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SUMMARY

An intriguing question about the phase diagram of QCD is the existence and the location

of the critical point on the boundary between the two phases – the hadron gas and the quark-

gluon plasma. Heavy-ion collisions provide a unique opportunity to look for signatures of this

critical point via the event-by-event fluctuations of particle multiplicities. In order to make

conclusive inferences from the experimental data, we need a theoretical framework to connect

QCD thermodynamics to the particle spectra and correlations observed by the detectors. In

this thesis, I use quantum-field-theoretic techniques to develop necessary ingredients to describe

the thermodynamics, dynamics, and freeze-out of fluctuations in such a framework. In the first

part of the thesis, we use universality of critical phenomenon and the lightness of physical quark

masses to deduce certain non-trivial scaling features of the QCD equation of state (EoS). In

the second part of the thesis, we demonstrate how slowing down near the critical point affects

the growth of hydrodynamic fluctuations relative to the equilibrium expectations obtained

using the EoS. In the final part, we propose a generalization to the half-a-century old Cooper-

Frye freeze-out procedure to convert the fluctuations of hydrodynamic densities into particle

correlations based on the universal maximum entropy principle. Applying the procedure, we

derive relations to obtain important phenomenological constants that determine the magnitude

of observed particle multiplicity fluctuations directly in terms of the QCD EoS.

xxi



CHAPTER 1

INTRODUCTION

Phase transitions, in particular critical points are ubiquitous in nature. The theory of

critical points unites systems as varied as a spins in a magnetic-field to liquid-gas systems to

the electroweak and QCD phase transitions that also have relevance in the early history of the

universe. The unification stems from the observation that the thermodynamic quantities show

universal scaling power law relations at the critical point. We know today that the mathematical

similarity of the equations that demonstrate the scaling behavior is not a coincidence and can

be explained using statistical field theory.

Phase transitions are macroscopic phenomena that happen in many body systems. The

mathematical similarity that underlies these phenomenon in these systems downplays the di-

versity of the fundamental interactions between its microscopic constituents. The forces that

govern the interactions in a liquid-gas phase transition are electromagnetic in nature, QCD is

the theory of strong interaction which acts between the constituents of nuclei, and electro-weak

theory underlies the electroweak phase transition. All the elementary fermions in the universe

and the gauge bosons which mediate the interactions described above, along with the Higgs

boson which gives mass to the elementary fermions together form the Standard Model. The

Standard Model has been tremendously successful in describing most of visible phenomena and

in discovering new particles like W,Z and Higgs bosons. In this thesis, we’ll be concerned

with the QCD sector of the Standard model. The elementary fermions that interact via strong

1
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interactions are called quarks and the interactions between them are mediated by gauge bosons

called gluons which interact amongst themselves due to the non-abelian nature of QCD. The

atoms and molecules around us have protons and neutrons in their nucleus. But at high ener-

gies or extreme environments like high temperature and/or pressure (for example, in the cores

of neutron stars) the nuclear matter can "vaporize" forming a plasma of quarks and gluons.

In the early moments of the universe, it is believed that the universe was indeed made up

of a de-confined plasma comprised of colored quarks and gluons which then transitioned into

colorless hadronic matter that we see around us today. This phase transition which happened

approximately three minutes after the Big Bang comprised of a continuous change (cross-over)

in the thermodynamic properties. The nature of this phase transition at large baryon densities

is still an unresolved question.

In this thesis, we’ll discuss the phase transition in Quantum Chromodynamics (QCD). This

phase transition from confined to de-confined nuclear matter is innately related to the chiral

symmetry breaking restoring phase transition in the limit of massless-quarks. Spontaneous

breaking of chiral symmetry is believed to account for about 99% of the mass of the nucleons

(less than 1% is accounted for by Higgs Mechanism). Apart from its relevance in the early

history of the universe, quark-gluon plasma can also occur inside the core of neutron stars,

whose mergers can now be studied using gravitational waves emitted by them. Moreover, the

heavy-ion collisions provide a unique opportunity [15] to recreate the quark-gluon plasma that

existed in the early moments after the Big Bang, in terrestrial laboratories and thereby study

the phase diagram of QCD [7, 16, 17]. It is conjectured that the cross-over transition at zero
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baryon chemical potential (similar to the conditions at Big Bang) turns into a first-order phase

transition at some non-zero baryon chemical potential. If this is the case, then there must be a

critical point demarcating the two scenarios on the phase diagram. The signature of a critical

point lies in the enhanced and characteristic fluctuations of thermodynamic quantities. These

fluctuations should leave an imprint in the cumulants of hadron multiplicities observed in heavy-

ion collisions when the trajectory of the fireball on the phase diagram passes close to the critical

point. In this thesis, we use quantum field theory to develop some essential ingredients for a

theoretical fluctuation framework to study the fluctuations of observable particle multiplicities

in heavy-ion collisions. Such a framework is crucial for comparing theory with the experimental

data from Beam Energy Scan program at Relativistic Heavy-Ion Collider [14,17].

The thesis work presented here is mainly a compilation of the papers that I co-authored

during my study [1, 2, 5] and my notes. The dissertation is organized as follows:

In Chapter. (2), we review the important features of QCD, our current understanding

about the phase diagram of QCD and the experimental and theoretical efforts in mapping the

same.

In Chapter. (3), we discuss the Equation of State and the thermodynamic properties in

general by mapping QCD near its conjectured critical point to the 3D Ising model near its

critical point. The main result from this chapter is the statement that in the small quark mass

limit, the mapping parameters show unique scaling behavior which can be explained using

universal arguments. This Chapter is derived from my published work in [1].
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In Chapter. (4), we discuss the dynamics of fluctuations of hydrodynamic densities near the

critical point and demonstrate the hydrodynamic simulation with fluctuations in two simplified

scenarios. This Chapter is derived from my published work in [2].

In Chapter. (5), we introduce a novel freeze-out scheme inspired by an effective field theory

near the critical point to convert the hydrodynamic fluctuations into cumulants of particle

multiplicities. For a simplified hydrodynamical simulation with fluctuations, I demonstrate

the freeze-out procedure in practice by estimating the Gaussian cumulants of proton and pion

cumulants. This Chapter is derived from my published work in [2].

In Chapter. (6), we introduce a more general freeze-out procedure based on the principle

of maximum entropy. This Chapter is derived from my published work in [5].

In Chapter. (7), the conclusions of this thesis are summarized.



CHAPTER 2

QCD PHASE TRANSITION

This thesis is about building theoretical tools to aid the heavy-ion program for critical point

search in the phase diagram of Quantum Chromodynamics (QCD). The present chapter which

serves as an introduction to the problem at hand and the thesis as a whole, is organized as

follows. In Section. (2.1), we discuss important features of QCD. In Section. (2.2), we review

our theoretical understanding about the spontaneous breaking of the chiral symmetry at higher

temperatures leading to a possibly rich phase diagram. In Section. (2.3), we describe how fluctu-

ations of thermodynamic quantities can be used as probes of the critical point. In Section. (2.4),

we review our current knowledge about the QCD Equation of State at non-vanishing tempera-

tures and/or baryon densities. In Section. (2.5), we describe the study of quark-gluon plasma

(QGP) and the search for critical point via heavy-ion collisions. In Section. (2.6), we sum-

marize the essential components of a systematic theoretical fluctuation framework, required to

connect predictions from QCD thermodynamics to experimental data from Beam Energy Scan

program at RHIC. The rest of the thesis will be about developing some of these components

and studying them in simplified scenarios.

5
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2.1 Quantum Chromodynamics

The theory of strong interactions, namely Quantum Chromodynamics (QCD) describes the

interactions between the elementary particles called quarks and gluons, that form the funda-

mental constituents of all nuclear matter in the universe. Quarks and gluons are the degrees

of freedom in the Lagrangian of this non-abelian quantum field theory. The QCD spectra is

composed of hadrons, which are composite objects of these quarks and gluons.

Quarks and antiquarks are fermions which carry spin, color and flavor degrees of freedom.

