INVESTIGATING THE EFFECTS OF PARTICLE RADIATION EXPOSURE ON LUNG CARCINOGENESIS

APPROVED BY SUPERVISORY COMMITTEE

Jerry W. Shay, Ph.D.
Professor of Cell Biology

Benjamin Chen, Ph.D.
Associate Professor, Internal Medicine

Asaithamby Aroumougame, Ph.D.
Assistant Professor of Radiation Oncology

Esra Akbay, Ph.D.
Assistant Professor of Pathology
In dedication to
Ama, daddy, wife, brother and Hawa Taal for their love and support.
ACKNOWLEDGMENTS

I would like to express my gratitude to several people who supported and encouraged me during my graduate work here at UTSW. Firstly, I would like to express my sincerer gratitude to my mentors Drs. Jerry W. Shay and Dr. Woodring Wright for accepting me into their laboratory and then providing continuous support, mentorship and guidance for the last five years. I am very thankful for my thesis committee members Dr. Benjamin Chen, Dr. Asaithamby Aroumougame, and Dr. Esra Akbay for their valuable advice, invaluable contributions, suggestions, and ideas throughout the duration of my graduate work. I would also like to thank my previous committee member Dr. David Boothman and Dr. Pier Scaglioni for their insightful comments and encouragement. I could not have imagined for a better mentor than Dr. Shay whose door was always open whenever I had questions about my research or writing or presentations.

Besides my mentors, I would like to thank all past and present members of the Shay/Wright lab who have assisted me throughout my research with advice and inputs. I am grateful to lab members for making my time both enjoyable as well as having inspiring discussions about science. I am thankful to Dr. Aadil Kaisani who trained me during the rotations in the Shay/Wright lab and laying the groundwork for my thesis project, Dr. Sang Bum Kim, Dr. Mariam El-Ashmawy, Dr. Ronald Bozeman, and Dr. Ilgen Mender for training me and helping me troubleshoot the experiments after I joined the lab. I would like to give special thanks to Summer Barron for providing animal support for my graduate work.

I am also grateful to the entire support team Dr. Peter Guida, Dr. Adam Rusek, Dr. Michael Sivertz, Paula Bennett and Debbie Synder at the NASA Space
Radiation Laboratories (NSRL) located in Brookhaven National Laboratory (Upton, New York), for helping us to organize experiments at their facilities. I would also like to thank Dr. James Richardson at UTSW for training and helping me understand lung cancer pathology.

The completion of my dissertation and graduate work would not have been possible without the continuous love and support from my wife, Hemanta Ghimire. I would also like to acknowledge support from my friends “Hawa Taal” for their encouragement and motivations.

Finally, I cannot begin to express my thanks for my parents Rajendra and Rajani Luitel and brother Shree Hari Luitel for their sacrifices and unwavering love and support throughout my years of study in the United States.
INVESTIGATING THE EFFECTS OF PARTICLE RADIATION EXPOSURE ON LUNG CARCINOGENESIS

Krishna Luitel, PhD
The University of Texas Southwestern Medical Center at Dallas, 2019.

JERRY W. SHAY, PhD

Lung cancer accounts for more cancer-related deaths than any other cancer types among both men and women. The data obtained from both atomic bomb survivors and uranium mine workers demonstrated radiation increases overall the risk for all age-related common human cancer types. The lung has a large surface area which makes it a prominent target for radiation exposure, and remarkably susceptible to radiation-induced cancer. Cancer patients undergoing radiation therapy and medical imaging are frequently exposed to different levels of radiation in the form of γ-rays or X-rays (photons). More recently, particle radiation therapy such as the use of protons and carbon has increased in the treatment of cancer. There are considerable health risks related to ionizing and proton radiation exposure. While there is a long history of health risks associated with ionizing (photon) radiation exposure, there is a limited understanding of the long-term
health risks associated with proton radiation exposure. Since proton radiation is becoming more commonly used in cancer therapy, the long-term biological effects of proton radiation remains less well characterized in terms of radiotherapy and well as for astronauts during deep space explorations.

Radiation therapy is commonly used for the treatment of cancer. Ionizing radiation produces reactive oxygen species that can damage healthy cells and cause genomic instability. We compared the long-term side effects of proton radiation to equivalent doses of X-rays in the initiation and progression of premalignant lesions in a lung cancer susceptible mouse model (K-ras$^{\text{LA1}}$). We show proton irradiation causes more complex DNA damage that is not completely repaired resulting in increased oxidative stress in the lungs both acutely and persistently. We further observed K-ras$^{\text{LA1}}$ mice irradiated with protons had an increased number and size of initiated and premalignant lesions and adenomas that were often infiltrated with inflammatory cells. Proton irradiated mice had lower median survival and increased carcinoma incidence as compared to unirradiated controls and X-rays exposed mice. Our conclusion is that exposure to proton irradiation enhances the progression of premalignant lesions to invasive carcinomas through persistent DNA damage, chronic oxidative stress, and immunosuppression.

Most of the work on understanding space radiation-induced cancer progression has been performed using mono-energetic single-ion beams. However, the space radiation environment consists of a wide variety of ion species with a various range of energies. Here, we exposed lung cancer susceptible mouse models (K-ras$^{\text{LA-1}}$) at the NASA Space Radiation Laboratory (NSRL) with three ion beams: Proton (H), Helium (He), and Silicon (Si) at a low dose rate of 0.5cGy/min. Using three ion beams we
performed whole body irradiation with a total dose of 30cGy in two different orders: 3B-1 (H-He-Si) and 3B-2 (Si-He-H) and used only H as a reference. In this study using the K-ras\(^{-1}\) mouse model, we show that whole-body irradiation with 3B-1 increases the incidence of cancer initiation and systemic oxidative stress in mice 100 days post-irradiation compared to 3B-2 and H irradiation. Additionally, we saw an increase in adenomas with atypia and adenocarcinomas in 3B-1 irradiated mice but not in 3B2 and H irradiated mice. We also found that a non-toxic anti-inflammatory, anti-oxidative radioprotector (CDDO-EA) reduced 3B-1 induced oxidative stress and cancer initiation almost back to baseline. Thus, exposure to 3B-1 elicits significant changes in lung cancer initiation that can be mitigated using CDDO-EA.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>TITLE PAGE</td>
<td>iii</td>
</tr>
<tr>
<td>COPYRIGHT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>viii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 The Lung Biology 1
1.2 Cancer and Lung Cancer Statistics 9
1.3 Pathology of Lung Cancer 15
1.4 Molecular Aberrations in Lung Cancer 17
1.5 Risk Factors for Lung Cancer 21
1.6 Introduction to Radiation 23
1.7 Space Radiation and Risk of Lung Cancer 27
1.8 Lung Cancer Mouse Model 33
CHAPTER TWO: PROTON RADIATION-INDUCED CANCER PROGRESSION

2.1 Introduction

2.2 Material and Methods

2.2.1 Mice and Irradiation

2.2.2 Premalignant Lesions, Invasive Carcinoma Assessment, and Mouse Survival

2.2.3 Western Blot Analysis

2.2.4 Oxyblot

2.2.5 Immunofluorescence

2.2.6 Quantitative Real-time PCR

2.2.7 Immunohistochemistry

2.2.8 Malondialdehyde Assay on Serum

2.2.9 Statistical Analysis

2.3 Results

2.3.1 Proton exposure causes complex and extensive DNA damage in the lung

2.3.2 Proton irradiation causes both acute and chronic oxidative stress

2.3.3 Increases in number and sizes of premalignant lesions K-rasLA1 mouse model

2.3.4 Inflammatory cells infiltration in the premalignant lesions

2.3.5 Proton exposure reduces lifespan and increases invasive
2.4 Discussion

2.5 Future Directions

CHAPTER THREE: TRITERPENOIDS (CDDO-EA): A POTENT RADIO-PROTECTOR AGAINST HEAVY ION RADIATION IN A LUNG CANCER MOUSE MODEL

3.1 Introduction

3.2 Material and Methods

3.2.1 Mice and Irradiation

3.2.2 Lung Tumor Histopathology

3.2.3 Experimental Design of CDDO-EA as a Countermeasure Experiment

3.2.4 Western Blot Analysis

3.2.5 Statistical Analysis

3.3 Results

3.3.1 CDDO-EA diet reduces the progression of tumors in the K-rasLA1 mouse model

3.3.2 CDDO-EA as countermeasure sSPE radiation

3.3.3 CDDO-EA as countermeasure HZE particles radiation

3.3.4 CDDO-EA mitigator to radiation effect
3.4 Discussion 100

3.5 Future Directions 103

CHAPTER FOUR: LUNG CANCER PROGRESSION USING FAST SWITCHING MULTIPLE ION BEAM EXPOSURES AND COUNTERMEASURE PREVENTION

4.1 Introduction 104

4.2 Material and Methods 107

4.2.1 Animals and Irradiation 107

4.2.2 Synthetic Triterpenoid Treatment 108

4.2.3 Lung Tumor Evaluation and Histology 108

4.2.4 Malondialdehyde Assay on Serum 109

4.2.5 Statistical Analysis 110

4.3 Results 117

4.3.1 Total Body Irradiation Using Multiple Ion Beam 111

4.3.2 Order of Particles in Multiple Ion Beam Radiation Matter 113

4.3.3 Skipping a Day for Silicon in 3B-1 Irradiation Protocol 117

 Attenuates Its Effect

4.3.4. CDDO as Countermeasure Against 3B-1 Irradiation 119

4.3.5. Titration of Silicon total dose to better simulate the space environment 121
4.4 Discussion 127
4.5 Future Directions 131

BIBLIOGRAPHY 132
PRIOR PUBLICATIONS

LIST OF FIGURES

Figure 1.1. Gross human lung anatomy. 2

Figure 1.2. Structures of the respiratory zone with central and peripheral airways of the lung. 4

Figure 1.3. Graphic illustrations of cell types in peripheral airways and central airways. 7

Figure 1.4. Trends in cancer death by sex. 12

Figure 1.5. Direct and indirect action of ionizing radiation. 24

Figure 1.6. Illustration of the generally accepted biological effects after absorption of ionizing radiation. 26

Figure 1.7. Space environment with a combination of galactic cosmic radiation (GCR) and (largely) proton radiation due to solar particle events (SPEs). 29

Figure 1.8. Comparison of particle tracks and delta (δ) rays from the primary tract. 32

Figure 1.9. Tumor progression in KrasLA1 mouse model. 35

Figure 2.1. Proton-induced DNA damage responses in WT mouse lungs. 49

Figure 2.2. Proton-induced DNA damage responses in WT mouse lungs. 51

Figure 2.3. Proton exposure causes higher and extensive oxidative stress in WT mouse lungs. 54

Figure 2.4. Radiation exposure altered expression of genes associated with oxidative stress. 55
Figure 2.5. Proton exposure leads to chronic oxidative stress and DNA damage in WT mice. 56
Figure 2.6. Proton irradiation increased the tumor burden in K-rasLA1 mice. 60
Figure 2.7. Representative images (H and E) of lung tissues irradiated with either X-rays or proton or unirradiated control showing the pockets of inflammatory cells near to the premalignant lesions. 63
Figure 2.8. Immune cells infiltrations into premalignant lesions. 65
Figure 2.9. Tumorigenic effect of proton irradiation in the K-rasLA1 mouse model. 68
Figure 2.10. Tumorigenic effect of an acute proton (50 MeV/n) and proton (150 MeV/n) in K-rasLA1 mouse model. 70

Figure 3.1. Chemical Structures of different types of triterpenoids. 79
Figure 3.2. CDDO-EA as a radioprotector. 82
Figure 3.3. Experimental design - CDDO-EA as a radioprotector. 85
Figure 3.4. CDDO-EA diet reduces the progression of tumors in the K-rasLA1 mouse model. 90
Figure 3.5. The decrease in number and sizes of premalignant lesions K-rasLA1 mouse model. 92
Figure 3.6. CDDO-EA decreases the incidence of invasive carcinoma in K-rasLA1 mice irradiated with a simulated solar particle event (50-150 MeV/n). 93
Figure 3.7. CDDO-EA decreases the incidence of invasive carcinoma in K-rasLA1 mice irradiated with 56Fe (600MeV/n) 1.0 Gy. 96
Figure 3.8. CDDO-EA modulates Inflammation-related signaling. 97

xvii
Figure 3.9. CDDO-EA as a mitigator.

Figure 3.10. CDDO-EA decreases wild type mouse survival after an acute lethal dose of 7.5-Gy total body X-ray irradiation.

Figure 4.1. Experimental design for the three-beam radiation.

Figure 4.2. Tumorigenic effect of multiple ion radiation in K-ras\(^{LA1}\) mouse model.

Figure 4.3. Skipping a day for silicon ion in 3B-1 total body irradiation rescues the biological damage in the mice.

Figure 4.4. CDDO as a countermeasure against multiple beam ion radiation.

Figure 4.5. Titration of Silicon ion dose in 3B-1 irradiation shows a dose response.
LIST OF TABLES

Table 1.1. Estimated new cancer cases and deaths in the United States in 2019 10

Table 1.2. Five-year Relative Survival Rates by Stage of Diagnosis
 US (2008-2014) 14

Table 1.3. Driver mutations identified in lung adenocarcinoma of tumor specimens
 from 1,00 patients. 18

Table 2.1. Effect of radiation exposure to K-ras^{LA1} mice. 71
LIST OF ABBREVIATIONS

4-HNE - 4-hydroxynonenal
8-oxo-dG - 8-oxo-2'-deoxyguanosine
$^{56}\text{Fe} - \text{Iron 56}$
ACS - American Cancer Society
ADC - Adenocarcinoma
ALK - Anaplastic Lymphoma Kinase
AMs - Alveolar Macrophages
ANOVA - Analysis Of Variance
BCMs - Biological Countermeasures
BNL - Brookhaven National Laboratory
CAT - Catalase
CDDO-EA - 2-cyano-3,12-dioxoolenan-1,9(11)-dien-28-oate-ethyl amide
CDDO-Me - C-28 methyl ester of 2-cyano-3,12-dioxoolenan-1,9-dien-28-oic acid oleanan-1,9(11)-dien-28-oic acid
CO_2 - Carbon dioxide
DAPI - 4',6-diamidino-2-phenylindole
DMF - Dose Modifying Factor
DNA - Deoxyribonucleic Acid
DSB - Double-Strand Break
EDTA - Ethylenediaminetetraacetic Acid
EGFR - Epidermal Growth Factor Receptor
EM - Electromagnetic
FDA - Food and Drug Administration
FHIT - Fragile Histidine Triad Protein
Foxp3 – Forkhead box protein P3
GCR - Galactic Cosmic Radiation
GPX1 - Glutathione peroxidase 1
GPX2 - Glutathione peroxidase 2
GPX8 - Glutathione peroxidase 8
Gy - Gray
^H - Proton
He- Helium
H&E - Hematoxylin and Eosin
HO-1 - Heme Oxygenase
HZE - High Atomic Number and Energy
IACUC - Institution of Animal Care and Use Committee
IF - Immunofluorescence
IR - Ionizing Radiation
K-Ras - v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
Keap1 - Kelch-like ECH-associated protein 1
LCC - Large Cell Carcinoma
LEO - Low Earth Orbit
LET - Linear Energy Transfer
LSS - Life Span Study
MAPK - Mitogenic-Activated Protein Kinase
MDA - Malondialdehyde
MeV/n - Mega Electronvolt per Nucleon
mTOR - Mammalian Target Of Rapamycin
MYC - v-myc Avian Myelocytomatosis viral oncogene homolog
NADPH - Nicotinamide Adenine Dinucleotide Phosphate Dehydrogenase
NASA - National Aeronautics and Space Association
NBF - Neutral Buffered Formalin
NF-κB - Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells
NOS - Nitric Oxide Species
NQO1 - NADPH Dehydrogenase Quinone
Nrf2 - Nuclear Factor Erythroid-derived 2 -like 2
NSAID - Nonsteroidal Anti-Inflammatory Drug
NSCLCs - Non-Small Cell Lung Cancer
NSRL - NASA Space Radiation Laboratory
O₂ - Oxygen
PBS - Phosphate Buffered Saline
PFA - Paraformaldehyde
PI3K - Phosphatidylinositol-4,5-Bisphosphate 3-Kinase
PNEC - Pulmonary Neuroendocrine Cells
PRX1 - Peroxiredoxin 1
PTEN - Phosphatase and Tensin Homolog
qRT-PCR - Quantitative Reverse Transcription Polymerase Chain Reaction
RNA - Ribonucleic Acid
ROS - Reactive Oxygen Species
RT-PCR - Reverse Transcription Polymerase Chain Reaction
SCC - Squamous Cell Carcinoma
SCLC - Small Cell Lung Cancer
SDS - Sodium Dodecyl Sulfate
Si - Silicon
SOD1 - Superoxide Dismutase 1
SPE - Solar Particle Events
SSBs - Single-Strand Breaks
STAT3 - Signal Transducer and Activator of Transcription 3
TBI - Total Body Irradiation
TK – Tyrosine Kinases
TP53 - Tumor Suppressor p53
US - United States
UTSW – University of Texas Southwestern Medical Center
CHAPTER ONE

Introduction to Lung Biology, Lung Cancer, and Radiation

1.1 The Lung Biology

The respiratory system consists of the lungs, trachea and associated muscles that mediate the movement of air into and out of the body. Lungs are situated in a thoracic cavity where the left and right lungs are separated by the mediastinum. The base of the lungs is boarded with dome-shaped muscle diaphragm. The contraction and relaxation of the diaphragm and intercostals muscles cause changes in pleural pressure resulting in inhalation and exhalation (Figure 1.1) (Mentzer, Tsuda, & Loring, 2018). Human lungs are bilateral but asymmetrical, the right lung is different compared to the left lung. The right lung consists of three lobes (superior, middle and inferior) while the left lung consists of two lobes (superior and inferior), and lobes are separated by fissures. The lung is a complex cone-shaped organ protected in
the ribcage and is responsible for exchanges of gases between the circulatory system and atmosphere (Saint-Criq & Gray, 2017). The left lung has an indentation called the cardiac notch which allows space for the heart. The lung consists of highly branched tree-like tubular system ending in thousands of terminal tubules ultimately giving rise to mature airways and alveoli (Figure 1.1). In these structures’ gases are exchanged by simple diffusion allowing oxygen (O₂) to be picked up the blood and carbon dioxide (CO₂) released into the air (Herriges & Morrisey, 2014).

Figure 1.1 Gross human lung anatomy
The respiratory system can be divided into two functional zones, conducting airways (central) and respiratory airways (peripheral), with distinct structural elements that reflects their unique functions (Figure 1.2).

The conducting airways begin from the nose (nasal cavity), pharynx, larynx, trachea, ending in bronchi and bronchioles which are not directly involved in the gas exchanges. The structural components in the conducting zone help in the conduction of air, removal of debris and pathogens from the air, warming and humidifying incoming air. The air enters through the single tracheal tube that divides repeatedly to form airways of ever decreasing diameter giving rise to primary bronchi, secondary bronchi and tertiary bronchi (Young, O'Dowd, & Woodford, 2014). The trachea extends from the larynx towards the lungs which is surrounded and supported by 15-20 U-Shaped rings of hyaline cartilage, pieces which are connected by dense connective tissue (Figure 1.2). These rings of cartilage provide the rigidity to the airway preventing it from collapsing during inhalation and exhalation.

