)(P ·Q′∗)

]
− (P ′ · P )(Q′ ·Q′∗)

)
− 64(P ′ · P )Re

[ Q̃ ·Q′∗
(Q̃ · Q̃)(Q′∗ ·Q′∗)

]
+

16

|Q̃ · Q̃|2
(

2Re
[
(P ′ · Q̃)(P · Q̃∗)

]
− (P ′ · P )(Q̃ · Q̃∗)

)}
,

(15.54)

where Q′µ = P µ−Kµ−Σµ
Ret(P−K) and Q̃µ = P µ−K ′µ−Σµ

Ret(P−K ′). The matrix elements for

both channels involve the retarded quark self-energy Σµ
Ret calculated in Eqs. (15.24)-(15.29).

15.3 Results and discussion

In this section, we compare the photon emission rates calculated with the diagrammatic and the

kinetic approaches. We use χ
(
p
T

)
= (p/T )2 for the momentum dependence of δf in Eq. (15.1).

The λ dependence of is studied at the end of this section. For completeness we also compare

our rates with two other approaches currently on the market: the 2 ↔ 2 part of the ideal rate

from AMY [185], and the viscous calculation by Dusling using the forward-scattering dominance

approximation (FSDA) [188].

The calculation from AMY is formally equivalent to the diagrammatic approach described in

the previous section, but as will be seen in the next section, our treatment of the cut-off dependence

of the calculation makes our results differ from theirs when gs is not small. The use of FSDA allows

one to simplify enormously the photon rate calculation with respect to the full approach presented

here 32

To simplify the comparison of rates, it is convenient to plot the dimensionless equilibrium rates

and viscous correction coefficients Γ̃0 and Γ̃1 in Eq. (15.7) as functions of k/T for selected values

of the parameters gs. The diagrammatic approach has an extra dependence originating from the

cut-off introduced to divide the soft and hard phase space. We begin this section by looking at

this dependence.

32Dusling used a slightly different ansatz for the momentum anisotropy but his formula

k
dR

d3k
=
e2g2

s

(∑
s q

2
s

)
π(2π)3

f(K)T 2 ln

[
3.7388 k

g2
sT

]
(15.55)

can be straightforwardly to adapted to our case by replacing his ansatz in [188] for f(K) by our Eq. (15.1). The
results of doing so are labelled as “Dusling” in the figures below.
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15.3.1 Cut-off dependence in the diagrammatic approach

Recall that the cut-off introduced in the diagrammatic approach is artificial: the soft scattering

region below the cut-off where HTL self-energy is essential to regulate the infrared logarithmic

divergence should match smoothly to the hard scattering sector, where the medium correction

to the matrix elements are negligible. The value of the cut-off is formally to be chosen so that

gsT � qcut � T . Physically, the final photon emission rates should be completely insensitive to

this artificial cut-off. In practice this means that there should be a range of values for qcut between

gsT and T for which the rate is largely insensitive to qcut. On the other hand it also means that

the cut-off independence should quickly go away when the gsT scale overlaps with the T scale.

Both of these effects are discussed in this section.

Two different values of gs are used in this section. The first one, gs = 0.01, is chosen to be

well in the gs � 1 regime. The second value chosen is gs = 2 (αs ∼ 0.3), which is about the value

relevant for phenomenological studies related to current heavy ion collision experiments.

In Fig. 15.4, we show the scaled photon emission rates Γ̃0 and the viscous correction coeffi-

cient Γ̃1 from the diagrammatic approach at k/T = 10 as a function of the temperature-scaled

cut-off momentum qcut/T . Remember that tensor decomposition allowed us to extract the πµν

dependence from the viscous rate correction, and that what is plotted here is the coefficient of this

tensor decomposition, which only depends on k/T , gs and the cut-off. We see that at gs = 0.01

(Fig. 15.4(a) and (b)), there is an extended large plateau in the cut-off dependence for both the

equilibrium rate and the viscous correction. The plateau extends roughly between gs and 1, with

a minimum, indicated by a vertical line, around
√
gs. This means that in the small gs limit, we

have a wide window for choosing cut-off momentum, qcut/T , such that both the equilibrium rate

and the viscous correction are basically insensitive to the cut-off.

Increasing the value of gs shrinks the width of the plateau. At gs = 2, which is shown on

Fig. 15.4(c) and (d), the plateau becomes a local minimum; only a very small region of weak

cut-off dependence is left. The same behavior is seen in both equilibrium and viscous cases. This

behavior is not surprising considering that for gs > 1, the O(gsT ) energy scale overlaps with the

O(T ) scale. This means that there is no room to introduce a separation energy scale to treat hard

and soft parts differently. It is worth noting, however, that the local minimum for both equilibrium

and viscous rates still occurs at qcut/T ∼ O(
√
gs).

This prescription agrees with the one adopted in [192] but not with the approach taken by

AMY in [185]. AMY start from the observation that for sufficiently small coupling the qcut/T

dependences of the soft and hard contributions to the thermal photon rate must cancel exactly,

and that in the asymptotic regions (qcut/T � 1 for the soft contribution, qcut/T � 1 for the hard

one) the cutoff dependences of both contributions are linear in ln(qcut/T ) (with opposite slopes).
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Figure 15.4: (Color online) Cutoff dependence of the normalized equilibrium rate Γ̃0 (a,c) and
viscous correction coefficient Γ̃1 (b,d) from the diagrammatic approach at k/T = 10, for two
values of the strong coupling constant, gs = 0.01 (a,b) and gs = 2.0 (c,d). Horizontal dotted lines
indicate the value from the AMY parametrization [185] in (a,c) and from Dusling’s FSDA [188]
in (b,d). Vertical dotted lines indicate the positions of the minima of the numerical curves and of
qcut/T =

√
gs, respectively. See text for discussion.

They then eliminate the ln(qcut/T ) dependence of the total rate by adding these two asymptotic

logarithmic terms; this leads to the horizontal dotted lines in Figs. 15.4a,c and 15.5a,c. Figs. 15.4c

and 15.5c show, however, that for gs = 2 the cutoff dependences of the hard and soft contributions

to the rate are no longer linear in ln(qcut/T ) in the region qcut/T ∼ 1 where the soft and hard

contributions should be matched. For moderately strong coupling, evaluating both contributions

numerically and adding them as we do here therefore gives a larger result than the one obtained

by AMY. These observations hold for both low (k/T = 1, Fig. 15.5) and high (k/T = 10, Fig. 15.4)

photon energies.

Dusling [188] applies a similar prescription to Γ̃1 as AMY do for Γ̃0: He obtains a qcut-

independent result by exactly canceling the leading logarithmic qcut/T -dependences of the soft

and hard contributions to Γ̃1 in their respective asymptotic regions (as defined above). However,
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Figure 15.5: (Color online) Same as Fig.15.4, but for softer photons at k/T = 1.

an additional difference of his work to ours is his use of the FSDA. Fig. 15.4b shows that, even

for weak coupling gs� 1 where our calculations show a wide window of insensitivity of Γ̃1 to

qcut/T , this approximation leads to somewhat larger Γ̃1 values than our estimate. At stronger

coupling (gs = 2, Fig. 15.4d), this FDSA effect accidentally cancels against the approximation of

replacing the correct numerical cutoff dependence by its asymptotic form. At smaller photon

energy k/T = 1 this cancellation no longer happens at gs = 2 (Fig. 15.5d), instead it has moved to

gs' 0.01 (Fig. 15.5b).

15.3.2 Rate comparison

We now compare our results from diagrammatic approach with kinetic approach, along with

forward scattering dominant approximation (FSDA) calculations and AMY’s results when rele-

vant. For the diagrammatic approach we use qcut =
√
gsT for the momentum cut-off, since this

value is generally close to the region of minimum cut-off dependence.

We show both the scaled equilibrium rate Γ̃0 (Fig. 15.6) and the viscous correction Γ̃1 (Fig. 15.7),

for two values of the coupling constant, gs = 0.1 and gs = 2. For gs = 0.1 in Fig. 15.6(a), we find
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Figure 15.6: (Color online) The temperature-scaled equilibrium photon emission rate Γ̃0 as a
function of k/T for relatively weak (gs = 0.1, (a)) and moderately strong coupling (gs = 2, (b)).
Results are shown for the diagrammatic approach, the kinetic approach, AMY’s parametrization
[185], and for the forward scattering dominance approximation (FSDA) [188] as labelled. In the
lower panels we show the ratio between these rates and the one from the diagrammatic approach
are shown on a linear scale.

the equilibrium photon emission rates calculated from all four approaches agree very well with

each other. The difference between our results and AMY is within 2%. The result from FSDA

only deviates from the others when k/T < 1.

In Fig. 15.6(b), we plot the equilibrium rates for gs = 2.0. All four approaches produce similar

k/T dependence for k/T > 5. The relative ratios show that the equilibrium rates from kinetic

approach is systematically ∼ 25% smaller compared to the results from diagrammatic approach

over the whole k/T range from 0.5 to 40. This difference is not surprising considering that

the kinetic and diagrammatic approaches have only been shown to be equivalent up to O(gs)

corrections. Recall that the difference between AMY and our diagrammatic approach is due to

the different treatment to the cut-off dependence. In the asymptotic limit of k/T , AMY’s and

FSDA results agree with our calculations from kinetic approach within few percent. Both AMY

and FSDA results start to deviate from kinetic approach for k/T < 10, where the higher order

corrections become important. Result with FSDA works very well for large k/T , but becomes

unreliable and turns to negative for k/T < 1.

We now turn to the viscous correction, Γ̃1. In Fig. 15.7a, at small coupling limit, gs = 0.1,

results from diagrammatic approach agrees well with kinetic approach when k/T > 5. The

difference is within 2%. The results begin to deviate from each other significantly for k/T < 2.

Results with FSDA again reproduces the correct k/T dependence for the viscous correction, but

overestimates the absolute value by ∼ 10% compared to the other two approaches. We checked

that such difference is coming from the forward scattering dominance approximation and does not

vanish in the asymptotic small coupling limit.
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Figure 15.7: (Color online) Similar to Fig. 15.6 but for the viscous correction coefficient Γ̃1.

In Fig. 15.7b, at gs = 2.0, the situation is similar to the equilibrium one. Viscous corrections

from our diagrammatic approach is systematically about 25% larger than kinetic approach. For

k/T < 1, the results begin to deviate significantly from each other. Results from FSDA gives

about 25% larger viscous corrections compared to kinetic approach. The good agreement with

diagrammatic approach is merely a coincident at gs = 2.0.

The difference between the kinetic and diagrammatic approach can be considered as a lower

bound on the theoretical uncertainty in our rates. Since the results from the diagrammatic ap-

proach additionally depend on the choice of the cut-off. A more conserved estimation of the

uncertainty should also include the variation by changing the cut-off around the minimum.

15.3.3 Photon energy dependence of the ratio Γ̃1/Γ̃0

All results presented up to this point assumed that the function χ
(
p
T

)
appearing in Eq.(15.3)

had a quadratic form (χ
(
p
T

)
= (p/T )2). However the actual power dependence in χ

(
p
T

)
is de-

termined by the underlying kinetic theory. Depending on the energy dependence of the collision

kernels, the p/T -dependence of χ
(
p
T

)
is expected to be between linear and quadratic [132].

In Fig. 15.8, we compare the viscous correction factors Γ̃1(k/T ) with χ
(
p
T

)
= p/T and

χ
(
p
T

)
= (p/T )2. In the right panel, we find that although the viscous correction to the photon

emission rate is a result of integrating the distribution functions of the reacting particles over

their phase spaces, the ratio of viscous correction to equilibrium rates exhibits very good power

law dependence to k/T . Performing a linear fit of the results for k/T > 5, we find that the power

dependence is very close to λ for both λ = 1 and λ = 2, as shown in the right panel of Fig. 15.8.
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Figure 15.8: (Color online) The viscous correction coefficient Γ̃1 (a) and its ratio Γ̃1/Γ̃0 to the
thermal equilibrium emission rate (b) as functions of k/T at gs = 2.0 for two values λ, λ= 1 and 2
(see text for details). The slope parameters in panel (b) were obtained by a linear fit of the log-log
plot for k/T > 5.

15.4 Chapter conclusions

In this chapter, we calculated the photon production rates from 2↔ 2 scattering processes in a

nearly thermalized quark-gluon plasma with underlying particle momentum distribution functions

as in Eq. (15.1). Numerical calculations of the rates from the diagrammatic and kinetic approaches

were compared in the weak coupling and realistic moderate coupling limit. A KMS-like relation

has been proved in the hard loop limit not only with our assumption of the particle momentum

distribution function in Eq. (15.1), but also for any local momentum distribution that is mirror

symmetric under momentum reflection in the local rest frame. This relation simplifies the viscous

rate calculation considerably.

We compared our equilibrium rates and viscous corrections from both approaches with well-

known parametrization from AMY [185] as well as the results using the forward scattering dom-

inance approximation introduced in [188]. In the diagrammatic approach, we investigated the

cut-off dependence for both equilibrium rates and viscous corrections in the small gs = 0.01 limit

as well as for gs = 2.0, representing the realistic situation in relativistic heavy-ion collisions. For

small coupling we found a plateau of approximate cut-off independence for matching the soft and

hard contributions for both equilibrium rates and their viscous corrections. For strong coupling,

this plateau disappears, and the rates have to be matched at the point of minimal cut-off sen-

sitivity near qcut/T ∼ √gs. Finally, we found that the momentum dependence in the rate of

the viscous correction to the equilibrium rate is very close to the momentum dependence in the

off-equilibrium particle distribution for quarks and gluons.
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We finally remark that the current calculations only considered 2 ↔ 2 scattering processes.

In order to obtain a complete leading order O(e2g2
s) photon emission rate and its corresponding

viscous correction, we must additionally calculate the Bremsstrahlung processes induced by soft

collinear collisions, modified by the LPM effect [185].
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Chapter 16: Thermal photon emission rates: HG photon rates

16.1 Massive Yang-Mills theory

In the hadronic phase, we consider photon production through mesonic interactions. Photon

production through reaction with baryons are not included in this effective theory yet. Since

the interactions between mesons have non-perturbative nature, we need to use effective theory

instead of solving QCD from first principles. The effective Lagrangian with mesonic degrees of

freedom in the hadronic phase should preserve the intrinsic symmetry of the underlying QCD

theory. The chiral symmetry is not exactly preserved due to the small mass of light quarks in the

QCD Lagrangian. But since our relevant energy scale is on the order of 100 MeV, we can expect

the chiral currents to be approximately conserved [210, 211].

In order to consider the interactions between different species of mesons, including the strange

sector, we assume a global chirally SU(3)L × SU(3)R symmetry. Similar to the non-linear sigma

model, we have

U3 = U = exp

[
2i

Fπ

∑
a

λaψa√
2

]
= exp

[
2i

Fπ
ψ

]
, (16.1)

where ψa are real fields, Fπ =
√

2fπ, fπ = 93 MeV is the π decay constant and λa(a = 1, . . . , 8)

are the Gell-Mann matrices. ψ is the pseudo-scalar octet,

ψ =


π0
√

2
+ η8√

6
π+ K+

π− − π0
√

2
+ η8√

6
K0

K− K̄0 −2η8√
6

 , (16.2)

Similarly, we can include the vector and axial vector octets for vector and axial vector mesons into

the effective theory, respectively. The vector meson octet can be written as,

V = λaVa =


ρ0
√

2
+ ω8√

6
ρ+ K∗+

ρ− − ρ0
√

2
+ ω8√

6
K∗0

K∗− K̄∗0 −2ω8√
6

 . (16.3)

For axial vector mesons, we will only consider the a1 meson, which occupies at the same place

as the π in the pseudo-scalar octet. The vector and axial vector mesons are regarded as massive
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gauge fields in our theory and are coupled to the light pseudo-scalar mesons through the covariant

derivative,

DµU = ∂µU − ig0A
L
µU + ig0UA

R
µ , (16.4)

where,

ALµ =
1

2
(Vµ + Aµ) and ARµ =

1

2
(Vµ − Aµ). (16.5)

The complete Massive Yang-Mills Lagrangian [212] can be written as

L =
1

8
F 2
πTr{DµUD

µU †}+
1

8
F 2
πTr{M(U + U † − 2)}

−1

2
Tr{FL

µνF
Lµν + FR

µνF
Rµν}+m2

0Tr{ALµALµ + ARµA
Rµ}

+γTr{FL
µνUF

RµνU †} − iξTr{DµUDνU
†FLµν +DµU

†DνUF
Rµν}, (16.6)

where

FL,R
µν = ∂µA

L,R
ν − ∂νAL,Rµ − ig0[AL,Rµ , AL,Rν ], (16.7)

M =
2

3

[
m2
K +

1

2
m2
π

]
− 2√

3
(m2

K −m2
π)λ8. (16.8)

The second line of Eq. (16.6) represents the kinetic and mass terms of the massive gauge fields.

m0, g0, γ, and ξ are the parameters of the theory. The third line is added for phenomenological

considerations [213]. The electromagnetic interaction is introduced by requiring an additional

symmetry under local U(1) transformations [214, 213]:

δU = iε[Q,U ], (16.9)

δAL,R
µ = iε[Q,AL,R

µ ] +
1

g0

Q∂µε, (16.10)

where ε(x) is the infinitesimal U(1) transformation parameter and

Q =
λ3

2
+

λ8√
12

=

 2
3

−1
3

−1
3

 , (16.11)

is the quark charge matrix. The Lagrangian (16.6) is invariant under U(1) transformation except

for the mass term of the vector and axial vector fields,

δL = m2
0

2

g0

∂µεTr{Q(AL,µ + AR,µ)}. (16.12)

In order to ensure the Lagrangian is invariant under U(1), we need to add three additional terms

[214, 213]

L1 + L2 + L3 =
−2em2

0

g0

Tr{Q(ALµ + ARµ )}Bµ − 1

4
(∂µBν − ∂νBµ)2 +

2e2m2
0

g2
0

BµB
µTr{Q2}, (16.13)
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Here Bµ stands for as the electromagnetic field. It transforms as

δBµ =
1

e
∂µε. (16.14)

The variation of Bµ in δL1 cancels δL in Eq. (16.12). The variations of ALµ and ARµ in δL1 are

canceled by δL3. In the end, the total Lagrangian L + L1 + L2 + L3 is invariant under U(1)

transformation [214, 213].

However, if we expand L in Eq. (16.6) in terms of pseudo-scalar, vector and axial vector fields,

we will get an unphysical mixing term, ∝ ∂µψA
µ from Tr{DµUD

µU †}. In order to get rid of this

mixing term, we need to perform the following transformation, with γ being the coupling constant

in front of the first term in the third line of Eq. (16.6):

Vµ →
Ṽµ√
1− γ , (16.15)

Aµ →
Ãµ√
1 + γ

+
g0F̃π
2m2

0

(
∂µψ̃ −

ig̃

2
[Ṽµ, ψ̃]

)
, (16.16)

ψ → ψ̃

Z
, (16.17)

g̃ =
g0√

1− γ , (16.18)

Z =

√
1− g̃2F̃ 2

π

4m2
V

, F̃π =
Fπ
Z

= 135MeV, (16.19)

mV =
m0√
1− γ ,mA =

m0

Z
√

1 + γ
. (16.20)

We denote the ψ̃, Ṽµ, and Ãµ as the physical fields and mV and mA are the physical vector and axial

vector meson masses, respectively. With this transformation, we find that L1 can be rewritten as,

L1 = −2em2
V

g̃
Bµ

[
ρµ0√

2
+
ωµ8√

6

]
= −Bµ(Cρm

2
ρρ
µ
0 + Cωm

2
ωω

µ + Cφm
2
φφ

µ), (16.21)

which has the same form as in the Vector Meson Dominance (VMD) Model [215]. In principle, the

coefficients Cρ, Cω, and Cφ are determined by mV and g̃. But we will take them as free parameters

in the model and fit them to experimental measurements.

To compute the photon production from 2 → 2 scattering processes, we need to expand the

Lagrangian L to get the interaction vertices:

LV Aψ =
iη2g̃

2
Tr{(∂µÃν − ∂νÃµ)[∂µṼ ν , ψ̃]}+

iη1g̃

2
Tr{(∂µṼν − ∂νṼµ)[Ãµ, ∂νψ̃]}, (16.22)

LV ψψ =
ig̃

2
Tr{Ṽµ[∂µψ̃, ψ̃]}+

ig̃δ

2m2
V

Tr{(∂µṼν − ∂νṼµ)∂µψ̃∂νψ̃}, (16.23)
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LV V V =
ig̃

2
Tr{(∂µṼν − ∂νṼµ)Ṽ µṼ ν}, (16.24)

LV V ψψ = − g̃
2

8
Tr{[Ṽµ, ψ̃]2}+

g̃2δ

4m2
V

Tr{[Ṽµ, Ṽν ]∂µψ̃∂νψ̃}

+
g̃2δ

4m2
V

Tr{(∂µṼν − ∂νṼµ)([Ṽ µ, ψ̃]∂νψ̃ + ∂µψ̃[Ṽ ν , ψ̃])}

+
g̃2C4

2
Tr{(∂µṼν − ∂νṼµ)ψ̃(∂µṼ ν − ∂νṼ µ)ψ̃ − (∂µṼν − ∂νṼµ)2ψ̃2},

(16.25)

where

η1 =
g̃F̃π
2m2

V

√
1− γ
1 + γ

+
4ξZ2

F̃π
√

1 + γ
, (16.26)

η2 =
g̃F̃π
2m2

V

√
1− γ
1 + γ

− 4γ

F̃πg̃
√

1 + γ
, (16.27)

δ = 1− Z2 − 2Z4ξg̃

(1− Z2)
√

1− γ , (16.28)

C4 =
g̃2F̃ 2

π

16m4
V

(
1 + γ

1− γ

)
− γ

m2
V (1− γ)

+
2γ

g̃2F̃ 2
π (1− γ)

. (16.29)

Using the properties of the Gell-Mann matrices, we can evaluate the commutator and trace in

Eqs. (16.22) to (16.25). For the V ψψ vertex, we obtain,

LV ψψ = − g̃√
2

(
(1− δ)fabc + i

δ

2
dabc
)
Ṽ a
µ ∂

µψ̃bψ̃c, (16.30)

where fabc and dabc are the antisymmetric and symmetric structure constants of the SU(3) group.

Next, we use Eqs. (16.2) and (16.3) to express the ψ̃a and Ṽ a fields in terms of the physical

particle fields. For the π±,0 and ρ±,0, one finds, interactions,

Lρ0,π±,π∓ = − ig̃√
2

(
1− δ

2

)
ρ0
µ(π+∂µπ− − π−∂µπ+), (16.31)

Lρ+,π−,π0 = − ig̃√
2

(
1− δ

2

)
ρ+
µ (π−∂µπ0 − π0∂µπ−), (16.32)

Lρ−,π+,π0 = − ig̃√
2

(
1− δ

2

)
ρ−µ (π0∂µπ0 − π+∂µπ0). (16.33)

Similarly, we can also get the interaction vertices for K±, K0, K̄0, and ρ±,0 mesons from LV ψψ in

Eq. (16.30).

The interactions between pseudo-scalar, vector, and axial vector mesons in Eq. (16.22) can be

simplified as

LV Aψ = −η2g̃√
2
fabc(∂µÃ

a
ν − ∂νÃaµ)(∂µṼ bν)ψ̃c +

η1g̃√
2
fabcÃaµ(∂µṼ

b
ν − ∂νṼ b

µ )(∂νψ̃c). (16.34)
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So the interactions between π±,0, ρ±,0, and a±,01 can be derived as

Lρ0,a+
1 ,π
− = −iη2g̃√

2
[(∂µa

+
1ν − ∂νa+

1µ)(∂µρ0ν)π−] +
iη1g̃√

2
a+µ

1 (∂µρ
0
ν − ∂νρ0

µ)(∂νπ−), (16.35)

Lρ0,a−1 ,π
+ = +

iη2g̃√
2

[(∂µa
−
1ν − ∂νa−1µ)(∂µρ0ν)π+]− iη1g̃√

2
a−µ1 (∂µρ

0
ν − ∂νρ0

µ)(∂νπ+), (16.36)

Lρ+,a−1 ,π
0 = −iη2g̃√

2
[(∂µa

+
1ν − ∂νa+

1µ)(∂µρ+ν)π0] +
iη1g̃√

2
a+µ

1 (∂µρ
−
ν − ∂νρ−µ )(∂νπ0), (16.37)

Lρ−,a+
1 ,π

0 = +
iη2g̃√

2
[(∂µa

+
1ν − ∂νa+

1µ)(∂µρ−ν)π0]− iη1g̃√
2
a+µ

1 (∂µρ
−
ν − ∂νρ−µ )(∂νπ0). (16.38)

The interactions between three vector mesons in Eq. (16.24) can be rewritten as

LV V V =
ig̃

2
√

2
(dabc + ifabc)(∂µṼ

a
ν − ∂νṼ a

µ )Ṽ bµṼ cν . (16.39)

This helps us to get for the ρ+, ρ−, and ρ0 interactions,

Lρ+ρ−ρ0 =
ig̃√

2
[(∂µρ

+
ν − ∂νρ+

µ )ρ−µρ0ν − (∂µρ
−
ν − ∂νρ−µ )ρ+µρ0ν + (∂µρ

0
ν − ∂νρ0

µ)ρ+µρ−ν ]. (16.40)

Once we have the interaction vertices, we can derive the corresponding Feymann rules for the

interaction vertices.

In the Massive Yang-Mills theory, we have 5 unknown parameters in the theory, m0, ξ, γ, g̃,

and Cρ,
33 which need to be fixed in terms of the experimentally measured vector and axial vector

meson masses and their decay widths, (mρ,Γρ→ππ) and (ma1 , Γa1→πρ). For ρ0 we have

mρ =
m0√
1− γ , (16.41)

Γρ→ππ =
g̃2
(
1− δ

2

)2

12πm2
ρ

((mρ

2

)2

−m2
π

)3/2

. (16.42)

For the a1 axial vector meson, one finds,

ma1 =
m0

Z
√

1 + γ
, (16.43)

Γa1→πρ =
1

12πm2
a1

|qaπ|
[

2g2
a1ρπ

+

(
ga1ρπ

(
Eρ
mρ

)
+
ma1

mρ

|qaπ|2ha1ρπ

)2
]
, (16.44)

where ga1ρπ = g̃√
2
[(η2 − η1)Eρma1 + η1m

2
ρ], ha1ρπ = g̃√

2
(η1 − η2), Eρ =

m2
a1

+m2
ρ−m2

π

2ma1
, and |qaπ| =√(

m2
a1

+m2
ρ−m2

π

2ma1

)2

−m2
ρ.

33Cω and Cφ can be fit to the decay branch of ω and φ mesons, respectively. It turns out that they are ∼ 10
smaller compared to Cρ. So the photon emission processes that involve these particles are subdominant and hence
being ignored here.
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Using Eq. (16.41) to Eq. (16.44), we can get the vaules of m0, ξ, γ, and g̃,

g̃ = 6.4483, γ = −0.2913, ξ = 0.0585,m0 = 0.875. (16.45)

The parameter Cρ can be fixed using the ρ meson decay branch, ρ→ e+e−,

Γρ→e+e− =
αEMC

2
ρmρ

3
(16.46)

from which one can get Cρ = 0.059.

Now, all the parameters in the model have been fixed. We can use this theory to calculate the

matrix elements for various 2 → 2 scattering processes involved in photon production. There are

in total 8 important reaction channels in the hadronic phase that will produce photons. They are

listed here:

• π + ρ→ π + γ,

• π + ρ→ ω → π + γ,

• π + π → ρ+ γ,

• π + ρ→ π + γ,

• ρ→ π + π + γ,

• π +K∗ → K + γ,

• π +K → K̄∗ + γ,

• ρ+K → K̄ + γ,

• K +K∗ → π + γ.

16.2 Kinematics: 2 → 2 scattering processes

According to relativistic kinetic theory, the real photon emission rates from 1 + 2 → 3 + γ

processes can be calculated from the following phase space integrals:

Eq
dR

d3q
=

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3

2π

2
|M|2δ(4)(p1 + p2 − p3 − q)

× f(p1)f(p2)(1± f(p3)). (16.47)
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In the local rest frame, following the same procedure as our derivations in the QGP phase from

the last chapter, we assume for the particle distribution functions the following form:

f(p) = f0(E) + δf = f0(E) + f0(E)(1± f0(E))
p̂µp̂νπµν
2(e+ P )

χ
( p
T

)
, (16.48)

Here χ(p) is only a function of the magnitude of p, χ(p/T ) ∝ (p/T )α and 1 ≤ α ≤ 2. Different

from the derivation in the last chapter, the distribution functions for mesons we considered here

contain non-zero rest masses in their equilibrium distribution functions. We include (1 − f0(E))

factor in the derivations for the bayronic case for future extension.