Gluons are spin-1 massless bosons with color degrees of freedom. QCD is described by a SU(Nc)

non-abelian gauge theory (where Nc is the number of colors) coupled to Nf fermions(denoted

by ψ) in the fundamental representation of SU(Nc). The invariance of the Lagrangian under

local color gauge transformations of SU(Nc) necessitates the existence of N2
c − 1 vector fields

Aa
µ corresponding to the gluons which mediate the strong interaction between quarks. The

Lagrangian of QCD is :

LQCD =
∑
q

ψ̄c,q
α

(
i /D −mq

)
ψc,q
α − 1

4
(F a

µν)
2 (2.1)

where c, q and α label the color, flavor and dirac indices of the fermion and

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν (2.2)
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is the stress-energy tensor. fabc are the structure constants appearing in the Lie algebra of the

generators of the SU(Nc), denoted by the Hermitian matrices ta, where a ∈ {1, . . . , N2
c − 1}.

From now on, we will take Nc = 3, therefore there are eight generators.

[ta, tb] = ifabctc (2.3)

The covariant derivative is represented in terms of the generators of QCD as:

Dµ = ∂µ − igAa
µt

a (2.4)

The notation /D ≡ γµ∂µ where γµ are the 4 × 4 Dirac matrices which behave as singlet in the

color and flavor space.

This deceptively simple looking Lagrangian hides within it some important properties.

While the degrees of freedom in Lagrangian of the non-abelian gauge theory described above

are quarks and gluons, free quarks are never observed in the experiments or in our day to day

experiences. The list of all observed hadrons and their properties like mass, spin, lifetimes etc..

are documented in the particle data group (PDG) [6]. The non-observability of quarks is a

consequence of confinement. At low energies or large distances, the coupling strength between

the quarks becomes very strong such that they inevitably form bound objects which we call

hadrons (eg., protons, neutrons etc..). Implicitly stated in the previous sentence is a profound

feature of QCD that the coupling strength in QCD depends on the momentum scales of the

interaction.(Figure 1) shows the coupling constant αs = g2/(4π) as a function of the momentum
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Figure 1: Figure taken from the reference [6]. The figure shows the latest summary of mea-

surements of αs, the strong coupling constant as a function of the energy scale Q. The order

of QCD perturbation theory used in the extraction of αs is indicated in the legends. For more

details refer to [6]. The the large Q behavior, g2(Q) ∼ (logQ)−1 is termed as "asymptotic

freedom". The divergence of α at low Q is a consequence of color confinement.

scale. The divergence of the coupling strength in the infrared limit is called infrared slavery

and is a consequence of "confinement" in QCD. In the UV limit the coupling goes to zero, this

property is called asymptotic freedom. The momentum scale at which the coupling becomes of

the order of unity is denoted as ΛQCD and is taken to be equal to 200MeV. At energy scales

much larger than ΛQCD, the theory becomes perturbative due to asymptotic freedom, and the

physical phenomena can be well described by doing Taylor expansion in αs.
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We will now discuss the flavor symmetries of the Lagrangian that exists in the limit of small

quark masses. When mq = 0 (referred to as the chiral limit), the Lagrangian of QCD is invariant

under UL(Nf )×UR(Nf ) ≡ UV (1)×UA(1)×SUV (Nf )×SUA(Nf ) transformations where L,R, V,

and A correspond to left, right, vector and axial parts of the symmetry respectively. The

currents associated with these symmetries are:

jµ = ψ̄γµψ , jµ5 = ψ̄γµγ5ψ (2.5)

jµa = ψ̄γµτaψ , jµ5a = ψ̄γµγ5τaψ (2.6)

where τas, a ∈ {1, . . . N2
f − 1} are the generators of SU(Nf ). jµ is the total baryon current

, conservation of which implies conservation of baryon number which we know to be true in

strong interaction mediated processes. jµ5, the axial current is not conserved due to quantum

effects. The breaking of the isospin singlet axial current jµ5 conservation by quantum effects is

termed the chiral anomaly and is given by the Adler-Bell-Jackiw equation:

∂µj
µ5 = −

g2Nf

32π2
ϵαβµνF c

αβF
c
µν (2.7)

An experimental consequence of this breaking is that there are no chiral partners of equal

mass seen in the hadronic spectrum. This reduces the symmetry group of QCD to UV (1) ×

SUV (Nf ) × SUA(Nf ) in the chiral limit. This symmetry will be termed as chiral symmetry.

The physical world has two light quarks, u and d which are known to have masses,mu ≈ 2MeV

and md ≈ 5MeV, which are small compared to other scales in QCD like ΛQCD. Since the
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difference between the light quark masses are small compared to ΛQCD, we can consider them

to be approximately equal i.e mu ≈ md = mq. Furthermore, smallness of mq/ΛQCD implies

that there could be some features of the approximate Nf = 2 chiral symmetry in the real

world, although strictly speaking chiral symmetry is explicitly broken at the Lagrangian level

itself. It turns out that SUA(2) is spontaneously broken by the ground state of QCD leading to

the generation of a light pseudoscalar isospin triplet of pions (pseudo-Goldstone bosons) which

have a mass of about 140MeV ≫ mq. Hence, the chiral symmetry is spontaneously broken to

UV (1)× SUV (2).

Chiral symmetry breaking is a non-perturbative phenomenon. At sufficiently high temper-

atures, the theory becomes perturbative and quarks and gluons become the effective degrees of

freedom. In this limit, we expect chiral symmetry (approximate due to smallness of mq) to be

effectively restored. The nature and order of this phase transition depends upon various factors

that we discuss below.
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2.2 Phase diagram of QCD

Figure 2: Figure taken from the Long Range Plan for Nuclear Science 2015 [7]. The figure

shows the conjectured phase diagram for QCD with the freeze-out points for the mid-rapidity

regions of the fireball at different center of mass energies.

The spontaneous breaking of the (approximate Nf = 2) chiral symmetry could result in

non-analytic transitions on the phase diagram of QCD. The conjectured phase diagram of

QCD in the physical world (where the mass of the lightest quarks, mq is non-zero) is shown in

Figure 2. Much of this phase diagram is schematic except for the zero and low baryon-chemical

potential region where it is known from experiments as well as first-principle calculations using

Lattice QCD that the transition is a cross-over. The pseudo critical temperature at µ = 0

has been obtained as Tpc = 156.6 ± 1.5MeV from lattice computations [18]. The study of the

regime of non-zero chemical potential from first principles is hindered by the sign problem [19]
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and therefore, one has to resort to model studies. Although these models elucidate qualitative

features of the phase diagram with the possibility of a critical point, the quantitative features

of these models, like the position of the critical point don’t agree with each other and could be

very different from QCD [20].

In the chiral limit, the physical state doesn’t show chiral symmetry at zero temperatures, but

exhibits exact chiral symmetry at large temperatures. This means the domain between these

phases on the phase diagram have to be separated by non-analytic phase transition lines. 1

In subsection, we’ll discuss the possibility of a second-order phase transition in Nf = 2 QCD

by reviewing the renormalization group studies searching for infrared stable fixed points, that

characterize second-order phase transitions. We discuss how a probable phase diagram scenario

in the chiral limit leads to a Z2 critical point in the real world, where mq ̸= 0. In subsec-

tion. (2.2.2), we’ll review the developments from lattice QCD at µ = 0, which gives us insights

into the QCD phase diagram at physical quark masses at non-zero µ.

2.2.1 Phase transition in the chiral limit

As discussed above, when the quarks are massless, there is an exact chiral symmetry at the

Lagrangian level, but the ground state breaks this symmetry. Below we will discuss the nature

and order of the phase transition that restores this symmetry for the equilibrium state at large

temperatures based on deductions from symmetry arguments and RG analysis by Pisarski and

Wilczek and later by various other authors. The knowledge about the spatial dimensionality

1This is not a requirement at non-zero quark masses as the chiral symmetry is explicitly broken.
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and the relevant symmetries of the theory allows us to write the most general Landau-Ginsburg-

Wilsonian Lagrangian for the low-energy description of the order parameter. One can then look

for stable infrared (IR) fixed points in this general theory. Existence of stable infrared fixed

points allows for the possibility of second order phase transitions.