The inner layers of the trachea wall consist of a variety of epithelial cell types; pseudostratified columnar epithelial cells with cilia, goblet cells, and basal cells. These epithelial cells are supported by connective tissue layer also called the lamina propria which contains numerous glands. Under the laminar propria there is submucosa containing mucous glands. In the proximal trachea goblet and basal cells are more common whereas ciliated columnar cells are more common on the
distal trachea where tracheal nears its bifurcation (Suttie, Leininger, & Bradley, 2018). Goblet cells are glandular cells producing mucin which helps to moisten and protect the airways from potentially harmful foreign airborne particles. The basal cells lie on the basal lamina beneath the other cells and it has been suggested that basal cells function as stem cells for repair of epithelial cells damage (Evans, Cox, Shami, Wilson, & Plopper, 1989; Treuting, Dintzis, Frevert, Liggitt, & Montine, 2012). The ciliated epithelium moves in a coordinated fashion to drive inhaled foreign particles toward the upper respiratory tract (Figure 1.3). The trachea divides into right and left primary bronchi, and the primary bronchi enter the lung at the hilum. The primary bronchi keep branching giving rise to secondary bronchi then to tertiary bronchi forming a bronchial tree. The tertiary bronchi branches into smaller airways called bronchioles which are about 1mm in diameter (Figure 1.3) (Fails, Magee, & Frandson, 2018). Most cells in the terminal bronchus are the Clara cells. The bronchioles further branches until they become the tiny terminal bronchioles which mark the end of conducting airways and do not take part in gas exchange. There are more than 1000 terminal bronchial in each lung. The muscular walls of the bronchioles do not contain cartilage like those of bronchi, but the muscular wall can change the size of the tubing to increase or decrease airflow the tube. The terminal bronchioles lead to respiratory bronchioles then to alveolar ducts, and finally terminating into a dilated spaced called alveolar sacs which open into the alveoli (Figure 1.2 and 1.3) (Wheater & Burkitt, 1987). Respiratory cells are comprised of ciliated, cuboidal cells and a small number of non-ciliate cell Clara cells, but devoid of goblet cells. The epithelium cells in the airways undergo a further transition from
that of terminal bronchioles making Clara cells the predominant cell types in the peripheral respiratory system (Treuting et al., 2012; Wheater & Burkitt, 1987). Respiratory airways facilitate gas exchanges within respiratory bronchioles, alveolar ducts, alveolar sacs and alveoli (Figure 1.3) (Hislop, 2002; Rawlins, 2011). An alveolus is a grape-like sac consisting of a pocket which is lined with flattened epithelial cells, and each alveolus is surrounded by a rich network of pulmonary capillaries. The alveolar walls consist of surface epithelium, connective tissue, and blood vessels.
Figure 1.2. Structures of the respiratory zone with central and peripheral airways of the lung.
Epithelium cells form a continuous lining of the alveolar wall, consisting of two cell types: Type I and Type II pneumocytes. Type I pneumocytes are the squamous epithelial cells which are flat cells covering approximately ninety-five of the alveolar surface areas, and these cells are directly involved in gas exchanges between the numerous alveoli and the blood (Wallig, Haschek, Rousseaux, Bolon, & Mahler, 2018) (Figure 1.3). Type II pneumocytes are cuboidal cells, and these cells occupy a much smaller proportion (approximately five percent) of the alveolar surface area. Type II cells are involved in secretion of a surface-active material called surfactant which reduces the surface tension of the alveoli. Alveolar macrophages (AMs) are phagocytic cells found in the interstitial compartment of alveoli but not in the alveolar wall. Alveolar macrophages engulf particles and infectious agents and function as an antigen presenting cell that regulates host dense and lung homeostasis (Laskin, Sunil, Gardner, & Laskin, 2011).
Figure 1.3. Graphic illustrations of cell types in peripheral airways and central airways. Peripheral airways comprise of Clara cells, Type I and II pneumonocytes. Majority surface area of the lung is covered by Type I cell pneumonocytes. Central airways comprise primarily of basal cells, goblet cells, ciliated pseudostratified epithelium, and rare pulmonary neuroendocrine cells (PNECs). Adapted (Sun, Schiller, & Gazdar, 2007).
The connective tissue is a supporting layer beneath the epithelium and surrounding the blood vessels of the alveolar wall. The structural support provided by these connective tissues provides the framework for the lung. The supporting layer consists of fine reticular, collagenous and elastic fibers with occasional fibroblasts (Wheater & Burkitt, 1987).

The blood vessels are comprised of interconnected capillaries around each alveolus. The arrangement provides an interface of minimal thickness between alveolar air and blood (Wheater & Burkitt, 1987).
1.2 Cancer and Lung Cancer Statistics

In normal adult tissues, cell division is balanced by cell loss (cell death) and it is tightly regulated for proper tissue homeostasis thus maintaining normal tissue architecture and function. Tissues need maintenance throughout the repair of wounds and replacement of cells that have suffered abrasion by precise control of stem cells (Biteau, Hochmuth, & Jasper, 2011). Depending on the type of tissues, the turnover rates of cells can be very different. Under normal conditions, cell turnover in the lung is relatively low, at least compared with tissues such as the intestine and skin (Blenkinsopp, 1967; Rawlins, Ostrowski, Randell, & Hogan, 2007). The imbalance between cell division and failure of self-elimination can lead to uncontrolled cell division giving rise to a neoplasm (a new growth). As long as the neoplastic cells remain confined to its original location not invading the surrounding tissue it is called a benign tumor, and when cells have acquired the ability to invade the surrounding tissue then it is then called malignant (Alberts, 2015).

Carcinogenesis is considered as a multistep process in humans as a single alteration of either an oncogene or tumor suppressor by itself cannot lead to the formation of a tumor. It widely considered that cells accumulate multiple genetic alterations over an extended period of time resulting in molecular changes with the increasing capacity of cell proliferation, survival, invasion, and metastasis. It has been well documented such multistep process in breast cancer, colorectal cancer, and lung cancer as a series of increasingly abnormal stages ending with metastatic
cancer (Beckmann, Niederacher, Schnurch, Gusterson, & Bender, 1997; Fearon, 1991; Sato et al., 2013). In this multiple step process normal cells acquire traits such as sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, activating invasion and metastasis, deregulating cellular energies, avoiding immune destruction and inducing angiogenesis which together transforms normal cells into a malignant tumor enabled by genome instability and mutations as well as tumor-promoting inflammation signaling (Hanahan & Weinberg, 2011b).

Estimated New Cases

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>174,650</td>
<td>20%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>116,440</td>
<td>13%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>78,500</td>
<td>9%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>61,700</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>57,220</td>
<td>7%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>44,120</td>
<td>5%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>41,090</td>
<td>5%</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>36,140</td>
<td>4%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>35,920</td>
<td>4%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>29,940</td>
<td>3%</td>
</tr>
<tr>
<td>All sites</td>
<td>870,970</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>268,600</td>
<td>30%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>111,710</td>
<td>13%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>67,100</td>
<td>7%</td>
</tr>
<tr>
<td>Uterine corpus</td>
<td>61,880</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of the skin</td>
<td>39,260</td>
<td>5%</td>
</tr>
<tr>
<td>Thyroid</td>
<td>37,810</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>33,110</td>
<td>4%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>29,700</td>
<td>3%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>26,830</td>
<td>3%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>25,860</td>
<td>3%</td>
</tr>
<tr>
<td>All sites</td>
<td>891,480</td>
<td></td>
</tr>
</tbody>
</table>

Estimated Deaths

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>76,650</td>
<td>24%</td>
</tr>
<tr>
<td>Prostate</td>
<td>31,620</td>
<td>10%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>27,640</td>
<td>9%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>23,800</td>
<td>7%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>21,600</td>
<td>7%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>13,150</td>
<td>4%</td>
</tr>
<tr>
<td>Esophagus</td>
<td>13,020</td>
<td>4%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>12,870</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>11,510</td>
<td>4%</td>
</tr>
<tr>
<td>Brain & other nervous system</td>
<td>9,910</td>
<td>3%</td>
</tr>
<tr>
<td>All sites</td>
<td>321,670</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung & bronchus</td>
<td>66,020</td>
<td>23%</td>
</tr>
<tr>
<td>Breast</td>
<td>41,760</td>
<td>15%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>23,380</td>
<td>8%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>21,950</td>
<td>8%</td>
</tr>
<tr>
<td>Ovary</td>
<td>13,980</td>
<td>5%</td>
</tr>
<tr>
<td>Uterine corpus</td>
<td>12,160</td>
<td>4%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>10,180</td>
<td>4%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>9,690</td>
<td>3%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>8,460</td>
<td>3%</td>
</tr>
<tr>
<td>Brain & other nervous system</td>
<td>7,850</td>
<td>3%</td>
</tr>
<tr>
<td>All sites</td>
<td>285,210</td>
<td></td>
</tr>
</tbody>
</table>

Table 1.1. Estimated new cancer cases and deaths in the United States in 2019. Adapted from American Cancer Society, 2019.
Cancer is considered as an age-related disease since 80% of all cancers diagnosed in the United States are among people 55 years age or older (ACS, 2019). It is estimated that 39 out of 100 men and 38 out of 100 women would develop cancer during their lifetime (Siegel, Miller, & Jemal, 2019). Cancer is the second most common cause of death in the United States after heart disease. In 2019, it was estimated that there will be about 1.7 million new cases of cancer diagnosed, and approximately 606,880 people are expected to die due to cancer. Prostate cancer is the most common cancer among males with 174,650 (20%) whereas breast cancer is the most common among females with 268,600 (30%) (Table 1.1).

Lung and bronchus cancer is the second highest newly diagnosed cases in both male and female population (ACS, 2019). An estimated 228,150 new cases of lung cancers will be diagnosed accounting for 14% and 13% of all new cases in males and females respectively in the United States. The median age for lung cancer diagnosis is 71 years (Hayat, Howlader, Reichman, & Edwards, 2007). Lung cancer is the leading cause of cancer-related death in the US as of 2018 among both males and female population. It is estimated that approximately 142,670 deaths will occur from lung cancer (ACS, 2019). According to the American Cancer Society, the combined 5-year relative survival rate for lung cancer is 19% (16% for men and 22% for women).
Figure 1.4. Trends in cancer death by sex. Adapted from American Cancer Society, 2019
The 5-year survival rate for lung cancer that is at the localized stage is 56% which drastically decreases to 5% if cancer are located at a distant site during diagnosis (Table 1.2) (ACS, 2019). The local stage is characterized with malignant cancer confined entirely to the organ of origin, regional stage as characterized by malignant cancer which has extended beyond the limits of the organ of origin directly into surrounding tissue, involves regional lymph nodes and has both regional extension and involvement in the lymph nodes. Finally, the distant stage is characterized as malignant cancer that has spread to the parts of the body remote from the primary tumor. Several risk factors such as smoking, exposure to radon gas, asbestos, exposure to certain metals (chromium, cadmium, arsenic), exposure to secondhand smoke, radiation, and air pollution have been linked to an increase risk of lung cancer (de Groot & Munden, 2012). Cigarette smoking is the leading factor that has been associated with an increase in lung cancer as 81% of lung cancer cases in the United States are associated with smoking history. Lung cancer deaths has been in decline since 1980 among men and since the 2000s in women (Figure 1.4). Such a declining trend in cancer mortality is due to a reduction in smoking prevalence, advances, and improvement in early detection and treatment of cancer.
Table 1.2. Five-year Relative Survival Rates by Stage of Diagnosis, US (2008-2014). (Adapted from American Cancer Society, 2019)

<table>
<thead>
<tr>
<th>Stages</th>
<th>5-year Relative Survival Rates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Stages</td>
<td>19%</td>
</tr>
<tr>
<td>Local</td>
<td>56%</td>
</tr>
<tr>
<td>Regional</td>
<td>30%</td>
</tr>
<tr>
<td>Distant</td>
<td>5%</td>
</tr>
</tbody>
</table>
1.3 Pathology of Lung Cancer

The lung tumor is the result of a number of molecular aberrations such as oncogenic alterations, epigenetic changes, telomerase alterations, micro-RNA modifications and tumor-suppressing alterations (Ganti & Gerber, 2013). In whole genome studies of patient cohorts (never smokers and oligo-smoker) presented molecular aberrations that contributed to the development or progression of lung cancer (Table 1.3) (Kris et al., 2011). The development of lung cancer from normal lung parenchyma is a multistep process. Histologically, normal epithelial cells transform to atypical adenomatous hyperplasia, squamous dysplasia/carcinoma in situ or diffuse idiopathic pulmonary neuroendocrine cell hyperplasia – precursor for the development of both atypical and typical carcinoids, small cell lung cancer (SCLC), and large cell neuroendocrine (Aguayo et al., 1992; Inamura, 2017).

Lung cancer is classified into two main histological categories: small cell lung carcinoma (SCLC) accounting for 15-20% of all lung cancers and non-small cell lung carcinoma (NSCLC) accounting for 80-85% for all lung cancers (Sher, Dy, & Adjei, 2008). NSCLS are further subcategorized into adenocarcinoma, squamous cell carcinoma (SCC), and large cell carcinoma (LCC). Adenocarcinoma accounts for approximately 40% of all lung cancer cases, and it is the most common subtype of lung cancer in nonsmokers (Ganti & Gerber, 2013). Adenocarcinomas are characterized by glandular differentiation and or mucin production of malignant epithelial tumors.
Squamous cell carcinoma (SCC) accounts for approximately 30% of all lung cancer, and it tends to be found in the middle of the lungs as 60% of cases of SCC arise from the central bronchi (segmental, lobar, main) while the remaining arise in the peripheral lung (Ganti & Gerber, 2013; Heist et al., 2012). SCC is strongly associated with cigarette smoking compared to other lung cancer types (Ettinger et al., 2013).

Small cell lung carcinoma (SCLC) comprises 14% of all lung cancers in the US, and two-thirds of SCLC are present as a perihilar mass (Tanoue & Matthay, 2011). SCLC is an aggressive carcinoma characterized with small tumor cells with negligible cytoplasm, nuclear molding, absence of inconspicuous nuclei, high nuclear/cytoplasmic (N/C) ratio, and high mitotic rate (Ganti & Gerber, 2013). SCLC is also strongly associated with cigarette smoking.

Large cell carcinoma (LCC) accounts for 3% of all lung cancer, and LCC mostly rise on the periphery of the lung (Weinberger, Cockrill, & Mandel, 2019). LCC is an undifferentiated NSCLC which lacks the features of adenocarcinoma or squamous cell carcinoma or small cell carcinoma. Similar to SCC and SCLC, LCC is also associated with smoking.
1.4 Molecular Aberrations in Lung Cancer

The most common molecular changes in lung cancer are KRAS, EGFR, ALK rearrangement, and BRAF (Table 1.3). KRAS is a member of the Ras family of GTPases that stimulates several pathways involved in cellular growth and cell survival (Ganti & Gerber, 2013). KRAS is the most commonly mutated member of RAS family in lung cancer, and only a few cancers have HRAS or NRAS mutated (Suzuki, Orita, Shiraishi, Hayashi, & Sekiya, 1990). KRAS acquires its tumorigenic ability when it is mutated resulting in constitutive activation causing a marked upregulation of kinases by RAS signaling. The activating mutation of the KRAS is strongly associated with tobacco smoking (Dogan et al., 2012; Luo & Lam, 2013). The incidence of KRAS mutations in NSCLC ranges from 8% to 24% (De Roock, De Vriendt, Normanno, Ciardiello, & Tejpar, 2011; Ganti & Gerber, 2013). To date, there are no targeted therapies available for NSCLC patients with KRAS mutations (Chan & Hughes, 2015).

The Epidermal growth factor receptor (EGFR) belongs to a family of transmembrane receptor tyrosine kinases (TK) presented on the surface of both normal cells as well as in lung cancer cells. Either through overexpression or molecular alteration, EGFR can activate the TK pathway. EGFR mutations initiate hyperactivation of EGFR tyrosine kinases without binding of specific ligands resulting in multiple cellular processes such as cell proliferation, cell survival, cell
motility and cell invasion (Scaltriti & Baselga, 2006). EGFR-mutated lung cancers account for 15% to 20% of all lung adenocarcinoma diagnosed in the United States (Keedy et al., 2011). Most mutations in EGFR clusters in exons 19 and 21 each accounting for approximately 45% of EGFR mutations (Ganti & Gerber, 2013). EGFR can be targeted for treatments in non-small cell lung cancers.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Molecular Aberrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS mutation</td>
<td>25%</td>
</tr>
<tr>
<td>EGFR mutation</td>
<td>23%</td>
</tr>
<tr>
<td>ALK rearrangement</td>
<td>6%</td>
</tr>
<tr>
<td>BRAF mutations</td>
<td>3%</td>
</tr>
<tr>
<td>PIK3CA mutation</td>
<td>3%</td>
</tr>
<tr>
<td>MET amplification</td>
<td>2%</td>
</tr>
</tbody>
</table>

Table 1.3. Driver mutations identified in lung adenocarcinoma of tumor specimens from 1,00 patients. (Kris et al., 2011)
The ALK (anaplastic lymphoma kinase) rearrangement has been identified in 5-6% of NSCLC cases as a driving mutation (Table 1.3) (Devarakonda, Morgensztern, & Govindan, 2015; Kris et al., 2011). ALK is a transmembrane tyrosine kinase receptor in the insulin receptor superfamily which can be activated constitutively by rearrangement, amplification and point mutation. Unlike EGFR and KRAS, ALK expression is low throughout adult human life and not expressed in normal lung tissues. This molecular aberration appears to be more common among young patients, never or light smokers diagnosed with adenocarcinoma mutually exclusivity with EGFR and KRAS mutations (Du, Shao, Qin, Tai, & Gao, 2018; Ganti & Gerber, 2013). Targeted therapies have shown clinical efficacy in treating NLCS patient harboring ALK rearrangement compared to conventional chemotherapy (Shaw et al., 2013; Shaw et al., 2011).

BRAF mutations are present in approximately 2-4% of lung adenocarcinomas constitutively activating the cell signaling pathways (serine-threonine kinase) activating important cell functions, including cell proliferation and survival (Table 1.3) (Kris et al., 2011; Schmid et al., 2009). *BRAF* mutations among adenocarcinomas cases are more common among former and heavy smokers (Sasaki et al., 2012). The specific mutation (*BRAF* V600) is the most common mutation in *BRAF* among lung cancers cases, and treatment with dabrafenib and trametinib has shown to be
very effective in the treatment of patients harboring the *BRAF* V600 mutation (Anguera & Majem, 2018).

MYC is one of the major downstream effectors of the RAS/RAF/MEK/MAPK pathways. As transcription factor MYC regulates a spectrum of cellular functions, and it belongs to the family to "super transcription factors" that potentially regulates the transcription of at least 15% of the entire genome (Dang et al., 2006). There are three members of the *MYC* family (*MYC, MYCL*, and *MYN*). The aberrant expression of MYC is commonly found in lung cancer, and in 30%-50% of small cell lung cancers (SCLC) have MYC overexpression (Johnson, Brennan, Ihde, & Gazdar, 1992; Lorenz, Friedberg, Paulus, Oesch, & Ferlinz, 1994; Sos et al., 2012). *MYC* amplification is associated with poor survival in patients with small cell lung cancer (Alves Rde, Meurer, & Roehe, 2014).