In Appendix F.1, we work out the phase space limits in detail. Eq. (16.47) gives

Eq
dR

d3q
=

1

32(2π)8q

∫ ∞
smin

ds

∫ tmax

tmin

dt

∫ ∞
E1min

dE1

∫ E2max

E2min

dE2

∫ 2π

0

dφ1

∑
φ2=φ2±

×|M |2 1√
aE2

2 + 2bE2 + c
f(pµ1)f(pµ2)(1± f(pµ3)), (16.49)

where the coefficients a, b, and c are specified in Appendix F.1. We now expand the particle

distribution functions in Eq. (16.48):

f(pµ1)f(pµ2)(1± f(pµ3)) =

(
f0(E1) + f0(E1)(1± f0(E1))

p̂1µp̂1νπ
µν

2(e+ p)
χ
(p1

T

))
×

(
f0(E2) + f0(E2)(1± f0(E2))

p̂2µp̂2νπ
µν

2(e+ p)
χ
(p2

T

))
×

(
1± f0(E3)± f0(E3)(1± f0(E3))

p̂3µp̂3νπ
µν

2(e+ p)
χ
(p3

T

))
= f0(E1)f0(E2)(1± f0(E3)) +

πµν

2(e+ p)
×[

f0(E1)(1± f0(E1))f0(E2)(1± f0(E3))p̂1µp̂1νχ
(p1

T

)
+ f0(E1)f0(E2)(1± f0(E2))(1± f0(E3))p̂2µp̂2νχ

(p2

T

)
± f0(E1)f0(E2)f0(E3)(1± f0(E3))p̂3µp̂3νχ

(p3

T

)]
+ O((δf)2). (16.50)

Using the tensor projection operator Eq. (15.6), the photon production rate can be decomposed

into a dominant equilibrium part and its corresponding first order viscous correction,

q
dR

d3q
= Γ0(q, T ) +

πµν q̂µq̂ν
2(e+ P )

aαβΓαβ(q, T ), (16.51)

where

Γ0 =
1

16(2π)7q

∫ ∞
smin

ds

∫ tmax

tmin

dt

∫ ∞
E1min

dE1

∫ E2max

E2min

dE2

|M |2 1√
aE2

2 + 2bE2 + c
f0(E1)f0(E2)(1∓ f0(E3)). (16.52)
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and the off-equilibrium contribution is

Γ1(q, T ) = aµνΓ
µν(q, T )

=
1

16(2π)7q

∫ ∞
smin

ds

∫ tmax

tmin

dt

∫ ∞
E1min

dE1

∫ E2max

E2min

dE2

× |M |2 1√
aE2

2 + 2bE2 + c
f0(E1)f0(E2)(1± f0(E3))

×
[
(1± f0(E1))χ

(p1

T

)(
−1

2
+

3

2
cos2 θ1

)
+(1± f0(E2))χ

(p2

T

)(
−1

2
+

3

2
cos2 θ2

)
±f0(E3)χ

(p3

T

)(
−1

2
+

3

2

(p1 cos θ1 + p2 cos θ2 − Eq)2

p2
3

)]
. (16.53)

The remaining 4 integrals in Eq. (16.52) and Eq. (16.53) have to be calculated numerically. For

given s, t, E1, E2, we have

p1(2,3) =
√
E2

1(2,3) −m2
1(2,3) (16.54)

E3 = E1 + E2 − Eq (16.55)

cosθ1 =
−s− t+m2

2 +m2
3 + 2E1Eq

2p1Eq
(16.56)

cosθ2 =
t−m2

2 + 2E2Eq
2p2Eq

(16.57)

16.3 Kinematics: 1 → 3 decay processes

During the evolution of the hot dense hadronic phase, ρ mesons can be regenerated through

π + π scattering and then they decay back to π + π in the medium. The ρ meson has a small

branching ratio to decay into the π+π+γ final state, generating a photon. This contribution can

not be subtracted experimentally from the total photon yield. So in the calculation of the direct

photons, one must include the contributions from these ρ in-medium decays. For the process

ρ → π + π + γ, although its matrix elements can be easily obtained from π + ρ → π + γ using

crossing symmetry , the structure of the kinematic integration limits is rather different from that

of the 2→ 2 scattering processes. So we here deal with it differently.

The differential decay rate of an unstable particle A to a given final state is [216],

dΓ =
1

2mA

(∏
f

d3pf
(2π)32Ef

)
|M(mA → pf )|2(2π)4δ(4)(pA −

∑
f

pf ). (16.58)

So the total decay rate of the process 1→ 2 + 3 + γ can be calculated by,

Γ =
1

2E1

∫
d3p2

(2π)32E2

d3p3

(2π)32E3

d3q

(2π)32Eq
|M|2(2π)4δ(4)(p1 − p2 − p3 − q). (16.59)
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The decay rate is formally defined by

Γ =
number of decays per unit time

number of particles present
. (16.60)

We can get the photon emission rate per unit volume as

R =
1

V

∑
E1

dE1g(E1)f(E1)Γ, (16.61)

where g(E) is the density of the states and f(E) is the thermal distribution function. In the

thermodynamic limit, V →∞, we have,∑
E1

dE1g(E1)→
∫
d3x

d3p1

(2π)3
= V

∫
d3p1

(2π)3
. (16.62)

Thus, the differential photon emission rate can be calculated as,

Eq
d3R

d3q
=

∫
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

2π

2
δ(4)(p1 − p2 − p3 − q)|M|2

× f(E1)(1± f(E2))(1± f(E3)). (16.63)

After some simplifications shown in Appendix F.2, we obtain,

Eq
dR

d3q
=

1

32(2π)8Eq

∫ s′max

s′min

ds′
∫ t′max

t′min

dt′
∫ ∞
E1min

dE1

∫ E2max

E2min

dE2

∫ 2π

0

dφ1

∑
φ2=φ2±

|M|2f(E1)(1± f(E2))(1± f(E1 + E2 − Eq))
1√

a′E2
2 + 2b′E2 + c′

, (16.64)

where the definitions of s′, t′ and the coefficients a′, b′, and c′ are specified in Appendix F.2. The

product of distribution functions can be expanded to linear order in πµν as follows:

f(p1)(1± f(p2))(1± f(p3)) =[
f0(E1) + f0(E1)(1± f0(E1))

p̂µ1 p̂
ν
1πµν

2(e+ P )
χ
(p1

T

)]
×
[
1± f0(E2)± f0(E2)(1± f0(E2))

p̂µ2 p̂
ν
2πµν

2(e+ P )
χ
(p2

T

)]
×
[
1± f0(E3)± f0(E3)(1± f0(E3))

p̂µ3 p̂
ν
3πµν

2(e+ P )
χ
(p3

T

)]
= f0(E1)(1± f0(E2))(1± f0(E3))

[
1 +

+
πµν

2(e+ P )

(
(1± f0(E1))p̂µ1 p̂

ν
1χ
(p1

T

)
± f0(E2)p̂µ2 p̂

ν
2χ
(p2

T

)
±f0(E3)p̂µ3 p̂

ν
3χ
(p3

T

))]
(16.65)
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The photon production rate can now be written in the form of Eq. (16.51), with

Γ0 =
1

16(2π)7q

∫ s′max

s′min

ds′
∫ t′max

t′min

dt′
∫ ∞
E1min

dE1

∫ E2max

E2min

dE2

|M|2 1√
a′E2

2 + 2b′E2 + c′
f0(E1)(1± f0(E2))(1± f0(E3)) (16.66)

and

Γ1(q, T ) = aµνΓ
µν(q, T )

=
1

16(2π)7q

∫ s′max

s′min

ds′
∫ t′max

t′min

dt′
∫ ∞
E1min

dE1

∫ E2max

E2min

dE2

× |M|2 1√
a′E2

2 + 2b′E2 + c′
f0(E1)(1± f0(E2))(1± f0(E3))

×
[
(1± f0(E1))χ

(p1

T

)(
−1

2
+

3

2
cos2 θ1

)
±f0(E2)χ

(p2

T

)(
−1

2
+

3

2
cos2 θ2

)
±f0(E3)χ

(p3

T

)(
−1

2
+

3

2

(p1 cos θ1 − p2 cos θ2 − Eq)2

p2
3

)]
. (16.67)

The remaining four integrals in Eqs. (16.66) and (16.67) have to be calculated numerically. For

given s′, t′, E1, E2, we have

p1(2,3) =
√
E2

1(2,3) −m2
1(2,3) (16.68)

E3 = E1 − E2 − Eq (16.69)

cosθ1 =
−s′ − t′ +m2

2 +m2
3 + 2E1Eq

2p1Eq
(16.70)

cosθ2 =
−t′ +m2

2 + 2E2Eq
2p2Eq

(16.71)

16.4 Numerical Results

In this section we perform the remaining four integrals in Eqs. (16.52, 16.53, 16.66, 16.67)

numerically, using gaussian quadratures to achieve good accuracy, and graph the results.

16.4.1 Thermal equilibrium rates

At the end of Sec. 16.1, we listed the eight dominant photon production channels in the

hadronic phase. We will here compare them channel by channel, as well as the total equilibrium

emission rates against parameterizations given in [182]. Each reaction channel involves 4 to 5

Feynman diagrams which need to be summed up coherently. So the squared matrix elements
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usually contain 16 to 25 terms for each channel, and each term is quite lengthy. In order to reduce

coding typos, we use Mathematica with the Feyncalc package to perform the contractions for all

the terms in the matrix elements squared. The Ward identities are checked for each channel.
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Figure 16.1: Check our thermal photon emission rate (open dots) Γ0(q, T ) for channel π + ρ →
(a1, ρ, π)→ π + γ against the parameterization (solid curve) from [182] at four different tempera-
tures ranging from 120 MeV to 240 MeV.
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Figure 16.2: Similar as Fig. 16.1 but for channel π + ρ→ ω → π + γ (t-channel only)

In Fig. 16.1, we show the photon emission rate for the reaction channel π+ ρ→ π+ γ at four

different temperatures. In the left panel, we compare our numerical results (open dots) with the

parameterization [182] (solid line). For this comparison, no non-equilibrium chemical potentials

are included in either calculation. On a logarithmic scale, we get a fair agreement. In order

to better quantify the difference, the ratio between the two sets of calculations is shown in the

right panel. In the very low q region, q < 0.1, the ratio varies rapidly due to the steep threshold

suppression which is not well captured by the parameterization [182]. For 0.5 ≤ q ≤ 4 GeV, the

ratio stays around 0.9 and is basically flat as a function of q through the temperature region that
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Figure 16.3: Similar as Fig. 16.1 but for channel π + π → ρ+ γ
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Figure 16.4: Similar as Fig. 16.1 but for channel π +K∗ → K + γ
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Figure 16.5: Similar as Fig. 16.1 but for channel π +K → K∗ + γ

we are interested in. Overall, the parameterization given in [182] is accurate within 15-20% in this

q region.
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Figure 16.6: Similar as Fig. 16.1 but for channel ρ+K → K + γ
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Figure 16.7: Similar as Fig. 16.1 but for channel K +K∗ → π + γ
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Figure 16.8: Photon emission rate check. ρ→ π + π + γ

For the channel π+ ρ→ ω → π+ γ, only the t-channel diagram is included in the final results

of [182] because the contribution from the s-channel diagram is calculated in the in-medium

223



0 1 2 3 4

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

q (GeV)

E
q
d
3
R
/
d
3
q
(G

eV
−
2
fm

−
4 )

 

 

T = 120 MeV

T = 160 MeV

T = 200 MeV

T = 240 MeV

0 1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

q (GeV)

ra
ti
o
C
h
u
n
/
p
a
ra
m
te
ri
za

ti
o
n

 

 

T = 120 MeV

T = 160 MeV

T = 200 MeV

T = 240 MeV

Figure 16.9: Similar as Fig. 16.1 but for total thermal photon emission rate from hadronic phase.

ρ calculations in [182, 211]. And the cross term between s and t-channels is relatively small

[211]. The comparisons are shown in Fig. 16.2. Our rates are about 30% smaller than the

parametrization. Fig. 16.3 shows the analogous results for the π + π → ρ + γ channel. Here our

numerical calculations are significantly below the parameterization for large q. Figs. 16.4 to 16.7

shows analogous comparisons for the 2 → 2 reaction channels involving strange sector mesons.

Our numerical results agree with the parameterizations very well. However, in Fig. 16.8, these

numerical results is almost a factor of 2 smaller than the parameterization. I have been unable to

tract the origin for this discrepancy, which must be sorted out in the future.

Finally, Fig. 16.9 shows the total thermal photon emission rate (sum over all eight channels).

We find that our numerical results agree fairly well with the parameterization.

16.4.2 Viscous corrections

Now, we proceed to discuss the numerical results for the viscous correction to the photon

emission rates as defined in Eq. (16.53). The first order viscous correction to the photon emis-

sion rates comes in the combination, πµν q̂µq̂ν
2(e+P )

Γ1(q, T ). The prefactor πµν q̂µq̂ν
2(e+P )

is controlled by the

local thermodynamic and dissipative properties of the medium obtained from the hydrodynamic

evolution. Its size depends on the details of the collision system. In order to get some feeling for

the size of the viscous correction, we will compare the relative size of Γ1(q, T ) to its equilibrium

partner, Γ0(q, T ). For this we can construct the ratio

rvis(q, T ) =
Γ1

Γ0

1

χ
(
q
T

) . (16.72)

For charged hadrons, we can define an analogous ratio with distribution functions, as in Eq.

(16.48),

rhad
vis (q, T ) =

δf

f0

1

χ( q
T

)
(16.73)
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this ratio simply becomes rhad
vis (E, T ) = 1 ± f0(E), “+” for bosons and “−” for fermions. With

finite rest masses, we expect rhad
vis to be close to 1 for hadrons, except for π at low energy. So

any deviation of this ratio from 1 for photons will expose the detailed non-trivial structure of its

viscous corrections.
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Figure 16.10: Left panel: The ratio between the viscous correction to its equilibrium rate for
the channel π + ρ → (a1, ρ, π) → π + γ divided by (q/T )2. (We take α = 2 in χ

(
p
T

)
in the

δf corrections for the hadrons.) Right panel: log-log plot for the ratio of Γ1/Γ0 with different
α-dependence in χ

(
p
T

)
∝ ( p

T
)α in Eq. (16.53).
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Figure 16.11: Similar as Fig. 16.10, but for π + ρ→ ω → π + γ.

In the left panel of Fig. 16.10, we show the ratio rvis from Eq. (16.72) for channel π + ρ →
(a1, ρ, π) → π + γ at four different temperatures. We find that for photons rvis shows interesting

structures as a function of photon momentum. Even though we start with a quadratic form of

δf as in Eq. (16.48) for the particles involved in the underlying reaction, after all phase-space

integrations are done the viscous correction to photon emission is formed not to be quadratic in

photon momentum for small q. For q > 2 GeV, rvis becomes flat, which indicates that the viscous
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Figure 16.12: Similar as Fig. 16.10, but for π + π → ρ+ γ.
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Figure 16.13: Similar as Fig. 16.10, but for π +K∗ → K + γ
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Figure 16.14: Similar as Fig. 16.10, but for π +K → K∗ + γ

correction becomes roughly quadratic in photon momentum at asymptotically large q. The size of

rvis varies from -0.5 to 0.7 for 0.3 < q < 4 GeV. Since the absolute value of rvis is smaller than 1,
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Figure 16.15: Similar as Fig. 16.10, but for ρ+K → K + γ
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Figure 16.16: Similar as Fig. 16.10, but for K +K∗ → π + γ

this means that for a given fluid cell the viscous correction to the photon emission rate from this

channel is smaller than the δf corrections for the hadrons. Finally, we observe that rvis shows only

weak sensitivity to the temperature, which means that most of the temperature dependence in

the ratio Γ1

Γ0
has been taken out by dividing by χ

(
q
T

)
. In the right panel of Fig. 16.10, we further

explore the power law dependence of Γ1/Γ0 as a function of photon momentum on log-log scale .

For q > 2 GeV/c, both choices of α in χ
(
p
T

)
in Eq. (16.48) result in linear curves, which means

that the ratio follows a power law in the photon momentum. For α = 1, the slope is k = 1.61

while for α = 2 it is k = 2.18. Similar analysis are shown for other hadronic photon production

channels in Figs. 16.11 to 16.16. They then do look qualitatively similar to the π + ρ → π + γ

channel, except for the π + π → ρ + γ and π + K → K∗ + γ channels which, due to the heavy

vector meson in the outgoing channel, have different kinematics.
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Chapter 17: Thermal photon emission rates: Transition between QGP

and HG rates

In the preceding two chapters, the photon emission rates were derived for the QGP and hadron

resonance gas phases. However, the leading order QGP photon emission rates are only reliable for

a small strong coupling constant, gs � 1, which implies the limit T →∞. The effective Massive

Yang-Mills theory in the hadronic phase requires for its validity well-defined spectral functions

for the interacting mesons. This is the case only for temperature T < 150 MeV. In the phase

transition region (a rapid cross-over) from QGP to hadron resonance gas, neither effective theory

is expected to be reliable, because neither of them can provide a satisfactory description of the

equation of state as calculated from lattice QCD. A robust theoretical description of the transition

region and the photon production from it does not exist and is an interesting but difficult subject

for future research.
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Figure 17.1: The comparison of photon production rates between QGP and HG phase in the
transition temperature regions.

For the following phenomenological studies, we extrapolate the photon emission rates computed

from the low-temperature and extreme high temperature approaches of the preceding chapters and

smoothly interpolate them in the phase transition region. In Fig. 17.1, we show a comparison of
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the QGP and HG photon emission rates from T = 120 to 240 MeV. In the right panel of Fig.

17.1 which shows the ratio between the QGP and HG rates for different T as a function of photon

energy q, we see that the photon rates from the QGP phase (solid lines in the left panel) exhibit

a quite a different q dependence than the HG rates (dashed lines in the left panel). Overall,

the QGP rates are larger than the HG rates in the transition region, especially for q < 1 GeV

where the excess can reach almost an order of magnitude.34. The relative difference increases as

the temperature drops. Due to the partial chemical equilibrium below 165 MeV, the non-zero

chemical potentials increase the photon production rates in the hadronic phase. We introduced

an artificial QGP rate fraction parameter, αQGP, which linearly decreases from 1 to 0 as the local

temperature crosses in the rate transition region. The photon emission rates in the transition

region are parameterized as

E
d3R

d3q
= αQGP(T )

(
E
d3R

d3q

)
QGP

+ (1− αQGP(T ))

(
E
d3R

d3q

)
HG

(17.1)

with

αQGP(T ) =
T − Tsw,low

Tsw,high − Tsw,low

, (17.2)

where Tsw,low and Tsw,high are the boundaries of the rate switching interval.

Please note that such a smooth cross over rate transition procedure in Eq. (17.1) is only

introduced to avoid a discontinuity in the photon emission rate when we switch from the QGP

to the HG phase. It does not imply the assumption of a first order transition for the equation

of state. The parameter αQGP should not be mis-interpreted as the QGP volume fraction in the

transition region.
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Figure 17.2: Thermal photon yield as a function of local temperature from hydrodynamic simula-
tions with different transition temperature regions.

34Please note the our HG rates do not include the contributions from the in-medium broadening of ρ-meson
spectral function which will increase the HG photon rates below 1.5 GeV and thus alleviate some of the discrepancy.
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In Fig. 17.2, we examine the sensitivity of to the emitted thermal photon yield to Tsw,low(high).

For low momentum photons, pT ∼ 0.5 GeV, the thermal photon production features a peak

near the phase transition region due to the large corresponding hydrodynamic space-time volume

(see Fig. 20.7). For thermal photons carrying pT ∼ 2 GeV, shown in Fig. 17.2b, a two-wave

emission structure is observed. The production peak around the transition region is preserved,

while another broader bump appears at higher temperature above 300 MeV. This broader bump is

caused by the relativly larger photon emission rates at high temperature.35 From Fig. 17.2, with

the currently available thermal photon emission rates, we find that the thermal photon production

is very sensitive to the choice of the rate transition region. If we switch from QGP to HG rates at

lower temperatures, thermal photon production around the phase transition region is enhanced.

This is expected from the rate comparisons in Fig. 17.1. Because the thermal photon emission

rates in the QGP phase are larger than in the HG phase and their relative ratio increases as the

temperature drops, more thermal photons will be emitted if we switch between the rates at lower

temperatures.
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Figure 17.3: Direct photon spectra and v2 from hydrodynamic simulation with different transition
temperature regions.

In Fig. 17.3, we show the effect of the choice of the photon rate transition region on the

final direct photon observables. In the left panel of Fig. 17.3, we show the direct photon spectra

(thermal + pQCD prompt (described in Eqs. 14.4 to 14.6 in Chapter 14)) for different switching

temperature regions. With a lower transition temperature, the direct photon spectra are enhanced

at pT < 2 GeV. The pT -integrated yield of thermal photons is increased by about 30% for Tsw =

150−170 MeV compared to switching at Tsw = 180−220 MeV. In the right panel of Fig. 17.3, we

find that the direct photon v2 changes by an almost factor of 2 between these two rate switching

windows, even after the dilution of the signal by the prompt pQCD photons, which are assumed

35Note that the photon emission rate decreases as exp(−p/T ) as T decreases.
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to carry zero v2. With a lower switching temperature, more photons are emitted in the transition

region as shown in Fig. 17.2. Since the medium anisotropic flow has been almost fully developed in

the transition region, the photons emitted from this region carry large anisotropy, which contribute

significantly to the final direct photon v2.

231



Chapter 18: Phenomenological study: Direct photon spectra

18.1 Chapter introduction

Recently the PHENIX and ALICE experiments measured an excess of direct photon production

over prompt photons, attributed to thermal radiation, in 200AGeV Au+Au collisions at RHIC

[217] and in 2.76ATeV Pb+Pb collisions at the LHC [218]. In the low-pT region the direct photon

spectra are approximately exponential and can be well characterized by their inverse logarithmic

slope Teff : dN
dy pT dpT

∝ e−pT /Teff . The PHENIX Collaboration reported Teff = 221± 19± 19 MeV for

Au+Au collisions with 0−20% centrality at top RHIC energy [217] while the ALICE Collaboration

found Teff = 304 ± 51sys.+stat. MeV for 0−40% centrality Pb+Pb collisions at the LHC [218].

Both values are significantly larger than the critical temperature for chiral restoration and color

deconfinement, Tc' 155 − 170 MeV [219, 220]. Since photons are emitted from all stages of the

collision, their momentum distributions integrate over the temperature and flow history of the

expanding fireball, weighting it with emission rates that depend on the collision stage and the

corresponding radiating degrees of freedom [221]. The interpretation of the shape of experimentally

measured photon spectra is therefore complex and requires theoretical modeling based on cross-

checks with other experimental observables.

In this Chapter which is based on Ref. [222], we use a realistic hydrodynamic simulation of the

fireball evolution to explore the effects of hydrodynamic flow on the effective temperature (inverse

slope) of the emitted thermal photon spectrum quantitatively. Both our evolution and photon

emission rates incorporate viscous effects, which are discussed in details in previous chapters. We

also study schematically the consequences of a hypothetical scenario where the fireball medium

initially consists entirely of gluons (which do not radiate electromagnetically) and quark-antiquark

creation (chemical equilibration) is delayed by several fm/c [223, 224]. How much will theoret-

ical and experimental precision have to improve to allow to distinguish empirically between an

initially “dim” gluon plasma and a QGP that reaches chemical equilibrium very quickly? In an

attempt to start answering questions such as these, and to exploit the penetrating nature of the

electromagnetic radiation, the space-time history of photon emission is explored. We show that
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strategic cuts on the photon transverse momentum have the potential to make their thermometric

nature even more explicit.

18.2 Hydrodynamic modeling and photon production

The dynamical evolution of the radiating fireball is modeled with the boost-invariant hydro-

dynamic code VISH2+1 [39], using parameters extracted from previous phenomenologically suc-

cessful studies of hadron production in 200AGeV Au+Au collisions at RHIC [17, 40] and in

2.76ATeV Pb+Pb collisions at the LHC [48, 118]. We here use ensemble-averaged Monte-Carlo

Glauber (MCGlb) initial conditions which we propagate with η/s= 0.08 [17, 40, 48, 118] and the

lattice-based equation of state (EoS) s95p-PCE-v0 [16] which implements chemical freeze-out at

Tchem = 165 MeV. We start the hydrodynamic evolution at τ0 = 0.6 fm/c, corresponding to a peak

initial temperature (energy density) in the fireball center of T0 = 452 MeV (e0 = 62 GeV/fm3) at the

LHC (Pb+Pb at 0−40% centrality), and of T0 = 370 MeV (e0 = 35 GeV/fm3) at RHIC (Au+Au

at 0−20% centrality). We end it on an isothermal hadronic freeze-out surface of temperature

Tdec = 120 MeV.

Photons are emitted from the fireball using photon emission rates that are corrected for de-

viations from local thermal equilibrium caused by the non-zero shear viscosity of the medium as

described in Chapters 15 and 16. In the QGP phase, we only consider viscous corrections to 2

→ 2 scattering processes. We focus on photons with pT < 4 GeV and ignore the contributions

from hard pre-equilibrium processes which do not significantly affect the extraction of the inverse

photon slope in this pT -region [225]. The hadronic phase (HG) is modeled as an interacting meson

gas within the SU(3)× SU(3) massive Yang-Mills approach (see Refs. [213, 182, 226] and Chapter

16 for details), with non-equilibrium chemical potentials to account for chemical decoupling at

Tchem = 165 MeV. Both approaches to computing the emission rates are expected to break down in

the phase transition region. As described in Chapter 17, to avoid discontinuities, the QGP and HG

emission rates are linearly interpolated in the temperature window 184 MeV<T < 220 MeV where

our employed EoS [16] interpolates continuously between the lattice QCD data and the hadron

resonance gas model in such a way that the smooth crossover character of the phase transition seen

on the lattice is preserved. For comparisons, we will also show results with rate transition region

between 150 MeV<T < 170 MeV, which covers the physical chiral restoration and deconfinement

region.

18.3 Direct photon spectra

As a prelude, it is useful to compare the results of our calculations with the photon spectra

measurements performed at RHIC and at the LHC by the PHENIX and ALICE collaboration,
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Figure 18.1: Measured and calculated photon spectra in 0−20% centrality Au+Au collisions
at RHIC (a) and 0−40% centrality Pb+Pb collisions at the LHC (b) with rate transition re-
gion chosen between 184 MeV and 220 MeV. Panels (c) and (d) are similar plots but with
150 MeV<Tsw < 170 MeV. Photons from thermal sources and from pQCD are shown separately,
as well as their sum. The Au+Au collisions data at RHIC (a) are from the PHENIX Collaboration
[217], those for Pb+Pb collisions at the LHC (b) from the ALICE Collaboration [218]. The shaded
curves below 1 GeV are to remind of the uncertainties in extrapolating pQCD to low values of the
photon transverse momentum.

respectively. The calculated spectra shown in Figure 18.1 include the thermal rates corrected for

shear viscosity effects integrated over the viscous hydrodynamical space-time evolution, and also

the prompt photons resulting from the very early interactions of the partons distributed inside the

nucleus. For the QGP contribution shown in Fig. 18.1, the full leading order ideal rate for collinear

emission is added to the viscous-corrected 2 → 2 rate. On the hadron gas side, we use the rates

derived in Chapter 16 considering meson reactions. Please note that our HG rates do not include

the contribution of baryons to the production of real photons. The prompt photon calculation is

performed at next-to-leading-order (NLO) in the strong coupling constant [227], and the nuclear

parton distribution functions are corrected for isospin and shadowing effects [228]. The calculation
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is extrapolated to low transverse momentum using a fit of the form A/(1+pT/p0)n, a form that we

checked describes very well the available low pT photon data from proton-proton collisions [217].

For RHIC and LHC conditions, the agreement between the calculated results and measured data

shown here is not untypical of that obtained with other contemporary hydrodynamic simulations

[221, 229, 230]. Our results with lower transition temperature for the photon emission rates give

∼ 30% larger photon yield. We note that the data allow room for additional photon sources

in addition to the ones considered here. Among the possible candidates are photons from jet-

plasma interactions [229]; one should also keep in mind the role played by fluctuating initial states

[231, 189].

18.4 Inverse Slope of the direct photon spectra

The equilibrium emission rates as well as the non-equilibrium photon spectra emitted during

the hydrodynamic evolution are approximately exponential in pT between 1 and 4 GeV, and we

can characterize them by their inverse logarithmic slopes Teff just as the experiments did for

the measured direct photon spectra. The green lines in Fig. 18.2 show Teff as a function of the

true temperature T for the equilibrium photon emission rates. One sees that, due to phase-

space factors associated with the radiation process, the effective temperature of the emission rate

is somewhat larger than the true temperature: At high T , the QGP photon emission rate goes

roughly as exp(−Eγ/T ) log(Eγ/T ) [207], and the logarithmic factor is responsible for the somewhat

harder emission spectrum. The double kink in the green line at T = 184 and 220 MeV reflects the

interpolation between the QGP and HG rates. The effect of that interpolation on the slope of the

spectrum is weak, one mainly interpolates between rates with different normalization.

The circles in Fig. 18.2 show the effective temperatures of photons emitted with equilibrium

rates (open black circles) and with viscously corrected rates (filled red circles) from cells of a given

temperature within the hydrodynamically evolving viscous medium. The area of the circles is

proportional to the total photon yield emitted from all cells at that temperature. One sees here

and also in Fig. 18.3 below that viscous corrections to the photon emission rates are large at early

times (high T ), due to the initially very large longitudinal expansion rate, but become negligible at

later times (lower T ). Viscous effects on the emission rates harden the photon spectrum (i.e. they

increase Teff) but do not affect the photon yields. The hydrodynamic photon spectra using ideal

rates (open black circles) have lower effective temperatures than the local emission rates themselves

(green solid lines): This is due to the integration of the Boltzmann factor e−Eγ/T = e−pT cosh(y−η)/T

over space-time rapidity η which, for fixed T , sums over contributions36 with different effective

temperatures Teff(η) = T
cosh(y−η)

<T (we here consider photons at midrapidity, y= 0). Surprisingly,

36Recall that we assume a boost-invariant (i.e. η-independent) distribution of thermal sources.
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Figure 18.2: The inverse photon slope parameter Teff =−1/slope as a function of the local fluid
cell temperature, from the equilibrium thermal emission rates (solid green lines) and from hydro-
dynamic simulations (open and filled circles), compared with the experimental values (horizontal
lines and error bands), for (a) 0-20% Au+Au collisions at RHIC, (b) 0-40% Pb+Pb collisions at
the LHC and (c) for 20-40% Au+Au collsions at RHIC. The experimental values and error bands
are from the PHENIX Collaboration [217] in (a,c) and from the ALICE Collaboration [218] in (b).

this rapidity-smearing effect leads, for ideal emission rates, to photon spectra whose inverse slope

reflects at early times almost exactly the temperature of the emitting fluid cells in their rest frame.