In the chiral limit, one can consider the chiral order parameter denoted by Φij , the bilinear

condensate, Φij =
1
2⟨ψ̄i(1 + γ5)ψj⟩ [21]. Under SUL(Nf )× SUR(Nf ) transformations, Φ trans-

forms as Φ → ULΦU
†
R. In the chiral symmetry restored phase, i.e when SUA(Nf ) is a symmetry

of the physical state, Φij = 0 and in the broken phase it is non-zero. UL(Nf ) = UR(Nf ) (i.e

UV (1) × SUV (Nf )) is an unbroken symmetry as explained earlier. The most general effec-

tive Lagrangian for Φij , which is parity invariant and respects U(1) × SU(Nf ) symmetry was

constructed by Pisarski and Wilczek:

L0 =
1

2
Tr|∂µΦ|2 −

1

2
m2Tr|Φ|2 + π2

3
g1Tr(|Φ|2)2 + π2

3
g2(Tr|Φ|2)2 (2.8)

Due to anomaly, we must also add terms that reduce the symmetry to UV (1) × Z(Nf ) ×

SUL(Nf ) × SUR(Nf ) which are parity invariant. Nf = 2, i.e QCD with two massless flavors

resembles the closest to our universe. Keeping all such terms that have naive scaling dimension

less than or equal to four in four dimension for Nf = 2, we get [22]:

LA = c(detΦ + detΦ†) + y(detΦ + detΦ†)TrΦ†Φ+ z((detΦ)2 + (detΦ†)2) (2.9)
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The Lagrangian L = L0 + LA is the most general renormalizable Lagrangian invariant under

parity transformation that respects SUA(2)× SUV (2)× UV (1) symmetry. 1

Φij can be represented as Φij = (ϕ+ iη) I+(∆ + iΠ)i σ
i, where ϕ, η,∆ and Π are real fields,

I is 2 × 2 identity matrix and σi are the Hermitian matrices which are generators of SU(2).

In the absence of anomaly, the effective Lagrangian description given by (2.8) leads to three

infrared fixed points, i.e the Gaussian fixed point and two O(8) fixed points. [23]. Out of these,

one of the O(8) fixed points has been shown to be stable with regard to RG flows [23]. The

presence of stable IR fixed point allows the possibility of having a second-order phase transition

if the physical theory falls in the basin of attraction of the IR fixed point. 2 In the presence

of anomaly, all the terms of scaling dimension four are same for Nf = 2. The theory can have

an infrared stable O(4) fixed point [21, 22]. For Nf = 3 case, with three massless quarks, the

phase transition cannot be second order in the presence of anomaly [21]. 3

1We know that axial symmetry(UA(1)) is always absent due to the non-conservation of the axial
current. However, the strength of the anomaly coefficients c, y, z can become very small due to some
mechanism, resulting in an effective restoration of the axial symmetry at the chiral symmetry restoration
temperature.

2This first RG study for the Nf = 2 case in the absence of anomaly performed by Pisarski and
Wilczek in ϵ expansion upto one loop reported that there are no stable IR fixed points when anomaly is
absent. However a stable IR fixed point has been discovered by various other authors using higher-order
perturbative expansions [23,24].

3For Nf = 3 case, in the absence of the anomaly Pisarski and Wilczek demonstrated that effective
theory described by Eq. (2.8) has no stable infrared fixed point by calculating the β functions to leading
order in ϵ. However, in a recent work [25], the authors report the possibility of a stable IR fixed-point
in three dimensions for Nf = 3 in the absence of anomaly.
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The presence of a stable IR fixed point allows for the possibility of a second order phase

transition in the physical theory, if it falls in the attractive basin of the IR fixed point. The

inference that we make from the above results is that Nf = 2 QCD, i.e QCD with two massless

quarks allows for the possibility of a second order phase transition [26,27], but the nature and

the universality class of the transition crucially depend on the strength of the anomaly. It also

depends on the mass of the strange quark in the theory, since Nf = 3 theory in the presence

of anomaly has a first-order phase transition, and therefore, for sufficiently small strange quark

masses it is likely that this remains first-order. In the next subsection, we will give a very brief

review of our understanding of the nature of the phase transition from lattice QCD, one of the

powerful non-perturbative tools at our disposal to study QCD.

2.2.2 Insights into phase diagram at µ = 0 from Lattice QCD

Simulating QCD on discrete space-time via Markov chain Monte Carlo methods, commonly

called Lattice QCD is one of the reliable non-perturbative approaches to study QCD. It has

two inherent limitations. Monte Carlo simulations at non-zero real values of baryon chemical

potential become increasingly difficult due to the fermion determinant becoming complex. The

second limitation is its reduced reliability in performing simulations with near vanishing quark

masses due to the non-invertability of the fermion determinant in the chiral limit. Despite

these limitations, lattice QCD has greatly succeeded in advancing our knowledge about QCD

at regimes were it is indeed capable of performing precise and reliable calculations. Some of

the insights into the phase diagram from Lattice QCD are summarized below [28,29].
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Figure 3: Both the images shown above are taken from the reference [8] is the famous Columbia

plot, showing the nature of phase transitions expected in the µ = 0 limit for QCD with two

degenerate flavors of mass mu/d and another flavor of mass ms (left) ; The conjectured Z2 critical

point at non-zero µ for non-zero light quark masses mq is expected to lie at the intersection of

mu/d = physical quark mass and the surface swept by the extension of the Z2 critical line at

µ = 0(right).

The results on our understanding about the nature of phase transition along µ = 0 as a

function of the mass of the degenerate quarks mu,d and the mass of the strange quark ms is often

summarized in the form of the famous Columbia plot [8] (Figure 3). The original Columbia plot

has undergone various modifications as a result of the advancements in lattice QCD. Below, we

review the status of Columbia plot at µ = 0 that may be relevant for the critical point in the

QCD with physical quark masses.
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• Second-order phase transition in QCD with two massless quarks and a strange

quark with physical mass : The results for chiral susceptibility with light quark

masses, mq is consistent with scaling arguments for a second order phase transition in the

chiral limit that falls in the 3D O(4) universality class. The chiral critical temperature at

µ = 0 has been extrapolated to be Tc,0 = 132+3
−6 MeV. [30]

• Cross-over for theory with two light quarks and one massive quark :The phase

transition in QCD with two light (0 < mq ≪ ΛQCD) flavors of quarks and one massive

quark (physical strange quark mass) is a cross-over at zero chemical potential [31–33].

• Pseudo-critical temperature at physical quark masses along µ = 0: Lattice

calculations at physical quark masses extracted from the maximum of several fluctuation

observables gives a pseudo critical temperature Tpc = 156.6± 1.5MeV [18].

• Order of phase transition with three massless quarks is unresolved : Symmetry

considerations by Pisarski-Wilczek in the presence of anomaly suggest a first-order phase

transition for a three massless flavor QCD. Given the transition is second-order for two

massless quarks and one quark at physical strange quark mass, the argument due to

Pisarski and Wilczek imply the presence of a tri-critical point at some non-zero strange

quark mass, ms3, lower than the physical strange quark mass. The exact location of

this tri-critical point would depend on the strength of the anomaly [9] . As one can see,

the first-order region in the lower left corner of Columbia plot which follows from this

reasoning must then be demarcated from the intermediate mass-region where the phase

transition is a cross-over via a curve of Z2 critical points. Lattice calculations along



18

mu = md = ms have not so far seen a non-analytic transition at µ = 0 for pion masses as

low as mπ ≈ 50 ,MeV constraining the Z2 line to appear only at smaller pion masses [34].

The conjectured Z2 critical point at non-zero µ for non-zero light quark masses mq is

considered to be extension of this conjectured Z2 line on the µ = 0 plane which is not yet

found.

• First order phase transition in pure SU(3) gauge theory (no dynamical quarks)

: In pure SU(3) gauge theory with infinitely large quark masses, it has been well estab-

lished that the phase transition is first-order [35]. The broken symmetry here is the center

symmetry Z3 which is related to confinement/deconfinement and Polyakov loop serves as

an appropriate order parameter [36,37]. A curve of Z2 critical points separates the region

with first-order phase transition in the infinite mass limit with the cross-over region at

finite masses.

For some non-zero µ, the crossover may become a first-order phase transition (resulting in

a critical point) as various models suggest. If this is true for QCD at physical quark masses, we

expect the curve of first order phase transitions emanating from T = 0 and non-zero chemical

potential which we denote by µ1, should end in a Z2 critical point at some non-zero chemical

potential and temperature. Assuming that this critical point is the closest singularity to the

µ = 0 at T = Tc, the critical point must leave its signature in the radius of convergence

estimators obtained along the µ = 0 from Lattice QCD.EoS and thermodynamic properties are

known for zero and low values of µB/T [10, 38, 39]. The current lattice QCD calculations of
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the Taylor expanded EoS as a function of (µ/T )2 disfavors the existence of a critical point for

µ/T ≤ 2 and T/Tpc ≥ 0.9 [39].