The loss of the tumor suppressor genes (TSG) function plays important roles in lung adenocarcinoma development either through genetic mutation or epigenetic silencing of the TSG. The commonly inactivated TSGs in lung cancer are *TP53, RB1, STK11, CDKNA2A, FHIT, RASSF1A*, and *PTEN*. The most frequently mutated TSG in lung cancer is *TP53*: 46% in lung adenocarcinoma and 81% in squamous cell carcinoma (Gibbons, Byers, & Kurie, 2014; Greulich, 2010). The p53 protein is a transcription factor which controls responses to cellular stresses including DNA damage, hypoxia, and oncogene activation. The mutations in *TP53* in lung cancer is associated with smoking history in patients. Retinoblastoma (*RB*) is also a tumor suppressor gene which is absent or mutated in lung cancer, approximately 90% of
SCLCs have alterations in the regulation of RB protein (pRB) as compared to 10-15% of NSCLCs (Otterson, Kratzke, Coxon, Kim, & Kaye, 1994).

1.5 Risk Factors for Lung Cancer

There are several risk factors that are associated with lung cancer such as tobacco smoking and second-hand smoke. In addition exposure to agents such as asbestos, radon, arsenic, and radiation (Alberg & Nonemaker, 2008) are associated with an increased risk of lung cancer. Smoking is the number one risk for lung cancer as 85% of all lung cancers are related to cigarette smoking. People who smoke have a risk for lung cancer on average 10-fold higher than in never smokers. The second-hand exposure of nonsmokers to smoke in a household results in a 30% increased likelihood of developing lung cancer compared to nonsmokers living with nonsmokers. The more recent decrease in the incidence of lung cancer-related deaths in the United States has been attributed to the decrease in smoking prevalence (Figure 1.4) (Ganti & Gerber, 2013).

The exposure to agents such as asbestos has also been associated with increased risk of lung cancer. Asbestos is a naturally occurring fiber found in rocks and soil. Asbestos is a well-known occupational carcinogen, and there are six distinct types of asbestos. The continuous inhalation of asbestos particles increases the risk of lung fibrosis, lung cancer, and pleural and peritoneal malignant mesothelioma (Mossman, Bignon, Corn, Seaton, & Gee, 1990; Robinson & Lake,
The latency period from asbestos exposure can range from 10 to 40 years before the diagnosis of lung cancer (Heintz, Janssen-Heininger, & Mossman, 2010).

Radon is a radioactive gas which is produced naturally from decaying of uranium. When radon atoms spontaneously decay they emit both highly ionizing particle and sparsely ionizing gamma rays in the process (Lantz, Mendez, & Philbert, 2013; Scott, 2011). When radon gas is inhaled, it can result in damage to DNA of the respiratory epithelium. Radon exposure is the second leading cause of lung cancer, and the risk is higher for smokers than nonsmokers as 86% of radon-related lung cancer deaths are current and former smokers (Lubin & Boice, 1997). Small cell carcinoma and squamous cell carcinoma of the lung are strongly correlated with radon exposure (Krewski et al., 2005; Pershagen et al., 1994). The radon exposure in the general population is substantially less than the occupational exposure among the uranium miners (Ganti & Gerber, 2013).

More than half of cancer patients are treated with ionizing radiation (IR) during the course of their disease, and workers in hospitals and clinics are exposed to IR when performing diagnostic imaging exams for appropriate care. There is a strong correlation between radiation therapy in pediatric and young adults’ patients and the development of secondary malignancies later in life (Manem, Kohandel, Hodgson, Sharpe, & Sivaloganathan, 2015; Ng & Shuryak, 2015). Additionally, several studies have demonstrated the association between exposure to ionizing radiation and lung cancer (Jacob et al., 2009). The Life Span Study (LSS) of Japanese atomic bomb
survivors have provided a greater understanding of the risk of lung cancer due to ionizing radiation (Grant et al., 2017). The risk of lung cancer due to ionizing radiation is discussed in the following section.

1.6 Introduction to Radiation

Radiation is the emission or transmission of energy that comes from the originating source and travels through space or a medium in the form of waves or particulates. Radiation can be ionizing or non-ionizing depending on how it affects the matter. Radiation is called ionizing radiation if it carries sufficient energy to eject one or more orbital electrons from atoms or molecules (Hall & Giaccia, 2019). Ionizing radiation can be classified as either electromagnetic radiation or particulate radiation. Electromagnetic radiation consists of energy which is propagated through space or material in the form of electromagnetic waves such as radio waves, infrared waves, X-rays, and gamma-rays (γ). Particulate radiation consists of electrons, protons, α-particles, neutrons, and heavy charged particles (Hall & Giaccia, 2019). The energy carried by various forms of radiation is generally defined using linear energy transfer (LET) which refers to the amount to the energy deposited per unit length (keV/µm). The LET of radiation depends on the charge and velocity of the ion. Radiation can be categorized as low LET (sparsely ionizing) or high LET radiation (densely ionizing), and in general LET values greater than 10 keV/µm are considered high LET radiation (Okayasu, 2012).
Figure 1.5. Direct and indirect action of ionizing radiation.
As the use of radiation in medicine is becoming more prevalent, it is important to understand how the absorbed dose of different types of radiation impacts the subsequent biological response. The main biological effects due to radiation exposure are caused by damage to deoxyribonucleic acid (DNA). When radiation is absorbed by biological material, it can interact directly with the critical cellular targets disrupting its molecular structure (Figure 1.5) (Hall & Giaccia, 2019). Through this direct action of radiation, it can induce base damage, single-strand breaks, double-strand breaks, and DNA protein cross-links. If irradiated cells do not repair correctly, it can induce carcinogenesis and other abnormalities (Baskar, Dai, Wenlong, Yeo, & Yeoh, 2014). The direct action of radiation is a dominant process when radiation exposure occurs with high linear energy transfer (LET) such as α-particles, neutrons, and high charge (Z) and energy E (HZE) particles.

Alternatively, the absorbed radiation in the cell may interact with other atoms and molecules within the cell producing free radicals and other reactive species (Hall & Giaccia, 2019). Most commonly water radiolysis can occur in the cells as 80% of a cell is composed of water. The ionization of water can produce hydroxyl radicals which can diffuse in the cells and damage other critical targets resulting in DNA damage. Low-LET ionizing radiations such as X-rays and γ-rays causes 60% the cellular damage by indirect effects (Figure 1.5) (Barcellos-Hoff, Park, & Wright, 2005). The oxidative DNA damage in tumor suppressors genes such as TP53 and
RB may induce malignancies in combination with other alterations (Hendry, 2001; Robles, Linke, & Harris, 2002).

The radiation-induced effect can occur within seconds to years depending on the consequences involved. Radiation-induced cell death may be expressed within an hour to days after radiation exposure while oncogenic damage may be delayed for years (Figure 1.6) (Hall & Giaccia, 2006; Olcina & Giaccia, 2016).

Figure 1.6. Illustration of the generally accepted biological effects after absorption of ionizing radiation. (Hall & Giaccia, 2006) modified.
1.7 Space Radiation and Risk of Lung Cancer

The health risks related to space radiation exposure such as carcinogenesis, degenerative diseases – cardiovascular, central nervous system damage, acute radiation syndrome on astronauts represent a major limiting factor for long-term space missions (Chancellor, Scott, & Sutton, 2014). Unlike terrestrial radiation, such as X-rays or β or γ-rays, space radiation composed of high-energy (E) protons and high charge (Z) particles (HZE) nuclei has the capacity to penetrate both shielding and human tissues. The main source of radiation in space includes galactic cosmic rays (GCR), solar particle events (SPE) and a secondary particle that arise from interactions of spacecraft shielding and tissues (Figure 1.7) (Sridharan et al., 2015).

Ionizing radiation (IR) is a very well-known carcinogen and, radiation-induced carcinogenesis is considered one of the major health risks for long-duration human space missions beyond Low Earth orbit (LEO) (Norbury et al., 2016).

The GCRs, which are considered to originate from high-energy supernova explosions, consist of protons and HZE particles with charge number ranging from 1 to 28 and energies from <10MeV/u to >50 GeV/u (Cucinotta et al., 2001; M. Durante & Cucinotta, 2008). GCR consists of 2% electrons, 85.3% protons (hydrogen nuclei), 11.8% alpha particles (nuclei), and less than 1% of high charge (Z) and energy E (HZE) particles. Even though HZE particles account for less than 1% of GCR, they have high biological effectiveness as these heavy particles have
high linear energy transfer (high-LET) values. HZE nuclei with enough energy can penetrate a substantial thickness of shielding materials. The GCR exposure occurs at very low fluence rate: each cell in an astronauts’ body being traversed by a proton and helium every few days and HZE nuclei about once every few months (Norbury et al., 2016). The irradiation of the mammalian cells with HZE particles can directly or indirectly damage biomolecules: lipids peroxidation, protein oxidation, oxidative alterations of mtDNA and nDNA as well as to results in inactivation of enzymes (M. Li et al., 2014).

The passage of HZE particles track has a unique pattern of energy deposition which induces clustered and complex DNA damage (double-stranded breaks (DSBs), single-stranded breaks (SSBs), and base damage) in the cells (Figure1.8A) (Simonsen, Wilson, Kim, & Cucinotta, 2000). The energy deposition by heavy ions is highly heterogeneous and dependent on the type and energy of the ion. These damages on DNA are hard to repair and can lead to genomic instability (Asaithamby et al., 2008; Li, Wang, Wang, Murnane, & Dynan, 2014). HZE particle radiation can give rise to secondary radiations from the targets atoms as well as produce energetic electrons with its own tracks along the track of the primary particle on their own known as delta rays (δ-rays) (Figure1.8B) (Cucinotta, Wilson, Shinn, Badavi, & Badhwar, 1996). The range of δ-rays can vary depending on the velocity and mass of the particle, and δ-rays potentially can irradiate the adjacent cells to the cells directly irradiated by the primary particle track (Figure1.8B) (Cucinotta, Nikjoo, & Goodhead, 1998; Metting et al., 1988).
Figure 1.7. Space environment with a combination of galactic cosmic radiation (GCR) and (largely) proton radiation due to solar particle events (SPEs) (Chancellor et al., 2014).
Protons account for the vast majority of radiation in the space in the form of a Solar Particle Events (SPEs). Solar particle events (SPEs) are dangerous and unpredictable and can produce large quantities of energetic particles which can last from a few hours to several days, and the majority of the ejected particles consists of protons (McPhee, Charles, & United States. National Aeronautics and Space Administration., 2009). The majority of SPEs are harmless but SPEs with energies above 30MeV are a major concern to astronauts in shielded vehicles and habitats. SPEs exposures are intermittent and unpredictable whereas there is a constant presence of GCR in space. The high energetic SPE protons can also produce secondary intravehicular radiation similar to GCR (Chancellor et al., 2014).

The National Aeronautics and Space Administration (NASA) has set an acceptable level of risk at 3% for exposure-induced death for radiation carcinogenesis. The long-term space missions such as establishing a lunar colony and the Mars mission may exceed radiation risk limits beyond the acceptable levels of risk. (M. Durante & Cucinotta, 2008). In order to elucidate how space radiation exposure may translate into this increased carcinogenic risk, an understanding of how radiation impacts biological material is required. In different mouse models, investigators have demonstrated that high-LET radiation compared to low LET radiation result in a higher risk of tumorigenesis in the lung, liver, gastrointestinal tract and mammary gland (Delgado et al., 2014; Trani et al., 2014; Weil et al., 2009). The only available data from accidental exposure to ionizing radiation of survivors
from Chernobyl accident and atomic bomb survivors showed increased risks of cancers in different organs, and the greatest risk was for leukemia, lung, stomach, liver, and bladder cancer (Grant et al., 2017; Saenko, Thomas, & Yamashita, 2017).

As previously discussed radiation is one of the risk factors for lung cancer. The lung has a large surface area which makes it a prominent target for radiation exposure, and remarkably susceptible to radiation-induced cancer (Delgado et al., 2014; Luitel et al., 2018). There are considerable uncertainties of cancer risk estimates from chronic space radiation exposures, as the space radiation consist of a wide variety of ion species with a continuous range of energies. Therefore, experiments need to be designed using multiple ions with different energies to simulate the space environment to understand the potential health effects on astronauts.
Figure 1.8. Comparison of particle tracks and delta (δ) rays from the primary tract. (A) tracks from different ions, from protons to iron. (B) δ rays resulting from the interaction of primary HZE particles with the target materials. (M. Li et al., 2014).
1.8 Lung Cancer Mouse Model

Despite the evidence that terrestrial ionizing radiation can induce lung carcinogenesis, the mechanism of space radiation-induced lung cancer still remains an important area for research. Several mouse models of lung cancer have been developed by expressing oncogenes and deleting tumor suppressors to recapitulate human lung cancer progression, and they have been powerful experimental models to dissect the molecular pathways.

To understand the radiation-induced cancer risk we are using K-rasLA1 mouse model. Dr. Tyler Jacks and his colleagues reported this mouse model (K-rasLA1) with a latent mutant K-ras gene in the endogenous gene locus. K-rasLA1 carries a targeted latent ‘hit-and-run’ allele that is activated by spontaneous \textit{in vivo} recombination events. Thereby half of the recombination events result in normal \textit{K-ras} alleles and the other half inactivated allele (\textit{K-rasG12D})(Leisa Johnson1, 2001). In this model, there is a sporadic initiation of \textit{K-ras} oncogene (through \textit{in vivo} recombination) which gives rise to scattered cells that express the active \textit{K-ras} gene within the authentic locus of the endogenous chromosomal site under normal physiological control. These mice develop lesions that are spontaneously activated, and progress into varying grades of tumors in alveolar type II cell lineage, forming hyperplasia/dysplasia, adenoma, adenoma with atypia, and invasive carcinoma (\textit{Figure 1.9 B}).
With the activation of oncogenic K-ras, the life span of the LA1 mice significantly decrease compared to their wildtype littermates; most LA1 K-ras mice are dead by the age of 500 days in contrast to wildtype mice which can survive over 800 days (Figure 1.9A). This decrease in lifespan is most likely due to the significant tumor burden sustained by the lungs of LA1 K-ras mice even though the direct cause of death may be due to pneumonia or bronchial extensions. This model mimics human lung cancer progression starting from hyperplastic lesions and progressing to invasive carcinoma. Thus, the K-rasLA1 mouse model provides a platform to test how space radiation impacts stromal cells surrounding the initiated tumor, or how the microenvironment surrounding benign lesions may contribute to cancer promotion (Figure 1.9 B). When these mice are irradiated between the age of 8-15 weeks, most of them have initiated hyperplastic lesions but few adenomas. Although the expression of oncogenic K-ras is enough to induce tumors in the K-rasLA1 mouse model, only 9% of the 129S2 background mice with mutant (K-rasG12D) develop invasive carcinomas.
Figure 1.9 Tumor progression in KrasLA1 mouse model. (A) Kaplan–Meier survival plot of Wildtype mice and KrasLA1 mice harboring (K-rasG12D) mutation. (B) Histopathology analysis of K-rasLA1 mice with Normal lung, hyperplastic lesion, adenoma, adenoma with atypia and invasive carcinoma.
Most lesions in these animals range from early lesions such as alveolar epithelial hyperplasia to well-defined adenomas suggesting that intact barriers to malignancy remain and additional alterations are required. These findings are consistent with human multi-step carcinogenesis. (Vogelstein & Kinzler, 1993). Exposing these mice to radiation such as is found in space could provide additional carcinogenic hits (such as genetic alteration or epigenetic changes) required to increase the incidence of invasive lung carcinoma. Thus, it is an ideal model to understand the effect of space radiation on the microenvironment of tumors and can potentially provide insights into the promotion of the benign lesions to more advanced stages of cancer.
CHAPTER TWO

Proton radiation-induced cancer progression

2.1 Introduction

Radiation-induced carcinogenesis remains a major concern for long-term deep space travel. Unlike terrestrial radiation which primarily is comprised of low-linear energy transfer (LET) radiations such as γ-rays, β, and X-rays, space radiation includes high LET radiation fields. Astronauts are exposed to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) during deep space travel beyond the Low Earth Orbit (LEO) (Chancellor et al., 2014). The space environment contains a significant background of low and high energy protons fluxes as well as high charge and energy (HZE) nuclei. In addition, radiation is commonly used in medical imaging as well as for cancer patients undergoing radiation therapy in the form of γ-rays or X-rays (photons). Due to superior targeting, minimal entrance dose, and with no exit dose has resulted in a large increase in particle radiotherapy for targeting solid cancers with more accuracy and potentially with fewer side effects. Worldwide there are ~75 particle radiation centers, and more than 170,000 patients undergoing proton or carbon radiation therapy for the treatment of various types of cancer
Although the radiation side effects and risks due to γ-rays or X-rays have been studied over many decades, we still do not know much about the long-term effects of particle irradiation such as proton radiotherapy.

The lung has a large surface area which makes it a big target for radiation exposure. Lung cancer represents one of the most commonly diagnosed cancer types and it accounts for more cancer-related deaths than any other cancer type in both men and women (Cancer facts and figs 2018). Non-small cell lung cancer (NSCLC) is the most commonly diagnosed form of lung cancer, accounting for approximately 85% of all lung cancers, of which there is only a predicted 5-year survival rate of 16% for all patients (Ettinger et al., 2013). Risk factors for NSCLC include chemicals, air pollution, and radiation. Epidemiological data collected from individuals accidentally exposed to radiation (i.e. atomic bomb survivors, radon gas exposure in mine workers) demonstrate a positive correlation for increased risk of lung cancer development (Lubin et al., 1995; Preston, Shimizu, Pierce, Suyama, & Mabuchi, 2012). We previously reported that high-energy 56Fe-particles irradiation given in fractionated doses enhanced the acceleration of lung cancer in a lung cancer susceptible mouse model over single acute doses (Delgado et al., 2014). However, there have been limited studies evaluating the effects of proton radiation in the progression of lung cancer. Such studies might help in understanding the biological factors contributing to the incidence of secondary malignancies from radiation exposure. It will also help in estimating lung cancer risks for astronauts on long-term space missions since protons will be over 85% of the radiation exposure
The purpose of the present study was to examine the effects of proton radiation in the progression of lung cancer. We used the K-ras$^{\text{LA1}}$ mouse model which develops lesions in the lung spontaneously (Leisa Johnson1, 2001). Using this genetically engineered mouse model, we studied survival and the progression of lung cancer after total body exposure to an acute proton with 50 MeV/n energy using a total dose 2.0 Gy at an average dose rate of 20 cGy/min. We also exposed mice to 2.0 Gy X-rays (250 kVp) at an average dose rate of 20 cGy/min as a reference radiation exposure. Here we report proton irradiation given acutely enhances the acceleration of lung cancer progression in the K-ras$^{\text{LA1}}$ mouse model.
2.2 Materials and Methods

2.2.1 Mice and Irradiation

Animal experiments were reviewed and approved by the Institutional Animal Care and Use Committees (IACUC) at the University of Texas Southwestern Medical Center at Dallas (UTSW) and Brookhaven National Laboratory (BNL) (Upton, NY). Animals were housed and fed ab libitum diet following an approved husbandry protocol in ventilated micro isolator cages within a pathogen-free facility at UTSW. Transgenic K-rasLA1 mice on a 129S2 background as previously described (Leisa Johnson1, 2001) were obtained from Dr. Jonathan Kurie (University of Texas M.D. Anderson Cancer Center, Houston, TX) and an in-house breeding colony was established. Heterozygous 129S2 K-rasLA1 breeding pairs were established to generate both heterozygous and wild-type littermate controls.