Including viscous corrections in the emission rates increases the effective photon temperatures by

about 10% at early times.

As the system cools, Fig. 18.2 shows that the effective photon temperature begins to deviate

upward from the true temperature. Below T ∼ 220 MeV the effective photon temperature actually

begins to increase again while the true temperature continues to decrease. This is caused by the

strengthening radial flow; below T ∼ 220 MeV, the radial boost effect on Teff overcompensates for

the fireball cooling. Once the system reaches chemical freeze-out at Tchem = 165 MeV, the character

of the equation of state changes, leading to faster cooling [77] without developing additional radial
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Figure 18.3: The inverse photon slope parameter Teff =−1/slope as a function of emission time
from hydrodynamic simulations, compared with the experimental (time-integrated) values (hori-
zontal lines and error bands), for (a) 0-20% Au+Au collisions at RHIC, (b) 0-40% Pb+Pb colli-
sions at the LHC and (c) 20-40% Au+Au collisions at RHIC. The blue solid lines and surrounding
shaded areas show for comparison the time evolution of the average fireball temperature and its
standard deviation.

flow at a sufficient rate to keep compensating for the drop in effective temperature due to this

cooling. The faster expansion below Tchem is also seen in the solid blue lines in Fig. 18.3, and it

is reflected in the shrinking size of the circles (integrated photon yields) in Fig. 18.2 below Tchem,

reflecting the smaller space-time volumes occupied by cells with temperatures T <Tchem.

Fig. 18.3 shows the effective slopes of photons emitted at different times from the expanding

fireball, again compared with the time-integrated experimental values (horizontal bands). (A

similar graph, based on a parametrized fireball evolution model with thermal equilibrium rates and

a first-order phase transition, can be found in Fig. 7 in Ref. [232]). As before, the open black circles

use equilibrium emission rates while the filled red circles account for viscous corrections to the

photon emission rates. (The hydrodynamic expansion is viscous in both cases.) For comparison,

the blue lines show the evolution of the average fireball temperature (averaged over all cells with
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Figure 18.4: Contour plots of the normalized differential photon yield dNγ(T,τ)/(dy dT dτ)
dNγ/dy

(panels (a)

and (c)) and dNγ(Teff ,τ)/(dy dTeff dτ)
dNγ/dy

(panels (b) and (d)) for Au+Au collisions at RHIC at 0-20%

centrality (panels (a) and (b)) and for Pb+Pb collisions at the LHC at 0-40% centrality (panels
(c) and (d)). The photon rate transition region is between 184 MeV and 220 MeV. The color bars
translate the colors into absolute values (in c/(GeV fm)) for the quantities plotted.

T > 120 MeV at time τ), with shaded regions indicating its standard deviation. After about 2 fm/c,

the effective photon temperature begins to get significantly blue-shifted by radial flow. This radial

boost is clearly stronger at the LHC than at RHIC. Radial flow effects decrease again at very late

times when only a small region near the fireball center survives where the radial flow goes to zero.

The difference between open and filled circles shows that viscous effects on the photon emission

rates are concentrated at early times.

While Fig. 18.3 demonstrates that the early photons are associated with a high yield (as is

commonly understood), Fig. 18.2 shows that most photons are emitted from a relatively narrow

temperature band between 165 and 220 MeV. Relatively few of the photons thus come from the

hot core of the fireball; a much larger fraction comes from the cooler periphery and is emitted

with temperatures close to the quark-hadron transition. Averaged over time, these photons from
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Figure 18.5: Similar to Fig. 18.4, but rate transition temperature region is chosen for
150 MeV<Tsw < 170 MeV

the transition region are strongly affected by radial flow, resulting in inverse slopes (“effective

temperatures”) that are much larger than their true emission temperatures. These findings can

even be put on a firmer quantitative basis, by considering the following: At each value of proper

time, τ , photons are emitted with a distribution of thermodynamic temperatures. This distribution

is shown in Figs. 18.4a (for Au+Au at RHIC) and 18.4c (for Pb+Pb at the LHC), where the

color-coding of the contour plots reflects the differential photon yield (normalized to the total

yield dNγ/dy) per time and temperature (in c/(GeV fm)) in the T−τ plane. The corresponding

distribution of flow-blue-shifted effective temperatures Teff (inverse slopes) is shown in Figs. 18.4b

(for RHIC) and 18.4d (for the LHC). Comparing the left and right panels one observes, after a

proper time τ ∼ 2 fm/c, a clear shift to higher effective temperatures, owing to the development of

radial hydrodynamic flow. Furthermore, the dependence of the effective temperature on the flow

velocity (which depends on radial position) leads to an additional broadening of the distribution

of Teff at any given time.

239



0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
T (GeV)

0

3

6

9

12

15

d
N
γ

d
yd
T
/d
N
γ

d
y

 (
1
/G

e
V

)

MCGlb., η/s=0.08, AuAu @ RHIC, 0-20%
(c)

pT =1−1.5 GeV

pT =1.5−2 GeV

pT =2−2.5 GeV

pT =2.5−3 GeV

pT =3−3.5 GeV

pT =3.5−4 GeV

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
T (GeV)

0

3

6

9

12

15

d
N
γ

d
yd
T
/d
N
γ

d
y

 (
1
/G

e
V

) MCGlb., η/s=0.08, PbPb @ LHC, 0-40%
(d)

pT =1−1.5 GeV

pT =1.5−2 GeV

pT =2−2.5 GeV

pT =2.5−3 GeV

pT =3−3.5 GeV

pT =3.5−4 GeV

Figure 18.6: The differential photon yield, as a function of the temperature T , for different windows
in photon transverse momentum, for 0-20% Au+Au collisions at RHIC (a,c) and 0-40% Pb+Pb
collisions at the LHC (b,d). We tranisite the photon emission rates in 184 MeV<Tsw < 220 MeV
for (a) and (b), and 150 MeV<Tsw < 170 MeV for (c) and (d).

In order to further quantify the connection between the photon spectrum and the emission

temperature, a model calculation allows to dissect the photon contribution in terms of transverse

momentum. Figure 18.6 shows the relative photon yield in different transverse momentum regions,

as a function of the temperature at which those photons were radiated. The photon yield is

obtained by integrating the flow-boosted photon emission rate over the space-time volume. The

rate is large at high temperatures, but the corresponding space-time volume is small. As the

system cools and the rate drops, the decrease in the rate is (partially) offset by the increasing

fireball volume, and the shift to lower photon energies resulting from the cooling is counteracted

by the increasing radial flow. The combination of these effects can create a bi-modal distribution

of the thermodynamic temperatures that contribute to photon production in a given pT window.

The relative size of the two peaks corresponding to emission from very hot cells with little flow

and rather cool cells with strong radial flow depends on the photon momentum, as is shown in
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Fig. 18.6. The curves in Fig. 18.6 can be viewed as thermal photons probability distribution

function, with the local temperature as the independent variable. At RHIC, one observes that

for pT = 1−1.5 GeV, photons are mostly coming from the transition region T = 150−220 MeV.

For harder thermal photons with pT = 3.5−4 GeV, on the other hand, the emission probability

is peaked at temperatures above 300 MeV, followed by a second wave of emission from a much

larger space-time volume at temperatures around T = 150−220 GeV, blue-shifted by large radial

flow. Interestingly, this bimodal structure does not require a first order phase transition but, as

can be seen here, is also observed for a smooth cross-over. The right panel in Fig. 18.6 shows the

situation for conditions specific to the LHC. This figure illustrates well the power and advantages

related to the use of a quantitative space-time modeling of the nuclear collisions: the momentum

cuts shown here can be used to guide experimental analyses and simulations that seek to extract

precise temperature information from high-energy nuclear collisions37.

18.5 Centrality dependence of the thermal photon yield and spectra

Our hydrodynamical treatment allows us to study the centrality dependence of the thermal

photon yields, reported by the PHENIX Collaboration recently [233]. Thermal photons should

exhibit a stronger centrality dependence than hadrons and photons from hadronic decays[234,

235]. Fig. 18.7 illustrates this for RHIC conditions with two different choices of the temperature

transition regions for smooth matching the photon emission rates from two phases.

We integrate the thermal photon spectra from a variable lower pT cutoff to a fixed upper limit

of pT = 4 GeV and plot the result in Fig. 18.7 as function of centrality, measured either through

Npart in panels (a, c) or through the charged multiplicity dNch/dη in panels (b, d). The latter

plot permits a direct comparison with experimental measurements. The four points in each curve,

from right to left, represent 0-20%, 20-40%, 40-60%, and 60-95% centrality bins. The dashed lines

are power-law fits to the points. One observes a thermal photon yield that grows like a power

of Npart and as a (different) power of the multiplicity, with exponents stronger than linear. The

powers depend on the lower pT cutoff with which the yield is evaluated. For the region pT > 0.6

GeV, the slopes in the logarithmic plots of Fig. 18.7a,c are within the range 1.65∼1.8, larger

than the experimentally measured value of 1.48 ± 0.08 ± 0.04 [233]. In order to further explore

the possible implications of this difference in slopes between theory and data, we compute, for

the case shown in Fig. 18.7, the centrality dependences of the total QGP and HG photon yields

above pT = 0.4 GeV in Fig. 18.8. The QGP photon yield is defined as all photons from cells with

T > 220 MeV plus the QGP fraction of photons from cells with temperatures between 184 and

220 MeV where we linearly interpolate between the QGP and HG emission rates. The HG photon

37Note however, that the high-momentum bins will receive pQCD contributions.
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Figure 18.7: The centrality dependence of the photon yield, for Au+Au collisions at RHIC. The
centrality may be expressed in terms of (a,c) Npart or of (b,d) dN ch/dη for the MC-Glauber initial
conditions with η/s = 0.08. Panels (a, b) are results with the transition region of photon rates
Tsw = 184− 220 MeV and (c, d) for Tsw = 150− 170 MeV.

yield is the complement of the total photon yield with respect to the QGP photon yield. We

find the HG photon yield above pT = 0.4 GeV to scale as function of Npart with power 1.46 and

as function of dNch/dη with power 1.30; the corresponding scaling powers for the QGP photons

are larger, 2.07 and 1.84, respectively. QGP photons thus have a significantly stronger centrality

dependence than HG photons. The experimentally measured centrality dependence of all thermal

photons is closer to the power predicted in our calculations for HG photons than for QGP photons.

Together with our observation that our calculations significantly under-predict the measured total

thermal photon yields at all centrality bins, this may indicate that our hydrodynamic calculations

underestimate the photon production rate in the HG phase and/or near the quark-hadron phase
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Figure 18.8: The centrality dependence of the themal photon yield from QGP and HG phases
for MCGlb initial conditions with η/s = 0.08. The rate transition region is between 184 MeV and
220 MeV.

transition. This observation invites further scrutiny in terms of its sensitivity to variations in the

initial conditions and the transport coefficients the expanding hydrodynamic fluid.

In Figs 18.9 and 18.10, we show the pT spectra of thermal photons compared to the preliminary

PHENIX measurement for the direct photon excess. Our calculation systematically underestimates

the data at all pT but the slope of the photon spectra is close to the measurements. We investigated

the centrality dependence of the inverse slope of the thermal photon spectra in Au+Au collisions

at RHIC. Our results show a very weak centrality dependence, with Teff being slightly smaller in

peripheral than in central collisions.

18.6 Reduced radiation from a dim gluon plasma: a schematic study

Returning to Figs. 18.2 and 18.3, we see that the large measured values for the inverse photon

slope reflect, on average, true emission temperatures that lie well below the observed effective

temperature. This raises an interesting question: Could it be that in the experiments we don’t

see any photons at all from temperatures well above Tc, and that all measured photons stem from

regions close to Tc and below, blue-shifted by radial flow to effective temperature values above Tc?

To get an idea what the answer to this question might be we performed a schematic study where

in Fig. 18.2 we turned off by hand all contributions to the photon spectrum from cells with true

temperatures above 220 MeV at RHIC and above 250 MeV at the LHC (corresponding to about

1/3 of the total photon yield in both cases), and in Fig. 18.3 all contributions from τ < 2 fm/c (cor-

responding to 26% and 28.5% of the total photon yield for RHIC and LHC collisions, respectively,
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Figure 18.9: Centrality dependence of thermal photon spectra compared with the preliminary re-
sults of the direct excess photon spectra for 200AGeV Au+Au collisions obtained by the PHENIX
Collaboration [233] (pQCD prompt photons are substracted in the data). The inverse slope pa-
rameters of the thermal photon spectra are extracted for the 4 centrality bins. The fit range is
chosen to be the same interval in [233] 0.6 < pT < 2.0 GeV .

see Table 18.1).38 We show as arrows pointing to the right vertical axes in Figs. 18.2 and 18.3

the inverse slopes of the final space-time integrated hydrodynamic photon spectra: Solid black

and red lines correspond to calculations assuming full chemical equilibrium from the beginning

and using thermal equilibrium and viscously corrected photon emission rates, respectively. The

dashed black and red arrows show the same for calculations with delayed chemical equilibration,

as described above. The (overestimated) effects of our schematic handling of delayed chemical

38This implements, in a very rough way, the idea that the initial fireball state might be purely gluonic, and that
chemical equilibration of quarks can be characterized by a time constant taken to be about 2 fm/c. It ignores,
however, that an initial suppression of quarks must be compensated by an increase in the gluon temperature
[223, 224], in order to maintain the same total entropy and final multiplicity. As quarks are being produced from
gluons, these quarks thus radiate more strongly than in chemical equilibrium, leading to a cancellation that leaves
the total photon spectrum almost unchanged [224]. Our simplified treatment ignores this increase in temperature
and thus overestimates the effect of early-time quark suppression on the photon spectrum. In this sense, our
conclusion from this study is conservative.
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Figure 18.10: Similar as Fig. 18.9, but photon rate transition region is chosen between 150 MeV
and 170 MeV.

equilibration on the final inverse photon slope are seen to be roughly of the same order of magni-

tude as those from viscous corrections to the photon emission rates (∼ 10% for Teff), and thus too

small to be experimentally resolved with the present experimental accuracy of Teff . We note that,

for both RHIC and LHC energies, the calculated inverse slopes are consistent (within errors) with

the experimentally measured values, although near the high end of the observationally allowed

band for RHIC.

18.7 Chapter summary

We conclude that thermal photons can indeed be used as a thermometer in relativistic nuclear

collisions, but that their interpretation requires a dynamical model which has the sophistication

demanded by the wealth of hadronic data that currently exist at RHIC and at the LHC. We

observe that the large observed effective temperatures of thermal photons emitted from heavy-ion

collisions, and their significant increase from RHIC to LHC energies, reflect mostly the strong

radial flow generated in these collisions and do not directly prove the emission of electromagnetic
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range of photon fraction of total photon yield
emission AuAu@RHIC AuAu@RHIC PbPb@LHC

0-20% centr. 20-40% centr. 0-40% centr.
T = 120-165 MeV 11% 18% 9%
T = 165-250 MeV 59% 66% 48%
T > 250 MeV 30% 16% 43%

τ = 0.6− 2.0 fm/c 38% 35% 34%
τ > 2.0 fm/c 62% 65% 66%

Table 18.1: Fractions of the total photon yield emitted from the expanding viscous hydrodynamic
fireball from various space-time regions as indicated, for the two classes of collisions considered in
this work.

radiation from quark-gluon plasma with temperatures well above Tc. In particular, they are not

representative of the initial temperature of the QGP generated in the collision. We hasten to

say, however, that a hot and dense early stage of the expanding medium is necessary to generate

(either hydrodynamically or by pre-equilibrium evolution) the large radial flow causing the high

effective photon temperatures (inverse slopes). The dense early stage thus plays a crucial role,

even if it does not dominate the electromagnetic radiation.

Our conclusion that the measured thermal photons are mostly emitted at a relatively late,

strongly flowing stage of the fireball is consistent with the unexpectedly [236, 232, 237, 189, 230,

238] large photon elliptic flow measured by both PHENIX [239] and ALICE [240]. In fact, these

data appear to require an even stronger weighting of photon emission towards the end of the

expansion stage where flow is strong [232, 240]. Our finding that the experimentally measured

centrality dependence of thermal photon yields appears to be closer to what our model predicts for

hadronic radiation than for QGP radiation lends further support to this line of thought. Making

a compelling argument for photon radiation from the earliest and hottest stages of the fireball

requires combining the photon inverse slope measurements with other electromagnetic observables

and a detailed and quantitative comparison with theory. To be convincing, the argument must

be based on measurements and theories that determine Teff for thermal photons with about 5%

precision. While it is unlikely that future improvements in the theoretical rates change their

effective temperatures by a large margin (see the small difference between QGP and HG inverse

slopes (green line) in Fig. 18.2), it is possible that the currently used T -dependent rates receive

corrections that increase photon yields in the critical quark-hadron transition region, and that

further improvements in the dynamical modeling, in particular towards the end of the collision

where hydrodynamics begins to break down, will change the weighting of the emission rates by

altering the space-time volumes corresponding to each temperature slice.
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Chapter 19: Phenomenological study: Direct photon vn

19.1 Chapter introduction

In chapter 18, we have shown that, thermal photon yields and their (azimuthally averaged)

spectral slopes provide experimental information that is heavily weighted in a temperature region

of ± 50 MeV around the quark-hadron phase transition. Anisotropies in the photon spectra [236],

in particular the dependence of their magnitudes vn on the harmonic order n, are most sensitive

to the large shear viscous effects prevailing during the earliest, most rapidly expanding stage of

the collision fireball. A measurement of anisotropic photon flow thus provides a window into

fireball stages that precede those accessible through hadronic observables. Higher-order thermal

photon flow anisotropies thus offer the chance to experimentally constrain the QGP specific shear

viscosity with a larger weight on higher emission temperatures than provided by complementary

measurements of hadronic spectra and their anisotropies.

Measurements by the PHENIX collaboration of direct photons in 200AGeV Au + Au collisions

established a strong excess over the known pQCD sources that has been attributed to thermal

radiation [217]. The measured azimuthal anisotropy of this radiation [239] implies an unexpectedly

large photon elliptic flow, comparable to that of pions. Recent direct photon measurements by

the ALICE collaboration in 2.76ATeV Pb+Pb collisions at the LHC [218, 240] confirmed these

findings which challenge our current theoretical understanding of microscopic rates and/or bulk

dynamics [236, 189, 232]. This direct photon flow puzzle further motivates us to develop more

advanced theoretical tools to resolve it and gain a better understanding of the medium evolution

as well as photon production mechanism in relativistic heavy-ion collisions. The work reported in

this chapter was published in [238, 241, 242]

19.2 Photon flow anisotropies from event-by-event hydrodynamics

The dynamical evolution of the radiating fireball is again modeled with the boost-invariant

hydrodynamic code VISH2+1 [39], using parameters extracted from earlier phenomenologically

successful studies of hadron production in 200AGeV Au+Au collisions at RHIC [17, 40] and in

247



0 1 2 3 40

0.005

0.01

0.015

0.02

0.025

0.03

pT (GeV)

v
2

 

 

QGP photons
MCGlb@LHC 0−40%

Ideal
Viscous hydro + eq rates
Full viscous

0 1 2 3 40

0.05

0.1

0.15

0.2

0.25

0.3

pT (GeV)

v
2

 

 

HG photons
MCGlb@LHC 0−40%

Ideal
Viscous hydro + eq rates
Full viscous

Figure 19.1: Thermal photon elliptic flow from QGP (left panel) and hadron gas phase (right) as
a function of pT at 0-40% centrality Pb+Pb collisions at

√
s = 2.76 A TeV. Comparisons between

thermal photons emitted from ideal and viscous hydrodynamic medium.

2.76ATeV Pb+Pb collisions at the LHC [48, 118] as reported in Chapters 5, 6, and 7. Once

again we explore both Monte-Carlo Glauber (MCGlb) and Monte-Carlo KLN (MCKLN) initial

conditions which we propagate with η/s= 0.08 and η/s= 0.2, respectively [17, 40, 48, 118], using

the lattice-based equation of state (EoS) s95p-PCE-v0 [16]. We start the hydrodynamic evo-

lution at τ0 = 0.6 fm/c and end it on an isothermal hadronic freeze-out surface of temperature

Tdec = 120 MeV. We include prompt photons but ignore contributions from other pre-equilibrium

processes which tend to carry small momentum anisotropy.

19.2.1 Shear viscous effect on photon vn

In Fig. 19.1 and 19.2, we study the shear viscous correction to the thermal photon elliptic

flow. In the left panel of Fig. 19.1, , we find that the viscous hydrodynamic evolution alone results

in slightly larger QGP photon v2 at high pT compared to results from an ideal hydrodynamic

medium. This is because the initial peak temperature of the viscous hydrodynamic medium (with

η/s = 0.08) needs to be tuned ∼ 5% lower than in the ideal case to compensate for the extra

viscous entropy production during the evolution. This reduces the proportion of high momentum

photons coming from the early hot region of the fireball which carries negligible anisotropic flow.

However, this increases in the elliptic flow of the QGP photons is overwhelmed by a much larger

suppression arising from the viscous correction to the thermal photon emission rate.

Hadronic photons are coming from late stage of the hydrodynamic evolution. In the right panel

of Fig. 19.2, we find their elliptic flow receives similar shear viscous effect as the charged hadron

v2, where ∼ 50% of the suppression coming from the reduction of the fireball flow anisotropy. Fig.

19.2 shows the comparisons for the total thermal photons. Since for pT > 1 GeV, a large proportion

of the thermal photons are coming from the QGP phase, the viscous correction to thermal photon
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Figure 19.2: Thermal photon elliptic flow as a function of pT at 0-40% centrality Pb+Pb colli-
sions at

√
s = 2.76 A TeV. Comparisons between thermal photons emitted from ideal and viscous

hydrodynamic medium. Left panel shows the results from single-shot hydrodynamic simulation
with event-average initial condition. Right panel shows the comparison from event-by-event cal-
culations, where vn{SP} is defined in Eq. (19.1).

v2 shows similar characteristics as the correction to the QGP photons. In contrast to the elliptic

flow of hadrons, the viscous correction to the photon emission rates dominates the suppression for

photons. More realistic event-by-event simulation give qualitative the same conclusion as shown

in the right panel of Fig. 19.2.

19.2.2 Initial state fluctuation

With event-by-event simulations, we first study the influence of initial state fluctuation to

the final photon observables. We use the scalar-product method to compute the thermal photon

elliptic flow coefficient from our event-by-event simulations,

vγn{SP}(pT ) =

〈
dNγ

dypT dpT
(pT )vγn(pT )vch

n cos(n(Ψγ
n(pT )−Ψch

n ))
〉

〈
dNγ

dypT dpT
(pT )

〉
vch
n {2}

. (19.1)

Please note that Eq. (19.1) differs from the usual definition of the scalar-product vn (as in Eq. 10.8)

by the additional photon multiplicity factors in both numerator and denominator. This photon

multiplicity weight is essential in order to have a consistent definition with the experimental

measurement (see chapter 21 for details).

In Fig. 19.3, we compare the difference between thermal photon v2 from smooth event-averaged

and event-by-event hydrodynamic calculations. For both ideal and viscous cases, the photon

v2{SP} from event-by-event simulations is about 10-20% smaller than the mean v2 from the

smooth event-averaged hydrodynamic medium. In more detail, we find the initial state fluctuation

increases the final flow anisotropy, however the photon multiplicity weight factor in Eq. (19.1)
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√
s = 2.76 A TeV. Comparisons between thermal photons elliptic flow from smooth event

averaged and event-by-event hydrodynamic medium.

biases the final results towards central collisions with smaller elliptic flow, especially for bumpy

profiles with temperature hot spots.

19.2.3 pT -integrated photon vn

The centrality dependence of the pT -integrated thermal photon vn{SP} is shown in the left

panel of Fig. 19.4 for n = 2, 3. Thermal photon vn{SP} shows similar centrality dependence as

charged hadrons. The elliptic flow of thermal photons increases with centrality due to the increas-

ing geometric eccentricity of the nuclear overlap area. The triangular flow has little centrality

dependence because it is purely driven by event-by-event fluctuations. The ratio between thermal

photon elliptic and triangular flow is shown in the right panel of Fig. 19.4. Since prompt photons

carry a small anisotropy their contribution is expected to be negligible in this ratio:

vγ2{SP}(pT )

vγ3{SP}(pT )
'

〈
dNγ,thermal

dypT dpT
(pT )vγ,thermal

2 (pT )vch
2 cos(2(Ψγ,thermal

2 (pT )−Ψch
2 ))
〉

〈
dNγ,thermal

dypT dpT
(pT )vγ,thermal

3 (pT )vch
3 cos(3(Ψγ,thermal

3 (pT )−Ψch
3 ))
〉 vch

3 {2}
vch

2 {2}
. (19.2)

The ratio vγ2{SP}/vγ3{SP} is generically larger than the ratio of charged hadrons, reflecting the

fact that thermal photons are more sensitive to the viscous effects in the hot dense region of the

fireball during the early time of the evolution. The ratio increases with the specific shear viscosity

η/s of the medium because the higher order harmonic flows are suppressed more strongly by the

shear viscous effects. For a fixed η/s = 0.20, the centrality dependence of this ratio is stronger

for MCKLN than for MCGlb initial conditions. This is due to the stronger centrality dependence
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Figure 19.4: Left panel: Centrality dependence of the pT -integrated vn{SP} of thermal photons
from MCGlb. and MCKLN initial conditions for 2.76ATeV Pb+Pb collisions. pT is integrated
from 1 to 3.5 GeV. Right panel: The ratio of v2{SP}/v3{SP} as a function of collision centrality.
Solid and dashed lines show the ratio for thermal photons and for charged hadrons, respectively.
The ratio is shown for three pairings of initial conditions (MCGlb and MCKLN) and specific
shear viscosities (η/s), as detailed in the legend. Note that both MCGlb initial conditions with
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spectra and elliptic flows while MCGlb initial conditions with η/s = 0.2 do not [40, 48]. The
shaded regions between corresponding solid and dashed lines emphasize the increase of this ratio
for thermal photons, due to their higher sensitivity to shear viscous effects at early times.

of vγ2{SP} in the MCKLN model, shown in the left panel of Fig. 19.4. Eq. (19.2) shows that

the vγ2{SP}/vγ3{SP} ratio in Fig. 19.4 and later Fig. 19.7 (for pT -differential case) is insensitive

to the yields from direct photon sources that carry zero anisotropic flow (prompt photons). A

measurement of this ratio thus allows to focus attention on those photons that reflect and probe

the space-time history of the evolving near-thermal medium. Pre-equilibrium photons generated

by the strong magnetic field of the passing nuclei through the QCD anomaly [243] are predicted

to carry sizable v2 but are expected to have small triangular flow v3; they would generate much

larger v2/v3 than thermal photons. Measuring this ratio will allow us to disentangle these two

mechanisms for the already observed (large) direct photon elliptic flow.

In the left panel of Fig. 19.5, we further show higher order anisotropic flow coefficients up

to n = 5 for thermal photons. The right panel of Fig. 19.5 tests whether the vn/εn of thermal

photons falls off exponentially as a function of n2 as suggested in [178]. We find that vn/εn falls

faster than c1e
−c2n2

for n > 3 for both MCGlb and MCKLN initial conditions.

19.2.4 pT -differential photon vn

Results for v2,3,4,5(pT ) for thermal photons from central and semi-peripheral Au+Au and

Pb+Pb collisions at RHIC and LHC are shown in Fig. 19.6. For each centrality bin and initializa-

tion model we run 1000 fluctuating events. We emphasize that such an event-by-event approach is
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results that include (neglect) viscous corrections to the photon emission rates. The shaded bands
indicate statistical uncertainties.

indispensable for the higher-order flow harmonics n≥ 3, and does influence the flow magnitude as

shown in Sec. 19.2.2. Different harmonics are plotted in different colors. The difference between

solid and dashed lines illustrates the importance of including viscous corrections in the emission

rates; both line styles include viscous effects on the evolution of the hydrodynamic flow in the
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medium. Note that for MCKLN initial conditions with η/s= 0.20, the off-equilibrium correction

in the photon spectrum from the term ∼ πµν remains smaller than the equilibrium contribution

up to pT ∼ 3.5 GeV in 0-40% Pb+Pb at the LHC, and up to pT ∼ 2.5 GeV in 20-40% Au+Au at

RHIC, indicating validity of our results up to these momenta.

Since the MCKLN-initialized fireballs are evolved with 2.5 times larger shear viscosity than

the MCGlb fireballs, the viscous corrections to the emission rates are larger in the bottom panels

of Fig. 19.6. After inclusion of viscous effects, all higher order photon vn(n > 3) are smaller for

MCKLN initial conditions than for MCGlb ones due to the larger associated shear viscosity. In

the 20%-40% centrality at RHIC energy, the v4 and v5 are almost completely damped away in the

MCKLN case by the large viscous corrections to the photon emission rates.

Note that, before including viscous effects on the emission rates (dashed lines), the higher-

order anisotropic flows generated from MCKLN initial conditions are larger than those from the

MCGlb model, in spite of the larger η/s used in the MCKLN runs. This is due to lower initial

temperatures in hydrodynamic simulations with larger shear viscosity, in order to compensate for

larger entropy production. This reduces the space-time volume for photon emission from the QGP

phase and increases the ratio of photons from the hadronic phase to those from the QGP phase.

Since hadronic photons carry about 10 times larger flow anisotropies, the vn of the final total

photons increase.

The rise and fall of all vn with increasing pT reflects the dominance of hadronic photon sources

(which exhibit strong flow) at low pT and the increasing weight of QGP photons from earlier and

hotter stages (where flow is weak) and of prompt photons (whose anisotropic flow is assumed to

vanish) at higher pT [236].