2.2.3 Phase diagram at non-zero µ with physical quark masses

The Landau Ginsburg effective potential for Nf = 2 in the presence of anomaly can be

written in terms of the real ϕ and π⃗ fields as follows. [9]

Ω(ϕ) =
d

2

(
ϕ2 + π⃗2

)
+
e

4

(
ϕ2 + π⃗2

)2
+
f

6

(
ϕ2 + π⃗2

)3 −mqϕ+ . . . (2.10)

where we have kept only the lowest order terms upto O(ϕ6). The linear term in ϕ explicitly

breaks the chiral symmetry. For mq = 0, a mean-field analysis of the above Lagrangian,

elucidates the following features of the phase diagram in the chiral limit [9]:

• d(µ, T ) = 0, e > 0 gives a line of critical points.

• d(µ, T ) = e(µ, T ) = 0 corresponds to a tri-critical point where the leading interaction

goes as
(
ϕ2 + π⃗2

)3 1

• A triple line, meaning a line of points on the phase diagram with three co-existing phases

occurs along d = 3e2/(16f), e < 0.

In the presence of non-zero quark mass, the tricritical point turns into a Z2 critical point

and the triple line becomes a first-order phase transition line. The massless mode in this case

1Near the tricritical point, the contributions due to fluctuations are logarithamically suppressed in
three dimensions and the mean-field theory can be used.
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corresponds to the fluctuations of ϕ about its value at the critical point (ϕc) , i.e ϕ− ϕc. The

pions become massive at this point with a mass given by [40]:

m2
π = d+ eϕ2c + fϕ4c (2.11)

The schematic phase diagram based on these arguments is shown in (Figure 4). The coefficients

d, e, f depend upon the value of the strange quark mass. Hence the position of the tri-critical

point and the Z2 line varies with the strange quark mass. For strange quark mass smaller than

some critical value, it is expected that the phase transition at µ = 0 in Nf = 2 turns into

first order. This results in a tri-critical point in the Nf = 2 at some critical strange quark

mass value, ms3. (Figure 4) assumes that physical strange quark mass is greater than ms3.

In this scenario, when the light quark mass, mq
1 is turned on, the triple line and the line of

second order points shown by a dashed and dotted line respectively in the chiral limit become

a first-order curve and a cross-over line respectively. The tri-critical point hence turns into a

critical point, which marks the end of line of first order phase transition.

The phase structure of various toy models of QCD at non-zero quark masses have been

studied. Many of these models possess a first-order phase transition at a chemical potential

, (sometimes denoted by µ1) along the T = 0 axis for physical quark masses. 2 Some of

1 In this thesis, we’ll use mq to denote the mass of two degenerate light quark masses and ms to
indicate the mass of the strange quark.

2Note that this is different from the nuclear liquid-gas phase transition which also has a first order
phase transition along T = 0, µ = µ0 such that µ0 < µ1.
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these models are the MIT Bag Model [41,42], Nambu-Jona Lasinio(NJL) [43–45] , PNJL based

models [46], Random Matrix Model [47, 48], 2-flavor QCD with interactions between quarks

induced via instantons [49–51], Bottom-up Einstein-Maxwell-Dilaton holographic model [52,53]

etc..

Figure 4: Figure taken from the reference [9] is a schematic phase diagram of QCD. The dashed

lines represent the boundary of the phase with spontaneously broken chiral symmetry in QCD

in the chiral limit with Nf = 2. The line of second order and first-order transitions meet at a

tri-critical point denoted by P. The point E which represents the Z2 critical point of the real

world is connected to the tri-critical point via a line of Z2 critical points. Point M (the familiar

liquid-gas phase transition which is probed in low energy multi-fragmentation experiments) and

point S (the superconducting phase of QCD) are irrelavant for the discussion presented in this

thesis.



22

2.3 Fluctuations as probes of the critical point

A mean-field analysis near a second order phase transition can be performed using a Landau

Ginsburg potential for a scalar field ϕ with upto ϕ4 terms. Landau-Ginsburg (LG) theory

cannot describe fluctuations. However, the LG free-energy potential helps us to understand the

importance of fluctuations near the critical point qualitatively. At a first-order phase transition,

the free-energy has two degenerate minima. The critical point appears as the end point of the

first-order phase transition curve where the two minima merge into each other. At this point

the curvature of the free-energy function becomes zero. Transition from one minima (phase)

to the other comes at zero energy cost. This is the reason for enhanced fluctuations near the

critical point. Critical opalescence [54] which is the phenomenon of a liquid turning milky at its

critical point is due to the multiple scatterings which occur because of the enhanced fluctuations

in the densities [55].

The enhancement in fluctuations also results in the breakdown of mean-field theory near

the critical point in low dimensions (d < 4). We can describe the equilibrium fluctuations near

QCD critical point using a local scalar σ4 field theory in three dimensions. The fluctuations

of the order parameter, σ is determined by a probability functional P [σ] = exp [−Ω(σ)/T ]

where [40]

Ω(σ) =

∫
d3x

[
(∇σ)2

2
+
m2

σ

2
σ2 +

λ3
3
σ3 +

λ4
4
σ4 + . . .

]
. (2.12)
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The fluctuations of the order parameter field when averaged over volumes larger than ξ show

the following characteristic leading singular behavior in three dimensions [56,57]:

⟨σ2⟩ = V Tξ2 , ⟨σ3⟩ = 2V T 3/2λ̃3ξ
4.5 , ⟨σ4⟩ = 6V T 2

(
2λ̃23 − λ̃4

)
ξ7 (2.13)

The order parameter for QCD with physical quark masses is an unknown linear combination

of entropy density and baryon number density. The enhancements in fluctuations of the order

parameter can be directly related to the divergence of susceptibilities (higher derivatives of

pressure with respect to temperature and chemical potential). The leading behavior of the

baryon number susceptibilities diverge with the specific powers of correlation length, ξ,

∂kP

∂µkB
∼ ξ

k(5−η)
2

−3 , (2.14)

where η ≈ 0.04 is the well-known Ising critical exponent [58,59]. These derivatives of pressure,

are related to the cumulants of baryon number-multiplicities as follows:

⟨
δnkB

⟩
eq

=

(
T

V

)k−1 ∂kP (T, µB)

∂µkB
(2.15)

The scaling form and the leading singular behavior of the pressure near the critical point

can be deduced from universality of critical phenomenon which is described in more detail in

Chapter. (3). The current understanding of the EoS at zero chemical potential and near the

conjectured critical point is reviewed in the next section.
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2.4 Equation of State of QCD

Equation of State (EoS) is a relation connecting the pressure with number densities (baryon

number, electric charge, strangeness, etc..) and energy densities or equivalently, pressure with

temperature and chemical potentials. The QCD EoS at zero chemical potential P (T ) has been

calculated from first principles [10, 38, 60]. P (T ) from [10] is shown in Figure 5. One can

see that the EoS at low-temperatures agrees well with the hadron resonance gas model and

the high-temperature limit approaches the Stefan Boltzmann limit. The transition between

these asymptotic descriptions happen around 150-200 MeV. The Taylor expansion of QCD EoS

upto sixth order in baryon , strangeness and electric charge chemical potentials are obtained

in [39]. The Taylor expanded QCD EoS upto eighth order in chemical potentials in strangeness-

neutral matter is also available [61]. The EoS becomes non-analytic near a phase transition

and therefore, the Taylor expansions of EoS cannot be extrapolated to larger values of chemical

potential if there is a critical point on the phase diagram. The QCD critical point if it exists

belongs to the 3D Z2 universality class for which 3D Ising model is a prototype example. The

EoS of QCD near the critical point can be then mapped to the EoS of 3D Ising model using

universality [1,62–64]. This mapping depends on some non-universal coefficients which depend

upon the microscopic details and hence are unknown. A class of EoSs with different choices of

these parameters that match with the lattice data at µ = 0 has been constructed in [63]. In

chapter (3), we will discuss different aspects of this non-universal mapping between 3D Ising

model and QCD. In addition to providing essential information about the phase diagram of

QCD, EoS is also a crucial input for these hydrodynamical simulations.
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Figure 5: Figure taken from the reference [10] shows EoS at zero baryochemical potential

obtained in (2+1) flavor lattice QCD with physical quark masses compared to HRG model

prediction at low temperatures and hard thermal loop calculations from [11] (with different

renormalization scales) at large temperatures.