Both male and female transgenic K-rasLA1 mice, ages 8-15 weeks were total-body irradiated with different radiation protocols. Mice were exposed to a single acute dose of 2.0 Gy of proton ions at an energy of either 50 MeV/n or 150 MeV/n. All acute proton dose exposures were delivered at approximately 20 cGy/min. As a reference radiation, mice were also irradiated with 2.0 Gy of X-rays (250 kVp) at a dose rate of 20 cGy/min. As previously described (Kim, Zhang, Barron, & Shay, 2014), during the radiation exposure, mice were housed individually in plastic cuboid boxes (#530C, AMAC Plastic Products, Petaluma, CA). Animals subjected to proton
irradiation and unirradiated controls were used for both time points and survival studies and were transported via World Courier (New Hyde Park, NY) overnight delivery to Brookhaven National Laboratory and returned to UT Southwestern within 1 week after irradiation.

2.2.2 Premalignant Lesions, Invasive Carcinoma Assessment, and Mouse Survival

Total body irradiated, and age-matched control mice were either sacrificed at indicated time-points or monitored until evidence of increased morbidity or death for survival study. All mice were necropsied, and lungs removed and inflated via intra-tracheal infusion with 10% neutral buffer formalin (NBF). The lungs were then clamped at the trachea and the entire tissue was immersed in 10% NBF overnight. Tissues were processed, paraffin-embedded, cut into 5 μm thick sections and stained with hematoxylin and eosin (H & E) for histopathological assessment using standard protocols. To analyze tumor grade and quantify lesions from survival cohorts with or without radiation treatment, three sections were cut 50 μm apart per animal. The stained sections were then analyzed; tumors graded, and other histopathological characteristics scored as either positive or negative for adenocarcinoma, adenoma with atypia, pneumonia, adenoma, hyperplasia, bronchial extension, and autolysis which were confirmed by a DVM/Ph.D. pathologist specializing in mouse pathology (J.R.). Hyperplastic lesions were characterized as small lesions with proliferative non-inflammatory cells in the
alveolar epithelium, and as these hyperplasias grew they increase in size and are composed of a monomorphous population of airways epithelium pushing the surrounding airways which were then considered adenomas. The adenocarcinomas were characterized by tumor cells with the high-nuclear-to-cytoplasmic ratio, definite nuclear pleomorphism, having an undifferentiated appearance, and stromal interactions associated with the tumor along with inflammatory cells.

To quantify premalignant lesion sizes and number, we cut three sections of lungs per animal approximately 50-µm apart and stained with hematoxylin and eosin (H&E). Images were taken using the Hamamatsu Nanozoomer 2.0-HT mounted CCD camera (Whole Brain Microscopy Facility at UTSW). The scanning software was NDPscanv2.3. The images were analyzed using the Nanozoom Digital Pathology Software.

2.2.3 Western Blot Analysis

For acute studies aged-matched 129S2 wild type mice were also shipped to Brookhaven National Laboratories (BNL) for experiments to be conducted at the National Space Radiation Laboratory (NSRL). Mice were irradiated with an acute dose of protons (energy of 50 MeV/n, the dose rate of 20cGy/min, the total dose of 2.0 Gy) or unirradiated. Additional mice were irradiated with X-rays with 2.0 Gy at a dose rate of 20 cGy/min at UTSW. Mice were sacrificed 4 hrs., 1 day, 2 days, 3 days. Whole mouse lungs were excised of which half was embedded in Tissue Tek O.C.T.
(Qiagen) for cryosectioning and the other half of the lung was snap frozen using liquid nitrogen. Frozen mouse lung tissue was disrupted using a liquid nitrogen-cooled mortar and pestle (Bel-Art™ Scienceware™, Fisher Scientific). Disrupted lung tissue was homogenized using a 18G needle and lysed in ice-cold lysis buffer (50mM Tris pH7.5, 150mM NaCl, 1% Triton X-100, and 1mM EDTA) containing protease and phosphatase inhibitor cocktails (Roche). Lysates were centrifuged, and supernatants used for protein assays. Proteins were separated by 4-15% Criterion TGX™ Precast Gel (Bio-Rad, CA), and transferred to a PVDF membrane using the Trans-Blot® Turbo™ Transfer System (Bio-Rad, CA). Phospho-histone H2A.X (Ser139) Cat#9718 was purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA). Primary antibodies were used at 1:1000 dilution. Antibodies against beta-actin Cat# A1978 were purchased from Sigma Aldrich. HRP-conjugated goat anti-mouse or anti-rabbit (Jackson ImmunoResearch) were used as secondary antibodies at a 1:5000 dilution and detected with the SuperSignalWest Pico Chemiluminescent Substrate Kit (Thermo Scientific).

2.2.4 Oxyblot

Oxidized proteins were assessed using the OxyBlot™ protein oxidation detection kit (S7150, Millipore, Temecula, CA, USA). Snap-frozen half lungs of mice from acute studies were homogenized using a 18G needle and lysed in ice-cold lysis buffer (50mM Tris pH7.5, 150mM NaCl, 1% Triton X-100, and 1mM EDTA) containing 1% 2-mercaptoethanol. Denatured protein samples were mixed with 12%
SDS for a final concentration of 6% SDS. An equal amount of 1X dinitrophenylhydrazine (DNPH) solution was then added to the mix and incubated at room temperature for 15 min then the reaction was terminated by addition of a neutralization solution. Proteins were separated by 4-15% Criterion TGX™ Precast Gel (Bio-Rad, CA), and transferred to a PVDF membrane using the Trans-Blot® Turbo™ Transfer System (Bio-Rad, CA). Antibodies against DNPH-derivatized proteins were used for the detection (1:150 dilution), along with HRP-conjugated secondary antibodies (1:300 dilution). The chemiluminescent reagents were detected with the SuperSignalWest Pico Chemiluminescent Substrate Kit (Thermo Scientific).

2.2.5 Immunofluorescence

One half of each lung tissue was embedded in Tissue Tek O.C.T. (Qiagen) from the acute studies and then cryosectioned. Embedded blocks were cut into 5-10 µm sections using a cryostat microtome (Leica CM1950), and slides containing the sections were blocked for 1 hr. in PBS containing 10% goat serum. Primary antibodies such as 53BP1 (NB100-304, Novus Biologics) were diluted in blocking buffer and incubated overnight. Secondary antibodies were applied for 1 hr. at room temperature, washed, followed by slides being cover slipped using an antifade mounting medium with DAPI (Vector Laboratories). Images were captured on a Deltavision wide-field microscope using a 60X magnification oil immersion objective, and DNA damage foci were counted using Image J software (Schneider, Rasband,
& Eliceiri, 2012). To detect 8-oxo-dG, immunofluorescence was performed using an antibody obtained from Trevigen (Gaithersburg, MD) as per the manufacturer’s instructions with minor modifications. Apoptosis was detected using an ApopTag Fluorescein In Situ Apoptosis Detection Kit (catalog no. S7110; Millipore) per manufacturer’s protocol.

2.2.6 Quantitative Real-time PCR

Frozen mouse lung tissue from the acute studies was disrupted using a liquid nitrogen-cooled mortar and pestle (Bel-Art™ Scienceware™, Fisher Scientific), and RNA was extracted with Qiagen RNeasy Plus Kit (Qiagen) per the manufacturer’s protocol. RNA (1µg) was used for reverse transcription, using iScript cDNA synthesis kit (BioRad). Following cDNA synthesis, qRT-PCR was set up using SsoFast™ EvaGreen™ first-strand ® Supermix (Biorad) in a LightCycler 480II (Roche Molecular biochemical). Primers used for the oxidative stress gene expression analyses were selected from Primer Bank (X. Wang, Spandidos, Wang, & Seed, 2012).

2.2.7 Immunohistochemistry

Formalin-fixed, paraffin-embedded tissues were used for immunohistochemistry. The extra sections obtained while taking 50 µm apart sections to measure tumor burden (sizes and numbers) were used for the
immunohistochemistry studies. Lung tissues sections (5-µm thick) were deparaffinized, rehydrated and then antigens retrieved using citrate buffer in a pressure cooker (10 mmol/L sodium citrate, pH 6.0; 0.05% Tween 20). Hydrogen peroxide (3%) solution (Sigma-Aldrich) was used to block the endogenous peroxidase followed by Avidin/Biotin block (Vector Laboratories). The VECTASTAIN Elite ABC Kit (Vector Laboratories) was used per manufacturer’s instructions to stain the protein of interest in the tissues. Primary antibodies Phospho-histone H2A.X (Ser139) (Cat#9718), Ki-67 (Cat#12202), CD8α (Cat#98941), CD4 (Cat#25229), and FOXP3 (Cat#12653) were purchased from Cell Signaling Technology. The stained images were scanned using a Hamamatsu Nanozoomer 2.0-HT mounted CCD camera, and analyzed using Image J software. The scanning software used was NDPscanv2.3. Random (4-5) images of stained tumors per mouse were taken at 20X for the quantification of Ki-67, and random (4-5) images of stained lung tissues per mouse were taken at 40X for the quantification of Phospho-histone H2A.X. The quantification was done by counting positive cells as well as the total number of cells in each 20X field and reporting them as a percentage of positive cells. For the quantification of immune cells, after staining, whole sections were scanned, and the area of tumor margins were measured along with the number of infiltrating cells within the tumor margin. The quantification is reported as the number of infiltrating cells per millimeter square. All quantifications were performed before unblinding the code.
2.2.8 Malondialdehyde Assay on Serum

From aged-matched 129S2 mice, blood samples were collected in 0.5cc microcentrifuge tubes with 0.5M EDTA, and samples centrifuged for 15 min at 3,000 rpm at 4° C. From the centrifuged samples, the plasma was collected from the supernatant. MDA is a byproduct of lipid peroxidation. MDA levels in plasma were measured using TBARS Assay Kit (Cayman Chemical, 10009055) as per the manufacturer’s instructions.

2.2.9 Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 7.00 for Windows, (GraphPad Software, La Jolla California USA). At least 3-5 independent biological samples were used per radiation dose. Comparison between irradiated groups and controls were determined by using one-way ANOVA with Tukey correction along with pairwise comparisons for the P values. Differences were considered significant at P < 0.05. To determine statistical significance for Kaplan-Meier survival curves the Log-rank test (Mantel-Cox) was performed. Statistical analysis of the histopathology was performed using two-tailed Fisher exact (95% confidence interval, CI) or Chi-square test.
2.3 Results

2.3.1 Proton exposure causes complex and extensive DNA damage in the lung

We examined the extent of double-stranded DNA damage in mice irradiated (2.0 Gy) with either proton or X-rays after 4 hours, 1 day and 3 days. We observed proton radiation resulted in more complex DNA damage in the lungs of mice when compared to X-rays 4 hours post radiation, with more 53BP1 foci per cell. In proton irradiated mice more than 65% of 53BP1 positive lung cells had more than 5 foci per nucleus as compared only 38% of 53BP1 positive cells irradiated with X-rays (Figure 2.1A and 2.1B). We next examined the time course of DNA repair kinetics in the lung of the irradiated mice as complex DNA damage may take longer to repair (Asaithamby, Hu, Delgado, et al., 2011). Most of the DNA damage in the X-rays irradiated mice was repaired by 24 hours, but in the proton-irradiated mice, we observed that there was more than 20 percent of the cells with 53BP1 foci that persisted even 3 days post-irradiation (Figure 2.1C and 2.1D). Additionally, a significant amount of phosphorylated γ-H2AX remained in proton irradiated lungs compared to X-rays 3 days post-irradiation (Figure 2.2A and 2.2B). We next tested if the increased DNA damaged cells in proton irradiated animals resulted in increased apoptosis. Using Apotag, we did not observe any apoptotic cells in the lung tissues after 4 hours, 1 day or 3 days post-irradiation (data not shown).
Figure 2.1. Proton-induced DNA damage responses in WT mouse lungs. (A) Representative immunofluorescence images of lung tissue sections of mice 4 hours post-irradiation with X-rays 2.0 Gy, protons (50 MeV/n) 2.0 Gy, and unirradiated controls stained with 53BP1 (green) and DAPI (blue). (B) 53BP1 foci per cell 4 hours post-irradiation were counted using a 60X objective. More than 100 cells were counted and scored as less than 5 foci per nucleus, or more than 5 foci per nucleus. (n=3 mice per group) *** P <0.001 (proton compared with x-rays) in unpaired Student’s t-test. (C) Representative images showing 53BP1 (green) and DAPI (blue) after indicated radiations (X-rays 2.0 Gy and protons (50 MeV/n) 2.0 Gy) at different time points 4 hours, 1 day, and 3 days post-irradiation. (D) The number of 53BP1 (green) positive foci per 60X field. More than 100 cells were counted per each field. (n=3 mice per group) **** P< 0.0001 (proton compared with X-rays) in the unpaired Student’s t-test. The error bars represent standard errors.
Figure 2.2. Proton-induced DNA damage responses in WT mouse lungs. (A) Western blots for phosphorylated γ-H2AX (Ser139) in lung tissues 4 hours and 3 days post-irradiation either with X-rays 2.0 Gy or protons (50 MeV/n) 2.0 Gy, and unirradiated controls. β-actin was probed as a normal protein loading control of samples. (B) Quantitative data indicating mean protein levels 4 hours and 3 days post-irradiation either with X-rays 2.0 Gy or protons (50 MeV/n) 2.0 Gy, and unirradiated controls. **P=0.0011, *P=0.0184. Statistical
significances differences were determined by one-way ANOVA with Tukey correction. The error bars represent standard errors.

2.3.2 Proton irradiation causes both acute and chronic oxidative stress

Proton radiation can induce direct damage to DNA or indirectly through the generation of reactive oxygen species (ROS). Compared to X-rays, proton charged particles produce more ROS (Zhang et al., 2013). One possibility is that the increased number of 53BP1 foci that we observed in lung tissues (Figure 2.1A and 2.1C) could be caused by higher ROS. To test if there is higher oxidative stress in lung tissues post-irradiation, we determined the level of total protein oxidation in the tissue lysates. We observed that proton irradiated tissues have a higher amount of oxidized proteins as compared to X-irradiated tissues, and levels of oxidized proteins remained higher over a 3-day period in proton irradiated tissues but not in X-irradiated tissues (Figure 2.3A and 2.3B). In addition, immunoblots of lung tissues lysates showed phosphorylated Nrf2 (a stress response transcription factor) levels were higher in the proton-irradiated tissues and remained at the higher level 3 days post-irradiation. In contrast, levels of Nrf2 in X-irradiated lung tissues decreased 3 days post-irradiation (Figure 2.3C and 2.3D). In addition, we analyzed gene expressions related to oxidative stress. Using a p-value of <0.05 and fold change cutoff of 1.5, we found Nrf2, HO-1, Nqo1, Cat, Gpx2, Sod1, Prdx2, and Gpx8 were deregulated in proton irradiated tissues at 4 hours and at 3 days when compared to X-rays treated tissues (Figure 2.4).
Figure 2.3. Proton exposure causes higher and extensive oxidative stress in WT mouse lungs. (A) Total protein oxidation immunoblot by oxyblot analyses of DNPH-derivatized lung tissue lysates of mouse 4 hours and 3 days post-irradiation with X-rays 2.0 Gy, protons (50 MeV/n) 2.0 Gy, unirradiated controls and (-) DNPH control. β-actin was probed as the normal protein loading for the samples. (B) The relative intensity of each band measured and normalized with β-actin and compared with the unirradiated control. (n=3 mice per group) * P=0.0448, *** P=0.0032 and *** P=0.0010. (C) Western blot analysis of Nrf2 protein expression following indicated radiations (X-rays 2.0 Gy and proton (50 MeV/n) 2.0 Gy) at different time points either 4 hours or 3 days post-irradiation. β-actin was probed as the normal protein loading for the samples (n=3 mice per group). (D) Quantification of western blot. ** P=0.0075. Statistical significance was determined by one-way ANOVA with Tukey correction. The error bars represent standard errors.
Figure 2.4. Radiation exposure altered expression of genes associated with oxidative stress. Differences were considered significant at P < 0.05. Statistical significances differences were determined by one-way ANOVA with Tukey correction. The error bars represent standard errors.
A. 70 Days after IR

B. % Nuclei with 8-oxo-dG (20X field)

C. Plasma MDA Concentration (μM)

D. yH2AX

E. % yH2AX positive Cells
Figure 2.5. Proton exposure leads to chronic oxidative stress and DNA damage in WT mice. (A) Representative images of immunofluorescence staining of lung sections of age-matched mice 70 days post-irradiation with X-rays 2.0 Gy, protons (50 MeV/n) 2.0 Gy and unirradiated controls stained with 8-oxo-dG (red) and DAPI (blue). (B) Quantification of 8-oxo-dG staining in lung sections of WT mice (n = 5 mice per group) where all complete cells were counted scored for the 8-oxo-dG positive nucleus. **** P<0.0001. (C) Assay of MDA in the serum of WT aged matched mice 70 days post-irradiation with X-rays 2.0 Gy, protons (50 MeV/n) 2.0 Gy, and unirradiated controls. * P=0.0286, **** P<0.0001. (D) Representative immunostaining for phosphorylated γ-H2AX (Ser139) in mice lung 70 days post-irradiation with magnified images. (E) Quantification for phosphorylated γ-H2AX (Ser139) in lung sections of WT mice (n=5 per group). ****P<0.0001, **P=0.0032 Statistical significances differences were determined by one-way ANOVA with Tukey correction. The error bars represent standard errors.
These acute effects as well as chronic oxidative stress effects due to radiation have also been reported previously in different tissue types (Christofidou-Solomidou et al., 2015; Datta, Suman, Kallakury, & Fornace, 2012). To further assess persistent oxidative stress, we stained the lung sections with 8-oxo-2′-deoxyguanosine (8-oxo-dG) by immunohistochemistry 70 days post-irradiation. We observed there was markedly higher staining in the proton-irradiated lung tissues when compared to X-irradiated animals (Figure 2.5A). Compared to X-irradiated lung tissues, proton irradiated tissues had more than a 3-fold increase in 8-oxo-dG staining 70 days post-irradiation (Figure 2.5B). We also quantitated lipid peroxidation, by measuring the amount of MDA in the plasma. Malondialdehyde (MDA), together with 4-hydroxynonenal (4-HNE) are natural byproducts of lipid peroxidation. We observed that plasma collected had more than a 2-fold increased amount of MDA present in the proton-irradiated animals compared to X-irradiated mice (Figure 2.5C). Consistent with the observed oxidative stress, proton irradiated mice displayed a higher number of positive γ-H2AX foci in lung sections compared to X-irradiated mice or unirradiated controls (Figure 2.5D and 2.5E). Taken together, we interpret these data to demonstrate that even 70 days post-irradiation there is measurable oxidative stress and DNA damage present in proton irradiated mice.
2.3.3 Increases in number and sizes of premalignant lesions K-ras^{LA1} mouse model

To determine how radiation exposure affected the carcinogenic process, we compared premalignant lesions of aged-matched unirradiated control K-ras^{LA1} mouse lungs with X-rays and proton irradiated mouse lungs 100 days post-irradiation. We irradiated 8-15 weeks old K-ras^{LA1} mice with either 2.0 Gy X-rays or 2.0 Gy proton. At 8-15 weeks of age, K-ras^{LA1} mice have only a few smaller premalignant lesions. Compared with unirradiated K-ras^{LA1} mice, K-ras^{LA1} mice irradiated with either X-rays or protons developed higher numbers and larger lesions. Unirradiated animals had an average of 5 lesions with an average diameter of 0.26 mm, X-rays irradiated animals had average of 10 lesions with an average diameter of 0.38 mm, and proton irradiated animals had an average of 13 lesions with an average diameter of 0.45 mm (Figure 2.6A and 2.6B). The overall surface area of the lesions in the lung of unirradiated K-ras^{LA1} mice were 0.22 mm², while the lung of X-irradiated mice was 0.45 mm², and proton irradiated mice were 0.64 mm². Compared with the unirradiated and X-irradiated mice, proton irradiated mice also had a higher number of proliferative cells as determined by Ki-67 immunostaining (Figure 2.6C and 2.6D). Despite having a higher number of lesions and larger lesions, proton irradiated mice did not have any advanced adenomas or carcinomas 100 days post-irradiation.
Figure 2.6. Proton irradiation increased the tumor burden in K-rasLA1 mice. (A) Representative hematoxylin and eosin (H&E) image of proton irradiated mouse lungs 100 days post-irradiation. (B) Quantification of overall number and size of premalignant lesions in age-matched K-rasLA1 lungs from 100 days post-irradiation with X-rays 2.0 Gy, protons (50 MeV/n) 2.0 Gy and unirradiated control (n = 5 mice per group). (5B, left) Differences in the number of the premalignant lesions. ** P=0.0088, *** P=0.0004. (5B, right) Differences in size (surface area) of premalignant lesions. *** P=0.0004, **** P<0.0001, and ** P=0.0018. (C) Representative
immunostaining for Ki-67 mouse lungs 100 days post-irradiation with magnified images. (n = 5 mice per group). (D) Quantification of Ki-67 staining in premalignant lesions. ** P=0.0053, **** P<0.0001. Statistical significances differences were determined by one-way ANOVA with Tukey correction. The error bars represent standard errors.