Comparing central (0−20%) to semi-peripheral (20−40%) RHIC collisions we see that only v2

increases in the more peripheral collisions, due to the increasing geometric elliptic deformation ε2 of

the reaction zone. The higher-order vn show little centrality dependence, reflecting a cancellation

between increasing hydrodynamic flow anisotropies (dashed lines) and increasing shear viscous

suppression of the photon emission rate anisotropies, probably due to the smaller fireball size in

peripheral collisions.

Comparing RHIC with LHC collisions we find an increase of thermal photon vn with collision

energy, mainly due to the ∼ 15% longer fireball lifetime at the LHC which affects mostly the

QGP phase. It allows QGP photons to develop larger flow anisotropies at LHC compared to

RHIC energies. The longer fireball lifetime also helps the system to evolve closer to local thermal

equilibrium. The smaller ratio πµν/(e+P ), when averaged over the fireball history, explains the

smaller difference between dashed and solid lines (reflecting the photon emission rate anisotropy)

at LHC energies compared to RHIC.
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Proceeding to Fig. 19.7, in order to separate the effects from initial conditions and shear

viscosity to thermal photon anisotropic flow, we show comparisons of pT -differential elliptic and

triangular flows of thermal photons additionally with the results using MCGlb initial conditions

with η/s = 0.20. Similar to vn of charged hadrons, with the same MCGlb initial conditions, a

larger η/s results smaller photon vn(pT ). Thermal photon v3 receives a strong suppression from

the shear viscosity compared to v2. On the other hand, with the same η/s, MCKLN initial

conditions result in a larger v2 but a smaller v3 compared to MCGlb runs. This is different from

hadrons where, for the same η/s, MC-Glauber and MCKLN initial conditions produced similar

v3 value [117]. In the right panel, we plot the pT -differential ratio of v2{SP}/v3{SP}. Compared

to charged hadrons, the thermal photon vγ2{SP}/vγ3{SP} ratio is larger. For 0.7 < pT < 2.0 GeV,

the difference between thermal photons and charged hadrons is the biggest.

19.3 Comparison with experimental measurements

In Fig. 19.8 we compare the differential elliptic flow vγ2{SP}(pT ) of direct photons (i.e. the

sum of prompt and thermal photons) from our event-by-event hydrodynamic simulations with ex-

perimental data from the PHENIX and ALICE Collaborations. One sees that the elliptic photon

flow predicted by the theoretical model falls severely short of the measured elliptic flow. Our

calculations do not include pre-equilibrium photons emitted before the start of our hydrodynamic

evolution at τ0 = 0.6 fm/c which presumably carry little flow anisotropy and would thus further

dilute the predicted v2. On the other hand, our calculation also does not include hadronic emission

processes that involve collisions between mesons and (anti-)baryons and baryon-induced modifi-

cations of the vector meson spectral functions [182], as well as meson-meson and meson-baryon
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bremsstrahlung processes [244, 245]. Since all these additional hadronic photon emission processes

occur during a stage where the hydrodynamic flow anisotropies have reached (most of) their final

strength, their inclusion would increase the direct photon elliptic flow. Whether doing so will

succeed in reproducing the experimental data remains to be seen. Finally, the calculations shown

in Fig. 19.8 do not include any pre-equilibrium transverse flow, nor any photons from the decays

of short-lived resonances after kinetic freeze-out. These two machanism will be explored in the

following subsection.

19.3.1 Efforts towards solving direct photon flow puzzle

Our hydrodynamic simulations seriously underpredict the measured photon elliptic flow. We

also find in Chapter 18 that they also significantly underpredict the photon yield at low pT < 2 GeV.

In chapter 18, our study of photon slope as well as the centrality dependence of the direct photon

yield suggests missing strength in the photon emission at late times. The large elliptic flow that

must be carried by these missing photons, the centrality dependence of their yield, and the fact

that we lack thermal photons in the spectrum mostly at low pT [222, 230], all indicate that most of

the missing photons must come from either the phase transition region or the hadronic rescattering

phase.

Some of the many hadronic resonances emitted from the decoupling hadron resonance gas have

photon-producing decay channels that were not included in hydrodynamic simulations before.

These resonances decouple with large anisotropic flows and pass them on to their decay-photon

daughters. Even though the corresponding branching ratio for each resonance is small, after adding

up photons from all such short-lived resonance decays, the direct photon elliptic and triangular
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Figure 19.9: Effect of pre-equilibrium flow and photons from the decay of short-lived hadronic res-
onances after hadronic decoupling on the direct (thermal + prompt) photon elliptic and triangular
flow.

flows are found to increase by up to 25%. This is shown by the difference between the red dashed

and blue dash-dotted curves in Fig. 19.9.

Pre-equilibrium dynamics has, however, also the potential to increase the photon elliptic flow

after thermalization. In contrast to hadrons, which are only sensitive to the final elliptic flow

at hadronic freeze-out, even a small increase of the flow anisotropy at each time will affect the

elliptic flow of photons emitted during all stages of the collision; given the small flow predicted so

far, this could turn out to be a significant improvement. Comparing the green and red curves in

Fig. 19.9 illustrates the possible effect of pre-equilibrium flow: while the red curves assume zero

transverse flow at the beginning of the hydrodynamic stage at τ0 = 0.6 fm/c, the green solid curves

allow the massless partons created at τ = 0 with a bumpy initial density profile to free-stream

until τ0 = 0.6 fm/c, where the resulting energy momentum tensor is Landau-matched to viscous

hydrodynamic form, yielding an non-zero anisotropic initial flow profile (together with a non-zero

initial viscous pressure tensor). Since massless partons move with light speed, free-streaming

likely overestimates the initial flow at the matching time somewhat. Still, its effect on the photon

anisotropic flow is not negligible, and any effect that helps to increase the elliptic flow signal is

welcome. Adding both the pre-equilibrium flow and post-freeze-out resonance decay contributions

thus enhances the photon elliptic and triangular flows by 40-50%.

19.4 Correlations and event distributions of photon vn

In Fig. 19.10, we investigate the correlation between the direct photon vn and the initial

eccentricity εn. We find that the thermal photon vn can be parametrized as vn = a({εm}) +

bεn, (m 6= n), where b represents the relative strength of the linear correlation between vn and

εn and the intercept a({εm}) captures the residual non-linear coupling with the other orders
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Figure 19.10: Direct photon anisotropic flow vn as a function of the initial eccentricity εn for
n = 2− 5 at 0-40% Pb+Pb collisions at

√
s = 2.76 A TeV.

of harmonic flows. For n = 2, 3, the intercept a is much smaller compared to the typical size

of vn, which indicates a strong dominance of the linear correlation between direct photon vn

and the initial εn, while non-linear couplings to higher order εm’s are suppressed. This linear

correlation becomes weaker as n increases. For n = 5, v5 shows almost no sensitivity to ε5, which

means v5 of direct photons is mostly generated from other harmonics by non-linear mode-coupling.

Furthermore, for all orders of n, the intercepts a are smaller from hydrodynamic simulations with

η/s = 0.20. This means that shear viscosity damps the non-linear mode coupling between different

orders of harmonic flows. Interestingly, we find that the two sets of simulations with η/s = 0.20 give

almost identical correlations between direct photon vn and initial εn independent of the difference

in the used initial condition models. This reflects the fact that the conversion efficiency from the

initial eccentricity to final flow anisotropy is almost entirely controlled by the shear viscosity of

the medium.

Due to the limited number of photons emitted in each collision event, the anisotropic flow

of direct photons is usually measured through the correlation with all charged hadrons from the
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Figure 19.11: Correlation between n-th order flow plane angle of direct photon vs charged hadrons
for n = 2-5 at 0-40% Pb + Pb collision at

√
s = 2.76 A TeV.

same event. Thus the difference between the underlying flow angles of direct photons and charged

hadrons and how it fluctuates from event to event influences the final photon anisotropic flow. In

Fig. 19.11, we study the correlation between the n-th order flow plane angles of direct photons

and charged hadrons. For n = 2 − 5, the direct photon flow angles ΨEP,γ
n are tightly correlated

with the charged hadron flow angles ΨEP,ch
n . For n = 2, a larger shear viscosity results in a stronger

correlation between ΨEP,γ
2 and ΨEP,ch

2 .

19.5 Chapter summary

In this chapter, we presented a phenomenological study of the anisotropic photon flow coef-

ficients from event-by-event viscous hydrodynamic simulations. We find that the shear viscosity

suppresses the photon vn. The dominant suppression comes from the viscous correction to the

photon emission rates. Event-by-event simulations show sizable triangular flow v3 as well as

higher order vn(n = 4, 5) of direct photons at both RHIC and LHC energies. A comparison of

pT -integrated v2/v3 of direct photons and charged hadrons as a function of collision centrality
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shows strong sensitivity to medium viscosity as well as to the initial conditions. Compared to

experimentally measured elliptic flow data, the non-equilibrium corrections from shear viscosity

do not help to solve the “direct photon flow puzzle” (i.e. the fact that our hydrodynamic simula-

tions severely underpredict the elliptic flow of direct photons). We find that pre-equilibrium flow

as well as photons coming from short lived resonance decays increase the final direct photon vn

by significant amounts and thus need to be included in the theoretical calculations. Finally, we

find that photon vn shows a similar correlation with the initial εn as charged hadron vn. Also, the

photon flow plane angles are strongly correlated with the corresponding hadronic ones.
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Chapter 20: Phenomenological study: Effects from partial chemical

equilibrium in the hadronic phase

20.1 Chapter introduction

Relativistic heavy-ion collisions feature a sequential freeze-out in the hadronic phase. Based

on the thermal model fit to final measured particle yields, the chemical freeze-out happens around

Tchem = 165 MeV. Below Tchem, hadrons can still exchange momenta through elastic scatterings

and decays. A later kinetic freeze out happens around Tkin = 100 − 120 MeV which can be

extracted from blast wave model fits to the identified particle pT spectra [107]. Between the

chemical and kinetic freeze-out, the system develops non-vanishing chemical potentials for the

stable hadron species, which fix the relative yields between different species of particles, after

resonance decays, at their values established at Tchem [77]. These chemical potentials will increase

the photon emission rates by corresponding fugacity factors. On the other hand, as the system

evolves out of chemical equilibrium, the thermal cooling rate also accelerates, which results in a

smaller space-time volume for electromagnetic radiation. These two effects act against each other.

In this chapter, we perform hydrodynamic simulations to study the competition between these

two effects and more generally, explore the sensitivity of photon observables to the EOS of our

fireball.

20.2 Model setup

20.2.1 Equation of State

We use the lattice QCD based equation of state, s95p, for our simulations. There are three

sub-versions of s95p, namely s95p-v0-PCE, s95p-v1, and s95p-v1-PCE. “v0” and “v1” represent

two different parameterizations of the trace anomaly at high temperature measured by Lattice

QCD. The detail parameterizations of “v0” and “v1” are described in Ref. [16]. The equations of

state xxx-PCE implement partial chemical equilibrium below Tchem as discussed below.

In Fig. 20.1, the relation between pressure and energy density is plotted in the left panel and

the square of speed of sound c2
s is plotted in the right panel. The three lattice QCD based EOS
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Figure 20.1: Pressure (left panel) and square of speed of sound (right panel) as a function of
energy density for three different subversions of s95p equation of state are compared with first
order phase transition EOS.

are compared with SM-EOS Q which assumes a (slightly smoothed) first order phase transition. As

seen from the plot of c2
s vs. e (right panel), s95p does not have any soft point within the transition

region. Since the acceleration in the local rest frame is controlled by the pressure gradients as

Dtu
µ =

∇µP

e+ P
' c2

s

c2
s + 1

∇µe

e
, (20.1)

a larger speed of sound in the transition region leads to faster hydrodynamic expansion. In the

high temperature region, the speed of sound is smaller than that of an ideal gas. So with the s95p

EOS, the fireball will expand more slowly in the QGP phase but faster in the phase transition

region than for SM-EOS Q. This affects the space-time volume of the fireball in these two stages,

and this is crucial for thermal photon emission.
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Figure 20.2: The chemical potential of stable mesons as a function of temperature for the partial
chemical equilibrium EOS, s95p-v0-PCE (left) and s95p-v1-PCE (right).
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The label “PCE” means that the equation of state implements partial chemical equilibrium in

the hadronic phase. In order to fixed the relative ratios between the yields of different particles

species, temperature dependent chemical potentials are assigned to each stable hadron species be-

low the chemical freeze out temperature. The chemical potentials of short lived unstable resonances

are the sums of the chemical potentials of their stable decay daughters. s95p-v0-PCE implements

chemical freeze out at Tchem = 165 MeV. s95p-v1-PCE implements PCE below Tchem = 150 MeV.

s95p-v1 assumes that the system always stays in chemical equilibrium. The chemical freeze out

temperature is chosen to fit the measured particle ratios. Tchem = 165 MeV is chosen to fit the

proton to π ratio that is measured by the STAR collaboration at RHIC, while Tchem = 150 MeV

is chosen to fit the PHENIX measurements which have a lower proton yield than STAR (see the

upper right panel of Fig. 20.3 below). Above Tchem, the three versions of s95p have the same

thermodynamic relation among energy density, pressure, entropy density, and temperature (see

left panel of Fig. 20.1). In the right panel of Fig. 20.1, we find there are little kinks in c2
s in

the low energy density region for the two PCE EOS. They correspond to a discontinuity caused

by turning on the non-equilibrium chemical potentials. In Fig. 20.2, we show the chemical po-

tentials of several stable mesons as functions of temperature for s95p-v0-PCE and s95p-v1-PCE.

The temperature dependence of the chemical potential is almost linear. Chemical potentials for

heavy particles are seen to increase faster than those for light particles. At a fixed temperature,

the chemical potentials in s95p-v0-PCE are larger than those for s95p-v1-PCE.

20.2.2 Hadron spectra and flow anisotropies

For this study, we use event-averaged initial conditions generated with the Monte-Carlo Glauber

model which are evolved with ideal hydrodynamics. For different equations of state, the other

hydrodynamic input parameters (freeze out temperature and thermalization time) are tuned to

reproduce as well as possible the hadronic spectra and elliptic flow data for charged hadrons, pions,

and protons. For s95p-v0-PCE, we set τ0 = 0.6 fm/c, and Tdec = 120 MeV. For s95p-v1, we choose

τ0 = 1.0 fm/c, and Tdec = 150 MeV. For s95p-v1-PCE, we take τ0 = 0.6 fm/c and Tdec = 120 MeV.

The comparison with experimental data is shown in Fig. 20.3.

In the upper panels of Fig. 20.3, charged hadron, π+ and proton spectra are compared with both

the STAR and the PHENIX data in the 0-5% most central collisions. The overall normalization

factors of initial conditions are tuned to reproduce the total yield of the charged particles. With the

chosen sets of hydrodynamic parameters, all three equations of state give fairly good descriptions

to the charged hadron and π+ spectra, but not for the proton spectra. For s95p-v0-PCE, since

the chemical potentials are tuned to match the p/π ratio measured by STAR, the total yield of

the proton matches with the STAR data but is about a factor of two higher than the PHENIX
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Figure 20.3: Upper panels: Charged hadrons, pion and proton spectra at 0-5% most central colli-
sions at RHIC. Lower panels: Charged hadrons, π+, and proton differential elliptic flow coefficients
at 20-30% centrality.

measurements. The slope of the proton spectra from s95p-v0-PCE is too steep compared to

the STAR data, which indicates that more radial flow is needed. s95p-v1 assumes chemical

equilibrium all the way to kinetic freeze out. So the p/π ratio changes with the kinetic freeze out

temperature. Once we fixed Tkin by matching the slope of the π+ spectra, the p/π ratio is also

determined. In our case with Tdec = 150 MeV, the proton yield is close to the value measured by

PHENIX. But since we freeze out the fireball at 150 MeV, the system does not have enough time

to fully develop hydrodynamic radial flow, the slope of the proton spectra is too steep compared

to the data. For s95p-v1-PCE, the p/π ratio is matched to the PHENIX measurements. It also

reproduces the shape of the PHENIX proton spectra fairly well. In the lower panels of Fig. 20.3,

we compare the elliptic flow coefficients v2 with experimental data at 20-30% centrality. All three

equations of state result in larger v2 for pT > 1 GeV than measured experimentally. This leaves

room for a small but non-zero specific shear viscosity.

20.3 Thermal photon emission

The above exercise dose not aim at a precise description of the hadron spectra but at a

hadronically constrained space-time evolution of the fireball medium that we can now use for

photon studies. We focus on ideal fluid dynamics because we want to emphasize the effect from

the EOS without conflagration from non-ideal fluid effects. The following study is thus schematic

only, without pretense of quantitative precision. Using our constrained hydrodynamic medium
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from the preceding section, we now couple the thermal photon emission rates to its space-time

evolution.

20.3.1 Hadronic photon spectra and anisotropy

Since the PCE is differently implemented in the late hadronic phase for the three versions of

s95p, we first study the photon emission in the hadronic phase.
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Figure 20.4: Thermal photon spectra in 0-5% and v2 in 20-30% are plotted from different reaction
channels with s95p-v0-PCE.

In Fig. 20.4, we show hadronic contribution to the thermal photon spectra for Au+Au collisions

at 200 A GeV in 0-5% centrality and the photon elliptic flow v2 in 20-30% centrality from different

reaction channels in the hadronic phase. In the left panel, the thermal photon spectra fall into

two main categories. The first class has a steep Bose-enhancement behavior at low pT < 0.5 GeV.

Processes like π+K → K∗+γ, π+π → ρ+γ and ρ→ π+π+γ are in this class. These processes

dominate the hadronic photon spectra for pT < 0.5 GeV. The other category contains a threshold

cut-off in the low pT region and involve heavy vector mesons with strong radial flow in the initial

state. The remaining five reaction channels are in this category. The processes from this second

category dominate photon production at pT > 0.7 GeV. In the right panel, we show the hadronic

photon differential elliptic flow at 20-30% centrality. The first category processes have positive

differential v2 at all pT values. For the processes, π+K → K∗+γ, π+π → ρ+γ, the shape of the

photon v2 follows the v2 of the pions in the initial state [236]. The decay channel ρ→ π + π + γ

produces the largest differential photon v2 in the hadronic phase. The processes in the second

category result in a small negative v2(pT ) at low pT . This is because the photon spectra from

these processes have a shoulder-like structure at low pT originating from the reaction threshold

and radial flow effects. Since the first category processes dominate photon spectra at low pT , the

total differential photon v2 follows that of the first category of processes for pT < 0.5 GeV and
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then transits to the second category for pT > 0.7 GeV. This transition causes the structure of the

total hadronic photon v2 (red solid line in the right panel of Fig. 20.4) around pT ∼ 0.5 GeV [236].
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Figure 20.5: Hadronic photon spectra and their anisotropies from chemical equilibrium and partial
chemical equilibrium EOS are compared at 0-20% and 0-40% centrality at the top RHIC energy.

In Fig. 20.5, photon spectra and elliptic flow are shown for different equations of state. Over-

all, there is little differences between the results using CE and PCE EOS. In the upper panels,

s95p-v1-PCE results in slightly flatter photon spectra compared to the other two EOS. This is

because s95p-v1-PCE generates stronger radial flow during the hydrodynamic evolution as we

have seen from the proton spectra in Fig. 20.3. The difference between the dashed and solid lines

illustrates the enhancement from non-zero chemical potentials caused by the breaking of chemical

equilibrium. Although it is barely visible on the logarithmic scale, quantitatively, the non-zero

chemical potentials in the PCE EOS enhance the photon spectra by about 30%. Since the chemi-

cal freeze out temperature of 165 or 150 MeV, respectively, is below the temperature of transition

region between the QGP and HG photon emission rates, used in this study (Tsw = 184 − 220

MeV), the fraction of the space-time volume where the hdronic rates are modified by the large

chemical potentials is small. In the lower panels of Fig. 20.5, we find that the non-zero chemical
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potentials result in larger differential v2 especially at high pT . This is because the chemical poten-

tials increase the photon yields at low temperature, where the flow anisotropy is larger, resulting

in a larger total v2 compared to the CE case.
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Figure 20.6: The space-time volume per temperature, dV4/dT , is plotted as a function of temper-
ature.

In order to illustrate the cancellation between the fugacity enhancement and faster cooling

rate caused by non-equilibrium chemical potentials in the hadronic phase, we further plot the

space-time volume per unit temperature interval as a function of temperature in Fig. 20.6. For

reference, we also include the case of an EOS with a first order phase transition. The area below

the curves indicates the total space-time volume of the hydrodynamic expansion. At the chemical

freeze-out temperature, dV4/dT exhibits discontinuities for the PCE EOS. This is consequence

of the sudden increase in the cooling rate below the chemical freeze-out temperature. Although

the results with PCE EOS have a lower kinetic freeze-out temperature, the net enhancement of

the photon spectra is small since the photon emission rate decreases very fast with decreasing

temperature, even including fugacity enhancement.

20.3.2 Comparison with experimental data

Direct photon observables contain multiple components. In Fig. 20.7, we illustrate the indi-

vidual contribution from each component to the total direct photon spectrum and elliptic flow. In

the left panel, we find that the pQCD prompt component becomes important for pT > 1.5 GeV.

In the thermal photon signal, QGP radiation dominates over that from the HG phase. In order
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Figure 20.7: Contributions from individual component to direct photon spectra and elliptic flow
compared with experimental data.

to estimate the contribution from the pre-equilibrium stage, we extrapolate the local tempera-

ture evolution to early time, between τ = 0.2 fm/c and τ0 = 0.6 fm/c, according to 1D Bjorken

longitudinal expansion. In the right panel of Fig. 20.7, photons from hadronic phase carry large

v2 as large as the experimental measurements. However, The QGP photons, who emit during

the early stages of the evolution carry negligible elliptic flow (purple dash-dotted line). The total

thermal photon (QGP + HG) elliptic flow is a weighted average between the photons from the

two phases. Since QGP photons have a larger yield compared to HG photons, the total thermal

photon v2 (green dashed line) is small. The pre-equilibrium photons from 1-D Bjorken expansion

carry zero anisotropic flow. They further dilute the total direct photon v2 to the black solid line,

which significant underestimates the PHENIX data.

We compare our full direct photon spectra (thermal + pQCD) with the experimental data in

Fig. 20.8. In the upper panels, we show the thermal photon spectra (QGP + HG) and pQCD

photon spectra separately. The full thermal photon spectra show little sensitivity to different

PCE implementations of the EOS in the hadronic phase. In the lower panels, we compare the full

thermal + pQCD photon spectra with the PHENIX data. (The extrapolated pQCD components

is only shown for reference.) We underestimate the experimental data by about factor of 5 for

pT < 2 GeV. In Fig. 20.9, we further compare the pT differential elliptic coefficient against the ex-

perimental data. For all choices of the EOS, we severely underestimate the PHENIX measurement.

In the s95p-v1 case, since we start our hydrodynamic evolution at τ0 = 1 fm/c, the contribution

of the pre-equilibrium photons from 1D Bjorken expansion (which carries no transverse flow) is

larger than for the two PCE cases for which the hydrodynamic simulations start at τ0 = 0.6 fm/c.

Since these estimated pre-equilibrium photons come from 1D longitudinal expansion, they do not

carry any elliptic flow, and therefore dilute the final direct photon v2 signal.
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Figure 20.8: Comparisons of our thermal + pQCD photon results with measured direct photon
spectra at 0-20% and 20-40% centrality at the top RHIC energy. All thermal contributions include
thermal radiation from a “pre-equilibrium” stage between τ = 0.2 fm/c and τ0, assuming 1-D
Bjorken expansion (i.e. zero transverse flow).
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Figure 20.9: Comparisons of direct photon elliptic flow results with experimental data at 0-20%
and 20-40% centrality at the top RHIC energy.
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20.4 Chapter summary

In this chapter, we studied the effects of partial chemical equilibrium in the EOS below Tchem

on the direct photon observables. We find that the fugacity enhancement in the photon emission

rates is compensated by the reduction of the space-time volume caused by the accompanying

more rapid cooling of the hydrodynamic evolution. The final photon spectra and v2 show little

sensitivity to the detailed implementation of the PCE in the EOS. The PCE in the late hadronic

phase does not help much in solving the missing yield in the direct photon spectra and direct

photon flow puzzle.
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Chapter 21: Phenomenological study: Inclusive and decay photons

In this chapter, we calculate the inclusive and decay photons from event-by-event viscous

hydrodynamic simulations. We apply the experimental extraction procedure for the determination

of the direct photon anisotropic flow to our event ensemble and find that only after including

a photon multiplicity weighting factor in the definition of the direct photon vn the theoretical

calculations correspond to what is being measured experimentally.

21.1 Definition of direct photon anisotropic flow

Experimentally, one can only measure the inclusive photon yield and its anisotropy. In order

to extract the direct photon signal from an overwhelming background, one first computes the

background of decay photons based on measured or extrapolated π0, η, and ω spectra. (As we

will see below, other contributions from electromagnetic decays of long-lived but unstable hadrons

are small and can be neglected.) π0 spectra can be measured directly in the pT -range needed to

compute their contribution to the measured photon signal while other heavier particle spectra can

only be measured at higher pT , and their contribution to the measured photon signal at lower pT

must be estimated. This is usually done [239, 240] by assuming mT -scaling for the hadron spectra.

Once this “decay cocktail” of decay photons and their anisotropies is computed, the direct photon

anisotropic flow can be calculated as

vdir
n (pT ) =

Rγ(pT )vincl
n (pT )− vbg

n (pT )

Rγ(pT )− 1
, (21.1)

where Rγ = Nγincl

Nγbg is the ratio of the measured inclusive photon signal and the computed decay

photon background. However, Eq. (21.1) is only exact for one single event. Due to finite statistics,

the vn measurement can only be done on an ensemble averaged basis. Experimentally, Eq. (21.1)

is therefore used with ensemble average values in all entries. The goal of this section is to establish

the correct relation between this experimental definition of vdir
n and quantities we can extract the-

oretically from our fluctuating event sample, where we compute the direct photon signal directly,

i.e. without first adding and later dividing our the background from long-lived electromagnetic

hadron decays.
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In the following, we will use the scalar-product method as an example. Similar algebra can be

applied to the event plane method. 39 For each event, we define the underlying anisotropic flow

vector in the complex plane

Vn(pT ) = vn(pT )einΨn(pT ) =

∫
dφ dN

dypT dpT dφ
einφ∫

dφ dN
dypT dpT dφ

, (21.2)

together with the ratio Rγ(pT ) between the inclusive and decay photons at a a given pT in the

event. Both quantities fluctuate from event to event. Experimentally, one can only extract the

ensemble averaged ratio, R̄γ(pT ) = 〈dNγ,incl/(dypT dpT )〉
〈dNγ,bg/(dypT dpT )〉 .

21.1.1 Flow coefficients without photon multiplicity weight

The direct photon vdir
n {SP} is defined by

vγ,dir
n {SP}(pT ) =

〈V γ,dir
n (pT ) · (V ch

n )?〉
vch
n {2}

(21.3)

=

〈
Rγ(pT )V γ,incl

n (pT )−V γ,bg
n (pT )

Rγ(pT )−1
· (V ch

n )?
〉

vch
n {2}

=

〈
Rγ(pT )
Rγ(pT )−1

V γ,incl
n (pT ) · (V ch

n )?
〉
−
〈

1
Rγ(pT )−1

V γ,bg
n (pT ) · (V ch

n )?
〉

vch
n {2}

6= R̄γ(pT )vγ,incl
n {SP}(pT )− vγ,bg

n {SP}(pT )

R̄γ(pT )− 1
. (21.4)

This inequality in the last line shows that the standard scalar-product vn for direct photons is in

general not equal to the experimentally measured quantity Eq. (21.1).

39The event place method is presently being used in the experiment but since the theoretical interpretation of its
results is affected by the experimental event-plane resolution [22], which is impossible to simulate theoretically, it is
theoretically inconvenient. The scalar product method avoids these interpretational ambiguities without additional
effort on the experimental side [22]. It is therefore much preferred for a comparison with theoretical predictions.
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21.1.2 Flow coefficients with photon multiplicity weight

Now, let us consider the multiplicity weighted scalar-product anisotropic flows:

vγ,dir
n {SP,mult}(pT ) =

〈
dNγ,dir

dypT dpT
V γ,dir
n (pT ) · (V ch

n )?
〉

〈
dNγ,dir

dypT dpT

〉
vch
n {2}

(21.5)

=

〈(
dNγ,incl

dypT dpT
− dNγ,bg

dypT dpT

)
Rγ(pT )V γ,incl

n (pT )−V γ,bg
n (pT )

Rγ(pT )−1
· (V ch

n )?
〉

〈
dNγ,incl

dypT dpT
− dNγ,bg

dypT dpT

〉
vch
n {2}

=

〈(
dNγ,incl

dypT dpT
V γ,incl
n (pT )− dNγ,bg

dypT dpT
V γ,bg
n (pT )

)
· (V ch

n )?
〉

(〈
dNγ,incl

dypT dpT

〉
−
〈

dNγ,bg

dypT dpT

〉)
vch
n {2}

=
R̄γ(pT )vγ,incl

n {SP,mult}(pT )− vγ,bg
n {SP,mult}(pT )

R̄γ(pT )− 1
. (21.6)

One sees that with the extra photon multiplicity weight in both numerator and denominator of

the definition of the scalar-product flow coefficients, the new quantity vn{SP,mult} defined in the

first line agrees exactly with what is extracted experimentally from the measured inclusive and

computed decay photons. Since the photon multiplicity weight factor implements a strong bias

towards more central collisions which produce more photons pre event but less elliptic flow, it is

crucial to include the photon multiplicity weight in the vn definition for direct photons, in order

to have an apples-to-apples comparison between theoretical calculations and the experimental

measurements, especially when the latter are averaged over a wide range of collision centralities.