The pseudo-critical temperature at µ = 0 from lattice QCD and model calculations of QCD

phase transition indicate that the transition from quark-gluon to hadron degrees of freedom

happens at temperatures of 100 − 200MeV ∼ 1012K. Such high temperatures can be reached

in heavy-ion collisions. In the next section, we will discuss how heavy-ion collisions serve as

laboratories to study the phase diagram of QCD [17,65] and determine the EoS of QCD [66–69].
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2.5 Heavy-ion collisions to study the phase diagram

There are various heavy-ion collider facilities that are either already functioning or in their

developmental stage around the globe, for example Relativistic Heavy Ion Collider (RHIC)

at BNL in USA; the Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) at

CERN in Switzerland; the High Acceptance Di-Electron Spectrometer (HADES) and Facility for

Antiproton and Ion Research (FAIR) in Germany to name a few [15,70]. These facilities differ

from each other in their center of mass energies, luminosities, acceptances of the detectors,

colliding nuclei etc based on the main goals behind their installation. Together, they scan

different regions of the phase diagram. One of these facilities namely, the RHIC at BNL is

highly versatile and different from its counterparts as it allows to scan a varying range of center

of mass energies from 3 GeV to 200 GeV, allows collisions of different nuclei and also can work

both in collider and fixed target capacities. These unique specialties of this facility opened

the scope for a Beam Energy Scan (BES) program specifically designed to study the critical

point and importantly discover the critical point of QCD if it exists in the regime of the phase

diagram probed at these center of mass energies [17,71].

By studying the particle spectra and their correlations in momenta, we are essentially prob-

ing the state of the system at the hypersurface of their last elastic and inelastic scatterings

called thermal and chemical freeze-out respectively. The yields of the stable hadrons and some

light nuclei across wide range of energies are consistent with a thermal model which predict

an equilibrated Fermi-Dirac/Bose-Einstein hadron resonance gas at freeze-out [12, 72].The pa-

rameterization for the freeze-out curves discussed in [12, 73] and shown in Figure 6 have been
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obtained by fitting to experimental data. These empirical fits indicate that the freeze-out tem-

perature changes little, while the chemical potential at freeze-out is more sensitive to change

of center of mass energy across BES energies. Lattice QCD calculations of pseudo-critical tem-

peratures for low values of chemical potential obtained with degenerate light quarks and one

massive strange quark at physical pion and kaon masses suggest that for µ ≤ 300MeV chemical

freeze-out lies close to the QCD phase boundary [18]. This suggests that the enhancement of

fluctuations expected on the pseudo critical curve close to the critical point, may survive until it

freezes out and therefore, can be observed in the correlations of observed particle multiplicities.

2.5.1 Quark-gluon plasma, heavy-ion collisions and hydrodynamics

Heavy-ion collisions at sufficiently large energies can reach temperatures as high as 300GeV

or more where we expect from theoretical calculations of QCD that the state of matter can be

described in terms of a plasma of quarks and gluons. Quarks and gluons which are no longer

confined to distance less than the size of a hadron at such high temperatures and roam freely

within the volume of the fireball exhibiting asymptotic freedom [74]. The plasma expands,

the temperature drops down and the final state that we observe at the detectors is that of a

thermalized gas of stable hadrons at a much lower temperature. However, we can infer about

the properties of the quark gluon plasma (QGP) formed during the course of the collision from

the final state distribution [75].

One might expect due to asymptotic freedom at large energies at RHIC and LHC, the cou-

pling between the quarks and gluons are weak so that interactions are not strong enough to reach

equilibrium. This is indeed true at extremely high temperatures. However, as the temperature
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Figure 6: Figure taken from the reference [12] shows the values of temperature and chemical

potential at freeze-out as a function of center of mass energies.

drops down, the system becomes strongly coupled. Due to this strong coupling, the dense quark-

gluon plasma achieves local equilibrium in rather short times (≤ 1 fm or so) at temperatures

as high as 300MeV such that one can use hydrodynamics to describe the subsequent evolution

of QGP [76]. The observables that demonstrate the agreement between hydrodynamic descrip-

tion are properties like flow coefficients which can be obtained from the azimuthal distribution

of single particle observables in heavy-ion collisions [77–79]. The anisotropy characterized by

the Fourier coefficients of the azimuthal particle distribution function, denoted by vns are in
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agreement with hydrodynamical descriptions [77–82]. Flow coefficients can also be calculated

from multiple particle correlations [83].

The inference that QGP evolves hydrodynamically for a significant fraction of its lifetime can

be made from the elliptic and higher order flow data obtained from single particle distributions

as well as multi-particle correlations from experiments [84–86]. If the QGP was close to a weakly

interacting gas, then any anisotropy in the initial state of the colliding nuclei would disappear

from the final state due to the random scatterings in the gas and subsequent isotropization.

However, in a fluid, the initial state anisotropies in the coordinate space would get translated

into final state anisotropies in the momentum distribution of the particles. The latter case is

supported by the experimental data. The experimental findings are consistent with a nearly

perfect fluid with η/s ≤ 0.2 [82]. This value has to be compared with the η/s ratio of a

large class of theories with many degrees of freedom and infinite coupling which provides the

conjectured lower bound for η/s ratio as equal to 1/4π [87].

A (viscous) hydrodynamic description is clearly not applicable for the entirety of the life

time of the fireball. For instance, the system just after the collision is highly out of equilibrium

and is clearly beyond the regime of applicability of hydrodynamics. Similarly an expanding sys-

tem that is finite in size eventually becomes dilute enough such that hydrodynamics is no longer

a valid tool to describe the dynamics. Ab-initio quantum simulation of the dynamics of the two

nuclei colliding and evolving in real-time from first principles, analogous to what happens in

heavy-ion collisions is a formidable task that is beyond the capabilities of our current theoret-

ical and computational infrastructure. Therefore, one needs to resort to modeling techniques
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Figure 7: Figure taken from the reference [13]. The figure shows the dependence of elliptic flow

coefficients v2 on centrality and the agreement between experimental data with 3+1 D hybrid

dynamical simulation discussed in [13].

to describe various stages in the heavy-ion collision. This involves a hybrid framework, which

comprises of a description for the initial stages which are far away from equilibrium [78], the

intermediate hydrodynamic evolution and later a kinetic description for hadrons [69,88], when

the fluid becomes sufficiently dilute for the hydrodynamic description to be invalid. The final

results from this hybrid framework have to be compared to the experimental data. Modeling

each of these stages often involve many parameters which apriori cannot be determined from

theory. One can however find the best set of parameters that describe the wealth of experimen-

tal data using a sophisticated Bayesian analysis [89–94]. For a comprehensive review of this

multistage description refer to [17,78,95,96].
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2.5.2 Experimental scan of the QCD phase diagram

The main experimental variable parameters that one can tune to study the phase diagram

to look for critical signatures in heavy-ion collision are beam energy, centrality, ion size and

rapidity/ acceptance windows. By decreasing the center of mass energy, the trajectory of

the fireball moves to larger and larger baryon chemical potentials as it becomes more and

more difficult to produce ant-baryons. Therefore, by varying the center of mass - energies

we can study properties of nuclear matter at different regions on the phase diagram. Since

the correlation functions of fluctuations of thermodynamic variables in equilibrium grow as a

function of the distance of the freeze-out point to the critical point, we expect to see a non-

monotonic dependence of these quantities as a function of the center of mass energy of the

collision [56] . Beam-size or ion-size can be used to reduce the number of participant nucleons

in the nuclear collision or the effective size of the fireball, thereby manipulating the evolution

duration and freeze-out times in the process. Varying acceptance windows will allow us to study

the interplay of thermal fluctuations with effects such as global conservation.