2.3.4 Inflammatory cells infiltration in the premalignant lesions

The tumor microenvironment is known to change throughout the carcinogenic process and contribute to tumor development and progression (Hanahan & Coussens, 2012; Hanahan & Weinberg, 2011a). The tumor microenvironment consists of a variety of inflammatory cells, and enhanced T cells infiltration has been reported previously (Burnette & Weichselbaum, 2013). We analyzed H&E stained premalignant lesions of aged-matched unirradiated control K-rasLA1 lungs and compared them with X-rays or proton irradiated lungs 100 days post-irradiation. We observed that proton irradiated mice lung at 100 days post-irradiation had pockets of inflammatory cells around the premalignant lesions in 3/5 mice while these were not observed in unirradiated mice. Only 1/5 mice irradiated with X-rays had any inflammatory cells present. Overall, infiltrating inflammatory cells were enhanced in the proton-irradiated tissues while only a few inflammatory cells were observed in the X-rays survival cohort and these were associated with higher grade tumors.
(adenoma with atypia). Using immunohistochemistry, we analyzed a subset of immune cell types such as macrophages, neutrophils, and T cells in the premalignant lesions. There were no significant differences in the number of macrophages and neutrophils in the lungs. Furthermore, when we analyzed T cells, we found there were no significant differences among CD8+ T cytotoxic cells in premalignant lesions 100 days post-irradiation. On average there were around 10-11 CD8+ T cells/mm² in lung sections of irradiated mice as well as unirradiated mice (Figure 2.5A and 2.5B). In contrast, CD4+ T cells and Foxp3+ cells were significantly higher in proton irradiated premalignant lesions compared to both X-irradiated mice and controls. There was an average of 13, 33 and 57 CD4+ T cells/mm² in premalignant lesions in unirradiated control, X-irradiated mice and proton irradiated mice respectively (Figure 2.5C and 2.5D). Similarly, there was an average of 14, 23, and 57 Foxp3+ cells/mm² of premalignant lesions in unirradiated control, X-irradiated mice and proton irradiated mice respectively (Figure 2.5E and 2.5F). Foxp3+ regulatory cells have been implicated in K-ras mediated lung tumorigenesis in mice (Granville et al., 2009; Zdanov et al., 2016).
Figure 2.7. Representative images (H and E) of lung tissues irradiated with either X-rays or proton or unirradiated control showing the pockets of inflammatory cells near to the premalignant lesions of similar sizes 100 days post irradiation. None of the premalignant lesions of unirradiated control (n=5) showed pockets of inflammatory cells whereas only one mice irradiated with X-rays has premalignant lesions with inflammatory cells, and proton irradiated has three mice with premalignant lesions with inflammatory cells (n=5).
Figure 2.8. Immune cells infiltrations into premalignant lesions. (A)(C)(E) Representative images of premalignant lesions of irradiated mouse lungs stained for CD8 T cells, CD4 T cells, and Foxp3 cells respectively. (B) Number of CD8+ T cells per millimeter square as assessed by immunohistochemistry (n =5 animals per group). (D) Number of CD4+ T cells per millimeter square as assessed by immunohistochemistry (n =5 animals per group). ** P=0.0062, **** P<0.0001, **P=0.0011. (E) Number of CD8+ T cells per millimeter square as assessed by immunohistochemistry (n =5 animals per group). **** P<0.0001. Statistical significances differences were determined by one-way ANOVA with Tukey correction. The error bars represent standard errors.
2.3.5 Proton exposure reduces lifespan and increases invasive carcinoma

To evaluate how energetic proton exposure influences tumor development and overall survival in the K-rasLA1 lung cancer mouse model, we exposed K-rasLA1 mice to either a single acute dose of protons (50 MeV/n) or X-rays. K-rasLA1 mice exposed to energetic protons exhibited shortened lifespan compared to unirradiated control mice or X-irradiated mice (Figure 2.6A). K-rasLA1 mice exposed to 2.0 Gy of a monoenergetic acute proton (50 MeV/n) also exhibited a significant decrease in median survival. Unirradiated control mice had a median survival of 396 days, whereas mice exposed to a single dose of 2.0 Gy proton (50 MeV/n) displayed a median survival of 345 days, and mice exposed to an X-rays 2.0 Gy displayed a median survival of 385 days very similar to unirradiated controls. To further determine disease progression following radiation exposure, K-rasLA1 mice that were irradiated with acute proton or X-rays were evaluated histologically for the appearance of adenomas with atypia and invasive carcinomas. K-rasLA1 mice exposed to 2.0 Gy of acute proton or X-rays exhibited a significant increase in adenoma with atypia (Figure 2.6B and 2.6D) and invasive carcinoma formation (Figure 2.6C and 2.6 E). Unirradiated KrasLA1 mice possess a background carcinoma incidence of approximately 10%, whereas mice exposed to 2.0 Gy of 50 MeV/n proton radiation displayed a significant (27.3%) increase in invasive carcinoma while X-rays exposed mice were inbetween proton and unirradiated controls (18.4%) (Figure 2.6E, Table 2.1).
Figure 2.9. Tumorigenic effect of proton irradiation in the K-rasLA1 mouse model. (A) Kaplan–Meier survival plot of unirradiated compared to X-rays and proton irradiated K-rasLA1 mice. Unirradiated K-rasLA1 mice (black); acute protons (50MeV/n) irradiated mice (red); irradiated X-rays irradiated K-rasLA1 mice (purple). ***$P=0.0002$ in Log-rank (Mantel-Cox) test acute proton (50 MeV/n) compared with unirradiated K-rasLA1 mice survival. $P=0.4001$ in Log-rank (Mantel-Cox) X-rays compared with unirradiated K-rasLA1 mice survival. (B) Representative images of adenoma with atypia, and (C) adenocarcinoma found in the animals of the survival study. Scale bar, 100 um. (D) Quantification of percent adenomas with atypia. *$P<0.05$ in contingency Chi-square test proton compared with UNIR. *$P<0.05$ in contingency Chi-square Test X-rays compared to UNIR. (E) Quantification of percent adenocarcinoma. P<0.05 in contingency table analysis protons with unirradiated control respectively.
Figure 2.10. Tumorigenic effect of an acute proton (50 MeV/n) and proton (150 MeV/n) in K-rasLA1 mouse model. (A) Kaplan–Meier survival plot of unirradiated or irradiated K-rasLA1. Unirradiated K-rasLA1 mice (black); acute proton (50 MeV/n) irradiated mice (red); acute proton (50 MeV/n) irradiated mice (green); irradiated X-rays irradiated K-rasLA1 mice (purple). ***$P=0.0002$ in Log-rank (Mantel-Cox) test acute proton (50 MeV/n) compared with unirradiated K-rasLA1 mice survival. ***$P=0.0037$ in Log-rank (Mantel-Cox) test acute proton (150 MeV/n) compared with unirradiated K-rasLA1 mice survival. $P=0.4001$ in Log-rank (Mantel-Cox) X-rays compared with unirradiated K-rasLA1 mice survival. (B) Quantification of adenocarcinoma in percent. .*$P<0.05$ in contingency table analysis proton (50 MeV/n) with unirradiated control respectively. **$P<0.05$ in contingency table analysis proton (150 MeV/n) with unirradiated control respectively.
Table 2.1. Effect of radiation exposure to K-ras^{LA1} mice.

<table>
<thead>
<tr>
<th>Radiation Type</th>
<th>Energy (MeV/n)</th>
<th>Dose rate (cGy/min)</th>
<th>Total dose (cGy)</th>
<th>Median Survival</th>
<th>Adenocarcinoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unirradiated Control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>396</td>
<td>10.1% (n=79)</td>
</tr>
<tr>
<td>X-rays</td>
<td>250 kVp</td>
<td>20</td>
<td>200</td>
<td>385</td>
<td>18.4% (n=38)</td>
</tr>
<tr>
<td>Proton acute</td>
<td>50</td>
<td>20</td>
<td>200</td>
<td>345</td>
<td>27.3% (n=35) <sup>a,c</sup></td>
</tr>
<tr>
<td>Proton acute high</td>
<td>150</td>
<td>20</td>
<td>200</td>
<td>358</td>
<td>29.4% (n=33) <sup>b,d</sup></td>
</tr>
</tbody>
</table>

^a P<0.05 in contingency table analysis compared with unirradiated control
^b P<0.05 in contingency table analysis compared with unirradiated control
^c P=0.40 in two-way contingency table analysis compared with X-ray.
^d P=0.18 in two-way contingency table analysis compared with X-ray.
2.4 Discussion

In the present study, we investigated if proton irradiation can lead to progression from preneoplastic lesions to invasive carcinomas of the lung and if this was different from X-irradiated mice. Radiation can cause DNA damage directly by breaking DNA strands or indirectly by the generation of reactive oxygen species (ROS). These types of damage are biologically significant as lack of or reduced repair can lead to genomic instability, cell death, and/or cancer progression. In the present studies, we observed that proton irradiation-induced DNA damage resulted in more premalignant lesions, but also the foci observed were larger in size compared to the control and X-rays exposed mice. Other investigators have demonstrated that proton irradiation leads to more potent acute DNA damage compared to γ-irradiation (Gerelchuluun et al., 2011). We were able to detect DNA damage foci 3 days post-irradiation only in the proton-irradiated mice as most of the DNA damage foci in X-irradiated mice were repaired within 24 hours post-irradiation (Figure 2.1C, 2.1D, 2.2A, and 2.2B). Along with DNA damage, radiation can elicit ROS that can cause oxidative damage to cells. The results obtained showed proton irradiated mice had extensive oxidative damage as observed by measuring oxidized proteins using the oxyblot method (Figure 2.3A). These results were in agreement with measured antioxidant genes in the lung tissues (Figure 2.2C, 2.2D, and 2.4).

It has been previously reported that proton irradiation can cause chronic oxidative stress in different organs post-irradiation (Christofidou-Solomidou et al.,
Here, we also observed that there is chronic oxidative stress and DNA damage in the lungs as detected by measuring 8-oxo-dG nuclear foci and γ-H2AX respectively. In addition, we observed higher levels of peroxidized lipids in the plasma of the mice irradiated with protons (Figure 2.5A, 2.5B, 2.5C, 2.5D, and 2.5E). Next, we wanted to test the biological effect of chronic oxidative stress and DNA damage on tumor progression. For this, we irradiated 8-9 weeks old matched mice when they have only a small number of hyperplastic lesions or an occasional very small adenoma in the lung. We found that proton irradiated mice had a higher number and larger number of neoplastic lesions as compared to X-rays or unirradiated mice at 100 days post-irradiation (Figure 2.6A and 2.6B), and also there were more proliferating cells in the neoplastic lesions of proton irradiated tissues (Figure 2.6C and 2.6D). Similar, observations have been made by others when using high-LET radiation (Asselin-Labat et al., 2017). One possibility is that the radiation associated tumor progression observed after proton irradiation is through modulation of the tumor microenvironment. In the present studies, neoplastic lesions and the tumor microenvironment (inflammatory infiltrates) were different in proton versus X-irradiated lung tissues. Previously, we reported the upregulation of inflammatory genes in mice exposed to fractionated does of 56Fe 70 days post-irradiation (Delgado et al., 2014; Kitajima, Thummalapalli, & Barbie, 2016). Radiation has been implicated in modulating the immune system and chronic inflammation can enhance carcinogenesis process (Multhoff & Radons, 2012; Zhao & Robbins, 2009). In addition, inflammatory cell infiltration into the tumor
microenvironments is generally believed to be dose-dependent (Elgart et al., 2015; Hekim, Cetin, Nikitaki, Cort, & Saygili, 2015; Rodel, Frey, Multhoff, & Gaipl, 2015).

We further characterized the type of immune cells in the tumor stroma especially the presence of T cells as they may both promote and/or suppress tumor progression. It has been previously reported that tumor infiltration of lymphocytes in stage IA-IB non-small-cell lung cancer correlates with decreased risk of disease recurrence (Kilic, Landreneau, Luketich, Pennathur, & Schuchert, 2011). CD8⁺ T cells have antitumor effects by recognizing tumor-associated antigens resulting in cancer cell lysis. In addition, CD4⁺ T cells can promote CD8⁺ T cells in cytolytic functions. Regulatory T cells (Tregs) maintain self-tolerance and prevent autoimmune disease by immunosuppression and anti-inflammatory activity. Tregs are characterized by a master regulator transcription factor Forkhead box protein P3 (Foxp3) considered a crucial factor for immunosuppression (Hori, Nomura, & Sakaguchi, 2003). When infiltrated subsets of lymphocytes were examined in the tumor microenvironment, we found there was no significant difference in CD8⁺ T cells, but there were significant differences among CD4⁺ T cells and Foxp3⁺ cells (Figure 2.8 A-F). Having a high number of Tregs has been shown to modulate the tumor microenvironment and permit the tumor to escape immune surveillance, thus inhibiting anti-tumor responses (Erfani et al., 2012). Mutant K-ras has been shown to enhance the conversion of conventional T cells into regulatory T cells, and the requirement of Tregs for K-ras mediated lung tumorigenesis has been reported previously (Granville et al., 2009; Zdanov et al., 2016). Our data taken together can
be interpreted to suggest that proton irradiation can modulate tumor infiltration of lymphocytes and enhance the presence of Tregs in the tumor microenvironment. We also looked at the possibility of the senescence-associated secretory phenotype (SASP) involvement in modifying the tumor microenvironment, but we did not observe any evidence to support SASP involvement. Further experiments using different lung cancer mouse models such as mutations in EGFR would be necessary to understand the role of how proton radiation modulates tumor infiltration of lymphocytes in the tumor microenvironments or if it is specific to K-ras mutant mice.

Exposure to X-rays and proton radiation both increased cancer progression and decreased the median and overall survival as compared to unirradiated control mice. There were 1.5 times more carcinomas in proton-irradiated mice as compared to X-rays irradiated mice as accessed by histopathology at necropsy. The proton radiation with energy (50MeV/n) has a Bragg peak of around ~2.3 cm (total dose potentially stops inside the mouse body), so we used a different energy (150 MeV/n) proton radiation which has a Bragg peak around ~16.1 cm (total dose stops outside the mouse body) to examine its effects in cancer progression. With total dose of 2.0 Gy for whole-body proton irradiation with two different energies (50 MeV/n or 150 MeV/n) at 20 cGy/min, we observed an increased incidence of carcinoma 27.3% and 29.4% respectively compared to about 10% for unirradiated control mice (Figure 2.10 A and 2.10B and Table 2.1). Despite having differences in where the proton irradiations deposited maximum total dose, whole body proton irradiation had similar outcomes in terms of increasing the invasive carcinoma incidence and a
decrease in median survival in the K-ras^{LA1} mouse model (Figure 2.10A and 2.10B and Table 2.1). More extensive biological studies will be required to understand the long-term risk of protons to normal tissues or tissues with early premalignant lesions.

In conclusion, whole body proton radiation can lead to several biological effects both acutely as well as chronically. These chronic effects of acute exposure to proton irradiation can modulate the tumor microenvironment leading to increases in tumor progression in the K-ras^{LA1} mouse model.

2.5 Future Directions:

Ongoing studies focus on understanding how low dose rate sSPE (low dose rate exposure of proton) affects lung carcinogenesis in K-ras^{LA-1} mice. Further studies will also have emphasis on understanding the carcinogenesis using high LET irradiation with different dose rate, total dose, and energies. We will be exploring the effect of Galactic Cosmic Radiation (GCR) in carcinoma incidence in the K-rasLA1 mice using multiple ions to simulate space environment (which has mixtures of radiation at the given time). Significant biological and mechanistically data obtained from these studies may help provide insights into molecular mechanisms which could be applicable by mitigating or preventing cancer initiation and progression during long-duration space travel. We will also be testing if the aspirin and CDDO-EA could be used to alleviate the effect of radiation as radiation seems to be the culprit enhancing the carcinogenesis.
Chapter Three

Triterpenoids (CDDO-EA): A Potent Radio-Protector Against Heavy Ion Radiation in A Lung Cancer Mouse Model

3.1 Introduction

Radiation-induced carcinogenesis is the major concern for astronauts on long-term space travel, as well as for cancer patients who are being treated with therapeutic radiation (Eskiocak et al., 2010). Space radiation consists of galactic cosmic rays (GCR) and solar particle radiation. GCR consists of 2% electron, 85.3% protons (hydrogen nuclei), 11.8% alpha particles (nuclei), and less than 1% of high charge (Z) and energy E (HZE) particles. Although HZE particles in deep space account for less than 1% of the GCR, it is believed to have higher carcinogenic effects compared to equivalent low energy terrestrial radiation (e.g. gamma-rays). At the present time astronaut’s exposure to space radiation during exploration class missions represents a concerning and potentially unacceptable level of cancer risk.
While shielding protects against terrestrial radiation, shielding is not sufficient for space radiation as HZE particles can penetrate through the shielding (M. Durante & Cucinotta, 2008; Marco Durante & Cucinotta, 2011). Thus, there is a need for radioprotective drugs that could protect cells or tissues from biological damage caused by IR.