21.2 Photon emission sources in heavy-ion collisions

21.2.1 Decay photons

In relativistic heavy-ion collisions, 80-90% of the measured photons are generated as decay

products from unstable hadrons. The most abundant decay source is π0 → γ + γ. It contributes

about 85% of the total decay photons in a heavy-ion collision. The decay photon yield is much

larger than the direct photon yield. Since hadrons are much more abundant than directly emitted

photons in heavy-ion collisions, the direct photon excess is only a 10-20% fraction of the inclusive

photon yield at RHIC and LHC energies. In table 21.1, we list the primary decay channels

included in the experimental “decay cocktail” calculations of electromagnetic decays from long-

lived unstable hadrons. (Note that photons from electromagnetic decays of short-lived resonances

are not included in the cocktail since such resonances can not be reconstructed experimentally and

their abundance and pT distributions can not be easily estimated.) In Fig. 21.1, we show the

decay photon spectra as a function of pT for individual cocktail hadron species, computed from
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Meson Mass (GeV) Decay mode branching ratio(%)
π0 0.13498 γ + γ 98.823± 0.034

γ + e+ + e− 1.174± 0.035
η 0.54775 γ + γ 39.31± 0.20

π+π− + γ 4.6± 0.16
ω 0.78259 π0 + γ 8.28± 0.28

ρ+ γ 29.3± 0.6
η′ 0.95778 ω + γ 2.75± 0.22

γ + γ 2.18± 0.08
φ 1.01946 η + γ 1.309± 0.024
Σ0 1.19264 Λ + γ 1.00

Table 21.1: Cocktail hadrons, their electromagnetic decay modes and the corresponding relative
branch ratio.
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Figure 21.1: Decay photon spectra from individual hadron species,computed from viscous hydro-
dynamics for 2760 A GeV Pb+Pb collisions at 0-40% centrality with MC-Glauber initial conditions
and η/s = 0.08.

hydrodynamics. Most of the decay photons are coming from π0, followed by η, and ω decays.

Experimentally, one defines the photons from π0, η, ω, η′, φ, and Σ0 decays as decay photons, and

they form the “decay cocktail” used in the measurements [239, 240]. The decay photons imprint

the flow pattern of their parent particles, hence they carry large anisotropic flow compared to

direct photons, many of which are emitted at earlier stages of the evolution. 40

40Note that the computation of the “decay cocktail” requires knowledge of the spectra (shape and normalization)
of the parent hadrons. Ideally, these parent hadrons are directly measured in the same experiment, in the pT range
needed for their decay photons. In practice, this often involves extrapolation of experimental measurements of the
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Figure 21.2: Elliptic and triangular flow of decay cocktail photons, for 0-40% Pb+Pb collision at√
s = 2.76 A TeV.

In Fig. 21.2, we plot the pT differential elliptic and triangular flow coefficients of the decay

photons using different methods for the flow measurement. Both elliptic and triangular flow of

the decay photons are about as large as those typical of hadrons. Elliptic flow measurements

that include a photon multiplicity weight are smaller than the unweighted ones. This is because

the multiplicity weight biases the measurement towards central collisions in which the geometric

contribution to v2 is smaller. Please note that for v2 the difference between flow measures with and

without multiplicity weight is quite large due to the strong centrality dependence of elliptic flow

arising from collision geometry. Since triangular flow is purely driven by fluctuations and has no

contribution from overlap geometry, the bias towards more central collisions caused by the photon

multiplicity weight has a smaller effect on the final result and the difference between multiplicity

weighted and unweighted methods is smaller. We also notice that the difference between vn{SP}
and vn{EP} becomes smaller when we weight with the photon multiplicity.

21.2.2 Direct photons

In the experiments, the direct photons are extracted from the difference between the measured

inclusive photons and simulated decay photons. The extracted signal contains thermal photons

(believed to be the most dominant source at low photon momentum), prompt photons, decay

photons from short lived resonances, pre-equilibrium photons, fragmentation photons, jet-plasma

conversion photons, etc. In our current theoretical calculations, we only consider the contribution

from the first three listed sources.

Thermal photon emission is the major source in the direct photon signal in the low pT region.

We consider emission from quark gluon plasma (QGP) and hadron gas (HG) phases. In the QGP

parent hadrons in one pT -range to a different pT -range that matters for the decay photons included in the photon
measurement.
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phase, we include both 2 to 2 scattering processes and the AMY rate for collinear emissions [185].

In the HG phase, we include all 2 to 2 scattering processes between pseudo-scalar, vector, and

axial vector mesons. We account for first order in the QGP corrections in all the 2 to 2 scattering

processes, leaving the collinear emission contribution uncorrected. In the high-pT region, prompt

photons from hard scatterings become the dominant source. In our calculations, we use the NLO

pQCD parameterization [225]. For 0-40% centrality at the LHC, the prompt photons component

can be parameterized as follows:

dN

2πdypTdpT
= 12.8

1.21

(1 + pT/0.692)−5.5

(
1

GeV2

)
. (21.7)

Decay photons from short-lived resonances decaying after kinetic freeze-out have various compo-

nents. We summarize the contributions decay channels in table 21.2, 21.3, and 21.4, including

all decay channels for resonances with masses below 2 GeV [246]. In Fig. 21.3, we show the

reaction branching ratio
ρ0 → π+ + π− + γ 1%
b1(1235)→ π± + γ 1.6 ∗ 10−3

h1(1170)→ π0 + γ 1.7 ∗ 10−3

a1(1260)→ π0 + γ 1.7 ∗ 10−3

f1(1285)→ ρ0 + γ 5.5%
a2(1320)→ π± + γ 2.68 ∗ 10−3

K?(892)→ K0 + γ 2.4 ∗ 10−3

K?(892)→ K± + γ 1 ∗ 10−3

K1(1270)→ K0 + γ 8.4 ∗ 10−4

K1(1400)→ K0 + γ 1.6 ∗ 10−3

K?
2(1430)→ K+ + γ 2.4 ∗ 10−3

K?
2(1430)→ K0 + γ 9 ∗ 10−4

Table 21.2: Mesonic decay channels to photons from the short lived resonances

individual contributions to the direct photon spectrum from the three sources for pT < 3.5 GeV.

We see that over the entire pT -range the short-lived resonance decays contribute to the direct

photon spectrum at a level of about 5 to 10% the thermal emission. Their contribution is larger

at low pT , and peaks around pT ∼ 0.5 GeV. The net contribution of these photons to the total

direct photon spectrum is rather small. Prompt photons from pQCD are smaller than thermal

radiation at low pT and gradually take over at higher pT , dominating the spectrum for pT > 3.0

GeV. In Fig. 21.4, we study the individual contributions to the total decay photon spectra from

short-lived resonances. The biggest contribution is from radiative ρ decays, ρ0 → π + π + γ. We

listed only the resonances contributing the top 80% of the yield from short-lived decays. As we

can see, their sum (yellow dotted line in Fig. 21.4 exhausts the total decay photon spectrum at

low pT < 1 GeV. At the higher pT , there still a significant contribution coming from the rest of
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reaction branching ratio
N(1440)→ p+ γ 4.15 ∗ 10−4

N(1440)→ n+ γ 3 ∗ 10−4

N(1520)→ p+ γ 4.15 ∗ 10−3

N(1520)→ n+ γ 4.15 ∗ 10−3

N(1530)→ p+ γ 2.25 ∗ 10−3

N(1530)→ n+ γ 2.25 ∗ 10−3

N(1650)→ p+ γ 1.2 ∗ 10−3

N(1650)→ n+ γ 8.5 ∗ 10−4

N(1675)→ p+ γ 1 ∗ 10−4

N(1675)→ n+ γ 7.5 ∗ 10−4

N(1680)→ p+ γ 2.65 ∗ 10−3

N(1680)→ n+ γ 3.35 ∗ 10−4

N(1700)→ p+ γ 3 ∗ 10−4

N(1700)→ n+ γ 1.2 ∗ 10−3

N(1710)→ p+ γ 4.1 ∗ 10−4

N(1710)→ n+ γ 1 ∗ 10−4

N(1720)→ p+ γ 1.5 ∗ 10−3

N(1720)→ n+ γ 8 ∗ 10−5

∆(1232)→ N + γ 0.6%
∆(1600)→ N + γ 1.8 ∗ 10−4

∆(1620)→ N + γ 6.5 ∗ 10−4

∆(1700)→ N + γ 4.1 ∗ 10−3

∆(1905)→ N + γ 2.4 ∗ 10−4

∆(1910)→ N + γ 1 ∗ 10−4

∆(1920)→ N + γ 2 ∗ 10−3

∆(1950)→ N + γ 1.05 ∗ 10−3

Table 21.3: Baryonic decay channels to photons from the short lived resonances

reaction branching ratio
Λ(1405)→ Λ + γ 5.4 ∗ 10−4

Λ(1405)→ Σ0 + γ 2 ∗ 10−4

Λ(1520)→ Λ + γ 8.5 ∗ 10−3

Λ(1520)→ Σ0 + γ 2%
Σ0(1385)→ Λ + γ 1.25%
Ξ(1530)→ Ξ + γ 4%

Table 21.4: Baryonic decay channels to photons from the short lived resonances continued.

the short-lived resonances although each individual of them contributes less than 1% to the total

short-lived decay yield.

In Fig. 21.5, we compute the direct photon elliptic and triangular flow with and without

the contributions from short-lived resonances. Although the yields of the decay photons from

short-lived resonances are only 5 to 10% of the thermal photons, they increase the total direct

elliptic and triangular flows by about 20% and 25%, respectively. This is because they carry large
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Figure 21.3: Left panel: direct photon spectra from the individual components. Right panel: the
ratio between the photons coming from short lived resonances decay and the thermal photons.
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Figure 21.4: Individual contributions to the decay photon spectra from short lived resonances for
2760 A GeV Pb+Pb collisions at 0-40% centrality.

anisotropic flow which is inherited from their parent hadrons which are only emitted at kinetic

freeze-out when the hydrodynamic flow anisotropy is fully developed. From Figs. 21.3 and 21.5,

we conclude that the decay photons from short-lived heavy resonances make small contributions to

the direct photon spectra but increase the direct photon anisotropic flow by appreciable amounts.

Their contributions thus need to be included in realistic comparisons with experimental data.
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Figure 21.5: Elliptic and triangular flow for direct photons with and without contributions from
short-lived resonance decays.
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Figure 21.6: Elliptic and triangular flow for direct photons for 2760 A GeV Pb+Pb collisions at
0-40% centrality.

In Fig. 21.6, we show the direct photon elliptic and triangular flow from different measure-

ment methods. Unlike the long-lived decay photon vn shown in Fig. 21.2, all four different flow

definitions give rather similar direct photon vn.

21.2.3 Inclusive photons and comparison with experimental data

By calculating both direct and decay photons, we can get the inclusive photon yield and its

anisotropies and compare them with experimental data.

In Fig. 21.7, in the left panel, we show our inclusive photon spectra as well as the individual

components and their comparison with the inclusive photon spectra measured by ALICE in 2760

A GeV Pb+Pb collisions at 0-40% centrality. Our calculations show a fairly good agreement with

the measured inclusive photon spectra for pT < 1.5 GeV, although the slope of the calculated

photon spectra is a little bit steeper than the experimental data. In the right panel, we show the
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Figure 21.7: Left panel: Inclusive photon spectra with individual decay and direct photon contri-
bution. Right panel: Rγ as a function of pT . The experimental data are extracted from Daniel
Lohner’s Ph.D thesis.

theoretical ratio between the inclusive and decay photon yield, Rγ. Our model is seem to produce

Rγ values around 1.02 - 1.1 for pT < 2.0 GeV; this significantly underestimates the Rγ values

reported by the experiment which are around 1.2 at low pT . Theoretical Rγ curve also shows a

stronger pT -dependence than the experimentally measured results.
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Figure 21.8: Comparison between inclusive and decay photon elliptic and triangular flow.

In Fig. 21.8, we show a comparison between the anisotropic flow coefficients for inclusive and

decay photons. At low pT , decay and inclusive photons are seem to have very similar vn. The

vn of the inclusive photons fall below those of the decay photons at pT > 3.0 GeV where pQCD

photons, who carry zero vn, become important.

In Fig. 21.9, we compare the elliptic and triangular flows of inclusive photons, computed ac-

cording to different flow definitions, and compare them to the experimental data. Our calculations

roughly agree with the experimental measurements. Since the experimental measurements include

a photon multiplicity weight, they should be compared with the red dashed or blue dashed curves.
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Figure 21.9: Inclusive photon v2 and v3 compared to experimental data. The experimental data
are extracted from Daniel Lohner’s Ph. D thesis.

One sees that we underestimate the elliptic flow while slightly overestimating the triangular flow

of the inclusive photons.
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Figure 21.10: Comparison between direct photon vn and experimental extracted vn from Eq.
(21.1). Calculations are for 2760 A GeV Pb+Pb collisions at 0-40% centrality.
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Finally, in Fig. 21.10, we investigate whether we can use Eq. (21.1) as the experimentalists

did to reproduce the true underlying direct photon vn. In the upper panels, we checked the

scalar-product anisotropic flow vγ,dir
n {SP} without multiplicity weighting, as given in Eq. (21.4).

As expected, the result obtained by using the experimental extraction method Eq. (21.1) does

not agree with the directly computed direct photon scalar-product anisotropic flow. In the lower

panels, we show the same comparison for the multiplicity-weighted scalar-product vn. Despite

the huge statistical errors, the central values of the two curves from the two approaches (directly

computed and extracted from Eq. (21.1)) agree perfectly with each other. This verifies the

correctness of our derivation in Eq. (21.6). Fig. 21.10 illustrates the indispensable role of including

the photon multiplicity weights in the theoretical vn.
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Chapter 22: Conclusions and Outlook

The field of relativistic heavy-ion physics is evolving rapidly. Starting from the year 2000,

ideal hydrodynamic simulations first achieved a great success in predicting the elliptic flow mea-

surements at RHIC, which led to the discovery of the strongly-coupled QGP, the most perfect

fluid currently known in nature. In order to further quantify the transport properties of the QGP,

viscous hydrodynamic models (with and without the assumption of longitudinal boost invariance)

were developed and applied to phenomenological studies at RHIC and LHC. The realization of the

importance of event-by-event initial state fluctuations together with event-by-event viscous hydro-

dynamic simulations open new opportunities to constrain the initial state quantum fluctuation

spectrum and the specific shear viscosity of the QGP medium with unprecedented precision.

In our current modeling of relativistic heavy-ion collisions, hydrodynamics is not fighting alone

but equipped with the state-of-the-art EOS, event-by-event initial state fluctuations and a micro-

scopic hadronic afterburner. In this thesis, we have focused on developing and applying such an

advanced integrated model framework, the iEBE code package (Chapter 2), for large scale precise

phenomenological studies of relativistic heavy-ion collisions in the near future.

The main part (chapters 3 to 13) of my thesis contains a collection of phenomenological studies

of the bulk dynamics of relativistic heavy-ion collisions using the viscous hydrodynamic model.

Extraction of the QGP specific shear viscosity from phenomenological studies requires tight con-

straints on all the model parameters used in the simulations. We studied the effect of the hydrody-

namic model parameters on the final experimental observables (particle spectra and their elliptic

flow coefficients) in Chapter 4. Based on a well-constrained fit to RHIC data, we extrapolated

our calculations to LHC energy in Chapter 5 which accurately predicted the measured identified

particle elliptic flow data. A follow-up analysis of both elliptic and triangular flow (v2 and v3)

measurements at Pb + Pb collisions at
√
s = 2.76 A TeV (Chapter 6) at the LHC helped us

to discriminate for the first time between the MC-Glauber and MCKLN initial condition mod-

els, simultaneously constraining the value of the QGP specific shear viscosity η/s to be close to
1

4π
. We further extended our calculations at LHC energies to event-by-event mode in Chapter 7

which confirmed the rubustness of our previous conclusions once event-by-event fluctuations on

the nucleonic scale are included. In order to explore the possibility of accessing the temperature
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dependence of η/s in the QGP phase, we perform model studies in Chapter 8. We found that the

charge hadron elliptic flow is sensitive to (η/s)(T ), the relaxation time for the shear stress tensor

τπ, and the initialization of the πµν tensor, all at the level of O(10%). An ambitious extraction of

(η/s)(T ) requires a quantitatively precise model description of experimental flow observables over

the wide range of collision energies probed at RHIC and LHC. Chapter 9 was devoted to such a

systematic study of the collision energy dependence of hadron elliptic flow data.

The initial state fluctuations in heavy-ion collisions also imprint themselves in the measurable

flow correlations between anisotropic flow coefficients of different harmonic order. These non-

trivial correlations in the flow observables provide us with additional constraints on our theoretical

modeling of the collisions. In Chapter 10, we discussed the measurable consequences of fluctuations

in the flow angles at different pT , together with comparisons with recent preliminary experimental

data. These comparisons provided additional strong support for the success of hydrodynamic

paradigm. We also studied ultra-central Pb+Pb collisions at the LHC in Chapter 11, where

initial state fluctuations dominate over geometric contributions to the final flow observables. This

analysis showed that the measured hierarchy of the flow spectrum {vn{2}} in these collisions

challenges the current theoretical models, in particular our modeling of the initial-state quantum

fluctuations.

In the last part of this thesis I studied viscous and fluctuation effects to electromagnetic probes

of relativistic heavy-ion collisions. In Chapters 15 and 16, we derived thermal photon emission

rates and their first order viscous corrections for the QGP and Hadron gas phases, respectively.

These rates were then coupled with event-by-event viscous hydrodynamic evolution to study the

direct photon spectra and their anisotropies in relativistic heavy-ion collisions. In Chapter 18,

we studied the direct photon spectrum, especially the physical interpretation of its inverse slope

parameter. We found that the direct photon spectrum is strongly affected by the hydrodynamic

radial flow, which blue-shifts the photons coming from the low temperature region of the fireball

during its late stage of the evolution. The anisotropic flows of direct photons were studied in

Chapter 19. Similar to hadrons, the shear viscosity suppresses thermal photon vn. However, the

suppression is larger in the thermal photon case, because most of them come from inside the fireball

where the shear stress tensor is large. This makes direct photon anisotropic flow a more sensitive

viscometer for the QGP than hadronic observables. In Chapters 18 and 19 we also showed that

current theory calculations underestimate the measured direct photon spectrum and its anisotropic

flow by at least a factor of 5, which poses a big challenge to our current theoretical modeling. We

investigated effects from pre-equilibrium flow and from contributions from short-lived resonance

decays on the direct photon spectrum and vn in Chapters 18 and 19. Both give small but significant

contributions and improve the theoretical description. Effects from partial chemical equilibrium

in the hadronic state EOS on photon spectra and anisotropic flows were studied in Chapter 20.
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The fugacity enhancement in the photon emission rates was found to be largely compensated

by the reduction in hydrodynamic space-time volume due to faster cooling, leaving only a small

net effect. Finally, in order to have a thorough comparison of theoretically computed photon

observables with experimental data, the inclusive and decay photons were studied in Chapter 21,

focussing on a precise understanding of the experimental measurements and the resulting demands

on their accurate theoretical simulation.
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Appendix A: Subtracting self-correlation in multi-particle correlations

The flow correlation function, especially the multi-plane correlation, involves multiple Qn vec-

tors. One can avoid to deal with self-correlation by simply introducing rapidity gap between

different sub-events. But this will lose statistics very quickly if the correlation function involves

more and more Qn vectors. Here, we derive a general formula to subtract the self-correlations

for any number of Qn vectors by induction method. Suppose we had known the expression for

m-particle correlation function with self-correlation subtracted, C({Qni}m). We denote

P (m, {Q̃ni}m) =
N !

(N −m)!
C({Qni}m), (A.1)

with Q̃n =
∑N

i=1 e
inφi = NQn and N is the number of particles in the event. Then the correlation

for m+ 1 particles can be calculated as

P (m+ 1, {Q̃ni}m+1) = Q̃nm+1P (m, {Q̃ni}m)−
m∑
j=1

P (m, {Q̃nj+nm+1}m), (A.2)

where the second term subtracts the self-correlations from the m + 1-th particle being the same

as any of the previous m particles. The normalized correlation function can be evaluated as,

C({Qni}m+1) =
1

N −m

(
NQnm+1C({Qni}m)−

m∑
j=1

C({Qnj+nm+1}m)

)
. (A.3)

The initial starting point is the trivial case P (1, Q̃n) = Q̃n for m = 1. Then for m = 2,

P (2, {Q̃n1 , Q̃n2}) = Q̃n2 · Q̃n1 − Q̃n1+n2 . (A.4)

For the ensemble average of P (2, {Qn1 , Qn2}) not to vanish due to random orientation of the

reaction plane, we must have n1 + n2 = 0, and then Q̃n1+n2 = N . The normalized correlation

function is then,

C({Qn1 , Q
∗
n1
}) =

N

N − 1
Qn1 ·Q∗n1

− 1

N − 1
. (A.5)

For m = 3,

P (3, {Q̃n1 , Q̃n2 , Q̃n3}) = Q̃n3(Q̃n2 · Q̃n1 − Q̃n1+n2)

−(Q̃n2 · Q̃n1+n3 − Q̃n1+n2+n3)

−(Q̃n1 · Q̃n2+n3 − Q̃n1+n2+n3) (A.6)
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and

C({Qn1 , Qn2 , Qn3}) =
N2

(N − 1)(N − 2)
Qn3Qn2Qn1

− N

(N − 1)(N − 2)
(Qn3Qn1+n2 +Qn2Qn1+n3 +Qn1Qn2+n3)

+
2

(N − 1)(N − 2)
. (A.7)

The four-particle cumulant method involves m = 4 case,

P (4, {Q̃n1 , Q̃n2 , Q̃n3 , Q̃n4}) = Qn4P (3, {Q̃n1 , Q̃n2 , Q̃n3})
−P (3, {Q̃n1+n4 , Q̃n2 , Q̃n3})− P (3, {Q̃n1 , Q̃n2+n4 , Q̃n3})
−P (3, {Q̃n1 , Q̃n2 , Q̃n3+n4}). (A.8)

and

C({Qn1 , Qn2 , Qn3 , Qn4}) =
1

N − 3
[NQn4C({Qn1 , Qn2 , Qn3})

−C({Qn1+n4 , Qn2 , Qn3})− C({Qn1 , Qn2+n4 , Qn3})
−C({Qn1 , Qn2 , Qn3+n4}]. (A.9)
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Appendix B: On the form of δf corrections [131]

In thermal equilibrium, the momentum distribution function for particle species i can be writ-

ten as,

f ieq(x, p) =
1

ep·u(x)/T (x)−µ(x) ± 1
. (B.1)

For a system near thermal equilibrium, the evolution of the particle distribution function can be

described by linear Boltzmann equation. In the relaxation time approximation,

δf i = −τ iRpµ∂µf ieq. (B.2)

The spatial derivative will act on uµ(x), T (x), and µ(x) in Eq. B.1. We can write down a general

tensor form of δf ,

δf i = −f ieq(1∓ f ieq)(pαεα + pαpβεαβ). (B.3)

In Eq. (B.3), εα and εαβ are tensors contains the gradients of uµ(x), T (x), and µ(x). Since pαpβ

is symmetric in α and β, εαβ is also symmetric. Thus it only has 10 independent components.

Together with the 4 independent components in εα, there are 14 unknowns in Eq. (B.3). The

expansion in Eq. (B.3) is called the 14-moment approximation [247]. The system’s baryon and

energy momentum tensor can be written as

Nµ = Nµ
eq + V µ (B.4)

and

T µν = euµuν − (P + Π)∆µν + πµν . (B.5)

By using the Landau matching condition, we can relate the macroscopic quantities in Eq. (B.4)

and (B.5) with δf as follows,

T µνuν = T µνeq uν = euµ, (B.6)

uµN
µ = uµN

µ
eq = n, (B.7)

V µ = ∆µνNν , (B.8)

Π = −1

3
∆µνδT

µν , (B.9)
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πµν = ∆µν
αβδT

αβ, (B.10)

where δT µν = T µν − euµuν + P∆µν . Here, V µ can be related to heat current qµ as,

qµ = −e+ P

n
V µ. (B.11)

There are 14 equations in total from Eq. (B.6) to Eq. (B.10), which can help us to map the

macroscopic hydrodynamic quantities in Eq. (B.4) and (B.5) onto εα and εαβ.

In order to simplify the notation, we define the following thermodynamic integrals,

Jµ1µ2···µm =
∑
i

∫
gi

(2π)3

d3p

Ei
f ieq(p)(1± f ieq(p))pµ1pµ2 · · · pµm

=
∑
n

[∆µ1µ2 · · ·∆µ2n−1µ2nuµ2n+1 · · ·uµm + permutations]Jmn (B.12)

and

J̃µ1µ2···µm =
∑
i

∫
bigi

(2π)3

d3p

Ei
f ieq(p)(1± f ieq(p))pµ1pµ2 · · · pµm

=
∑
n

[∆µ1µ2 · · ·∆µ2n−1µ2nuµ2n+1 · · ·uµm + permutations]J̃mn (B.13)

where i runs over all particle species. Then Eq. (B.6) to Eq. (B.10) can be evaluated as,

uµδT
µν = 0 ⇒ −uµJµναεα − uµJµναβεαβ = 0

⇒ J30ε?u
ν + J31∆ναεα + J40u

νε?? + J41u
ν∆αβεαβ + 2J41∆ναεα? = 0

⇒ (J30ε? + J40ε?? + J41∆αβεαβ)uν + (J31εα + 2J41εα?)∆
να = 0

⇒
{
J30ε? + J40ε?? + J41∆αβεαβ = 0
(J31εα + 2J41εα?)∆

να = 0

⇒
{
J30ε? + (J40 − J41)ε?? + J41Tr{ε} = 0
J31∆ναεα + 2J41∆ναεα? = 0

, (B.14)

where ε? = εµu
µ, ε?? = εµνu

µuν , and Tr{ε} = gµνεµν .

uµδN
µ = 0 ⇒ −uµJ̃µαεα − uµJ̃µαβεαβ = 0

⇒ −J̃20ε? − J̃30ε?? − J̃31∆αβεαβ = 0

⇒ −J̃20ε? − (J̃30 − J̃31)ε?? − J̃31Tr{ε} = 0. (B.15)

Π = −1

3
∆µνδT

µν ⇒ Π = −1

3
(−∆µνJ

µναεα −∆µνJ
µναβεαβ)

⇒ Π = J31ε? + J41ε?? +
5

3
J42∆αβεαβ

⇒ Π = J31ε? +

(
J41 −

5

3
J42

)
ε?? +

5

3
J42Tr{ε}. (B.16)
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V µ = ∆µνNν ⇒ Vµ =
1

3
(−∆µνJ

ναεα −∆µνJ
ναβεαβ)

⇒ V µ = −J̃21∆µνεν − 2J̃31∆µνεν?. (B.17)

πµν = ∆µν
αβδT

αβ ⇒ πµν = −∆µν
αβJ

αβρερ −∆µν
αβJ

αβρσερσ

⇒ πµν = −2J42∆µν
αβε

αβ. (B.18)

Now, we can solve for εµ and εµν ,

ε? = D0Π, (B.19)

ε?? = B̃0Π, (B.20)

Tr{ε} = B0Π, (B.21)

∆µνεν = D̃1V
µ, (B.22)

∆µνεν? = B̃1V
µ, (B.23)

∆µν
αβε

αβ = B2π
µν , (B.24)

where Bi, B̃i, Di, and D̃i are functions of the themodynamic integrals, Jmn and J̃mn,

D0 = 3(J40J̃31 − J41J̃30)J −1
3 , (B.25)

B̃0 = 3(J41J̃20 − J30J̃31)J −1
3 , (B.26)

B0 = (J30J̃30 − J40J̃20)J −1
3 , (B.27)

D̃1 = 2J41J −1
2 , (B.28)

B̃1 = −J31J −1
2 , (B.29)

B2 = J −1
1 , (B.30)

and,

J3 = 5J30J42J̃30 + 3J31J40J̃31 + 3J41J41J̃20

−3J31J41J̃30 − 3J30J41J̃31 − 5J40J42J̃20, (B.31)

J2 = 2J31J̃31 − 2J41J̃21, (B.32)

J1 = −2J42, (B.33)

Thus,

εµ = ε?u
µ + ∆µνεν = D0Πuµ + D̃1V

µ. (B.34)

εµν = (B0∆µν + B̃0u
µuν)Π + 2B̃1u

(µV ν) +B2π
µν . (B.35)
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We can put Eqs. (B.34) and (B.35) back into Eq. (B.3) and obtain,

δf i = −f i0(1± f i0)(pµεµ + pµpνεµν)

= −f i0(1± f i0)(pµ(D0Πuµ + D̃1Vµ) + pµpν [((B0∆µν + B̃0uµuν)Π

+2B̃1u(µVν) +B2πµν)])

= −f i0(1± f i0)[Π(D0(p · u)−B0m
2
i + (B0 + B̃0)(p · u)2)

+(p · V )(D̃1 + 2B̃1(p · u))

+B2p
µpνπµν ] (B.36)

So, we can see that the δf i for bulk viscosity is,

δf ibulk = f i0(1± f i0)Π[B0m
2
i −D0(p · u)− (B0 + B̃0)(p · u)2]. (B.37)

And the δf i for heat current is,

δf iheat = f i0(1± f i0)(p · V )(−D̃1 − 2B̃1(p · u)) (B.38)

or

δf iheat = f i0(1± f i0)
e+ P

n
(p · q)(D̃1 + 2B̃1(p · u)). (B.39)

Finally the δf i for shear viscosity is,

δf ishear = f i0(1± f i0)(−B2p
µpνπµν). (B.40)
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Appendix C: Small transverse momentum limit of vn [248]

C.1 Massive case

Here we perform the calculation for the boson case. The fermion case is exactly the same, but

with the fermi distribution functions. The anisotropic flows can be calculated using the Cooper-

Frye formula,

vn(k⊥) =
Nn

N0

, (C.1)

where

Nn =
gi

(2π)2

∫
d2x⊥τf

∫
dηNφ

n , (C.2)

with

Nφ
n =

∫ π

−π

dφ

2π
cos(nφ)

m⊥ cosh η − ~k⊥ · ~∇⊥τf
eγ⊥(m⊥ cosh η−k⊥·v⊥)/T − 1

, (C.3)

For non-zero rest mass, m 6= 0, we can expand in both cases the φ integrand for small k⊥ and

keep only terms up to first order in k⊥,

Nφ
n =

m cosh η

eγ⊥m cosh η/T − 1

∫ π

−π

dφ

2π
cos(nφ)

(
1−

~k⊥ · ~∇⊥τf
m cosh η

)

×
(

1 +
γ⊥
T
~k⊥ · ~v⊥

1

1− e−γ⊥m cosh η/T
+ . . .