2.5.3 Event by event fluctuations for probing the phase diagram

Event by event fluctuations of various observables in heavy-ion collisions have been proposed

as important tools to study the static and dynamic correlations and collective behavior in the

system, that may not obtainable from the single particle spectra [97]. Examples include the

event by event analysis of transverse momentum distribution [98,99], temperature fluctuations

for studying the heat capacity [46], fluctuations of particle ratios and abundances as signals

of QGP [100, 101], average fluctuations of net baryon number and electric charge as probes of
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confinement [102]. In the context of critical point search, fluctuations of baryon number show

characteristic divergence as the freeze-out point in the collision moves closer to the critical

point. It may be impossible to reconstruct the baryon multiplicity distribution for all baryons

produced from the aftermath of the collision, especially since the neutral particles like neutrons

are undetected. Non-monotonic behavior of baryon number fluctuations should also reflect

in the behavior of individual particle multiplicities fluctuations like that of protons or pions

to which the order parameter field σ couples. A combination of event-by-event observables,

including enhanced fluctuations in the multiplicity of soft pions were proposed as experimentally

observable signatures of the critical point in [9, 40]. [103] demonstrated that the long range

correlations of the order parameter field induces a characteristic correlation between protons

thereby making fluctuations of proton multiplicities a good proxy for cumulants of baryon

number. The significance of non-Gaussian fluctuations of experimental observables as more

sensitive probes of the critical point signatures was realized in [56].The observables in a HIC

are particle multiplicity distributions in the momentum space.

In order to quantify the fluctuations, it will be useful to introduce two kinds of fluctuation

observables, cumulants and factorial cumulants. Let X and Y be the multiplicity of two par-

ticle species in one event. Let ⟨X⟩ and ⟨Y ⟩ be their corresponding mean values obtained by

averaging over many events. Let δX = X − ⟨X⟩ and δY = Y − ⟨Y ⟩ be the deviations of these

multiplicities from their event-by-event average. The cumulant of X and Y , denoted by Cn are

given by following expressions, C2X = ⟨(δX)2⟩ , C3X = ⟨(δX)3⟩ , C4X = ⟨(δX)4⟩−3⟨δX2⟩2 .

Cumulants of independent variables X and Y are additive, i.e Ci(X+Y ) = CiX + CiY . In equi-
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librium the cumulants of baryon multiplicity are directly related to the derivatives of the EoS

as we have seen in Eq. (2.14). Therefore, they are suitable for situations when the direct

comparison between experimental observables and lattice QCD results are possible. As we

shall see, such a direct comparison is not straightforward near the critical point due to the

dynamical effects that play a role in HICs. It has been argued in [104], that a more conve-

nient measure for fluctuation observables of particle multiplicities are the factorial cumulants.

Factorial cumulants subtract the non-interesting trivial correlations that occur as a result of

self interactions in a gas of particles. It is indeed the leading singular behavior of the factorial

cumulants that can be related to critical fluctuations. The factorial cumulants, κns are given

by, κ2 = C3 − C1 , κ3 = 2C1 − 3C2 + C3, κ4 = −6C1 + 11C2 − 6C3 + C4 etc.. The critical

contribution to third and fourth cumulants of proton, pion and their mixed multiplicities were

obtained by studying their leading singular behavior in [105]. Qualitative and quantitative

knowledge about the fluctuations of these variables in an equilibrated system is important for

estimating these cumulants in heavy-ion collisions and there have been enormous advancements

in this regard in the last decade [57,62,63,106–108].

One of the main goals of the Beam Energy Scan (BES) experiment at the Relativistic

Heavy Ion Collider (RHIC) is to study the phase diagram of QCD and locate the landmark

high-temperature critical point if it exists. The initial phase of the BES showed intriguing

hints, such as indications of non-monotonic variation of certain measures of fluctuations from

their non-critical baseline as a function of the center of mass energy denoted by
√
s [7, 14]

(See Figure 8), which prompted further experimental efforts in the second phase of BES with
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higher statistics. The STAR collaboration collected BES II data during 2019-2021 by conduct-

ing heavy-ion collisions at various collision energies, corresponding to a scan in the baryonic

chemical potential. Currently, the data is being analyzed, and there is a significant anticipation

to learn more from these measurements.
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Figure 8: Figure taken from the reference [14]. The figure shows the cumulants, Cn (left panel)

and the factorial cumulants(κn) (right panel) of proton and anti-proton multiplicities at varying

center of mass energies. Comparisons to URQMD baseline are also shown. The non-monotonic

deviation from the URQMD baseline is suggestive of the presence of a critical point. However,

better statistics and experimental precision along with comprehensive theoretical estimate for

these quantities in a dynamical fluctuation framework is necessary to make conclusions.
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2.6 Cumulants of particle multiplicities in a beam-energy scan

2.6.1 Sources of fluctuations in heavy-ion collisions

As argued in Sections. (2.5.3), non-monotonic dependence of the cumulants of particle mul-

tiplicities with center of mass energy is one of the signatures of the critical point predicted from

QCD thermodynamics. These cumulants describe the correlations between the event by event

fluctuations of the particle multiplicities. It is ofcourse, the thermal fluctuations which carry

the information about the EoS of QCD and hence the phase diagram of QCD. In a heavy-ion

collision, there are various other sources of fluctuations which donot come disentangled from

these genuine correlations due to the critical point. In order to perform a quantitative analy-

sis of the particle multiplicity correlations in a Beam Energy Scan program, we would need a

comprehensive framework which takes into account all these sources of fluctuations. Some of

the important contributions to fluctuations come from:

• Initial state fluctuations : Fluctuations in the initial stage description are caused due

to fluctuations in momenta and position distribution of the nucleon (or quark) degrees of

freedom inside the colliding nuclei, and uncertainties in the parameters that are used to

model their interactions. The fluctuations at this stage serve as initial conditions for the

hydrodynamic evolution thereafter. For more details, refer to [13, 109]. As we will see in

Chapter. (4), the initial conditions are important for making quantitative estimates for

cumulants since conservation effects play a crucial role.
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• Thermal fluctuations : Thermal fluctuations are directly related the derivatives of

EoS, and hence give crucial information about the phase properties. Their dynamic

evolution also becomes relevant near the critical point (More details in Chapter. (4) and

Chapter. (5)).

• Fluctuations at freeze-out : The transition from a hydrodynamic description into

hadron gas description is a stochastic process. This will be explained in detail in Chap-

ter. (6).

• Detector efficiencies : Detectors have finite acceptances and limited efficiencies. The

detector inefficiencies should also be accounted in estimating the fluctuations observables.

2.6.2 Dynamics of fluctuations

In the earlier sections, we reviewed the theoretical advancements in our understanding of

the thermodynamics of QGP at non-vanishing chemical potentials. One can make predictions

for observable consequences for the critical fluctuations in heavy-ion collisions assuming that

the fluctuations of thermodynamic properties of QGP formed in the heavy-ion collisions while

cooling down and traversing close to the critical point stays in equilibrium [9,17,40,56,57,103,

105,110–112]. This is a highly simplifying assumption, but not realistic near the critical point.

Critical fluctuations are characterized by their correlation length denoted by ξ, which in-

creases near the critical point. As a result, the typical timescale for the evolution of critical

fluctuations also increases. This is known as critical slowing down. Due to this phenomenon,

critical fluctuations in the rapidly cooling droplets of QGP generated in heavy ion collisions

cannot be described by their equilibrium values that are controlled by hydrodynamic fields.
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However, a lot of progress has been made in describing the non-equilibrium evolution of hydro-

dynamic fluctuations, which exhibit distinctive behavior at long wavelengths governed by the

universality of critical phenomenon [4, 113–141]. Some of these developments will be reviewed

in more detail in Chapter. (4) where we discuss how dynamical factors such as conservation

and critical slowing down modify the equilibrium predictions using a simplified simulation with

hydrodynamic fluctuations. In Chapter. (4), we’ll study how out of equilibrium fluctuations

can be modeled to look for semi-quantitative and qualitative signatures of the critical point.

For recent reviews on relativistic dynamics in heavy-ion collisions and dynamics of fluctuations

in particular refer to [96] and [4, 126] respectively.

2.6.3 Freeze-out of fluctuations

One also needs a procedure to establish a connection between the hydrodynamic fluid – in-

cluding its critical fluctuations – and the observed particle yields – and their fluctuations. The

Cooper-Frye freeze-out procedure [142] is a well-known method that maps the local fluid velocity

u(x) and hydrodynamic fields like T (x) and µB(x) on the freeze-out surface (a space-time hy-

persurface) to a simplified hadronic description using kinetic distribution of an expanding ideal

resonance gas of hadrons. The resonance interactions are encoded, and their later decay modi-

fies the distributions ultimately measured by experiments. The average densities of conserved

quantities like energy or baryon number are guaranteed to match as long as the hadron reso-

nance gas provides a good description of the equation of state, including the relations between

T and µB and ε and n in that regime. For more than four decades, the Cooper-Frye freeze-out

procedure [142] has been successfully used to describe average particle yields and spectra from
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high-energy heavy-ion collision data. The procedure ensures that the event-averaged baryon

number and energy-momentum densities are matched between the hydrodynamic and kinetic

theory descriptions. However, the Cooper-Frye framework does not account for fluctuations in

either the hydrodynamic fluid or the kinetic description of particles. Therefore, this procedure

has to be extended to a freeze-out scenario that includes the fluctuations as well. We devote

two chapters, namely Chapter (5) and Chapter. (6) in this thesis to the discussion on freeze-

out. In Chapter. (5), we develop a novel freeze-out procedure for critical fluctuations. In this

Chapter we also describe the limitations of this procedure which motivates us to introduce a

more general freeze-out procedure based on the principle of maximum entropy in Chapter. (6).