Unlike terrestrial radiation, which primarily consists of low-linear energy transfer (LET) radiation such as gamma, beta, and X-rays, high-LET space radiation particles are highly ionizing and penetrative. Both HZE particles and protons can directly ionize DNA or damages DNA and other cellular molecules through ionization of intermediary molecules, such as water (Hall & Giaccia, 2019). There is accumulating evidence that low dose radiation exposure induces oxidative stress and inflammation over time, where increased production of ROS/NOS leads to lipid peroxidation, oxidation of DNA and proteins as well as activation of pro-inflammatory factors. Mice exposed to IR exhibit persistently increased oxidant production and decreased anti-oxidant gene expression, leading to oxidative stress (Datta, Suman, & Fornace, 2014). Even two months after IR, Datta et al. reported a significant increase in 8-oxo-dG (marker of oxidative stress) staining in intestinal crypts relative to sham-irradiated controls. Additionally, our lab previously reported the upregulation of inflammatory genes in mice exposed to fractionated does of ^{56}Fe 70 days post-irradiation (Delgado et al., 2014). Radiation has been implicated in modulating the immune system and chronic inflammation can enhance the carcinogenesis process (Multhoff & Radons, 2012) (Zhao & Robbins, 2009).
Figure 3.1. Chemical Structures of different types of triterpenoids.

Triterpenoids (CDDO) are medicinally used in Asian countries for their anti-inflammatory, antipyretic, cardiotonic, sedative, hepatoprotective, and tonic effects (Ovesna, Vachalkova, Horvathova, & Tothova, 2004). The synthetic triterpenoid
CDDO (2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid) and its derivatives (methyl ester, CDDO-Me; ethyl amide, CDDO-EA; and imidazolide, CDDO-Im) (Figure 3.1) have become available for the prevention and treatment of inflammation and cancer (Suh et al., 1999). CDDO has been shown to have in the wide range of biological responses in a dose-dependent manner, and at lower concentrations, CDDO induces anti-inflammatory and anti-oxidant responses (Liby et al., 2007). CDDO-Me disrupts the interaction between keap1 and Nrf2, leading to the release of Nrf2 (El-Ashmawy, Delgado, Cardentey, Wright, & Shay, 2014). CDDO-Me can also bind to IKKB, which prevents the release of NF-kB from its bound complex thus inhibiting the downstream pathways (Ahmad, Raina, Meyer, Kharbanda, & Kufe, 2006).

Our lab has reported that CDDO-Me protects colonic epithelial cells against IR-induced damage in a Nrf2-dependent manner, and also in part by enhancing signaling of DNA damage responses (Figure 3.2 A). In addition, CDDO-EA fed to mice before a lethal dose of total-body IR protected animals from DNA damage, acute gastrointestinal toxicity, and improved overall survival rate (Figure 3.2 B) (Kim et al., 2012). Recently, it was also demonstrated that a therapeutic window exists in which CDDO-Me that protects normal cells from radiation by activating the Nrf2 pathways but does not protect experimentally transformed or cancer cell lines (El-Ashmawy et al., 2014).
The aim of the current study is to investigate a synthetic triterpenoid (CDDO-EA) as a biological countermeasure (BCMs) that might improve the biological defenses to GCR as well as solar particle radiation exposure. For this study, we used the K-rasLA1 mouse model which mimics the human adenocarcinoma non-small cell lung cancer progression by spontaneous activation of mutant K-ras lesions. Mouse whole body irradiations were conducted with or without CDDO-EA (being provided in the chow 3 days prior to irradiation and for 1-day post-irradiation) with either 600 MeV/n 56Fe or (50-150) MeV/n 1H(SPE). K-rasLA-1 mice on CDDO-EA diet during fractionated 56Fe-irradiation and SPE-irradiation resulted in a 2-3-fold decrease in the incidence of invasive carcinoma compared to mice on the control diet with no toxicities or side effects. Significant biological and mechanistically data obtained from these studies may help in space travel providing insights into molecular mechanisms which could be applicable by mitigating or preventing cancer initiation and progression during long-duration space travel with the help of orally available drug (CDDO-EA).
Figure 3.2. CDDO-EA as a radioprotector. (A) Schematic showing CDDO-EA pretreatment as a countermeasure before IR to activate Nrf2 regulating antioxidant enzyme and DNA repair protein. (B) Wild type female mice were fed the CDDO-EA diet or control diet 3 days before 7.5-Gy of whole-body irradiation pooled results from two independent experiments. CDDO treated animals have increased survival with a median survival in CDDO-EA treated mice 21.5 days in comparison to control mice 13 days with a median (95% confidence interval). Modified (Kim et al., 2012)
3.2 Materials and Methods

3.2.1 Mice and Irradiation

Male and female 8-15 weeks transgenic heterozygous K-ras$^{L{A_1}}$ mice were total-body irradiated with different radiation protocols: simulated solar particle event (sSPE) beam consisting of varying energies (50-150 MeV/n) using varying total doses (0.5-2.0 Gy) or 1.0 GeV/nucleon 56Fe-particles (5 daily doses of 0.2 Gy 56Fe-particles). For 56Fe-particles radiations animals were shipped to BNL, irradiated at the NASA Space Radiation Laboratory and returned to UTSW within 1 week after radiation via World Courier. All the animal experiments were reviewed and approved by IACUC at the UTSW at Dallas and BNL at Upton, NY. Animals were housed individually in plastic cuboid boxes subjected to either proton irradiation, 56Fe-particles, and unirradiated control.

3.2.2 Lung Tumor Histopathology

Aged-matched both male and female heterozygous K-ras$^{L{A_1}}$ mice total body irradiated with radiation protocol (mentioned previously 3.2.1) were either sacrificed at indicated time-points or monitored until evidence of increased morbidity or death for survival study. For the histology, mice lungs were removed, inflated via intra-tracheal infusion with 10% neutral buffer formalin (NBF), clamped at the trachea and
immersed in 10% NBF overnight. Between 24-72 hrs. of necropsy, lung tissues were processed, paraffin-embedded, cut into 5 µm thick sections and stained with hematoxylin and eosin (H & E) for histopathological assessment using standard protocols. To analyze tumor grade and quantify lesions from survival cohorts with or without radiation treatment, three sections were cut 50 µm apart per animal. The stained sections were then analyzed; tumors graded, and other histopathological characteristics scored as either positive or negative as described previously in Chapter 2.2.2.

3.2.3 Experimental Design of CDDO-EA as a Countermeasure Experiment

To analyze CDDO-EA protection against 56Fe 600 MeV/n (0.2 Gy x 5), 8-12 weeks old mice were given CDDO-EA or control diet 3 days prior to irradiation and 1-day post-irradiation. Similarly, to analyze CDDO-EA as a potential countermeasure against sSPE aged matched mice were given CDDO-EA or control diet 3 days prior to irradiation and 1-day post-irradiation. In both irradiation protocol, mice were either sacrificed at indicated time-points or monitored until evidence of increased morbidity or death for survival study (Figure 3.3B).
Figure 3.3. Experimental design - CDDO-EA as a radioprotector. Mouse whole body irradiations were conducted with or without CDDO-EA (being provided in the chow 3 days prior to irradiation and for 1-day post-irradiation) with either (A) 600 MeV/n 56Fe or (B) (50-150) MeV/n (sSPE).
3.2.4 Western Blot Analysis

Frozen mouse lung tissues from the time-point experiments both 100 days for post IR (^{56}Fe) and CDOO-EA feed animals were disrupted using a liquid nitrogen-cooled mortar and pestle (Bel-Art™ Scienceware™, Fisher Scientific). Disrupted lung tissues were homogenized using an 18G needle and lysed in ice-cold lysis buffer (50mM Tris pH7.5, 150mM NaCl, 1% Triton X-100, and 1mM EDTA) containing protease and phosphatase inhibitor cocktails (Roche). Lysates were centrifuged, and supernatants used for protein assays. Proteins were separated by 4-15% Criterion TGX™ Precast Gel (Bio-Rad, CA), and transferred to a PVDF membrane using the Trans-Blot® Turbo™ Transfer System (Bio-Rad, CA). Phospho- NF-κβ (s866/870) Cat #4810, NF-κβ Cat #8242, STAT3 Cat #9139, phosphor-STAT3(y705) Cat #9145, and Nrf2 Cat #12721 were purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA). Primary antibodies were used at 1:1000 dilution. Antibodies against beta-actin Cat #A1978, HO-1 Cat #Ab13248, phospho-Nrf2 Cat # Ab76026, and NQO1 Cat# Ab2346 were purchased from Sigma Aldrich. HRP-conjugated goat anti-mouse or anti-rabbit (Jackson ImmunoResearch) were used as secondary antibodies at a 1:5000 dilution and detected with the SuperSignalWest Pico Chemiluminescent Substrate Kit (Thermo Scientific), and quantified and analyzed using the Image J software.
3.2.5 Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 7.00 (GraphPad Software, La Jolla California USA). To determine statistical significance for Survival analysis Kaplan-Meier curves were used the Log-rank test (Mantel-Cox) was performed. Statistical analysis of the histopathology was performed using two-tailed Fisher exact (95% confidence interval, CI) or Chi-square test. Comparison between irradiated groups with and without drug and controls were determined by using one-way ANOVA with Tukey correction along with pairwise comparisons for the P values. Comparison between groups with and without drug was done using Student’s t-test. Differences were considered significant at P < 0.05.
3.3 Results

3.3.1 CDDO-EA diet reduces the progression of tumors in the K-rasLA1 mouse model

Previously CDDO-EA has been shown to be effective for chemoprevention of lung cancer induced by vinyl carbamate in A/J mice (Liby et al., 2007). So, we wanted to investigate how CDDO-EA affects tumor progression in K-rasLA1 mice. For this, we administered CDDO-EA (400mg/kg) or ctrl diet in chow to 12-15 weeks old to K-rasLA1 mice (Figure 3.4A). At this age, these mice only have small hyperplastic lesions and small adenomas. We treated these animals with CDDO-EA for 50 days, and after 50 days we analyzed the lung for tumor progression after necropsy. None of the animals in the CDDO-EA group developed any toxicity or adverse health effects. With the continuous 50 days CDDO-EA treatment of the K-rasLA1 mice, we found CDDO-EA decreased both initiations as well as progression in this mouse model. When we analyzed the lung, we found CDDO-EA-treated mice had a fewer number of hyperplastic lesions 50 days post-irradiation with the average of 3 lesions per mice as compared to 6 lesions per mice in control (Figure 3.4C). Similarly, the size of adenomas was smaller in CDDO-EA treated animals as compared to ctrl suggesting CDDO-EA is preventing the progression of the tumor (Figure 3.4D). Despite having the smaller sizes of adenoma, there was no difference in a number of adenomas suggesting that these CDDO-EA preventing ore delaying in the progression of the adenoma but not eliminating them.
A. CDDO-EA vs Control
 Treatment for 50 days → Histopathological Analysis
 (12-15 Weeks old)

B. 50 Days after feeding
 Ctrl Drugs
 ![Histological images](Image)

C. Number of Hyperplasias
 ![Graphs showing number of hyperplasias](Graphs)
 - Ctrl Diet vs CDDO-EA
 - *p<0.05

D. Area of Hyperplasias
 ![Graphs showing area of hyperplasias](Graphs)
 - n.s
 - Ctrl Diet vs CDDO-EA

D. Number of Adenoma
 ![Graphs showing number of adenoma](Graphs)
 - n.s
 - Ctrl Diet vs CDDO-EA

D. Area of Adenoma
 ![Graphs showing area of adenoma](Graphs)
 - ***p<0.001
 - Ctrl Diet vs CDDO-EA
Figure 3.4. CDDO-EA diet reduces the progression of tumors in the K-rasLA1 mouse model. (A) Experimental design to analyze the effects of CDDO-EA on K-rasLA1 mice, 12-15 weeks old K-rasLA1 mice given diet containing CDDO-EA or control diet. (B) Representative hematoxylin and eosin (H and E) image performed after 50 days of continued treatment with and without CDDO-EA. (C) Quantification of overall number and size of hyperplasia’s in age-matched K-rasLA1 lungs from after 50 days of treatment with and without CDDO-EA. * p=0.0233 (n = 5 mice per group) (D) Quantification of overall number and size of adenoma in age-matched K-rasLA1 lungs from after 50 days of treatment with and without CDDO-EA. *** p=0.0008 (n = 5 mice per group).
3.3.2. CDDO-EA as countermeasure sSPE radiation

To determine the radioprotective effect of the CDDO-EA, we irradiated 8-12 weeks K-rasLA1 mice with sSPE (simulated Solar Particle Events) or acute proton with 2.0 Gy and these mice were given diet containing CDDO-EA or control diet 3 days prior to irradiation and one-day post-irradiation (Figure 3.3B). To evaluate if CDDO-EA affected the tumor progression after radiation exposure, we compared premalignant lesions of aged-matched unirradiated control K-rasLA1 mouse lungs with proton irradiated mouse lungs as well as proton irradiated mouse CDDO-EA treated 100 days post-irradiation. Pretreatment of CDDO-EA prior to sSPE exposure did not significantly decrease the number or size of premalignant lesions (Figure 3.5A and 3.5B). Unirradiated control had an average of 6 lesions in mouse lung, proton irradiated mice had an average of 9 lesions in mouse lung, and proton irradiated with CDDO-EA treatment mice had an average of 7 lesions per section (Figure 3.5A). The overall surface area of the lesions in the lung of unirradiated K-rasLA1 mice were 0.24 mm2, while the lung of proton-irradiated mice was 0.44 mm2, and proton irradiated with CDDO-EA mice were 0.28 mm2 (Figure 3.5B).
Figure 3.5. The decrease in number and sizes of premalignant lesions K-rasLA1 mouse model. (A) Quantification of overall number premalignant lesions in age-matched K-rasLA1 lungs from 70 days post-proton irradiation with and without CDDO-EA and unirradiated control. (B) Quantification of the overall area of premalignant lesions in age-matched K-rasLA1 lungs from 70 days post-proton irradiation with and without CDDO-EA and unirradiated control.
Figure 3.6. CDDO-EA decreases the incidence of invasive carcinoma in K-rasLA1 mice irradiated with a simulated solar particle event (50-150 MeV/n). (A) Kaplan–Meier survival plot of unirradiated, irradiated K-rasLA1 with and without CDDO-EA. Unirradiated K-rasLA1 mice (black); sSPE irradiated mice without drug (purple); sSPE irradiated mice with CDDO-EA (green). *$P=0.0443$ in Log-rank (Mantel-Cox) test sSPE irradiated mice without drug compared with unirradiated K-rasLA1 mice survival. (B) Quantification of adenoma in percent. (C) Quantification of adenoma with atypia in percent. (D) Quantification of adenocarcinoma in percent. *$P<0.05$ in contingency table analysis sSPE 2.0 Gy compared with unirradiated control respectively.
Similarly, we performed histopathological analysis on the survival of K-rasLA1 mice which were irradiated with sSPE and also treated with or without CDDO-EA. K-rasLA1 mice are susceptible to lung carcinoma as 10% of these develop invasive carcinoma. Unirradiated control mice had a median survival of 396 days, whereas mice exposed to an sSPE had a median survival of 358 days, and sSPE with CDDO-EA treatment displayed a median survival of 363 days. CDDO-EA did not significantly improve the median survival of sSPE treated animals (Figure 3.6A). As unirradiated KrasLA1 mice possess a background carcinoma incidence of approximately 10%, whereas mice exposed to 2.0 Gy of sSPE displayed a significant (25.5%) increase in invasive carcinoma while sSPE with CDDO-EA treatment displayed 19% incidence of carcinoma (Figure 3.6D). We did not observe a decrease in adenoma and adenoma with atypia with sSPE irradiation with CDDO-EA treatment (Figure 3.6C & 3.6D).
3.3.3. CDDO-EA as countermeasure HZE particles radiation

56Fe- fractionated irradiation of 1.0 Gy decreased the lifespan of K-rasLA1 mice and resulted in an increased incidence of invasive carcinoma (Figure 3.7). K-rasLA1 mice on CDDO-EA diet during fractionated 56Fe- irradiation exhibit a 2-fold decreased incidence in invasive carcinoma in comparison to mice on control diet. Despite the decrease of invasive carcinoma incidence, we did not see an increase in the lifespan of 56Fe- irradiated mice on the CDDO-EA diet. The median survival of the unirradiated control mice was 396 days, 56Fe- irradiated mice were 380 days and, 56Fe- irradiated mice with CDDO-EA was 373 days (Figure 3.7A). We did not observe any difference in adenoma and adenoma with atypia among unirradiated control, 56Fe- irradiated mice and 56Fe- irradiated mice with CDDO-EA (Figure 3.7B and 3.7C). Approximately 17% of K-rasLA1 mice on the CDDO-EA diet during the 56Fe-irradiation have invasive carcinoma in contrast to 34% in mice on the control diet (Figure 3.7D).

Previously our lab using fractionated 56Fe have shown that inflammatory signaling may play important role in radiation-induced carcinogenesis (Delgado et al., 2014). Using western blot analysis, we looked at the protein expression of inflammatory pathways such as STAT3 and NF-κβ (Figure 3.8). With the treatment of CDDO-EA prior to 56Fe irradiation, we saw a decrease in activated STAT3 and NF-κβ 70 days post-irradiation (Figure 3.8A, 3.8B & 3.8C).
Figure 3.7. CDDO-EA decreases the incidence of invasive carcinoma in K-ras^[LA1] mice irradiated with ^{56}Fe (600MeV/n) 1.0 Gy. (A) Kaplan –Meier survival plot of unirradiated, irradiated K-ras^[LA1] with and without CDDO-EA. Unirradiated K-ras^[LA1] mice (black); ^{56}Fe irradiated mice without drug (purple); ^{56}Fe irradiated mice with CDDO-EA (green). *$P=0.0481$ in Log-rank (Mantel-Cox) test ^{56}Fe irradiated mice without drug compared with unirradiated K-ras^[LA1] mice survival. (B) Quantification of adenoma in percent. (C) Quantification of adenoma with atypia in percent. (D) Quantification of adenocarcinoma in percent. **$P<0.05$ in contingency table analysis ^{56}Fe (600MeV/n) 1.0 Gy compared with unirradiated control respectively.
Figure 3.8. CDDO-EA modulates Inflammation-related signaling. (A) Western blot analysis of phosphorylated and total proteins such as STAT3 and NF-κβ. (B) Quantification of activated NF-κβ. (C) Quantification of activated STAT3.
3.3.4. CDDO-EA mitigator to radiation effect

To investigate the mitigating effect of CDDO-EA after irradiation, we initially administrated CDDO-EA to WT 129SV mice for 2 to 6 days, and then we measured antioxidant response proteins in the lung after different time point. With CDDO-EA treatment we saw an increase in transcription factors such as Nrf2 within 2 days after post-irradiation (Figure 3.10A), and we also saw an increase in HO-1 and NQO1 proteins in the lung detected by immunoblot (Figure 3.10A).

(8-12 weeks Old)

Figure 3.9. CDDO-EA as a mitigator. Mouse whole body irradiations were conducted with or without CDDO-EA (being provided in the chow up to 5 days post-irradiation).