)
' m cosh η

eγ⊥m cosh η/T − 1

∫ π

−π

dφ

2π
cos(nφ)

(
1−

~k⊥ · ~∇⊥τf
m cosh η

+
γ⊥
T

~k⊥ · ~v⊥
1− e−γ⊥m cosh η/T

)
.

(C.4)

We write

~k⊥ · ~v⊥ = k⊥v⊥ cos(φ− φv) = k⊥v⊥ cos θ. (C.5)

and change the integration variable from φ to θ,

k̂⊥ · ∇⊥τf = (∂rτf ) cos θ +

(
1

r
∂φτf

)
sin θ, (C.6)
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where ∂rτf = v̂⊥ · ∇⊥τf and 1
r
∂φτf = ẑ · (v̂⊥ ×∇⊥τf ). v̂⊥ = (cosφv, sinφv). We also need,

cos(nφ) = cosn(θ + φv) = cos(nφv) cos(nθ)− sin(nφv) sin(nθ),

Then,

Nφ
n =

m cosh η

eγ⊥m cosh η/T − 1

∫ π

−π

dθ

2π
(cos(nφv) cos(nθ)− sin(nφv) sin(nθ))

×
(

1− k⊥
m cosh η

(
(∂rτf ) cos θ +

(
1

r
∂φτf

)
sin θ

)
+
γ⊥
T

k⊥v⊥ cos θ

1− e−γ⊥m cosh η/T

)
I1
n =

m cosh η

eγ⊥m cosh η/T − 1

∫ π

−π

dθ

2π
(cos(nφs) cos(nθ)− sin(nφs) sin(nθ)) (C.7)

I2
n =

m cosh η

eγ⊥m cosh η/T − 1

∫ π

−π

dθ

2π

k⊥
m cosh η

(cos(nφv) cos(nθ)− sin(nφv) sin(nθ)

×
(

(∂rτf ) cos θ +

(
1

r
∂φτf

)
sin θ

)
(C.8)

I3
n =

m cosh η

eγ⊥m cosh η/T − 1

∫ π

−π

dθ

2π
(cos(nφv) cos(nθ)− sin(nφv) sin(nθ))

×γ⊥
T

k⊥v⊥ cos θ

1− e−γ⊥m cosh η/T
(C.9)

So,

I1
n =

m cosh η

eγ⊥m cosh η/T − 1

1

2π

(
cos(nφv)

2 sin(nπ)

n

)
, (C.10)

I2
n =

m cosh η

eγ⊥m cosh η/T − 1

k⊥
m cosh η

1

2π

×
(

cos(nφv)(∂rτf )
2n sin(nπ)

n2 − 1
+ sin(nφv)

(
1

r
∂φτf

)
2 sin(nπ)

n2 − 1

)
, (C.11)

I3
n =

m cosh η

eγ⊥m cosh η/T − 1

1

2π

γ⊥
T

k⊥v⊥
1− e−γ⊥m cosh η/T

cos(nφv)
2n sin(nπ)

n2 − 1
, (C.12)

and

Nφ
n = I1

n − I2
n + I3

n. (C.13)

For n = 2, I1
n, I2

n, I3
n, are zero. So, N2 = O(k2

⊥). And for n = 0, I1
0 , I2

0 , I3
0 , are non-zero, so

N0 = a+bk⊥+O(k2
⊥). For higher order n, since we want to prove Nn = O(kn⊥), we need to expand

Nφ
n to higher order in k⊥.

At O(k2
⊥), m⊥ cosh η will contribute,

m⊥ cosh η = m cosh η

(
1 +

1

2

k2
⊥
m2

+ . . .

)
(C.14)
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But this term will not affect the angular integration. The new term at O(k2
⊥) that matters is

I4
n =

m cosh η

eγ⊥m cosh η/T − 1

∫ π

−π

dθ

2π
(cos(nφv) cos(nθ)− sin(nφv) sin(nθ))

×
~k⊥ · ~∇⊥τf
m cosh η

γ⊥
T

~k⊥ · ~v⊥
1− e−γ⊥m cosh η/T

(C.15)

I4
n =

γ⊥
T

eγ⊥m cosh η/T

(eγ⊥m cosh η/T − 1)2

∫ π

−π

dθ

2π
(cos(nφv) cos(nθ)− sin(nφv) sin(nθ))

×(~k⊥ · ~∇⊥τf )(~k⊥ · ~v⊥)

=
γ⊥
T

eγ⊥m cosh η/T

(eγ⊥m cosh η/T − 1)2

∫ π

−π

dθ

2π
(cos(nφv) cos(nθ)− sin(nφv) sin(nθ))

×((∂rτf ) cos θ + (∂φτf ) sin θ)k⊥v⊥ cos θ

=
γ⊥
T

eγ⊥m cosh η/T

(eγ⊥m cosh η/T − 1)2

k⊥v⊥
2π

×
(

cos(nφv)(∂rτf )
2(−2 + n2) sin(nπ)

n(−4 + n2)
− sin(nφv)

(
1

r
∂φτf

)
2 sin(nπ)

−4 + n2

)
.

I4
2 6= 0, but I4

3 = 0. So for v2, it goes like k2
⊥ in the small transverse momentum limit. But for v3,

it still vanishes at O(k2
⊥). The momentum dependence needs to be higher order than O(k2

⊥).

At O(k3
⊥) order, the new angular integral is

I5
n = #

∫ π

−π

dθ

2π
(cos(nφv) cos(nθ)− sin(nφv) sin(nθ))

×((∂rτf ) cos θ + (∂φτf ) sin θ)(k⊥v⊥ cos θ)2

= #
1

2π

(
cos(nφv)(∂rτf )

−2n(−7 + n2) sin(nπ)

9− 10n2 + n4

− sin(nφv)

(
1

r
∂φτf

) −2(−3 + n2) sin(nπ)

9− 10n2 + n4

)
. (C.16)

I5
n vanishes for n 6= 3. So for v3, it would go like O(k3

⊥).

Now, we know that when we want to compute higher order terms in this expansion, the new

angular integrals that will enter has the following structure. For O(km⊥ ),

Jmn =

∫ π

−π

dθ

2π
cos(nθ) cosm θ (C.17)

and

J̃mn =

∫ π

−π

dθ

2π
sin(nθ) sin θ cosm−1 θ (C.18)

For general m, the analytic expression for Jmn and J̃mn can be found in Mathematica, which are

complicated functions. But we are interested in whether Jmm and J̃mm equal zero or not. We find

Jmn = 0, if m 6= n. So this proves that vn ∝ kn⊥ in the small k⊥ limit.
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C.2 Massless case

For massless bosons, vn has different small k⊥ limit compared to the massive case. The expan-

sion parameter becomes γ⊥k⊥(cosh η − ~̂k⊥ · ~v⊥)/T . So in every order there will be an additional

cosh η. Unfortunately, the η integral of the expansion coefficient diverges. So we need to perform

the η integral before the k⊥ expansion. We write the m-th order anisotropic flow coefficient as,

vm(k⊥) =
Nn

N0

, (C.19)

where,

Nn =
gi

(2π)2

∫
d2x⊥τf

∫
dηNφ

n , (C.20)

with

Nφ
n =

T

γ⊥

∫ π

−π

dφ

2π
cos(mφ)

γ⊥k⊥(cosh η − ~̂k⊥ · ~∇⊥τf )
Teγ⊥k⊥(cosh η−~̂k⊥·~v⊥)/T − 1

, (C.21)

Define, ξ = γ⊥k⊥
T

, then

Nφ
n =

T

γ⊥

∫ π

−π

dφ

2π
cos(mφ)

ξ(cosh η − ~̂k⊥ · ~∇⊥τf )
eξ(cosh η−~̂k⊥·~v⊥) − 1

. (C.22)

Now, we expand the denominator in terms of ξ(cosh η − v⊥ cos θ), where θ is the angle between

~̂k⊥ and ~v⊥. We define the integral,

Iη = ξ
∞∑
n=1

env⊥ξ cos θ

∫ ∞
−∞

dηe−nξ cosh η

(
cosh η − (∂rτf ) cos θ −

(
1

r
∂φτf

)
sin θ

)
= 2ξ

∞∑
n=1

env⊥ξ cos θ

[
K1(nξ)−

(
(∂rτf ) cos θ +

(
1

r
∂φτf

)
sin θ

)
K0(nξ)

]
(C.23)

Thus, the numerator of vm can be written as,∫
dηNφ =

T

γ⊥

∫ π

−π

dφ

2π
cos(mφ)Iη(ξ). (C.24)

For the φ integral, similar to the massive case, φ = φv + θ and

cos(mφ) = cos(mφv) cos(mθ)− sin(mφv) sin(mθ). (C.25)

We will use the following integral,

Iθ =

∫
dθ

2π
cos(νθ)ez cos θ = Iν(z). (C.26)
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∫
dηNφ =

T

γ⊥

∫ π

−π

dθ

2π
(cos(mφv) cos(mθ)− sin(mφv) sin(mθ))×

∞∑
n=1

env⊥ξ cos θ

×2ξ

[
K1(nξ)−

(
(∂rτf ) cos θ +

(
1

r
∂φτf

)
sin θ

)
K0(nξ)

]
=

T

γ⊥
2ξ

∞∑
n=1

[
K1(nξ)

(∫ π

−π

dθ

2π
(cos(mφv) cos(mθ)− sin(mφv) sin(mθ))

)
env⊥ξ cos θ

]
−K0(nξ)

∫ π

−π

dθ

2π

(
(∂rτf ) cos θ +

(
∂φτf
r

)
sin θ

)
×(cos(mφv) cos(mθ)− sin(mφv) sin(mθ))env⊥ξ cos θ

=
T

γ⊥
2ξ

∞∑
n=1

cos(mφv)

[
K1(nξ)Im(nv⊥ξ)

−K0(nξ)
(∂rτf )

2
(Im+1(nv⊥ξ) + Im−1(nv⊥ξ))

]
+ sin(mφv)

(
1
r
∂φτf

)
2

(Im+1(nv⊥ξ) + Im−1(nv⊥ξ))K0(nξ),

∫
dηNφ

0 =
T

γ⊥

∫ π

−π

dθ

2π

∞∑
n=1

env⊥ξ cos θ2ξ[
K1(nξ)−

(
(∂rτf ) cos θ +

(
1

r
∂φτf

)
sin θ

)
K0(nξ)

]
=

T

γ⊥
2ξ

∞∑
n=1

K1(nξ)I0(nv⊥ξ). (C.27)

As k⊥ → 0, ξ → 0. And we define,

fv⊥(ζ) = Iν(v⊥ζ)Kµ(ζ), (C.28)

we have

ξ

∞∑
n=1

Iν(nv⊥ξ)Kµ(nξ) =
∞∑
n=1

ξfv⊥(nξ) =
∞∑
n=1

∆ζfv⊥(ζ)→
∫ ∞
ξ/2

fv⊥(ζ)dζ (C.29)

I think the reason to choose the lower bound as ξ/2 is considering ξ as the middle point of the

first interval for n = 1. Then since ∆ζ = ξ, the starting point of the integral will be ζ/2. To

extract the small k⊥-dependence, we do the following trick,∫ ∞
ξ/2

fv⊥(ζ)dζ =

∫ λ

ξ/2

fv⊥(ζ)dζ +

∫ ∞
λ

fv⊥(ζ)dζ =

∫ λ

ξ/2

fv⊥(ζ)dζ + F (λ, v⊥), (C.30)

where F (λ, v⊥) is a finite number. By taking ξ/2 < λ � 1, we can evaluate the first integral

analytically by making use of the expansion of the Bessel functions for small arguments, keeping
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only the leading terms. In the limit ξ → 0 we find,∫ λ

ξ/2

I2(v⊥ζ)K1(ζ)dζ → λ2v2
⊥

16
, (C.31)

∫ λ

ξ/2

I1(v⊥ζ)K0(ζ)dζ → v⊥
16
ξ2 ln(aξ) + C(λ), (C.32)

∫ λ

ξ/2

I3(v⊥ζ)K0(ζ)dζ → 0, (C.33)

∫ λ

ξ/2

I0(v⊥ζ)K1(ζ)dζ → ln
2λ

ξ
+ C ′(λ), (C.34)

So, we finally obtain,

lim
k⊥→0

v2(k⊥) =
const.

ln T
k⊥

∝ − 1

ln k⊥
. (C.35)

For v3, ∫ λ

ξ/2

I3(v⊥ζ)K1(ζ)dζ → λ3v3
⊥

144
, (C.36)

∫ λ

ξ/2

I2(v⊥ζ)K0(ζ)dζ → v
2

⊥
24
ξ3 ln(aξ) + C(λ), (C.37)

∫ λ

ξ/2

I4(v⊥ζ)K0(ζ)dζ → 0, (C.38)

So, we finally obtain,

lim
k⊥→0

v3(k⊥) =
const.

ln T
k⊥

∝ − 1

ln k⊥
. (C.39)

Similar k⊥ dependence can be found for higher order vn.
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Appendix D: Hadron Resonance Gas

The thermodynamic quantities in a hadronic system can be described by a non-interacting

hadron gas with resonances states. The interaction between hadrons are replaced by regarding

the intermediate resonance state as long-lived well-defined quasi-particles.

D.1 Bulk Thermodynamic Variables

Here we work in the Grand Canonical Ensemble. The partition function can be written as,

Z(T, µ, V) = e−V Ω(T,µ)/T , (D.1)

with the Grand Canonical thermodynamic potential,

Φ(T, µ, V ) = V Ω(T, µ). (D.2)

The system pressure can be calculated by

P = −∂Φ

∂V

∣∣∣∣
T,µ

= −Ω(T, µ). (D.3)

For a thermalized system, the pressure can be calculated from the energy momentum tensor at

local rest frame,

P = −1

3

∑
i

gi
(2π)3

∫
d3p

E
pµpν∆µνf0(x, p), (D.4)

where f0 = 1
exp(β(E−µ))±1

. Since f0 is isotropic, the angular integral of the above expression can be

done easily.

P = −Ω(T, µ) =
∑
i

(∓)
giT

2π2

∫ +∞

0

p2dp ln(1± e−β(E−µi)). (D.5)

For number density of particle species j,

nj =
Nj

V
= − ∂Ω

∂µj

∣∣∣∣
T,µi(i6=j)

=
gj

2π2

∫ +∞

0

p2dp
1

eβ(E−µj) ± 1
. (D.6)
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For particle species j, its chemical potential µj = µBBj + µSSj, where Bj and Sj correspond to

baryon and strangeness quantum of hadron species j, respectively. Thus, the net baryon density

can be calculated as,

ρB =
∑
j

njBj, (D.7)

and similarly, the net strangeness density,

ρS =
∑
j

njSj. (D.8)

For entropy density of the system,

s =
S

V
= − ∂Ω

∂T

∣∣∣∣
µi

=
P

T
−
∑
i

µini +
e

T
. (D.9)

From this equation, we can get the energy density,

e =
∑
i

gi
2π2

∫ +∞

0

p2dp
E

eβ(E−µj) ± 1
. (D.10)

Due to the complication of the quantum statistics, the integrals for pressure, energy density, and

particle number density are hard to solve analytically. But it is possible to write them as a series of

infinite sum of Bessel functions. For massive mesons and baryons with small chemical potentials,

we can truncate the sum at some finite order (usually up to n = 10 is good enough for all species

of particles).

ni =
gi

2π2
miT

∞∑
k=1

(∓)k+1λ
k

k
K2

(
k
mi

T

)
. (D.11)

e =
∑
i

gi
2π2

m4
i

∞∑
k=1

(∓)k+1λk

(
3(

kmi
T

)2K2

(
k
mi

T

)
+

1

kmi
T

K1

(
k
mi

T

))
. (D.12)

P =
∑
i

gi
2π2

m2
iT

2

∞∑
k=1

(∓)k+1λ
k

k2
K2

(
k
mi

T

)
. (D.13)

The entropy density of the system can be calculated by the first law of thermodynamic.

D.2 Thermal Fluctuations [249]

For thermal fluctuation in the Grand Canonical Ensemble, we can calculate the number fluc-

tuation as,

〈(∆N)2〉 = −T ∂2Ω

∂2µ

∣∣∣∣
T,V

(D.14)

So the fluctuation per volume is,

〈(∆n)2〉 =
〈(∆N)2〉

V
=

gi
2π2

∫ +∞

0

p2dp
eβ(E−µi)

(eβ(E−µi) ± 1)2
. (D.15)
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It is easy to see that at a given energy, the number fluctuation for bosons is,

〈(∆N)2〉 = 〈N〉2 + 〈N〉, (D.16)

and its probability distribution satisfies the Geometric distribution.

Similarly, fermions at given energy has,

〈(∆N)2〉 = 〈N〉 − 〈N〉2, (D.17)

and its probability distribution satisfies Bernoulli distribution.

For classical Boltzmann particles at given energy, the number fluctuation becomes,

〈(∆N)2〉 = 〈N〉 (D.18)

its probability distribution satisfy Poison distribution. This is why most of people use Poisson

distribution for particle number fluctuation on the top of Cooper-Frye formula.

From central limit theorem, the number fluctuation will be an approximate Gaussian distribu-

tion when the deviation N − N̄ is small compared with the averaged number N̄ . If the selected

volume becomes smaller, the number of particles inside the volume decreases. So N − N̄ will be-

come comparable to N̄ . Then the number fluctuation becomes Poisson distribution for Boltzmann

particles.

D.3 Partial chemical equilibrium (PCE) [77, 16]

To implement partial chemical equilibrium in the EOS, we can evaluate the thermodynamic

quantities along the isentropic curve, n̄i
s

= const. At chemical freeze out, we have our initial

condition ni(Tchem, µB, µS) and s(Tchem, µB, µS), where we set {µ̃i} = 0 at T = Tchem. Next, we

want to solve for the chemical potentials {µ̃i} at T = Tchem−∆T . We will apply a multidimensional

generalization of Newton’s method to look for the root of the equation,

n̄i(Tchem −∆T, {µ̃i(Tchem −∆T )})
s(Tchem −∆T, {µ̃i(Tchem −∆T )}) =

n̄i(Tchem, {µ̃i = 0})
s(Tchem, {µ̃i = 0}) , (D.19)

where n̄i is the number density for stable particles,

n̄i(T, µB, µS; {µ̃i}) = ni(T, µB, µS; {µ̃i}) +
Nreso∑
j=1

dj→inj(T, µB, µS; {µ̃i}), (D.20)

where j runs over all resonance states that can decay into particle species i. The parameter dj→i

is the effective probability for resonance state j decays into i. It can be calculated as,

dj→i =

Nch∑
k=1

Brkj→iN
k
j→i, (D.21)
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where k runs through all the decay channels, Nch. In Eq. (D.21), Brkj→i is the branching ratio of

decay channel k for j → i and Nk
j→i represents the number of daughter i particles through the

decay channel k.

In the PCE model, {µ̃i} are independent variables only for the stable particle species. For

heavy resonance states j, its chemical potential can be constructed through its decay chains to

stable particles,

µ̃j =

Nstable∑
i=1

dj→iµi, (D.22)

where i runs over all stable particle species, Nstable.

According to Newton, we can solve the chemical evolution equation, Eq. (D.19) iteratively,
∂
∂µ1

n̄1

s
∂
∂µ2

n̄1

s
. . . ∂

∂µNstable

n̄1

s
∂
∂µ1

n̄2

s
∂
∂µ2

n̄2

s
. . . ∂

∂µNstable

n̄2

s

...
...

. . .
...

∂
∂µ1

n̄Nstable

s
∂
∂µ2

n̄Nstable

s
. . . ∂

∂µNstable

n̄Nstable

s




∆µ1

∆µ2
...

∆µNstable



=


Ā1 − n̄1

s

Ā2 − n̄2

s
...

ĀNstable
− n̄Nstable

s

 . (D.23)

The iteration can be truncated when the largest variation of n̄i
s

is less than 10−9.

The derivatives in Eq. (D.23) can be evaluated as follows,

∂

∂µ̃i

n̄j(T, µB, µS; {µ̃j})
s(T, µB, µS; {µ̃j})

=

∂
∂µ̃i
n̄j(T, µB, µS; {µ̃j})
s(T, µB, µS; {µ̃j})

− n̄j(T, µB, µS; {µ̃j})
s2(T, µB, µS; {µ̃j})

∂

∂µ̃i
s(T, µB, µS; {µ̃j}), (D.24)

where

∂

∂µ̃i
n̄j(T, µB, µS; {µ̃j}) =

∂

∂µ̃i
nj(T, µB, µS; µ̃j) +

Nreso∑
k=1

dk→j
∂

∂µ̃i
nk(T, µB, µS; µ̃k). (D.25)

In Eq. (D.24),
∂

∂µ̃i
nj(T, µB, µS; µ̃j) =

∂µ̃j
∂µ̃i

∂

∂µ̃j
nj(T, µB, µS; µ̃j).

If particle j is a stable particle,
∂µ̃j
∂µ̃i

= δij.

If particle j is a heavy unstable resonance state,

∂µ̃j
∂µ̃i

= dj→i.
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So,

∂

∂µ̃i
n̄j(T, µB, µS; {µ̃j}) = δij

∂

∂µ̃j
nj(T, µB, µS; µ̃j) +

Nreso∑
k=1

dk→jdk→i
∂

∂µ̃k
nk(T, µB, µS; µ̃k). (D.26)

Similarly,

∂

∂µ̃i
s(T, µB, µS; {µ̃j}) =

Nstable∑
j=1

δij
∂

∂µ̃j
sj(T, µB, µS; µ̃j) +

Nreso∑
j=1

dj→i
∂

∂µ̃j
sj(T, µB, µS; µ̃j). (D.27)

To compute Eqs. (D.26) and (D.27), we need to evaluate ∂
∂µ̃j
nj(T, µB, µS; µ̃j) and ∂

∂µ̃j
sj(T, µB, µS; µ̃j).

The derivative for particle number density can be easily computed from Eqs. (D.9),

∂

∂µ̃i
ni(T, µB, µS; µ̃i) =

gi
2π2

mi

∞∑
k=1

(∓)k+1λkK2

(
k
mi

T

)
. (D.28)

and for entropy density from particle species i,

si =
Pi
T
− µini +

ei
T
. (D.29)

So
∂

∂µ̃i
si(T, µB, µS; µ̃i) =

∂

∂µ̃i

(
Pi
T
− µini +

ei
T

)
. (D.30)

We have,
∂

∂µ̃i

(
Pi
T

)
=

gi
2π2

m2
i

∞∑
k=1

(∓)k+1λ
k

k
K2

(
k
mi

T

)
, (D.31)

∂

∂µ̃i
(µini) = ni + µi

∂

∂µ̃i
ni(T, µB, µS; µ̃i), (D.32)

and
∂

∂µ̃i

(ei
T

)
=

gi
2π2

m4
i

∞∑
k=1

(∓)k+1kλk

(
3
K2

(
kmi
T

)(
kmi
T

)2 +
K1

(
kmi
T

)(
kmi
T

) )
. (D.33)

D.4 Some Remark for Coding

The tricky part of this approach is to calculate dj→i for every species of particles. My approach

is to build an array of dj→i[i] for every species of particles. The array will have length Nstable.

For stable particle species i, only di→i = 1 and all other elements are zero. For unstable

resonances, dj→i =
∑Nch

k=1 Brkj→iN
k
j→i, where k runs over all decay channels of the particle species j,

Brkj→i is the branching ratio for channel k, and Nk
j→i is the number of produced daughter particles

who is species i in channel k. In the actual implementation, we go over every decay particle and

add the corresponding Brkj→i together.
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Once dj→i[i] is constructed, we can perform numerical test for particle chemical potentials,

µ̃j =

Nstable∑
i=1

dj→iµi (D.34)

and for the particle decay yields,

N̄i = Ni +
Nreso∑
j=1

dj→iNj. (D.35)

Please note that dj→i includes both direct and indirect contributions. One easy way to take

account for all indirect contributions is to start the calculations from the lightest particles. For

heavy resonances, who have indirect decays to final stable particles, (e.g., k → j → i),

dk→i = d̄k→i +
∑
j

d̄k→jdj→i, (D.36)

where j runs over all possible intermediate states and d̄k→i stands for the direct decay.
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Appendix E: On multiplicity fluctuations

E.1 Multiplicity in pp collisions

In every p-p collisions, the produced number of charged particles fluctuates. The probability

distribution of the charged particle number agree well with negative binomial distribution (NBD)

[250], which is defined as,

Pr(n = N) =

(
N + r − 1

N

)
(1− p)rpN , (E.1)

where p and r are parameters to determine the mean and shape of the distribution. The mean of

NBD is pr
1−p , and the variance is pr

(1−p)2 . The continuous generalization of this distribution can be

defined as,

Pr(X = x) =
Γ(x+ r)

Γ(x+ 1)Γ(r)
(1− p)rpx. (E.2)

In nucleus-nucleus collisions, we can assume that each binary collision as a p-p collision. The actual

mount of energy density or entropy density dumped into the medium fluctuates from collision to

collision. In the MC Glauber model, one can determine the spatial positions of every binary

collisions and the wounded nucleons in each event. One usually assigns a gaussian profile for the

dumped energy (or entropy) density in the transverse plane. We here assume that the probability

distribution of the net mount of energy (or entropy) density dumped into the medium is the same

for binary collision and wounded nucleon.

In the nucleus-nucleus collisions, the number of emitted particles from the kinetic freeze-out

surface can be calculated according to the hadron resonance gas model (see Appendix D) in the

grand canonical ensemble. The fluctuation of the emitted particles satisfies Poisson distributions

for classical Boltzmann particles. So the final measured particle number distribution is a folded

result of the initial state fluctuation with the number fluctuation at kinetic freeze-out.

Experimentally, the particle fluctuations in nucleus-nucleus collisions also agree well with the

negative binomial distribution. In general, the measured particle distribution is a convoluted result
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of the initial and final state fluctuations,

Pr(n = N) =
∞∑
k=0

finitial(n = k)ffo(n = N ; k), (E.3)

The fluctuation at the freeze-out is taken as Poisson distribution with mean equals k.

ffo(n = N ; k) =
kN

N !
e−k. (E.4)

if we consider the initial state fluctuation is a continuous distribution in k, then

Pr(n = N) =

∫ ∞
0

dkfinitial(X = k)ffo(n = N ; k). (E.5)

For the initial state fluctuations, since there are more than one collision happening in each nucleus-

nucleus collisions, the fluctuation of total produced entropy dS/dy is the sum of multiple individual

dSi/dy in the transverse plane. Negative binomial distribution in Eq. (E.1) has a nice property

that the sum of any independent NBD with same value of p is still a NBD with r = r1+r2+. . .+rn.

But this property only valid for the discrete version of NBD not the continuous extension in Eq.

(E.2). So the continuous the NBD distribution in Eq. (E.2) can not be used for individual entropy

density fluctuations in the MC-Glauber model.

Furthermore, we can fold the discrete NBD distribution with Poisson to calculate the final

fluctuation of particles and check whether it is a NBD. The left panle Fig.E.1 shows such a simple

numerical test, in which the final folded results deviate from a NBD in the tail of the distribution.
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Figure E.1: Left panel: numerical test for a NBD convoluted with a Poisson distribution. Right
panel: numerical test for a Gamma distribution convoluted with a Poisson distribution.

In order to reproduce an exact NBD in the final convoluted results, one can choose Gamma

distribution for the initial conditions, instead [251].

Pr(X = x) =
βα

Γ(α)
xα−1e−βx. (E.6)
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Gamma distribution has two parameters, α > 0 is called shape parameter and β > 0 is called

the rate parameter. The mean of Gamma distribution is α/β and variance is α/β2. Gamma

distribution has additive property, namely the sum of any independent Gamma distribution with

same β is a Gamma distribution with α = α1 + . . .+αn. Since Gamma distribution is defined in a

continuous space, it has its advantage for the initial multiplicity fluctuations. In the right panel of

Fig. E.1, we show a numerical test of folding a Gamma distribution with a Poisson distribution.

It agrees with the NBD fit perfectly.

Above all, we argue that we can use Gamma distribution for each binary collision and wounded

nucleon in the initial conditions and Poisson distribution at kinetic freeze out. Such combination

can provide us a desired NBD fluctuation for charged particle number in the final state.

We think the Gamma distribution yields a good candidate to implement multiplicity fluctuation

in the MC-Glauber model. However, please note that all the arguments made here considered the

fluctuations only in the initial states and final kinetic freeze-out. There are other sources of the

fluctuations during the fireball evolution. For example, due to different shape of the initial profile,

the viscous entropy production during hydrodynamic evolution also fluctuates event-by-event.

And there are additional hydrodynamic fluctuation due to the fluctuation-dissipation theorem.
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Appendix F: Kinematics for photon production rate phase space

integrals

In the appendix, we work out the phase space integrals for evaluating photon production rates

from kinetic approach in details.