2.6.4 A hybrid paradigm

The hybrid paradigm comprising of initial stage+ viscous hydrodynamics+ hadronic after-

burner+Bayesian optimization has been enormously successful in describing the flow patterns

and single particle observables at high energies. Below, we summarize the main ingredients

necessary for constructing a similar framework for the study of fluctuations in order to determine

the cumulants of particle multiplicities in heavy-ion collisions [17, 96]. Note that a fluctuation

analysis also depends on the background, the description of the averages, which is given by

hybrid dynamical framework for studying single particle observables.

• Description of the initial stage in a collision : The far from equilibrium dynamics of the

fireball immediately after the collision determines the initial conditions for the hydrody-

namic stage that follows it [13, 109, 127, 143, 144]. Similarly the fluctuations at this stage
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will play an important role in determining the magnitude of the cumulants of particle

multiplicities at freeze-out due to charge conservation.

• Equation of state which also includes critical point : The critical features of the EoS are

essential in implementing the singular features of the speed of sound and the transport

coefficients in the hydrodynamical equations. The equilibrium form of the thermodynamic

fluctuations to which the the fluctuations of the hydrodynamic densities eventually relax

into is determined by the susceptibilities obtained from the EoS. As mentioned in the

previous section and will be described in much more detail in Chapter. (3), the critical

features can be implemented by matching the QCD variables to 3D Ising model [62,63].

• Evolution of the hydrodynamic densities and fluctuations : A dynamical treatment of

fluctuations coupled to the hydrodynamic evolution becomes essential near the critical

point due to critical slowing down. For a comprehensive review in this frontier, refer

to [126]. Some of the qualitative and semi-quantitative consequences are described in

Chapter. (4).

• A freeze-out procedure to convert the hydrodynamic densities and fluctuations into par-

ticle distribution functions and their fluctuations : Freeze-out of fluctuations is discussed

in detail in Chapters. (5) and (6).

• Hadronic transport after freeze-out : The mean and cumulants of particle multiplicities

generated at freeze-out could then be evolved through a hadronic after-burner [69,88,145,

146]. This stage is important to determine how the decays of the resonances and the other

inelastic and elastic processes modify the cumulants determined at freeze-out [147].
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• Bayesian analysis to obtain the best-fit parameters based on the experimental data : In

addition to the parameters that enter the hydrodynamic description of the conserved

densities, the fluctuation framework also introduces new parameters namely the match-

ing parameters to 3D Ising Model. Bayesian techniques will play an important role in

determining the best fit parameters to the experimental data [148].

In this thesis, we’ll discuss some aspects of mapping QCD to 3D Ising Model in Chapter (3),

about the dynamical evolution of fluctuations of hydrodynamic densities in Chapter. (4) and

freeze-out of these hydrodynamic fluctuations in Chapter. (5) and Chapter. (6).



CHAPTER 3

THERMODYNAMICS NEAR THE QCD CRITICAL POINT

This Chapter is based on the published work in [1] which I co-authored with my advisor,

M.Stephanov.

As discussed in Chapter. (2), the straightforward reliable determination of the phase diagram

of QCD at non-vanishing densities is hindered by the notorious sign problem [19]. However,

if there is a critical point on the phase diagram, one can infer some features of the Equation

of State (EoS) near it from universality. In this chapter we assume that there is a Z2 critical

point in QCD in the T − µB plane at the physical quark masses at some temperature and

chemical potential values denoted by Tc and µc respectively. With this assumption, we then

ask what features of the EoS near the critical point can be deduced via the universality of

the critical phenomenon. In this chapter we shall focus on static thermodynamic properties.

Dynamic universality near QCD critical point will be discussed in Chapter. (4). QCD EoS is

an essential input for hydrodynamic calculations aimed at describing the heavy-ion collisions

and identifying the signatures of the critical point.

The universality of static critical phenomena allows us to predict the leading singular be-

havior of thermodynamic functions, such as pressure P (µ, T ) on temperature and chemical

potential. The leading singular contribution to the QCD equation of state is essentially the

same as the singular part of the equation of state of the Ising model with µ and T in QCD

mapped onto (reduced) temperature r = T − Tc and ordering (magnetic) field h of the Ising

42
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model. The parameters of the mapping are not universal and are generally treated as unknown

parameters.

In this chapter, we shall investigate the properties of this mapping in order to constrain or

determine a reasonable domain for the values of the unknown mapping parameters. The central

result of this work follows from the fact that, due to the smallness of the (light) quark mass mq

the critical point is close, in parameter space, to the tricritical point [9] – the point separating

the second and first-order finite temperature chiral restoration transition.1 Thermodynamics

near the tricritical point is also universal, albeit the universality class is different from the one

of the Ising model. We point out that certain properties of the (µ, T )/(h, r) mapping near

the critical point are universal in the limit of small quark masses due to the proximity of the

tricritical point. The mapping becomes singular in a specific way. Most importantly, we observe

that the slopes of the r = 0 and h = 0 lines in the (µ, T ) plane become increasingly aligned

near the critical point, with the slope difference vanishing with a specific power of the quark

mass: m2/5
q .

The chapter is organized as follows: In Section. (3.1) to (3.3), we describe various aspects

of the mapping between different systems in the universality class of 3D Ising model and derive

expressions for the mapping parameters. In Sections. (3.4) and (3.5), we apply the results from

the previous sections to the special case of mean-field theories and provide an example of a

1These considerations would also apply, mutatis mutandis, to the tricritical point separating the
second and first-order transitions as a function of the strange quark mass [27,149], instead of the baryon
chemical potential.
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van der Waals gas near the critical point. In Section 3.6 we apply the results of Sections 3.2

and 3.4 to determine mapping parameters in a special case where a critical point is close to a

tricritical point, which is also described by Ginzburg-Landau theory. Here, we derive the main

result of this chapter about the scaling of the slope difference of h and r axes on the T −µ plane

with quark mass. We illustrate the same and estimate values for the mapping parameters using

Random Matrix Model of QCD in Section. (3.7). In Section 3.8 we investigate the effect of

fluctuations, i.e., go beyond mean-field approximation using epsilon expansion. We show that

the main conclusion – convergence of the slopes with difference of order m2/5
q is robust at least

to two-loop order. Some results about the application of universality to determining the critical

value of chemical potential and the Lee-Yang singularities are detailed in Appendix. (A). The

calculation of the pseudo-critical curve from the Taylor expanded EoS at µ = 0 is analyzed

in Random Matrix Model in Appendix. (B). We conclude in Section 3.9 and discuss possible

phenomenological implications.
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3.1 Universality of critical phenomenon

The universality near a critical point, follows from the observation that the macroscopic

phenomenon near it becomes insensitive to the microscopic details of the theory. This happens

because the range over which the fluctuations are correlated becomes larger than the micro-

scopic length scales such as the distance between the constituent particles. It follows that

a physical system near its critical point can be described by the universal properties near a

stable infrared fixed point which can be reached from the system Hamiltonian via a series of

transformations involving averaging over shorter length scales or equivalently integrating over

larger momentum modes [150–155]. The relevant directions at a fixed point, correspond to the

directions along which small perturbations takes the system away from criticality. The sub-

space spanned by the irrelevant directions near the fixed point, is called the basin of the fixed

point. The universality of critical phenomenon follows from the fact that the long-distance

behavior of all systems (Hamiltonians) that fall in the basin of the same fixed point are the

same. The perturbations along relevant and marginal directions at the infrared fixed point can

be described via a low energy effective LGW Hamiltonian as we have seen before. The general

form of the LGW Hamiltonian depends on the spatial dimensionality and the symmetries in the

system of interest. QCD with non-zero quark masses do not possess any continuous symmetry

that gets broken/restored at the critical point. It therefore falls into the default Z2 universality

class in three dimensions which describes the liquid-gas phase transitions, electroweak phase

transition [156] and the phase transition in the 3D Ising Model.
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3.2 Mapping QCD to 3D Ising Model

Due to this universality, all the liquid-gas critical points can be mapped onto the critical

point of the Ising model since all of them flow to the same infrared fixed point described by

the one-component ϕ4 theory at the Wilson-Fischer fixed point. The field theory becomes

conformal near the critical points due to the diverging correlation length. The universality

class associated with this conformal fixed point is the most common in nature1 and the QCD

critical point, if it exists, belongs to it.