Previously our lab has shown that CDDO-EA can be an effective radioprotector in mice when given 3 days before 7.5 Gy total body irradiation (TBI) (Kim et al., 2012). To further investigate the role of CDDO-EA in mitigation, we irradiated mice with 7.5 Gy total body irradiation (TBI) and then administered CDDO-EA 30 min post-irradiation to 5 days (Figure 3.9). Treatment with CDDO-EA starting 30 min post-irradiation did not improve the median survival of mice as compared to control treated mice (Figure 3.10B).
Figure 3.10. CDDO-EA decreases wild type mouse survival after an acute lethal dose of 7.5-Gy total body X-ray irradiation. (A) Western blot analysis of antioxidant protein in lungs lysate of wild type mice fed with CDDO-EA diet or control diet provided for 2, 4 or 6 days. Total Nrf2, phospho-Nrf2 (p-Nrf2), NQO1 and HO-1 were detected by Western blot analysis. (B) Wild type female mice were fed the CDDO-EA diet or control diet for 5 days after 7.5-Gy TBI. Pooled results from two independent experiments are shown.
3.4 Discussion

Ionizing radiation (IR) carcinogenesis risk is a concern for patients receiving radiotherapy for cancer treatment, as well as for astronauts exposed to IR during long-term space travel. While shielding is effective protection against terrestrial radiation, shielding is ineffective against high-LET space radiation where particles can penetrate through the shielding (Chancellor et al., 2018). Therefore, there is mounting evidence that biological countermeasures may be required to ensure that the established limits of increased lifetime fatal cancer risks. In this study, we evaluated CDDO as a potential radiation countermeasure and mitigator both low and high LET radiation.

To analyze the effects of CDDO-EA in the tumor development in K-ras^{LA1} mouse model, 12-15 weeks old mice were fed either CDDO-EA or control diets continuously for 50 days as it has been shown previously that CDO-EA could regress vinyl carbamate induce K-ras mutations (Liby et al., 2009). After 50 days of continuous treatment, mice have few initiated hyperplastic lesion and smaller size adenomas in contrast to animals on a control diet (Figure 3.4). Although the role of reactive oxygen species (ROS) in cancer harboring oncogenic K-ras has not been fully understood, K-ras activation can lead to ROS production and increase oxidative stress (Trachootham et al., 2006), and ROS generation is required for K-ras induced tumorigenicity (Weinberg et al., 2010). Additionally, Human clinical data show that lung carcinomas harboring K-ras mutations are enriched with inflammatory cells
(Rekhtman, Ang, Riely, Ladanyi, & Moreira, 2013). In pancreatic ductile adenocarcinoma, K-ras-induced cancers in adult mice were reduced unless it was accompanied by injury or mild form of chronic inflammation (Guerra et al., 2007). These studies along with our study suggest CDDO-EA might have worked as an anti-inflammatory as antioxidant agent thus prolonging the onset of the tumors in the K-rasLA1 mouse model.

Previously using CPC; APC colon cancer-susceptible mice, we showed an increase in the incidence of invasive carcinoma ~250 days post solar particle irradiation simulations (sSPE). But treatment of CPC; APC mice with CDDO-EA prior to sSPE not only exhibited fewer polyps ~100 days post-IR in comparison to mice on control diet but also exhibit a decreased incidence in invasive carcinoma in comparison to mice on control diet ~250 days post-IR. Our studies provide additional evidence that CDDO-EA can be used a countermeasure as we saw that with the administration of CDDO-EA 3 days prior to the sSPE decreased invasive carcinoma and increased median survival in K-rasLA1 mouse model. Additionally, CDDO-EA 3 days prior to the fractionated 56Fe irradiation (HZE radiation), mice exhibited a decrease in invasive lung carcinoma in contrast to mice on the control diet. Even though we saw a decrease in invasive carcinoma with CDDO-EA treatment prior to fractionated 56Fe irradiation but we did not observe an increase in median survival. We did not observe any differences among other tumor grade progression such as adenoma and adenoma with atypia with CDDO-EA treatment prior to the radiation.
Inflammation plays important role in the carcinogenic process as it can act as a tumor promotor by aiding in proliferation, simulating of angiogenesis, and altering the response to hormones and chemotherapy (Candido & Hagemann, 2013). We observed that there was a chronic oxidative stress and DNA damage in the lungs of mice irradiated with acute proton 2.0 Gy, and with low dose rate proton (sSPE) induces sets of SIR/PSIS gene expression (senescence-associated inflammatory responses / p53-suppressed invasiveness signature) (Kim et al., 2016; Luitel et al., 2018). Pretreatment with CDDO-EA in the CPC; APC mouse model reduced the initiation as well as the progression of colorectal cancer by inhibiting the induction of SIR/PSIS. Previously fractionated 56Fe irradiation was shown to increase activation of inflammation-related network proteins such as NF-κB and STAT3 which could be reduced by administering mice with CDDO-EA prior to radiation. These studies provide evidence that radiation-induced carcinogenesis can be reduced using short treatment of CDDO-EA prior to radiation, and it also suggests that CDDO-EA might be working by reducing the oxidative stress and increasing DNA repair post-irradiation. As CDDO-EA looked promising radioprotective drug, we tested if CDDO can act as a mitigator. Our preliminary data show that even with treatment of CDDO-EA within 30 minutes did not have any effect medial survival of the mice post-irradiation.

In summary, CDDO is an orally available anti-inflammatory/anti-oxidant modulator drug which could act as biological countermeasures to provide risk reduction for radiation.
3.5 Future Directions:

We will be doing extensive biological studies to examine DNA repair and oxidative stress both acutely and chronically as well as chronic modulation of inflammation with the treatment of CDDO-EA. We will evaluate if CDDO-EA treatment can decrease in cancer progression against low dose high LET radiation a such as silicon. Additional studies will be carried out before we rule out CDDO-EA as an effective mitigator for the radiation-induced biological effects. We will be exploring the use of CDDO-EA as a biological countermeasure for Official Galactic Cosmic Radiation (GCR) simulation developed at NSRL.
Chapter Four

Lung Cancer Progression Using Fast Switching Multiple Ion Beam Exposures and Countermeasure Prevention

4.1 Introduction

Human long-term interplanetary travel is currently limited due to uncertainties and concerns of serious health risk to astronauts associated with radiation in space (M. Durante, 2014). Humans on earth and astronauts on the International Space Station are protected from the galactic cosmic radiation (GCR) exposure by the Earth’s magnetic field, but astronauts would be exposed to GCR during deep space missions even with shielding. The long-term health risks because of radiation range from degeneration of central nervous system, cardiovascular disease, pulmonary disease and cancer risks to different organs such as lung, colon, stomach, and breast (M. Durante & Cucinotta, 2008). Unlike terrestrial radiation which is primarily composed of low linear energy transfer (low-LET) photons such as x-rays and γ-
rays, astronauts in space would be exposed to rare solar particle events (SPEs) and GCR which comprises mostly energetic protons, helium nuclei, and heavier atomic nuclei with high charge and energy (HZE) such as Silicon (Mewaldt, 1994). Low-LET radiation is considered sparsely ionizing in contrast high-LET radiation that is considered highly ionizing and capable of producing secondary radiations known as δ-rays. Such radiation-induced DNA damage from high-LET radiation is difficult to repair, often leading to mutagenic repair and induction of genomic instability thus estimated to cause increases in tumorigenesis compared to low-LET radiation, (Asaithamby, Hu, & Chen, 2011; Asaithamby, Hu, Delgado, et al., 2011; Li et al., 2013).

Previously, using different mouse models, other investigators have demonstrated that high-LET radiation compared to low LET radiation result in a higher risk of generation tumorigenesis in the lung, mammary gland, liver and gastrointestinal tract (Delgado et al., 2014; Trani et al., 2014; Weil et al., 2009). The lung has a large surface area which makes it a prominent target for radiation exposure, and remarkably susceptible to radiation-induced cancer (Delgado et al., 2014; Luitel et al., 2018). The analysis from the atomic bomb survivor cohort is evidence that the lung is one of the organs with a higher solid tumor incidence (Ozasa et al., 2012), and lung cancer accounts for more cancer-related deaths than any other cancer type among both men and women (Cancer facts and Fig. 2018). While physical shielding may reduce some of the risks of cancer from space radiation, there is mounting evidence that biological countermeasures may be
required to ensure that the established limits of increased lifetime fatal cancer risks are not exceeded. In this study, we evaluated CDDO as a potential radiation countermeasure to a simplified GCR simulation. CDDO is an orally available anti-inflammatory/anti-oxidant modulator drug, and previously we showed CDDO provided in lab chow prior to a lethal dose of whole-body irradiation protected mice from acute gastrointestinal toxicity with enhanced DNA damage repair resulting in improved overall survival (Kim et al., 2012).

Most of the studies on radiation-induced cancer have been performed either using either terrestrial (low-LET) radiation or single high LET ion type radiation which does not simulate the space environment. To address such gap, we used three ions: protons (H), helium (He) and silicon (Si) to create the fast switching ion beam GCR simulation. Using these three ions beams we exposed the lung cancer susceptible mouse model (K-ras$^{LA-1}$) at the NSRL (Brookhaven National Laboratory) with a total dose of 30 cGy (Leisa Johnson1, 2001). We hypothesized with mixed particle radiation would increase invasive carcinoma incidence, and CDDO could be a potential countermeasure against such radiation.
4.2 Material and Methods

4.2.1 Animals and Irradiation

All animal experiments were reviewed and approved by the Institutional Animal Care and Use Committees (IACUC) at the University of Texas Southwestern Medical Center at Dallas (UTSW) and Brookhaven National Laboratory (BNL) (Upton, NY). Animals were housed and bred following an approved husbandry protocol in ventilated micro isolator cages within a pathogen-free facility at UTSW. Transgenic K-rasLA1 mice on a 129S2 background as previously described (Leisa Johnson1, 2001) were obtained from Dr. Jonathan Kurie (University of Texas M.D. Anderson Cancer Center, Houston, TX), and 129S2 K-rasLA1 breeding pairs were established to generate both heterozygous and wild-type littermate controls.

Both male and female transgenic K-rasLA1 mice, ages eight to twelve weeks old were total-body irradiated with different radiation protocols as shown in Figure (4.1A). Animals subjected to irradiation and unirradiated controls for both time points and survival studies were transported via World Courier (New Hyde Park, NY) overnight delivery to Brookhaven National Laboratory and returned to UT Southwestern within 1 week after irradiation.
4.2.2 Synthetic Triterpenoid Treatment

To evaluate CDDO-EA as a potential countermeasure against multiple ion beam radiations, we fed CDDO-EA or control chow to aged-matched 129S2 transgenic K-rasLA1 mice at Brookhaven National Laboratory. Both males and female mice were assigned randomly into the experimental cohorts. The concentration of CDDO-EA in the diet was 400mg/kg (provided by Reata Pharmaceuticals) and prepared into chow pellets by Purina Mills). Animals were fed with CDDO-EA diet or control diet three days prior to the radiation, and the diet was changed to the normal diet one day after the radiation exposure.

4.2.3 Lung Tumor Evaluation and Histology

For the survival studies, mice were monitored until the evidence of increased morbidity or sacrificed after 1-year post-irradiation. At the time of sacrifice or death, carcasses were necropsied and removed lungs were inflated by intra-tracheal infusion with 10% neutral buffered formalin (NBF), the trachea clamped, and the whole lung immersion-fixed overnight in 10% NBF. The lungs tissues were processed, paraffin embedded, cut at 5 microns thick sections, and stained with Hematoxylin and Eosin (H&E). To evaluate the grade and quantify lesions in the lung, two sections were cut 50µm apart per mouse. Tumor grades and other histopathological characteristics were described previously (Leisa Johnson1, 2001) and included adenocarcinoma, adenoma with atypia, adenoma, hyperplasia,
pneumonia, bronchial extensions, and autolysis. All pathology was confirmed in a blinded fashion by a DVM/Ph.D. pathologist specializing in mouse pathology (J.R.).

To quantify premalignant lesions sizes and numbers, aged-matched 129S2 mice were sacrificed one hundred days post-irradiation. Lungs tissues were removed, processed and paraffin embedded. We cut three sections of each lung per animal approximately 50 µm and stained with Hematoxylin and Eosin (H&E). Using Hamamatsu Nanozoomer 2.0-HT mounted CCD camera (Whole Brain Microscopy Facility at UTSW) images were taken and analyzed using the Nanozoom Digital Pathology Software.

4.2.4 Malondialdehyde Assay on Serum

Aged-matched mice blood samples were collected in 0.5cc microcentrifuge tubes with 0.5M EDTA by the submandibular blood collection method from both unirradiated control and irradiated animals 100 days post-irradiation. The blood samples were then centrifuged 700-1000x G for 10 minutes at 4°C. From the centrifuged samples, the plasma (upper clear layer) was collected. MDA is a byproduct of lipid peroxidation. MDA levels in plasma were measured using the TBARS Assay Kit (Cayman Chemical, 10009055) as per the manufacturer’s instructions.
4.2.5 Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 7.00 for Windows, (GraphPad Software, La Jolla California USA). At least five independent biological samples were used per radiation dose. To make a comparison between irradiated and control groups one-way ANOVA with Tukey correction along with pairwise comparisons for the P values was used. Differences were considered significant at P < 0.05. Statistical analysis of the histopathology was performed using two-tailed Fisher exact (95% confidence interval, CI) or Chi-square test.
4.3 Results

4.3.1. Total Body Irradiation Using Multiple Ion Beam

In this study, we tried to simulate the space environment which composes of heterogeneous radiation fields predominated by low background fluences of low-LET radiation and lower fluences of high-LET radiation. We mixed proton (H), helium (He) and silicon (Si) particles to delivery mixed ion species to the approximated environmental environment. We delivered these particles 120 MeV/n protons (LET=0.64 keV/µm), 250 MeV/n helium ions (LET=0.40 keV/µm) and 300 MeV/n silicon ions (LET=76 keV/µm) in dose proportions of 66.7%: 16.67%: 16.67% respectively where silicon was used as a surrogate for particles of Z greater than 2. The total dose of 30cGy with a dose rate of 0.5cGy/min (measured at target) was delivered in approximately 60 minutes for this experiment including the time consumed in rapid switching between particle beams. We delivered these ions in two different orders: 3B-1 (H→He→Si) and 3B-2 (Si→He→H), and we used 30 cGy H as a single beam reference (Figure 4.1A). 2-3 mouse was put into the box, small holes were drilled so that they could get ventilation for the period of 60 minutes and using 60cm x 60cm beam size 8-12 weeks mice were arranged in the center of the field to assure the best uniformity for total body irradiation (TBI) (Figure 4.1B). During the irradiation, none of the animals showed any distress. Following irradiation, we had two different times, 100 days and 1-year post-irradiation, to measure biological outcome on K-rasLA1 mouse model (Figure 4.1C).
Figure 4.1. Experimental design for the three-beam radiation. (A) Different approaches for mixed beam radiation using Hydrogen, Helium and Silicon ions. (B) This figure shows the experimental setup of how mice were arranged in the beamline. (C) Schematic of experimental design for total body irradiation of mice.
4.3.2. Order of Particles in Multiple Ion Beam Radiation Matter

Initially, we hypothesized that both 3B-1 and 3B-2 irradiation protocol would equally induce lung cancer progression K-rasLA1 mouse model compared to proton irradiation and unirradiated controls. But when we performed histopathological and chemical analyses in lung and plasma respectively of irradiated mouse and controls 100 days post-irradiation, we observed 3B-1 radiation protocol more harmful. To determine how multiple beam exposure affected the carcinogenic process, we compared premalignant lesions of aged-matched unirradiated control K-rasLA1 mouse lungs with proton irradiated mouse lungs or 3B-1 irradiation or 3B-2 irradiation 100 days post-irradiation. Compared with unirradiated or 3B-2 or proton irradiation, K-rasLA1 mice irradiated with 3B-1 developed higher numbers of lesions. Unirradiated animals had an average of 4 lesions, 3B-1 irradiated mice had an average of 10 lesions, 3B-2 irradiated animals had an average of 6 lesions, and proton irradiated animals had an average of 5 lesions (Figure 4.2A). Similarly, our previous reports showed that exposure to higher dose proton (200 cGy) radiation was associated with an increase in oxidative stress in lung and plasma of the mice (Luitel et al., 2018). On analysis of blood plasma for the lipid peroxidation as an indicator of the oxidative stress, we observed plasma collected had more than a 2.5-fold increased amount of MDA present in the 3B-1 irradiated animals compared unirradiated control. In comparison to 3B-1, 3B-2 and proton did not increase the MDA level in the plasma.
To further determine disease progression following radiation exposure one-year post-irradiation K-rasLA1 mice lung were evaluated histologically for the appearance of adenomas with atypia and invasive carcinomas. K-rasLA1 mice exposed to 3B-1 exhibited a significant increase in adenoma with atypia approximately 79\% (Figure 4.2C) and invasive carcinoma formation with 28.57\% (Figure 4.2D). Unirradiated KrasLA1 mice possess a background adenoma with atypia and carcinoma incidence of approximately 55\% and 10\% respectively. Mice exposed to 3B-2 and proton radiation did not display any increase in adenoma with atypia (54\% for 3B-2 and 58\% for proton irradiation) or invasive carcinoma (12.9 \% for 3B-2 and 16.13 \% for proton) one-year post-irradiation compared to the unirradiated control.
Figure 4.2. Tumorigenic effect of multiple ion radiation in K-rasLAI mouse model. (A) Quantification of an overall number of premalignant lesions in age-matched K-rasLA1 lungs from 100 days post-irradiation with 3B-1 (30 cGy), 3B-2 (30 cGy), protons (30 cGy), and unirradiated controls (n = 5 mice per group). Differences in the number of the premalignant lesions. ** P=0.0020, *** P=0.0005, **** P<0.0001. (B) Assay of MDA in the serum of MT aged matched K-rasLA1 mice 100 days post-irradiation with 3B-1 (30 cGy), 3B-2 (30 cGy), protons (30 cGy), and unirradiated controls (n=6 mice per group). * P=0.0185, *** P=0.0002, *** P=0.0003. The error bars represent standard errors. (C) Representative images of adenoma with atypia, and quantification of percent adenomas with atypia from the survival cohort. * P=0.0299 in contingency Chi-square test 3B-1 compared with UNIR. (D) Representative images of invasive adenocarcinoma, and quantification of percent adenocarcinoma. * P=0.0351 in contingency Chi-square test 3B-1 compared with UNIR.
4.3.3. Skipping a Day for Silicon in 3B-1 Irradiation Protocol Attenuates Its Effect

Because we observed an increase in invasive carcinoma incidence in 3B-1 after histopathological analysis, we next evaluated if skipping a day for silicon irradiation would any rescue effect. We modified the 3B-1 irradiation protocol where we delivered two particles 120 MeV/n protons and 250 MeV/n helium ions in day 1, and on the next day after approximately 24 hrs. we delivered 300 MeV/n silicon ions in dose proportions of 66.7%: 16.67%: 16.67% respectively and we designated modified protocol as “3B-1-1”. We also irradiated mice with two particles 120 MeV/n protons and 250 MeV/n helium ions only with the total dose of 25cGy. 3B-1-1 radiation exposure did not increase the number of lesions nor it increased the lipid peroxidation level in plasma as observed earlier with 3B-1 irradiation in K-rasLA1 mice 100 days post-irradiation (Figure 4.3A). 3B-1-1 irradiated mice had an average of 5 lesions, proton and helium only irradiated mice had an average of 4 lesions which are similar to unirradiated control whereas 3B-1 had an average of 10 lesions per animal (Figure 4.3A). Moreover, 3B-1-1 irradiation did not increase the level of lipid peroxidation. The level of lipid peroxidation that we observed in 3B-1-1 irradiated mice was comparable to unirradiated mice and proton and helium only irradiated mice (Figure 4.3B). Taken together these data suggest that not only the order of particle in multiple beam irradiation matter but also all particles must be given together acutely.
Figure 4.3. Skipping a day for silicon ion in 3B-1 total body irradiation rescues the biological damage in the mice. (A) Quantification of an overall number of premalignant lesions in age-matched K-ras^{LA1} lungs from 100 days post-irradiation with 3B-1 (30 cGy), 3B-2 (30 cGy), 3B-1-1 (30 cGy), proton and helium (25 cGy), and unirradiated controls (n = 5 mice per group). Differences in the number of the premalignant lesions. * P=0.0267, * P=0.0393, *** P=0.0006. (B) Assay of MDA in the serum of MT aged matched K-ras^{LA1} mice 100 days post-irradiation with 3B-1 (30 cGy), 3B-2 (30 cGy), 3B-1-1 (30 cGy), proton and helium (25 cGy), and unirradiated controls (n=6 mice per group). * P=0.0198, **** P<0.0001, **** P<0.0001. The error bars represent standard errors.
4.3.4. CDDO as Countermeasure Against 3B-1 Irradiation