F.1 2 → 2 scattering processes

In the local rest frame, the production rate of 2→ 2 scattering processes are given by,

Eq
dR

d3q
=

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3

2π

2
|M|2δ(4)(p1 + p2 − p3 − q)

× f(E1)f(E2)(1± f(E3))

=

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d4p3

(2π)4
(2π)δ(p2

3 −m2
3)

2π

2
|M|2

× δ(4)(p1 + p2 − p3 − q)f(E1)f(E2)(1± f(E3))

=

∫
d3p1d

3p2

8E1E2(2π)8
δ((p1 + p2 − q)2 −m2

3)|M|2f(E1)f(E2)(1± f(E1 + E2 − Eq))

×
∫
dsδ(s− (p1 + p2)2)

∫
dtδ(t− (p2 − p)2),

where we use the energy-momentum conservation δ-function to kill the
∫
d4p3 and insert the

Mandelstam variables, s, t. For
∫
d3p1 and

∫
d3p2, we have

d3p

E
=
p2

E
dpdcosθdφ = pdEdcosθdφ (F.1)

So

Eq
dR

d3p
=

∫
1

8(2π)8
p1dE1dcosθdφ1p2dE2dcosθ2dφ2δ((p1 + p2 − q)2 −m2

3)|M|2

×
∫
dsδ(s− (p1 + p2)2)

∫
dtδ(t− (p2 − p)2)

× f(E1)f(E2)(1± f(E1 + E2 − Eq)) (F.2)

We define the angles of p1 and p2 with respect to photon momentum. We have,

(p2 − q)2 = m2
2 − 2E2Eq + 2p2Eqcosθ2 (F.3)
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(p1 + p2)2 = m2
1 +m2

2 + 2E1E2 − 2p1p2cosθ12, (F.4)

where

cosθ12 = cosθ1cosθ2 + sinθ1sinθ2cos(φ2 − φ1). (F.5)

For the remaining three δ functions can be written as,

δ((p1 + p2 − q)2 −m2
3) = δ(s+ t−m2

2 −m2
3 − 2E1Eq + 2p1qcosθ1)

=
1

2p1Eq
δ

(
cosθ1 −

−s− t+m2
2 +m2

3 + 2E1Eq
2p1Eq

)
(F.6)

δ(t− (p2 − q)2) = δ(t−m2
2 + 2E2Eq − 2p2qcosθ2)

=
1

2p2Eq
δ

(
cosθ2 −

t−m2
2 + 2E2Eq

2p2Eq

)
(F.7)

δ(s− (p1 + p2)2) = δ(s−m2
1 −m2

2 − 2E1E2 + 2p1p2cosθ12) (F.8)

We can use Eq. (F.6) and Eq. (F.7) to kill the two θ integrals. Then the rate becomes,

Eq
dR

d3q
=

1

32(2π)8E2

∫
ds dt dE1 dE2 dφ2 dφ2|M|2

× f(E1)f(E2)(1∓ f(E1 + E2 − Eq))
× δ(s−m2

1 −m2
2 − 2E1E2 + 2p1p2cosθ12) (F.9)

With the last δ function, we kill the
∫
dφ2. The δ function has roots for φ2,

φ2± = φ1 ± arccos

(−s+m2
1 +m2

2 + 2E1E2 − 2p1p2cosθ1cosθ2

2p1p2sinθ1sinθ2

)
(F.10)

and the final expression for photon emission rate is,

Eq
dR

d3p
=

1

32(2π)8Eq

∫ ∞
smin

ds

∫ tmax

tmin

dt

∫ ∞
E1min

dE1

∫ E2max

E2min

dE2

∫ 2π

0

dφ1

∑
φ2=φ2±

|M|2f(E1)f(E2)(1∓ f(E1 + E2 − Eq))
1√

aE2
2 + 2bE2 + c

(F.11)

where

a = −(s+ t−m2
2 −m2

3)2, (F.12)

b = Eq
[
(s+ t−m2

2 −m2
3)(s−m2

1 −m2
2)− 2m2

1(m2
2 − t)

]
+E1(m2

2 − t)(s+ t−m2
2 −m2

3), (F.13)

c = −(t−m2
2)2E2

1

−2Eq
(
2m2

2(s+ t−m2
2 −m2

3)− (m2
2 − t)(s−m2

1 −m2
2)
)
E1

+4E2
qm

2
1m

2
2 +m2

2(s+ t−m2
2 −m2

3)2 +m2
1(m2

2 − t)2

−E2
q (s−m2

1 −m2
2)2 + (s−m2

1 −m2
2)(t−m2

2)(s+ t−m2
2 −m2

3). (F.14)
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For the boundaries of the integrals, smin = Max{(m1+m2)2,m2
3}. Since t = (p2−q)2 = (p1−p3)2 is

Lorentz invariant, we can find its boundary in the center of mass frame of the reaction 1+2→ 3+γ,

tmin(max) = m2
1 +m2

3 − 2ECM
1 ECM

3 − (+)2|~p1
CM||~p3

CM|

= m2
1 +m2

3 − 2

(
s+m2

1 −m2
2

2
√
s

)(
s+m2

3

2
√
s

)
−(+)2

√
(s+m2

1 −m2
2)2 − 4sm2

1

2
√
s

s−m2
3

2
√
s
. (F.15)

The lower bound for E1 can be found from,

u = (p1 − q)2 = m2
1 − 2EqE1 + 2|~p1|Eqcosθ1

→ 2E1Eq ≥ m2
1 − u− 2Eq|~p1| (F.16)

which gives

E1min =
Eqm

2
1

m2
1 − u

+
m2

1 − u
4Eq

. (F.17)

We can derive a similar boundary for E2 from t,

E2 ≥
Eqm

2
2

m2
2 − t

+
m2

2 − t
4Eq

(F.18)

Furthermore, the function under the square root in Eq. (F.11) has to be positive, giving (a < 0)

−b+
√
b2 − ac
a

< E2 <
−b−

√
b2 − ac
a

(F.19)

F.2 1 → 3 decay processes

The production rate of 1→ 3 decay processes can be calculated as follows,

Eq
dR

d3q
=

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d3p3

2E3(2π)3

2π

2
|M|2δ(4)(p1 − p2 − p3 − q)

×f(E1)(1± f(E2))(1± f(E3))

=

∫
d3p1

2E1(2π)3

d3p2

2E2(2π)3

d4p3

(2π)4
(2π)δ(p2

3 −m2
3)

2π

2
|M|2

×δ(4)(p1 − p2 − p3 − q)f(E1)(1± f(E2))(1± f(E3))

=

∫
d3p1d

3p2

8E1E2(2π)8
δ((p1 − p2 − q)2 −m2

3)|M|2

×f(E1)(1± f(E2))(1± f(E1 − E2 − Eq))

×
∫
ds′δ(s′ − (p1 − p2)2)

∫
dt′δ(t′ − (p2 + p)2), (F.20)
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where s and t are the analgous variables as standard Manderstan variables defined in 2 to 2

scattering processes. For the remaining three δ functions can be written as,

δ((p1 − p2 − q)2 −m2
3) = δ(s′ + t′ −m2

2 −m2
3 − 2E1Eq + 2p1qcosθ1)

=
1

2p1Eq
δ

(
cosθ1 −

−s′ − t′ +m2
2 +m2

3 + 2E1Eq
2p1Eq

)
(F.21)

δ(t′ − (p2 + q)2) = δ(t′ −m2
2 − 2E2Eq + 2p2qcosθ2)

=
1

2p2Eq
δ

(
cosθ2 +

t′ −m2
2 − 2E2Eq

2p2Eq

)
(F.22)

δ(s′ − (p1 − p2)2) = δ(s′ −m2
1 −m2

2 + 2E1E2 − 2p1p2cosθ12) (F.23)

With the last δ function, we kill the
∫
dφ2. The δ function has roots for φ2,

φ2± = φ1 ± arccos

(
s′ −m2

1 −m2
2 + 2E1E2 − 2p1p2cosθ1cosθ2

2p1p2sinθ1sinθ2

)
(F.24)

Eq
dR

d3p
=

1

32(2π)8Eq

∫ s′max

s′min

ds′
∫ t′max

t′min

dt′
∫ ∞
E1min

dE1

∫ E2max

E2min

dE2

∫ 2π

0

dφ1

∑
φ2=φ2±

|M|2f(E1)f(E2)(1± f(E1 + E2 − Eq))
1√

a′E2
2 + 2b′E2 + c′

(F.25)

where

a′ = −(s′ + t′ −m2
2 −m2

3)2, (F.26)

b′ = −Eq
[
(s′ + t′ −m2

2 −m2
3)(s′ −m2

1 −m2
2)− 2m2

1(m2
2 − t′)

]
−E1(m2

2 − t′)(s′ + t′ −m2
2 −m2

3), (F.27)

c′ = −(t′ −m2
2)2E2

1

−2Eq
(
2m2

2(s′ + t′ −m2
2 −m2

3)− (m2
2 − t′)(s′ −m2

1 −m2
2)
)
E1

+4E2
qm

2
1m

2
2 +m2

2(s′ + t′ −m2
2 −m2

3)2 +m2
1(m2

2 − t′)2

−E2
q (s
′ −m2

1 −m2
2)2 + (s′ −m2

1 −m2
2)(t′ −m2

2)(s′ + t′ −m2
2 −m2

3). (F.28)

For the boundaries of the integrals, s′min = m2
3 and s′max = (m1 − m2)2. For t, in order to

perform the same trick as we did in 2→ 2 process, we go to a frame that ~p1 = ~p2 and ~p3 = −~q,

t′min(max) = m2
1 +m2

3 − 2E1E3 − (+)2|~p1||~p3|cos(θ13)

= m2
1 +m2

3 − 2

(
s′ +m2

1 −m2
2

2
√
s′

)(
s′ +m2

3

2
√
s′

)
−(+)2

√
(s′ +m2

1 −m2
2)2 − 4s′m2

1

2
√
s′

s′ −m2
3

2
√
s′

. (F.29)
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The lower bound for E1 can be found from,

u′ = (p1 − q)2 = m2
1 − 2EqE1 + 2|~p1|Eqcosθ1

→ 2E1Eq ≥ m2
1 − u′ − 2Eq|~p1| (F.30)

which gives

E1min =
Eqm

2
1

m2
1 − u′

+
m2

1 − u′
4Eq

. (F.31)

We can derive a similar boundary for E2 from t,

E2 ≥
Eqm

2
2

t′ −m2
2

+
t′ −m2

2

4Eq
(F.32)

Furthermore, the function under the square root in Eq. (F.25) has to be positive, giving (a′ < 0)

−b′ +
√
b′2 − a′c′
a′

< E2 <
−b′ −

√
b′2 − a′c′
a′

(F.33)

310



Appendix G: Centrality cuts in relativistic heavy-ion collisions

In relativistic heavy-ion collisions, centrality is introduced to categorize the geometric structure

of the collisions. Experimentally, since it is impossible to accurately measure the impact parameter

for each collision, the centrality of a single collision event is defined by its relative position in

the entire event array sorted according to the measured charged multiplicity. In the theoretical

simulations, we would like to determine the centrality of the simulating event as close as possible to

the experimental procedure. In order to save numerical cost, we choose to cut centrality according

to the initial total entropy density at the mid-rapidity, dS/dy|y=0, i.e. we assume that the initial

entropy density is monotonically related with the final charged multiplicity. The additional viscous

entropy production during the hydrodynamic evolution has minor effect on changing the ordering

of the collision events as a function of the final charged multiplicity (see Fig. 2.7).

In the following tables (ordered descending in collision energy), we list the centrality cut

parameters used in superMC for simulating relativistic heavy-ion collisions at different the collision

energies from RHIC to LHC with the MC-Glauber and the MCKLN models. We also listed the

averaged collision parameters for each centrality.

For both initial condition models, we use Gaussian shape nucleon with width determined by

the inelastic nucleon-nucleon cross section at the given colliding energy. The minimum distance

between two individual nucleons inside one nucleus is rmin = 0.9 fm which gives a good approx-

imation for the hard core repulsion effect from a realistic nucleon-nucleon potential [252]. The

actual values of dS/dy in the tables represent for the uncorrected transverse entropy per unit of

rapidity, κ = 1 in Eq. (2.10).
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centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 373 416 434.66 491.89 0.05 3.17
0-1 339 416 408.07 491.89 0.02 3.91
0-5 296 416 346.22 491.89 0.01 4.99
5-10 249 409 285.45 346.22 0.76 6.22
10-20 174 365 194.05 285.45 3.24 8.05
20-30 119 285 129.39 194.04 5.58 9.61
30-40 74 206 83.01 129.38 6.91 11.11
40-50 43 152 50.33 83.01 8.33 12.65
50-60 19 107 28.35 50.33 9.35 13.80
60-70 3 73 14.45 28.35 10.41 15.49
70-80 2 53 6.36 14.45 10.98 17.87

Table G.1: Centrality cut table for Pb + Pb collisions at
√
s = 5.5 A TeV with the MC-Glauber

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 406.17 ± 0.14 1.13 ± 0.01 445.96 ± 0.23 2004.42 ± 1.83
0-1 402.63 ± 0.09 1.41 ± 0.01 424.50 ± 0.13 1948.96 ± 0.95
0-5 384.71 ± 0.09 2.34 ± 0.00 384.92 ± 0.12 1784.27 ± 0.69
5-10 333.61 ± 0.10 4.14 ± 0.00 314.68 ± 0.08 1418.69 ± 0.60
10-20 265.60 ± 0.09 5.87 ± 0.00 237.04 ± 0.08 1016.84 ± 0.49
20-30 192.81 ± 0.07 7.61 ± 0.00 159.96 ± 0.06 636.35 ± 0.35
30-40 136.33 ± 0.06 9.01 ± 0.00 104.90 ± 0.04 381.16 ± 0.24
40-50 92.47 ± 0.05 10.23 ± 0.00 65.70 ± 0.03 213.45 ± 0.16
50-60 58.92 ± 0.04 11.33 ± 0.00 38.58 ± 0.02 108.72 ± 0.10
60-70 34.57 ± 0.03 12.33 ± 0.00 20.85 ± 0.01 49.74 ± 0.06
70-80 17.89 ± 0.02 13.27 ± 0.00 10.01 ± 0.01 19.84 ± 0.03

Table G.2: The averaged collision parameters for each centrality in Pb + Pb collisions at
√
s = 5.5

A TeV with the MC-Glauber model.
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centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 402 416 2265.50 2386.12 0.02 1.41
0-1 390 416 2172.28 2386.12 0.02 1.98
0-5 334 416 1815.15 2386.12 0.02 3.73
5-10 288 381 1478.88 1815.13 2.95 5.16
10-20 201 340 999.19 1478.88 4.24 7.35
20-30 138 260 666.11 999.18 6.28 9.03
30-40 95 192 426.42 666.10 7.59 10.63
40-50 60 136 257.44 426.42 8.65 11.90
50-60 32 96 142.70 257.43 9.74 13.06
60-70 17 60 70.53 142.70 10.33 14.39
70-80 7 35 29.54 70.53 11.18 16.00

Table G.3: Centrality cut table for Pb + Pb collisions at
√
s = 5.5 A TeV with the MCKLN

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 411.38 ± 0.05 0.60 ± 0.01 2286.40 ± 0.36 2044.31 ± 1.39
0-1 407.74 ± 0.04 1.04 ± 0.00 2230.47 ± 0.37 1980.79 ± 0.69
0-5 387.07 ± 0.07 2.27 ± 0.00 2033.77 ± 0.61 1796.78 ± 0.62
5-10 333.92 ± 0.07 4.15 ± 0.00 1639.18 ± 0.43 1419.71 ± 0.47
10-20 265.52 ± 0.08 5.87 ± 0.00 1223.73 ± 0.43 1015.95 ± 0.44
20-30 192.52 ± 0.06 7.61 ± 0.00 822.99 ± 0.30 634.66 ± 0.30
30-40 136.08 ± 0.05 9.02 ± 0.00 539.26 ± 0.22 379.64 ± 0.20
40-50 92.40 ± 0.04 10.23 ± 0.00 336.89 ± 0.15 212.46 ± 0.13
50-60 59.08 ± 0.03 11.31 ± 0.00 196.13 ± 0.10 108.38 ± 0.08
60-70 34.63 ± 0.02 12.31 ± 0.00 103.53 ± 0.07 49.08 ± 0.04
70-80 17.88 ± 0.01 13.25 ± 0.00 47.78 ± 0.04 19.28 ± 0.02

Table G.4: The averaged collision parameters for each centrality in Pb+Pb collisions at
√
s = 5.5

A TeV with the MCKLN model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 360 416 411.31 473.64 0.06 3.01
0-1 351 416 386.06 473.64 0.01 3.46
0-5 301 416 327.03 473.64 0.01 4.79
5-10 249 406 269.65 327.03 1.22 6.23
10-20 167 369 183.93 269.65 3.20 8.47
20-30 118 278 123.15 183.93 5.43 9.76
30-40 74 214 79.55 123.15 6.81 11.24
40-50 41 153 48.73 79.55 8.22 12.54
50-60 21 114 27.67 48.73 9.40 13.56
60-70 6 77 14.14 27.67 9.96 15.27
70-80 2 50 6.26 14.14 10.90 17.27

Table G.5: Centrality cut table for Pb + Pb collisions at
√
s = 2.76 A TeV with the MC-Glauber

model.
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centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 404.60 ± 0.16 1.14 ± 0.01 422.24 ± 0.22 1806.24 ± 1.73
0-1 400.87 ± 0.10 1.41 ± 0.01 401.62 ± 0.13 1762.10 ± 0.87
0-5 382.24 ± 0.09 2.33 ± 0.00 363.87 ± 0.11 1615.13 ± 0.63
5-10 329.88 ± 0.10 4.13 ± 0.00 297.27 ± 0.07 1285.77 ± 0.55
10-20 261.57 ± 0.09 5.85 ± 0.00 224.12 ± 0.08 921.63 ± 0.45
20-30 189.32 ± 0.07 7.58 ± 0.00 151.72 ± 0.06 578.95 ± 0.31
30-40 133.85 ± 0.06 8.97 ± 0.00 100.11 ± 0.04 349.92 ± 0.22
40-50 90.85 ± 0.05 10.17 ± 0.00 63.21 ± 0.03 197.88 ± 0.15
50-60 58.10 ± 0.04 11.25 ± 0.00 37.49 ± 0.02 102.56 ± 0.10
60-70 34.04 ± 0.03 12.25 ± 0.00 20.36 ± 0.01 47.37 ± 0.06
70-80 17.65 ± 0.02 13.19 ± 0.00 9.81 ± 0.01 19.12 ± 0.03

Table G.6: The averaged collision parameters for each centrality in Pb + Pb collisions at
√
s = 2.76

A TeV with the MC-Glauber model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 400 416 2005.56 2095.40 0.01 1.37
0-1 388 416 1922.31 2095.40 0.01 1.99
0-5 336 416 1608.28 2095.40 0.01 3.70
5-10 284 383 1311.87 1608.26 2.89 5.21
10-20 200 333 889.53 1311.87 4.36 7.26
20-30 138 256 593.51 889.53 6.24 9.05
30-40 94 185 381.45 593.50 7.60 10.49
40-50 60 135 231.38 381.45 8.71 11.90
50-60 34 95 128.55 231.38 9.60 13.11
60-70 18 60 63.73 128.55 10.38 14.21
70-80 7 37 26.88 63.73 11.08 15.67

Table G.7: Centrality cut table for Pb + Pb collisions at
√
s = 2.76 A TeV with the MCKLN

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 410.29 ± 0.06 0.60 ± 0.01 2025.29 ± 0.34 1852.21 ± 1.22
0-1 406.37 ± 0.04 1.04 ± 0.00 1974.49 ± 0.34 1795.07 ± 0.63
0-5 384.73 ± 0.07 2.25 ± 0.00 1800.59 ± 0.53 1627.77 ± 0.56
5-10 330.71 ± 0.07 4.12 ± 0.00 1453.52 ± 0.38 1289.99 ± 0.43
10-20 262.55 ± 0.08 5.83 ± 0.00 1087.14 ± 0.38 926.32 ± 0.40
20-30 190.11 ± 0.06 7.56 ± 0.00 733.51 ± 0.27 582.65 ± 0.27
30-40 134.19 ± 0.05 8.96 ± 0.00 481.73 ± 0.19 350.77 ± 0.18
40-50 90.94 ± 0.04 10.17 ± 0.00 301.84 ± 0.14 197.79 ± 0.12
50-60 58.16 ± 0.03 11.24 ± 0.00 176.47 ± 0.09 101.90 ± 0.07
60-70 34.05 ± 0.02 12.24 ± 0.00 93.42 ± 0.06 46.61 ± 0.04
70-80 17.62 ± 0.01 13.17 ± 0.00 43.42 ± 0.03 18.56 ± 0.02

Table G.8: The averaged collision parameters for each centrality in Pb+Pb collisions at
√
s = 2.76

A TeV with the MCKLN model.
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centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 337 394 347.31 408.78 0.03 2.97
0-1 314 394 324.42 408.78 0.03 3.66
0-5 266 394 274.00 408.78 0.03 4.73
5-10 221 380 226.48 274.00 1.15 6.09
10-20 149 343 155.01 226.48 2.77 7.79
20-30 103 250 104.67 155.00 5.23 9.52
30-40 57 191 68.13 104.67 6.64 10.63
40-50 37 137 42.15 68.13 7.77 11.84
50-60 18 102 24.13 42.15 8.81 13.48
60-70 3 67 12.48 24.13 9.71 15.04
70-80 2 44 5.59 12.48 10.29 16.85

Table G.9: Centrality cut table for Au + Au collisions at
√
s = 200 A GeV with the MC-Glauber

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 376.76 ± 0.18 1.12 ± 0.01 357.05 ± 0.20 1188.72 ± 1.18
0-1 372.45 ± 0.11 1.38 ± 0.01 338.52 ± 0.12 1158.62 ± 0.60
0-5 352.91 ± 0.09 2.24 ± 0.00 305.46 ± 0.10 1064.18 ± 0.42
5-10 301.87 ± 0.10 3.93 ± 0.00 249.36 ± 0.06 852.85 ± 0.37
10-20 237.63 ± 0.09 5.58 ± 0.00 188.52 ± 0.06 616.88 ± 0.30
20-30 171.04 ± 0.07 7.22 ± 0.00 128.51 ± 0.05 393.57 ± 0.21
30-40 120.30 ± 0.05 8.54 ± 0.00 85.42 ± 0.03 242.21 ± 0.15
40-50 81.36 ± 0.04 9.69 ± 0.00 54.41 ± 0.02 140.49 ± 0.11
50-60 51.81 ± 0.03 10.72 ± 0.00 32.55 ± 0.02 75.06 ± 0.07
60-70 30.31 ± 0.03 11.67 ± 0.00 17.82 ± 0.01 36.04 ± 0.04
70-80 15.79 ± 0.02 12.58 ± 0.00 8.69 ± 0.01 15.30 ± 0.02

Table G.10: The averaged collision parameters for each centrality in Au + Au collisions at
√
s =

200 A GeV with the MC-Glauber model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 373 394 1069.02 1123.70 0.02 1.41
0-1 362 394 1024.34 1123.70 0.01 2.02
0-5 309 394 859.67 1123.70 0.01 3.64
5-10 261 348 705.69 859.67 2.62 5.00
10-20 182 305 483.84 705.68 4.13 7.08
20-30 127 231 327.26 483.83 5.86 8.63
30-40 87 165 213.66 327.26 7.21 10.13
40-50 54 119 132.21 213.65 8.09 11.22
50-60 31 82 75.31 132.21 9.07 12.60
60-70 16 56 38.36 75.31 9.89 13.79
70-80 7 30 16.81 38.36 10.60 15.20

Table G.11: Centrality cut table for Au + Au collisions at
√
s = 200 A GeV with the MCKLN

model.
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centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 383.95 ± 0.07 0.61 ± 0.01 1080.30 ± 0.20 1218.38 ± 0.91
0-1 378.84 ± 0.05 1.00 ± 0.00 1052.19 ± 0.18 1181.54 ± 0.44
0-5 355.63 ± 0.08 2.15 ± 0.00 960.52 ± 0.28 1072.96 ± 0.37
5-10 302.26 ± 0.07 3.93 ± 0.00 778.92 ± 0.20 854.41 ± 0.28
10-20 238.53 ± 0.07 5.56 ± 0.00 587.71 ± 0.20 620.13 ± 0.26
20-30 171.72 ± 0.06 7.20 ± 0.00 401.23 ± 0.14 395.72 ± 0.18
30-40 120.62 ± 0.04 8.53 ± 0.00 267.29 ± 0.10 242.74 ± 0.12
40-50 81.45 ± 0.03 9.68 ± 0.00 170.53 ± 0.07 140.36 ± 0.08
50-60 51.86 ± 0.03 10.71 ± 0.00 101.90 ± 0.05 74.66 ± 0.05
60-70 30.27 ± 0.02 11.66 ± 0.00 55.35 ± 0.03 35.52 ± 0.03
70-80 15.71 ± 0.01 12.55 ± 0.00 26.53 ± 0.02 14.86 ± 0.01

Table G.12: The averaged collision parameters for each centrality in Au+Au collisions at
√
s = 200

A GeV with the MCKLN model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 93 126 95.11 124.28 0.01 3.06
0-1 81 126 85.87 124.28 0.01 3.80
0-5 65 126 71.19 124.28 0.01 4.39
5-10 52 124 59.82 71.19 0.03 5.33
10-20 35 121 42.27 59.82 0.12 7.11
20-30 22 107 29.44 42.27 2.17 8.26
30-40 11 78 19.96 29.44 3.68 9.34
40-50 6 66 13.05 19.96 4.55 10.15
50-60 2 45 8.13 13.05 5.23 12.38
60-70 2 39 4.79 8.13 5.67 12.63
70-80 2 25 2.58 4.79 6.10 13.51

Table G.13: Centrality cut table for Cu + Cu collisions at
√
s = 200 A GeV with the MC-Glauber

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 114.47 ± 0.11 1.11 ± 0.01 99.52 ± 0.09 233.81 ± 0.48
0-1 112.66 ± 0.06 1.28 ± 0.01 91.56 ± 0.05 225.15 ± 0.22
0-5 107.32 ± 0.04 1.75 ± 0.00 80.23 ± 0.03 207.55 ± 0.12
5-10 94.86 ± 0.05 2.71 ± 0.00 65.29 ± 0.01 172.52 ± 0.12
10-20 76.26 ± 0.04 3.87 ± 0.00 50.59 ± 0.02 127.67 ± 0.09
20-30 55.79 ± 0.03 5.03 ± 0.00 35.52 ± 0.01 83.17 ± 0.06
30-40 40.06 ± 0.03 5.97 ± 0.00 24.46 ± 0.01 52.93 ± 0.05
40-50 27.88 ± 0.02 6.78 ± 0.00 16.32 ± 0.01 32.51 ± 0.04
50-60 18.56 ± 0.02 7.53 ± 0.00 10.45 ± 0.00 19.03 ± 0.02
60-70 11.81 ± 0.01 8.21 ± 0.00 6.35 ± 0.00 10.66 ± 0.02
70-80 7.19 ± 0.01 8.85 ± 0.00 3.61 ± 0.00 5.73 ± 0.01

Table G.14: The averaged collision parameters for each centrality in Cu + Cu collisions at
√
s =

200 A GeV with the MC-Glauber model.
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centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 112 126 300.75 328.59 0.02 1.48
0-1 108 126 285.50 328.59 0.00 1.92
0-5 94 126 243.82 328.59 0.00 3.00
5-10 78 115 202.91 243.82 0.50 3.78
10-20 57 103 141.84 202.91 2.30 5.34
20-30 39 77 98.18 141.84 3.66 6.72
30-40 26 59 65.99 98.18 4.39 7.74
40-50 17 43 42.81 65.99 5.20 8.89
50-60 11 31 26.35 42.81 5.76 9.67
60-70 6 24 15.25 26.35 6.02 10.80
70-80 4 14 8.17 15.25 6.45 12.30

Table G.15: Centrality cut table for Cu + Cu collisions at
√
s = 200 A GeV with the MCKLN

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 119.59 ± 0.05 0.60 ± 0.01 306.20 ± 0.10 248.97 ± 0.36
0-1 117.07 ± 0.03 0.82 ± 0.00 294.82 ± 0.07 237.42 ± 0.17
0-5 110.21 ± 0.02 1.52 ± 0.00 269.83 ± 0.07 214.32 ± 0.09
5-10 95.09 ± 0.02 2.74 ± 0.00 222.65 ± 0.05 172.78 ± 0.07
10-20 76.14 ± 0.02 3.88 ± 0.00 170.59 ± 0.06 127.13 ± 0.06
20-30 55.85 ± 0.02 5.03 ± 0.00 118.92 ± 0.04 83.06 ± 0.04
30-40 40.06 ± 0.02 5.96 ± 0.00 81.25 ± 0.03 52.57 ± 0.03
40-50 27.81 ± 0.01 6.77 ± 0.00 53.77 ± 0.02 32.05 ± 0.02
50-60 18.54 ± 0.01 7.50 ± 0.00 34.07 ± 0.02 18.64 ± 0.01
60-70 11.74 ± 0.01 8.17 ± 0.00 20.43 ± 0.01 10.29 ± 0.01
70-80 6.95 ± 0.00 8.81 ± 0.00 11.42 ± 0.01 5.32 ± 0.00

Table G.16: The averaged collision parameters for each centrality in Cu+Cu collisions at
√
s = 200

A GeV with the MCKLN model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 383 476 426.95 510.22 0.03 3.39
0-1 381 476 397.10 510.22 0.03 3.74
0-5 306 476 335.57 510.22 0.03 5.25
5-10 258 448 278.08 335.57 0.50 6.44
10-20 186 402 191.53 278.08 2.96 8.84
20-30 126 302 129.53 191.53 5.31 10.85
30-40 81 225 84.72 129.53 6.92 12.26
40-50 47 173 52.39 84.72 7.99 13.85
50-60 21 122 29.93 52.39 8.90 15.42
60-70 6 77 15.32 29.93 9.90 16.54
70-80 2 54 6.72 15.32 10.76 18.70

Table G.17: Centrality cut table for U + U collisions at
√
s = 193 A GeV with the MC-Glauber

model .
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centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 452.79 ± 0.23 1.21 ± 0.01 439.83 ± 0.26 1567.38 ± 2.20
0-1 445.51 ± 0.14 1.51 ± 0.01 415.36 ± 0.15 1487.49 ± 0.99
0-5 421.58 ± 0.11 2.40 ± 0.00 373.94 ± 0.12 1341.55 ± 0.57
5-10 361.24 ± 0.11 4.20 ± 0.00 305.80 ± 0.07 1074.10 ± 0.45
10-20 285.30 ± 0.10 5.97 ± 0.00 232.33 ± 0.08 783.60 ± 0.36
20-30 205.74 ± 0.08 7.74 ± 0.00 158.86 ± 0.06 504.06 ± 0.26
30-40 145.09 ± 0.06 9.16 ± 0.00 105.93 ± 0.04 312.75 ± 0.19
40-50 98.32 ± 0.05 10.39 ± 0.00 67.62 ± 0.03 182.85 ± 0.13
50-60 62.63 ± 0.04 11.51 ± 0.00 40.41 ± 0.02 97.93 ± 0.09
60-70 36.66 ± 0.03 12.51 ± 0.00 22.05 ± 0.01 46.98 ± 0.05
70-80 18.94 ± 0.02 13.45 ± 0.00 10.60 ± 0.01 19.49 ± 0.03

Table G.18: The averaged collision parameters for each centrality in U + U collisions at
√
s = 193

A GeV with the MC-Glauber model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 447 476 1272.33 1372.28 0.03 1.72
0-1 429 476 1212.92 1372.28 0.02 2.47
0-5 372 476 1022.73 1372.28 0.02 4.30
5-10 308 419 842.39 1022.72 2.58 5.83
10-20 222 361 580.33 842.39 4.11 8.24
20-30 153 276 394.42 580.33 5.95 10.18
30-40 103 199 259.03 394.42 7.27 11.95
40-50 64 141 160.63 259.02 8.29 13.50
50-60 38 98 92.16 160.63 9.15 14.77
60-70 20 62 46.84 92.16 9.88 16.04
70-80 8 37 20.04 46.84 10.58 17.40

Table G.19: Centrality cut table for U + U collisions at
√
s = 193 A GeV with the MCKLN model

.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 461.28 ± 0.10 0.77 ± 0.01 1291.55 ± 0.35 1583.56 ± 1.98
0-1 453.08 ± 0.07 1.14 ± 0.00 1249.70 ± 0.27 1497.41 ± 0.89
0-5 424.39 ± 0.09 2.32 ± 0.00 1140.10 ± 0.33 1345.88 ± 0.54
5-10 361.09 ± 0.08 4.22 ± 0.00 928.99 ± 0.23 1075.08 ± 0.39
10-20 285.13 ± 0.09 5.97 ± 0.00 703.00 ± 0.24 783.81 ± 0.34
20-30 205.80 ± 0.07 7.74 ± 0.00 482.52 ± 0.17 504.55 ± 0.23
30-40 144.97 ± 0.05 9.16 ± 0.00 323.34 ± 0.12 312.55 ± 0.16
40-50 98.04 ± 0.04 10.40 ± 0.00 207.05 ± 0.09 181.94 ± 0.11
50-60 62.53 ± 0.03 11.50 ± 0.00 124.10 ± 0.06 97.34 ± 0.07
60-70 36.70 ± 0.02 12.49 ± 0.00 67.80 ± 0.04 46.55 ± 0.04
70-80 18.87 ± 0.01 13.43 ± 0.00 32.04 ± 0.02 19.02 ± 0.02

Table G.20: The averaged collision parameters for each centrality in U + U collisions at
√
s = 193

A GeV with the MCKLN model.
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centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 322 394 322.23 373.87 0.04 3.49
0-1 299 394 300.41 373.87 0.01 3.82
0-5 245 394 253.60 373.87 0.00 5.05
5-10 209 380 210.30 253.60 0.44 6.05
10-20 145 339 145.11 210.30 2.62 7.92
20-30 96 250 98.23 145.10 5.02 9.35
30-40 61 192 64.38 98.23 6.47 10.55
40-50 32 140 39.80 64.38 7.64 11.92
50-60 9 102 22.93 39.80 8.54 13.45
60-70 2 66 11.95 22.93 9.50 14.64
70-80 2 44 5.39 11.95 10.19 17.09

Table G.21: Centrality cut table for Au + Au collisions at
√
s = 62.4 A GeV with the MC-Glauber

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 373.60 ± 0.20 1.10 ± 0.01 331.76 ± 0.19 1021.23 ± 1.03
0-1 368.59 ± 0.12 1.37 ± 0.01 313.79 ± 0.11 995.22 ± 0.53
0-5 348.55 ± 0.10 2.23 ± 0.00 282.80 ± 0.09 915.52 ± 0.36
5-10 297.02 ± 0.10 3.90 ± 0.00 231.16 ± 0.06 736.96 ± 0.33
10-20 233.75 ± 0.09 5.51 ± 0.00 175.70 ± 0.06 537.29 ± 0.26
20-30 168.06 ± 0.07 7.14 ± 0.00 120.46 ± 0.04 345.93 ± 0.19
30-40 117.87 ± 0.05 8.47 ± 0.00 80.43 ± 0.03 214.40 ± 0.14
40-50 79.37 ± 0.04 9.61 ± 0.00 51.39 ± 0.02 125.28 ± 0.10
50-60 50.31 ± 0.03 10.64 ± 0.00 30.83 ± 0.02 67.53 ± 0.06
60-70 29.37 ± 0.03 11.59 ± 0.00 17.00 ± 0.01 32.93 ± 0.04
70-80 15.35 ± 0.02 12.48 ± 0.00 8.36 ± 0.01 14.25 ± 0.02

Table G.22: The averaged collision parameters for each centrality in Au + Au collisions at
√
s =

62.4 A GeV with the MC-Glauber model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 370 394 605.31 633.79 0.01 1.44
0-1 357 394 580.14 633.79 0.01 2.04
0-5 306 394 488.00 633.79 0.01 3.64
5-10 256 345 402.28 487.99 2.55 4.98
10-20 180 295 278.63 402.28 4.02 6.97
20-30 126 219 190.82 278.63 5.70 8.60
30-40 85 163 126.29 190.81 7.13 10.05
40-50 53 119 79.17 126.29 8.18 11.27
50-60 31 76 45.97 79.17 8.91 12.46
60-70 16 50 23.91 45.97 9.77 13.46
70-80 7 29 10.76 23.91 10.58 14.95

Table G.23: Centrality cut table for Au + Au collisions at
√
s = 62.4 A GeV with the MCKLN

model.
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centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 381.58 ± 0.07 0.61 ± 0.01 611.84 ± 0.12 1043.53 ± 0.80
0-1 375.68 ± 0.05 1.00 ± 0.00 595.88 ± 0.10 1014.82 ± 0.40
0-5 351.27 ± 0.08 2.15 ± 0.00 544.41 ± 0.16 922.70 ± 0.32
5-10 297.01 ± 0.07 3.91 ± 0.00 443.11 ± 0.11 736.64 ± 0.25
10-20 233.65 ± 0.07 5.52 ± 0.00 336.64 ± 0.11 536.93 ± 0.23
20-30 167.79 ± 0.05 7.15 ± 0.00 232.28 ± 0.08 344.99 ± 0.16
30-40 117.72 ± 0.04 8.47 ± 0.00 156.90 ± 0.06 213.80 ± 0.11
40-50 79.24 ± 0.03 9.61 ± 0.00 101.46 ± 0.04 124.68 ± 0.07
50-60 50.21 ± 0.02 10.63 ± 0.00 61.51 ± 0.03 66.98 ± 0.05
60-70 29.28 ± 0.02 11.58 ± 0.00 34.12 ± 0.02 32.43 ± 0.03
70-80 15.18 ± 0.01 12.46 ± 0.00 16.70 ± 0.01 13.78 ± 0.01

Table G.24: The averaged collision parameters for each centrality in Au+Au collisions at
√
s = 62.4

A GeV with the MCKLN model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 331 394 314.58 365.84 0.02 3.13
0-1 299 394 292.93 365.84 0.02 3.78
0-5 259 394 247.21 365.84 0.01 4.81
5-10 210 380 204.88 247.21 0.15 6.06
10-20 138 345 141.40 204.88 2.71 7.88
20-30 93 253 95.76 141.39 4.79 9.60
30-40 56 189 62.76 95.76 6.46 10.48
40-50 33 136 39.04 62.76 7.61 11.85
50-60 15 99 22.51 39.04 8.68 13.56
60-70 3 67 11.74 22.51 9.40 14.66
70-80 2 43 5.32 11.74 10.19 17.12

Table G.25: Centrality cut table for Au + Au collisions at
√
s = 39 A GeV with the MC-Glauber

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 372.30 ± 0.20 1.10 ± 0.01 323.80 ± 0.18 969.26 ± 1.00
0-1 367.54 ± 0.12 1.36 ± 0.01 306.17 ± 0.11 945.34 ± 0.50
0-5 347.06 ± 0.10 2.21 ± 0.00 275.77 ± 0.09 869.31 ± 0.35
5-10 295.34 ± 0.10 3.88 ± 0.00 225.23 ± 0.05 700.46 ± 0.31
10-20 231.99 ± 0.09 5.50 ± 0.00 171.28 ± 0.06 511.12 ± 0.25
20-30 166.30 ± 0.07 7.14 ± 0.00 117.32 ± 0.04 328.84 ± 0.18
30-40 116.45 ± 0.05 8.46 ± 0.00 78.41 ± 0.03 204.17 ± 0.13
40-50 78.34 ± 0.04 9.59 ± 0.00 50.21 ± 0.02 119.68 ± 0.09
50-60 49.72 ± 0.03 10.62 ± 0.00 30.21 ± 0.02 64.92 ± 0.06
60-70 29.07 ± 0.03 11.56 ± 0.00 16.71 ± 0.01 31.90 ± 0.04
70-80 15.17 ± 0.02 12.46 ± 0.00 8.22 ± 0.01 13.87 ± 0.02

Table G.26: The averaged collision parameters for each centrality in Au + Au collisions at
√
s = 39

A GeV with the MC-Glauber model.
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centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 370 394 459.02 484.16 0.01 1.48
0-1 357 394 439.98 484.16 0.01 2.13
0-5 308 394 370.90 484.16 0.01 3.68
5-10 256 338 305.65 370.90 2.52 5.07
10-20 177 291 212.40 305.64 4.00 7.00
20-30 127 216 146.14 212.39 5.68 8.53
30-40 84 157 97.26 146.14 7.05 10.01
40-50 52 112 61.40 97.26 8.13 11.35
50-60 31 76 36.03 61.40 8.85 12.43
60-70 16 50 18.88 36.03 9.72 13.54
70-80 7 29 8.55 18.88 10.59 15.28

Table G.27: Centrality cut table for Au + Au collisions at
√
s = 39 A GeV with the MCKLN

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 380.76 ± 0.07 0.61 ± 0.01 463.87 ± 0.09 989.92 ± 0.79
0-1 374.69 ± 0.05 0.99 ± 0.00 451.83 ± 0.08 962.33 ± 0.39
0-5 350.08 ± 0.08 2.13 ± 0.00 413.25 ± 0.12 876.75 ± 0.30
5-10 295.35 ± 0.07 3.89 ± 0.00 336.67 ± 0.08 700.49 ± 0.24
10-20 231.75 ± 0.07 5.51 ± 0.00 256.07 ± 0.09 510.19 ± 0.22
20-30 166.24 ± 0.05 7.13 ± 0.00 177.50 ± 0.06 328.53 ± 0.15
30-40 116.42 ± 0.04 8.45 ± 0.00 120.41 ± 0.04 203.89 ± 0.11
40-50 78.33 ± 0.03 9.59 ± 0.00 78.38 ± 0.03 119.37 ± 0.07
50-60 49.67 ± 0.02 10.61 ± 0.00 47.95 ± 0.02 64.54 ± 0.04
60-70 28.96 ± 0.02 11.54 ± 0.00 26.83 ± 0.02 31.45 ± 0.03
70-80 15.01 ± 0.01 12.43 ± 0.00 13.23 ± 0.01 13.45 ± 0.01

Table G.28: The averaged collision parameters for each centrality in Au+Au collisions at
√
s = 39

A GeV with the MCKLN model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 326 394 309.50 360.13 0.00 3.09
0-1 312 394 287.96 360.13 0.00 3.40
0-5 250 394 243.02 360.13 0.00 5.15
5-10 211 381 201.55 243.02 0.48 6.01
10-20 145 333 139.26 201.55 2.92 7.76
20-30 97 251 94.50 139.25 4.96 9.22
30-40 48 190 62.07 94.49 6.35 10.59
40-50 33 137 38.76 62.07 7.62 11.85
50-60 13 96 22.35 38.76 8.61 13.19
60-70 4 69 11.68 22.35 9.22 14.54
70-80 2 45 5.31 11.68 10.12 16.40

Table G.29: Centrality cut table for Au + Au collisions at
√
s = 27 A GeV with the MC-Glauber

model.
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centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 371.47 ± 0.21 1.10 ± 0.01 318.50 ± 0.18 936.55 ± 0.94
0-1 366.30 ± 0.12 1.37 ± 0.01 301.06 ± 0.11 912.44 ± 0.48
0-5 345.73 ± 0.10 2.22 ± 0.00 270.95 ± 0.09 839.09 ± 0.33
5-10 294.18 ± 0.10 3.87 ± 0.00 221.53 ± 0.05 677.16 ± 0.31
10-20 230.98 ± 0.09 5.49 ± 0.00 168.52 ± 0.06 494.51 ± 0.24
20-30 165.66 ± 0.07 7.12 ± 0.00 115.77 ± 0.04 319.25 ± 0.17
30-40 115.93 ± 0.05 8.44 ± 0.00 77.41 ± 0.03 198.55 ± 0.13
40-50 78.10 ± 0.04 9.57 ± 0.00 49.71 ± 0.02 117.00 ± 0.09
50-60 49.69 ± 0.03 10.59 ± 0.00 30.04 ± 0.02 63.91 ± 0.06
60-70 29.02 ± 0.03 11.53 ± 0.00 16.60 ± 0.01 31.43 ± 0.04
70-80 15.13 ± 0.02 12.42 ± 0.00 8.19 ± 0.01 13.71 ± 0.02

Table G.30: The averaged collision parameters for each centrality in Au + Au collisions at
√
s = 27

A GeV with the MC-Glauber model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 369 394 357.12 376.31 0.03 1.49
0-1 357 394 342.57 376.31 0.02 2.05
0-5 307 394 288.67 376.31 0.02 3.76
5-10 256 336 238.57 288.67 2.52 5.02
10-20 181 290 166.51 238.57 3.88 6.99
20-30 124 214 114.88 166.51 5.78 8.54
30-40 84 158 76.93 114.88 7.10 10.03
40-50 53 113 48.93 76.93 8.02 11.32
50-60 32 75 28.87 48.93 9.03 12.46
60-70 16 48 15.38 28.87 9.84 13.61
70-80 7 28 7.00 15.38 10.23 14.99

Table G.31: Centrality cut table for Au + Au collisions at
√
s = 27 A GeV with the MCKLN

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 380.19 ± 0.07 0.62 ± 0.01 360.99 ± 0.07 952.38 ± 0.80
0-1 373.94 ± 0.05 0.99 ± 0.00 351.69 ± 0.06 928.81 ± 0.38
0-5 348.92 ± 0.08 2.13 ± 0.00 321.61 ± 0.09 846.29 ± 0.30
5-10 294.16 ± 0.07 3.89 ± 0.00 262.50 ± 0.06 676.70 ± 0.23
10-20 230.75 ± 0.07 5.50 ± 0.00 200.33 ± 0.07 494.03 ± 0.21
20-30 165.30 ± 0.05 7.12 ± 0.00 139.37 ± 0.05 318.24 ± 0.15
30-40 115.55 ± 0.04 8.44 ± 0.00 94.92 ± 0.03 197.52 ± 0.10
40-50 77.73 ± 0.03 9.58 ± 0.00 62.19 ± 0.03 116.05 ± 0.07
50-60 49.27 ± 0.02 10.59 ± 0.00 38.31 ± 0.02 62.92 ± 0.04
60-70 28.82 ± 0.02 11.52 ± 0.00 21.67 ± 0.01 30.86 ± 0.03
70-80 14.95 ± 0.01 12.40 ± 0.00 10.80 ± 0.01 13.28 ± 0.01

Table G.32: The averaged collision parameters for each centrality in Au+Au collisions at
√
s = 27

A GeV with the MCKLN model.
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centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 320 394 305.25 372.94 0.01 3.01
0-1 309 394 284.59 372.94 0.01 3.65
0-5 250 394 239.89 372.94 0.01 4.78
5-10 207 377 198.84 239.89 0.50 6.11
10-20 142 331 137.22 198.84 2.90 7.86
20-30 89 248 93.40 137.22 4.94 9.41
30-40 60 189 61.30 93.40 6.00 10.91
40-50 28 144 38.24 61.30 7.48 12.15
50-60 14 95 22.12 38.24 8.59 13.18
60-70 4 67 11.59 22.12 9.51 14.48
70-80 2 47 5.27 11.59 10.30 16.69

Table G.33: Centrality cut table for Au + Au collisions at
√
s = 19.6 A GeV with the MC-Glauber

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 370.85 ± 0.21 1.10 ± 0.01 314.11 ± 0.18 912.74 ± 0.96
0-1 365.50 ± 0.12 1.38 ± 0.01 297.32 ± 0.10 889.86 ± 0.48
0-5 344.93 ± 0.10 2.22 ± 0.00 267.80 ± 0.09 819.50 ± 0.33
5-10 292.92 ± 0.10 3.88 ± 0.00 218.64 ± 0.05 660.32 ± 0.30
10-20 229.70 ± 0.09 5.50 ± 0.00 166.20 ± 0.06 482.08 ± 0.23
20-30 164.56 ± 0.07 7.12 ± 0.00 114.21 ± 0.04 311.36 ± 0.17
30-40 115.24 ± 0.05 8.43 ± 0.00 76.49 ± 0.03 193.99 ± 0.12
40-50 77.59 ± 0.04 9.57 ± 0.00 49.13 ± 0.02 114.47 ± 0.09
50-60 49.27 ± 0.03 10.58 ± 0.00 29.65 ± 0.01 62.51 ± 0.06
60-70 28.76 ± 0.03 11.52 ± 0.00 16.44 ± 0.01 30.85 ± 0.04
70-80 15.05 ± 0.02 12.41 ± 0.00 8.12 ± 0.01 13.54 ± 0.02

Table G.34: The averaged collision parameters for each centrality in Au + Au collisions at
√
s =

19.6 A GeV with the MC-Glauber model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 370 394 278.14 291.36 0.01 1.49
0-1 356 394 266.71 291.36 0.01 2.05
0-5 307 394 225.23 291.36 0.01 3.69
5-10 253 334 186.58 225.23 2.56 5.04
10-20 179 285 130.65 186.58 3.91 6.96
20-30 127 213 90.60 130.65 5.78 8.57
30-40 85 155 61.21 90.60 6.98 10.00
40-50 54 108 39.16 61.21 8.11 11.22
50-60 30 74 23.36 39.16 8.88 12.55
60-70 16 48 12.53 23.36 9.79 13.64
70-80 7 29 5.77 12.53 10.39 15.21

Table G.35: Centrality cut table for Au + Au collisions at
√
s = 19.6 A GeV with the MCKLN

model.
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centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 379.59 ± 0.07 0.62 ± 0.01 281.19 ± 0.05 926.72 ± 0.79
0-1 373.16 ± 0.05 1.00 ± 0.00 273.86 ± 0.05 904.89 ± 0.38
0-5 348.07 ± 0.08 2.13 ± 0.00 250.61 ± 0.07 825.65 ± 0.29
5-10 293.48 ± 0.07 3.88 ± 0.00 205.04 ± 0.05 661.59 ± 0.23
10-20 229.94 ± 0.07 5.49 ± 0.00 156.79 ± 0.05 482.65 ± 0.21
20-30 164.72 ± 0.05 7.11 ± 0.00 109.62 ± 0.04 311.53 ± 0.15
30-40 115.26 ± 0.04 8.42 ± 0.00 75.19 ± 0.03 194.10 ± 0.10
40-50 77.58 ± 0.03 9.56 ± 0.00 49.61 ± 0.02 114.28 ± 0.07
50-60 49.17 ± 0.02 10.57 ± 0.00 30.79 ± 0.01 62.13 ± 0.04
60-70 28.73 ± 0.02 11.51 ± 0.00 17.56 ± 0.01 30.54 ± 0.03
70-80 14.96 ± 0.01 12.38 ± 0.00 8.85 ± 0.01 13.23 ± 0.01

Table G.36: The averaged collision parameters for each centrality in Au+Au collisions at
√
s = 19.6

A GeV with the MCKLN model.
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centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 325 394 302.67 351.84 0.05 3.05
0-1 303 394 281.65 351.84 0.01 3.45
0-5 247 394 237.65 351.84 0.01 5.03
5-10 206 377 196.92 237.64 0.79 6.07
10-20 139 333 136.04 196.92 2.83 7.82
20-30 88 257 92.54 136.04 4.99 9.44
30-40 54 186 60.82 92.54 6.31 10.65
40-50 33 149 37.92 60.81 7.49 11.63
50-60 14 98 21.95 37.92 8.56 13.04
60-70 4 65 11.49 21.95 9.54 14.94
70-80 2 42 5.22 11.49 10.06 17.16

Table G.37: Centrality cut table for Au + Au collisions at
√
s = 11.5 A GeV with the MC-Glauber

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 370.01 ± 0.22 1.11 ± 0.01 311.22 ± 0.17 893.18 ± 0.94
0-1 365.07 ± 0.12 1.37 ± 0.01 294.45 ± 0.10 871.57 ± 0.47
0-5 344.07 ± 0.10 2.23 ± 0.00 265.03 ± 0.08 801.90 ± 0.32
5-10 292.21 ± 0.10 3.87 ± 0.00 216.50 ± 0.05 647.09 ± 0.29
10-20 229.10 ± 0.09 5.49 ± 0.00 164.65 ± 0.06 472.87 ± 0.23
20-30 164.03 ± 0.07 7.11 ± 0.00 113.14 ± 0.04 305.39 ± 0.17
30-40 114.87 ± 0.05 8.42 ± 0.00 75.86 ± 0.03 190.59 ± 0.12
40-50 77.28 ± 0.04 9.56 ± 0.00 48.73 ± 0.02 112.58 ± 0.09
50-60 49.03 ± 0.03 10.58 ± 0.00 29.43 ± 0.01 61.51 ± 0.06
60-70 28.67 ± 0.03 11.51 ± 0.00 16.33 ± 0.01 30.52 ± 0.04
70-80 14.93 ± 0.02 12.40 ± 0.00 8.05 ± 0.01 13.35 ± 0.02

Table G.38: The averaged collision parameters for each centrality in Au + Au collisions at
√
s =

11.5 A GeV with the MC-Glauber model.

325



centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 368 394 169.63 178.49 0.01 1.48
0-1 358 394 162.46 178.49 0.01 2.09
0-5 304 394 137.52 178.49 0.01 3.73
5-10 258 333 114.45 137.52 2.58 5.04
10-20 180 285 80.77 114.45 3.81 6.98
20-30 127 213 56.72 80.77 5.70 8.78
30-40 84 156 38.67 56.72 7.02 10.19
40-50 53 108 25.15 38.66 8.09 11.30
50-60 31 75 15.24 25.15 8.69 12.42
60-70 16 49 8.29 15.24 9.73 13.56
70-80 7 28 3.89 8.29 10.43 15.00

Table G.39: Centrality cut table for Au + Au collisions at
√
s = 11.5 A GeV with the MCKLN

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 379.39 ± 0.07 0.62 ± 0.01 171.45 ± 0.03 902.50 ± 0.81
0-1 372.75 ± 0.05 0.99 ± 0.00 166.91 ± 0.03 884.93 ± 0.39
0-5 347.48 ± 0.08 2.12 ± 0.00 152.79 ± 0.04 808.51 ± 0.29
5-10 292.95 ± 0.07 3.87 ± 0.00 125.44 ± 0.03 648.51 ± 0.24
10-20 229.69 ± 0.07 5.48 ± 0.00 96.58 ± 0.03 474.12 ± 0.21
20-30 164.34 ± 0.05 7.10 ± 0.00 68.11 ± 0.02 306.12 ± 0.14
30-40 115.07 ± 0.04 8.41 ± 0.00 47.27 ± 0.02 191.15 ± 0.10
40-50 77.38 ± 0.03 9.55 ± 0.00 31.58 ± 0.01 112.77 ± 0.07
50-60 49.10 ± 0.02 10.56 ± 0.00 19.92 ± 0.01 61.47 ± 0.04
60-70 28.63 ± 0.02 11.49 ± 0.00 11.53 ± 0.01 30.26 ± 0.03
70-80 14.87 ± 0.01 12.37 ± 0.00 5.89 ± 0.00 13.10 ± 0.01

Table G.40: The averaged collision parameters for each centrality in Au+Au collisions at
√
s = 11.5

A GeV with the MCKLN model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 322 394 303.07 358.50 0.01 3.31
0-1 301 394 282.43 358.50 0.01 3.67
0-5 252 394 238.20 358.50 0.01 4.99
5-10 212 381 197.41 238.19 0.64 5.89
10-20 139 343 136.52 197.41 2.42 7.79
20-30 94 245 92.66 136.52 4.92 9.39
30-40 60 200 60.84 92.66 6.40 10.75
40-50 30 131 37.92 60.84 7.57 11.83
50-60 11 95 22.02 37.92 8.74 13.12
60-70 2 68 11.54 22.02 9.47 15.30
70-80 2 47 5.26 11.54 10.18 16.37

Table G.41: Centrality cut table for Au + Au collisions at
√
s = 7.7 A GeV with the MC-Glauber

model.

326



centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 370.60 ± 0.21 1.10 ± 0.01 311.74 ± 0.17 899.93 ± 0.95
0-1 365.05 ± 0.12 1.38 ± 0.01 295.12 ± 0.10 875.77 ± 0.48
0-5 344.41 ± 0.10 2.22 ± 0.00 265.73 ± 0.08 806.53 ± 0.32
5-10 292.37 ± 0.10 3.88 ± 0.00 216.99 ± 0.05 650.31 ± 0.29
10-20 229.37 ± 0.09 5.49 ± 0.00 165.15 ± 0.06 475.47 ± 0.23
20-30 164.20 ± 0.07 7.11 ± 0.00 113.38 ± 0.04 306.98 ± 0.17
30-40 114.86 ± 0.05 8.43 ± 0.00 75.99 ± 0.03 191.33 ± 0.12
40-50 77.25 ± 0.04 9.56 ± 0.00 48.73 ± 0.02 112.84 ± 0.09
50-60 48.98 ± 0.03 10.58 ± 0.00 29.45 ± 0.01 61.60 ± 0.06
60-70 28.72 ± 0.03 11.51 ± 0.00 16.39 ± 0.01 30.65 ± 0.04
70-80 15.02 ± 0.02 12.40 ± 0.00 8.10 ± 0.01 13.46 ± 0.02

Table G.42: The averaged collision parameters for each centrality in Au + Au collisions at
√
s = 7.7

A GeV with the MC-Glauber model.

centrality (%) Nmin Nmax dS/dymin dS/dymax bmin (fm) bmax (fm)
0-0.2 369 394 107.73 113.91 0.02 1.69
0-1 357 394 103.24 113.91 0.00 2.27
0-5 304 394 87.34 113.91 0.00 3.86
5-10 254 332 72.94 87.34 2.53 5.19
10-20 180 285 51.89 72.94 3.73 7.06
20-30 126 209 36.73 51.89 5.63 8.64
30-40 85 153 25.34 36.73 6.89 10.10
40-50 53 107 16.69 25.34 7.94 11.08
50-60 31 74 10.28 16.69 9.03 12.54
60-70 16 47 5.69 10.28 9.77 13.68
70-80 7 30 2.72 5.69 10.38 14.94

Table G.43: Centrality cut table for Au + Au collisions at
√
s = 7.7 A GeV with the MCKLN

model.

centrality (%) 〈Npart〉 〈b〉 (fm) 〈dS/dy〉 〈Ncoll〉
0-0.2 379.28 ± 0.07 0.65 ± 0.01 108.90 ± 0.02 900.54 ± 0.82
0-1 372.83 ± 0.05 1.01 ± 0.00 106.03 ± 0.02 887.34 ± 0.40
0-5 347.42 ± 0.08 2.13 ± 0.00 97.05 ± 0.03 811.63 ± 0.30
5-10 292.71 ± 0.07 3.88 ± 0.00 79.80 ± 0.02 650.72 ± 0.24
10-20 229.51 ± 0.07 5.49 ± 0.00 61.76 ± 0.02 475.72 ± 0.21
20-30 164.23 ± 0.05 7.11 ± 0.00 43.94 ± 0.01 307.24 ± 0.15
30-40 114.88 ± 0.04 8.42 ± 0.00 30.78 ± 0.01 191.39 ± 0.11
40-50 77.32 ± 0.03 9.55 ± 0.00 20.82 ± 0.01 112.98 ± 0.07
50-60 49.07 ± 0.02 10.56 ± 0.00 13.32 ± 0.01 61.70 ± 0.05
60-70 28.66 ± 0.02 11.50 ± 0.00 7.84 ± 0.00 30.42 ± 0.03
70-80 14.90 ± 0.01 12.37 ± 0.00 4.08 ± 0.00 13.17 ± 0.01

Table G.44: The averaged collision parameters for each centrality in Au+Au collisions at
√
s = 7.7

A GeV with the MCKLN model.
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