To determine the radioprotective effect of the CDDO-EA, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid–ethyl amide (CDDO-EA; a synthetic triterpenoid), on 3B-1 induced damage, groups of age-matched mice were fed a diet containing CDDO-EA (400 mg/kg diet) for 3 days continuously prior to 3B-1 irradiation till one-day post-irradiation (Figure 4.4A). The mice were on CDDO-EA diet for only 4 days. Pretreatment of CDDO-EA prior to 3B-1 exposure decreased the number of premalignant lesions (Figure 4.4B) 100 days post-irradiation. The CDDO-EA treated mice had an average of 4 lesions compared to an average of 10 lesions and 4 lesions on 3B-1 irradiated mice with control diet and unirradiated control respectively (Figure 4.4B). Similarly, we also observed a reduction in the level of MDA concentration in the blood plasma of the CDDO-EA treated mice which were comparable to unirradiated mice (Figure 4.4C). These data substantiate the previous findings suggesting CDDO-EA could be a potential radioprotector against the radiation (Kim et al., 2016; Kim et al., 2012).
Figure 4.4. CDDO as a countermeasure against multiple beam ion radiation. (A) Quantification of overall number of premalignant lesions in age-matched K-rasLA1 lungs from 100 days post-irradiation with 3B-1 (30 cGy), 3B-1 + CDDO (30 cGy) and unirradiated controls (n = 5 mice per group). Differences in the number of the premalignant lesions. *** P=0.0001, **** P<0.0001. (B) Assay of MDA in the serum of MT aged matched K-rasLA1 mice 100 days post-irradiation with 3B-1 (30 cGy), 3B-2 (30 cGy) and protons (30 cGy), and unirradiated controls (n=6 mice per group). ** P=0.0025, ** P=0.0025. The error bars represent standard errors.
4.3.5 Titration of Silicon total dose to better simulate the space environment

As reported above the order of particle in multiple beam irradiation given acutely affected the outcome of tumorigenesis of K-ras$^{\text{LA1}}$ mice, and dose proportions of the proton, helium, and silicon was 66.7%, 16.67%, and 16.67% respectively. To better simulate the space environment, we made modification on the 3B-1 radiation protocol where we titrated the dose of silicon particle and helium particles. The modification of the 3B-1 changed the dose proportion of the particles: first titration protocol assigned as 3B-1-2 irradiation included 120 MeV/n protons with 20 cGy, 250 MeV/n helium with 5 cGy and 300 MeV/n silicon ions with 2 cGy in dose proportions of 74.07%: 18.52%: 7.54% respectively with a total dose of 27 cGy, and second titration protocol assigned as 3B-1-3 irradiation included 120 MeV/n protons with 22 cGy, 250 MeV/n helium with 3 cGy and 300 MeV/n silicon ions with 0.5 cGy in dose proportions of 86.3%: 13.3%: 1.96% respectively with a total dose of 25.5 cGy (Figure 4.5A).

With the titration of high-LET silicon particle, we saw a dose-dependent effect on the K-ras$^{\text{LA1}}$ mice. As we decreased the dose proportion of the silicon, we saw a decrease in the average number of lesions in lungs as well as a decrease in the level of MDA concentration in blood plasma of K-ras$^{\text{LA1}}$ mice 100 days post-irradiation (Figure 4.5A and 4.5B). 3B-1-2 irradiated mice had an average number of 8 lesions and 3B-1-3 had an average number of 7 lesions compared to 3B-1 had an average of 10 lesions per animal and unirradiated control mice had an average
number of 5 lesions (Figure 4.5B). When we titrated the dose proportion of silicon on 3B-1 radiation, the MDA level in plasma came down to the background level with dose proportion of silicon 7.54% and 1.96% in 3B-1-2 and 3B-1-3 respectively 100 days post-irradiation (Figure 4.5C).
A.

3B-1-2 : H-He-Si (30cGy)

<table>
<thead>
<tr>
<th>Ion</th>
<th>Energy (MeV/n)</th>
<th>Total Dose (cGy)</th>
<th>Dose Rate (cGy/min)</th>
<th>Estimated time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton (H) (74.07 %)</td>
<td>120</td>
<td>20</td>
<td>0.5</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch to He</td>
<td></td>
<td></td>
<td></td>
<td>~3</td>
</tr>
<tr>
<td>Helium (He) (18.52 %)</td>
<td>250</td>
<td>5</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switch to Si</td>
<td></td>
<td></td>
<td></td>
<td>~3</td>
</tr>
<tr>
<td>Silicon (7.54%)</td>
<td>300</td>
<td>2</td>
<td>0.5</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Dose = 27 cGy
Total Time ~60 min

B.

100 Days Post IR

<table>
<thead>
<tr>
<th>Ion</th>
<th># Lesions per section</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIR</td>
<td></td>
</tr>
<tr>
<td>3B-1 (30 cGy)</td>
<td></td>
</tr>
<tr>
<td>3B-1-2 (27 cGy)</td>
<td></td>
</tr>
<tr>
<td>3B-1-3 (25.5 cGy)</td>
<td></td>
</tr>
</tbody>
</table>

C.

100 Days Post IR

<table>
<thead>
<tr>
<th>Plasma MDA Concentration (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIR</td>
</tr>
<tr>
<td>3B-1 (30 cGy)</td>
</tr>
<tr>
<td>3B-1-2 (27 cGy)</td>
</tr>
<tr>
<td>3B-1-3 (25.5 cGy)</td>
</tr>
</tbody>
</table>

ns

** ****
** ***
ns
Figure 4.5. Titration of Silicon ion dose in 3B-1 irradiation shows dose response. (A) Illustration of mixed beam radiation using Hydrogen, Helium and Silicon ions. (B) Quantification of overall number of premalignant lesions in age-matched K-rasLA1 lungs from 100 days post-irradiation with 3B-1 (30 cGy): (H (20cGy) + He (5cGy) + Si (5cGy) (30 cGy)), 3B-1-2 (27 cGy): H (20cGy) + He (5cGy) + Si (2cGy), 3B-1-3 (25.5 cGy): H (22cGy) + He (3cGy) + Si (0.5cGy) and unirradiated controls (n = 5 mice per group). Differences in the number of the premalignant lesions. ** P=0.0064, *** P=0.0002. (C) Assay of MDA in the serum of MT aged matched K-rasLA1 mice 100 days post-irradiation with with 3B-1 (30 cGy):(H (20cGy) + He (5cGy) + Si (5cGy) (30 cGy)), H (20cGy) + He (5cGy) + Si (2cGy) (27 cGy), H (20cGy) + He (5cGy) + Si (0.5cGy) (25.5 cGy) and unirradiated controls (n=6 mice per group). *** P=0.0002, **** P<0.0001. (B) The error bars represent standard errors.
4.4 Discussions

In space mission, astronauts would be exposed to multiple ions with ranges of energies. The health effects that could arise from such multiple continuous ion beam exposure represent a major limit factor for long-term space mission beyond Low Earth Orbit (LEO). Galactic cosmic radiation (GCR) exposure occur at low fluence rate predominated by low background fluences of low-LET radiation with lower fluences of high-LET radiation. It is estimated that individual cell astronauts would be traversed by a proton every three days, helium nuclei every few weeks, and high atomic number (Z) and energy (HZE) nuclei about every month (Norbury et al., 2016). We mixed proton (H), helium (He) and silicon (Si) particles to delivery mixed ion species to the approximated space environmental environment. In the present study, we demonstrated that multiple ion beam radiation given in a specific order acutely is effective in causing the lung cancer progression in K-rasLA1 mouse model. Previously other studies have used the monoenergetic single ion beam exposure with either only low-LET or high-LET radiation to understand the risk of radiation-induced tumorigenesis in space (Asselin-Labat et al., 2017; Delgado et al., 2014; Luitel et al., 2018; J. Wang et al., 2016). Mono-energetic HZE particles (iron, silicon, and oxygen) have shown to induce a higher incidence of lung tumorigenesis (X. Wang et al., 2015). To our knowledge, this is the first study in a mouse model of total body exposure to relatively low doses of multiple ions with low-LET and high-LET together to evaluate the risk of radiation-induced lung cancer progression.
The main biological effects due to radiation exposure cause DNA damage either directly or indirectly through the generation of ROS from radiolysis of water. Through these actions, radiations can induce base damage, single-strand breaks, double-strand breaks, and DNA protein cross-links. If irradiated cells do not repair correctly, it can induce carcinogenesis and other abnormalities (Baskar et al., 2014).

Additionally, it well established that high-energy particles cause clustered DNA damaged, and if the damage is not repaired correctly, it can induce carcinogenesis and other abnormalities (Asaithamby, Hu, Delgado, et al., 2011; Baskar et al., 2014; Li et al., 2013; Z. Li et al., 2014; Sridharan et al., 2015). In our 3B-1 irradiation protocol when we irradiated mice with proton initially, every cell nucleus in a mouse body is likely to be hit by a proton ion multiple of times. It is well accepted that following radiation, chromatin undergoes conformation change for the access of DNA repair proteins, thus DSBs caused by secondary radiation may be impacted (Goodarzi, Noon, & Jeggo, 2009; Hada, Meador, Cucinotta, Gonda, & Wu, 2007; Mariotti et al., 2013; Xu & Price, 2011). Thus, in our protocol irradiating mice with second ion or third ion (helium and silicon a high-LET ion respectively) may have led to inefficient DNA damage repair following proton irradiation. In contrast, irradiating mice with the 3B-2 protocol with silicon a high-LET ion initially may have impacted only one-third of the nucleus in mouse body, thus irradiating mice with the second or third ions (both low-LET) may not have perturbated the DNA damage repair system. Additionally, irradiating mice with proton and helium on day one followed by silicon irradiation after 24 hrs. may have reduced the biological impact that was previously seen in 3B-1 irradiation protocol (Figure 4.3A and 4.3B). When we
titrated the dose of HZE ion in 3B-1 irradiation protocol, we observed the dose-dependent effect of silicon ions delivered (Figure 4.4A and 4.4B). These results provide a possible mechanism that may have contributed to the observed carcinogenic effect due to multiple ion beam radiation given in a specific order acutely. Considering our findings with previously published data suggest proton irradiation followed with HZE-particle might be carcinogenic (Sutherland, Cuomo, & Bennett, 2005; Zhou, Bennett, Cutter, & Sutherland, 2006). Further studies are required to clarify the role of DNA repair mechanism in vivo using mixed radiation field.

Accumulating evidences have supported the role adaptive response in low-LET radiation, a low priming dose of radiation results in an enhanced resistance to a second and larger dose of radiation (Bhattacharjee & Ito, 2001; Elmore et al., 2008). This may be important on understanding risk of space environment as it is more likely that astronauts’ every cell is more likely to be hit with proton ions multiple times before any HZE ions hits the cells in space. The studies on adaptive response on high-LET radiation are mixed and have depend on the model system used, as in some studies initial exposure would decrease biological damage in other it would increase the subsequent damage following the second exposure (Bennett, Cutter, & Sutherland, 2007; Mitchel, Burchart, & Wyatt, 2008; Rodman et al., 2017). With 3B-1 irradiation protocol, all the cells in the mouse body were primed with proton ions before cells were irradiated with second or third ions. In our study priming with the proton irradiation prior to second and third irradiation caused more transformations
given acutely, but such transformation was reduced to background level if the priming was done 24hr apart from the second radiation (Figure 4.2A and 4.3A). Similarly, transformation was not observed when primed with silicon ions prior to helium and proton irradiation (Figure 4.3A). Similar findings have been reported previously in vitro experiments (Sutherland et al., 2005). These studies highlight on the limitations and difficulties in accurately assessing of health risk due to the mixed ions irradiation as outcome seems to depend on the order of ions, energy and dose used as well as the endpoints of the experiments. Here we also demonstrated that prior treatment with CDDO-EA can protect mice and reduce tumor incidence against multiple ion beam exposure. As CDDO-EA has been previously shown to enhance DNA repair and act as radioprotective against, it could have provided protection against the 3B-1 exposure (Kim et al., 2012).

These studies highlight on the limitations and difficulties in accurately assessing of health risk due to the mixed ions irradiation as outcome seems to depend on the order of ions, energy and dose used as well as the endpoints of the experiments.
4.5 Future Directions

With the high energy and control upgrades at the NASA Space Radiation Laboratory (Brookhaven, NY), experiments can now be conducted to better simulate the deep space environment that would occur on a Mars mission. These experiments will consist of chronic exposure up to 4-6 weeks irradiation (6-days per week) or acute a day exposure with a continuous exposure to background protons and helium and a sporadic heavy ion exposure. The delivery dose will consist of 33 ions and energy mix to approximate deep space environment. Using GCR simulation we would approximate health risks especially carcinogenic effect in K-ras^{LA1} mouse model using two different doses 500mGy and 750mGy given both acutely as well given in chronic exposures. We will test if CDDO can used as a mitigator or countermeasure for the biological effects that could arise due to GCR simulation exposures.
Bibliography:

Datta, K., Suman, S., & Fornace, A. J., Jr. (2014). Radiation persistently promoted oxidative stress, activated mTOR via PI3K/Akt, and downregulated

Fails, A. D., Magee, C., & Frandson, R. D. (2018). *Anatomy and physiology of farm animals*. In (pp. 1 online resource).

specimens from 1,000 patients with lung adenocarcinoma: The NCI's Lung Cancer Mutation Consortium (LCMC). *Journal of Clinical Oncology, 29*(18).

Leisa Johnson1, Kim Mercer1,3, Doron Greenbaum1,4, Roderick T. Bronson5, Denise Crowley1,3, David A. Tuveson1,3,6 & Tyler Jacks1,3. (2001). Somatic activation of the K-ras oncogene causes early onset lung cancer in mice.

145

Washington, DC: National Aeronautics and Space Administration

For sale by the Supt. of Docs.

stem/progenitor cells. *Leukemia*, 31(6), 1398-1407. doi:10.1038/leu.2016.344

Curriculum Vitae: Krishna Luitel
Cell: 214-909-3024
E-mail: krishna.luitel@utsouthwestern.edu, kluitel.luitel@gmail.com

EDUCATION
2013 – 2019 PhD- Cancer Biology Defense Date: March 07, 2019
Mentor: Dr. Jerry Shay
Department of Cell Biology
University of Texas Southwestern Medical Center

2011 BS- Molecular Biology Cum Laude
Brigham Young University Provo, UT

PUBLICATIONS and ORAL PRESENTATIONS

2018 Proton Radiation-induced Cancer Progression.
 Luitel K, Bozeman et al., Shay JW. Life Sciences in Space Res.

 Mender I, LaRanger R, Batten Kimberly, Luitel K et al, Shay JW.

2018 Cholesterol Depletion by TASIN-1 Induces Apoptotic Cell Death through the ER Stress/ROS/JNK Signaling in Colon Cancer Cells.

2016 Organotypic Culture in Three Dimensions Prevents Radiation-Induced Transformation in Human Lung Epithelial Cells.
 El-Ashmawy M, Coquelin M, Luitel K et al, Shay JW. Scientific Rep.

2014 Transient SNAIL1 Expression Is Necessary for Metastatic Competence in Breast Cancer.
 Tran HD, Luitel K et al, Tran DD. Cancer Res.

2019 Invited for Oral Presentation at NASA Human Research Program
 Title: Lung Cancer Progression Using Fast Switching Multiple Ion Beam Exposures
2018 Biological Effects of GCR Simulation on Colon and Lung Cancer Susceptible Mouse Model.

2016 Lung cancer risk due to solar particle event simulations.

2015 Comparison of the Effects on LA1 K-ras Mice Irradiated with an Acute Dose of Protons to Protracted Protons Provided as a Solar Particle Event Simulation.

2014 Dissecting Underlying Molecular Mechanisms of Space Radiation-Induced Invasive Carcinoma in Mouse Models of Lung Cancer.

2010 Cancer Vaccination Using Antigen Loaded T cells and Evaluation of MAGE-C1 (CT-7) as a Novel Myeloma Antigen.

RESEARCH EXPERIENCES
2014 - Present Graduate Student Researcher
Department of Cell Biology
Jerry W. Shay, Ph.D.: UT Southwestern Medical Center
Dissertation: Investigating the effects of particle radiation exposure on lung carcinogenesis

2011 - 2013 Research Technician
Department of Molecular Oncology
David, Tran, MD, Ph.D.: Washington University School of Medicine
Publication: Transient SNAIL1 Expression Is Necessary for Metastatic Competence in Breast Cancer.

2010 Undergraduate Research Fellowship
Larry, Anderson, MD, Ph.D.: UT Southwestern Medical Center

2009 - 2010 Mentored Research
Brigham Young University
Kim O’Neill, Ph.D. and Gregory Burton, PhD

MAJOR ACADEMICS RECOGNITION and HONORS
2014 Recipient of Mechanisms of Disease and Translational Science (MoDTS) Graduate Track

2012 Cum Laude graduate 2011, top 10% of graduating class
Brigham Young University (BYU)

2008-2010 Dean list on Fall 2008, Fall 2009 and Summer 2010, top 5% of the college for that semester Brigham Young University (BYU).
2008-2011 International Honors Rolls for excellent Academic Performance for Four years at BYU

2006 Graduated with Distinction from Higher Secondary Board of Nepal

TEACHING EXPERIENCE

2010-2011 Teaching Assistant - Organic Chemistry Brigham Young University Department of Chemistry and Biochemistry Steven Wood, Ph.D., Daniel Ess, Ph.D., and Jennifer Neilson, Ph.D.

SCHOLARSHIPS and FELLOWSHIPS

2014 Mechanism of Disease and Translational Science Fellowship

2007 Presidential Scholarships: Truman State University

2010 Student Auxiliary Services Grant at BYU

VOLUNTEERING ACTIVITIES:

Jun 2015- April 2016 Comfort Hospice, Irving Texas (79 hrs)
• Spent 2-3hr with a patient who was living alone
• Comforted and supported the patients and their family

Aug 2015- April 2017 Big Brothers Big Sisters of America (180 hrs)
• Advise a low income and first-generation Irving High School student both academically and personally in a weekly basis

Dec 2016- March 2017 Baylor Scott & White Medical Center- Irving Texas (37 hrs)
• Volunteer at Nursing Station helping Nurses and Medical Assistants with clerical duties
• Helped and assisted patients in feeding