There are two relevant parameters in the ϕ4 theory near the Wilson-Fischer fixed point:

these correspond to the coefficients of the two relevant operators, ϕ and ϕ2. These need to be

tuned to zero to reach the critical point. Ising model has a global Z2 symmetry, ϕ → −ϕ. In

this case, the relevant parameters simply map onto the ordering (magnetic) field h and reduced

temperature r = T − Tc. On the other hand, the Z2 symmetry that emerges in the scaling

regime near the critical point of QCD or a generic liquid-gas critical point cannot be related

to any such global symmetry in the respective system. Therefore one should expect a generic

mapping h(µ, T ) and r(µ, T ).

3.2.1 Definition of mapping parameters

The universality results in the equivalence between the partition functions of QCD and

3D Ising model near their critical points. This correspondingly means the logarithms of these

1Unlike for other universality classes, it is not required to maintain degeneracy between the different
components of the order-parameter field, such as in the case of O(3) Heisenberg ferromagnet.
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partition functions essentially the dominant singular part of pressure in QCD and the Gibbs

free energy of the Ising model can be non-trivially related to each other as follows:

Psing(µ, T ) = −AG(r(µ, T ), h(µ, T )) , (3.1)

where Psing is the dominant singular term in the QCD pressure at the critical point and G is

the singular term in the Gibbs free energy of the Ising model, or equivalently ϕ4 theory. A is a

regular dimensionful function of µ and T , which can be chosen to be a constant to describe the

leading singular behavior. We’ll discuss more about the mapping h(µ, T ) and r(µ, T ) shortly.

Scaling, an important feature of the Ising Gibbs free energy can be expressed as:

G(λr, λβδh) = λβ(δ+1)G(r, h) (3.2)

with well-known critical exponents β and δ. The Z2 symmetry is apparent from the relation:

G(r,−h) = G(r, h) . (3.3)

From Eqs. (3.2) and (3.3) it follows that the function G can be written in terms of an even

function g of a single variable:

G(r, h) = rβ(δ+1)g(hr−βδ) . (3.4)
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where g is multivalued, but a universal scaling function. In the complex plane of its argument

x ≡ hr−βδ the primary Riemann sheet describes the equation of state at high temperatures

T > Tc, i.e., r > 0. We shall denote the value of g on this sheet as g+(x). On the primary

(high temperature) sheet the function is analytic at x = 0. The closest singularities are on

the imaginary x axis and are known as Lee-Yang edge singularities [157, 158] (see also recent

discussions in Refs. [159, 160]). A secondary Riemann sheet describes the low temperature

phase, r < 0. We shall denote the value of g on this sheet as g−(x).

The equivalence property (3.1) and the resulting mapping between (µ, T ) and (h, r) variables

was introduced by Rehr and Mermin and termed “revised scaling”1 in Ref. [162]. In relativistic

field theories, the mapping has been discussed with regard to QCD critical point, e.g., in

Refs. [62,63,118,163–165], and, earlier, in the context of the electroweak transition in Ref. [156].

We will denote the position of the QCD critical point on the baryon-chemical potential-

temperature plane by (µc, Tc). As we shall not be describing the sub-leading singularities,

non-linear terms in ∆T = T − Tc and ∆µ = µ − µc in the mapping functions h(µ, T ) and

1The original version of scaling equation of state by Widom in Ref. [161] mapped r to T −Tc directly,
without allowing for mixing with h, which did not account for the asymmetry on the coexistence line
found in liquid-gas transitions (e.g., discontinuity of susceptibility). This original scaling corresponds,
in the notations used in this chapter, to α2 = 0.
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r(µ, T ) can be ignored. We will use the convention for the coefficients of the linear mapping

introduced in Ref. [63]:

h(µ, T ) = hT∆T + hµ∆µ = −cosα1∆T + sinα1∆µ

wTc sin(α1 − α2)
;

r(µ, T ) = rT∆T + rµ∆µ =
cosα2∆T + sinα2∆µ

ρwTc sin(α1 − α2)
, (3.5)

where we denoted by a subscript T or µ the partial derivative with respect to the corresponding

variable, e.g., hT ≡ ∂h/∂T at fixed µ. The scale factors w and ρ provide absolute and relative

normalization of h and r setting the size and shape of the critical region (see Section. 3.3). The

slopes of the lines h = 0 (r axis) and r = 0 (h axis) on the (µ, T ) plane can be expressed using

angles α1 and α2, as shown in Figure 9:

(
dT

dµ

)
h=0

= −hµ
hT

= − tanα1; (3.6)(
dT

dµ

)
r=0

= − rµ
rT

= − tanα2 . (3.7)

The mapping can also be expressed in terms of the conjugate densities of the QCD variables

(µ, T ) and Ising variables (h, r). The conjugate densities in QCD are the number density

n = (∂P/∂µ)T and the entropy density, s = (∂P/∂T )µ. The conjugate densities in Ising model
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are the magnetization m = (∂G/∂h)r and the Ising entropy density, σ = (∂G/∂h)r. The

mapping between the densities can be expressed as:

m
σ

 =
1

A(rµhT − hµrT )

rT −rµ

hT −hµ


∆n

∆s

 (3.8a)

= A−1wTc

 cosα2 − sinα2

−ρ cosα1 ρ sinα1


∆n

∆s

 (3.8b)

where ∆n = n − nc and ∆s = s − sc where nc and sc are the critical number and entropy

densities in QCD respectively.

Figure 9
The mapping between QCD and Ising variables given by Eq. (3.5). Note that, since the sign

of h is a matter of convention, the mappings with α2 and α2 ± π are essentially equivalent.

The figure is taken from Ref. [63].
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3.2.2 Relating mapping parameters to pressure derivatives

If the equation of state P (µ, T ) is known, one should be able to determine the mapping

parameters. In this Subsection, for further applications, we shall derive expressions which can

be used to do that.

We shall take all derivatives of pressure below on the crossover line, i.e., at h = 0 for r > 0

and keep only the most singular terms. In this Chapter, a subscript with respect to µ or T

implies differentiation with respect to that variable when the other is kept fixed. Below, we

also use indices X and Y to represent either T or µ. We find, at h = 0:

PXY = −AhXhY rβ−βδg
′′
+(0) + . . . ; (3.9a)

PXXX = 3A(βδ − β)h2XrXr
β−βδ−1g

′′
+(0) + . . . ; (3.9b)

PXXY Y = −Ah2Xh2Y rβ−3βδg
′′′′
+ (0)

+2β(δ − 1)(β(δ − 1) + 1)
(
h2Xr

2
Y + hXhY rXrY + h2Y r

2
X

)
rβ−βδ−2g

′′
+(0) + . . . . (3.9c)

The dots represent the terms which are subleading to the terms explicitly written in the limit

r → 0. From the above equations, it is easy to see that

hX = lim
h=0
r→0+

(
PXXr

βδ−β

−Ag′′+(0)

)1/2

; (3.10)

rX = lim
h=0
r→0+

PXXXr

3(β − βδ)PXX
. (3.11)
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Therefore:

tanα1 =
hµ
hT

= lim
h=0
r→0+

Pµµ

PµT
; (3.12)

tanα2 =
rµ
rT

= lim
h=0
r→0+

Pµµµ

PTTT

PTT

Pµµ
. (3.13)

Eq. (3.12) simply means, in particular, that the slope of the contour of critical number

density (n = Pµ) at the critical point is equal to the slope of h = 0. Eq. (3.13) relates the slope

of r = 0 to the ratios of third and second derivatives of pressure evaluated along the cross-over

line. These equations could be compared and contrasted with the expressions obtained by Rehr

and Mermin in Ref. [162] using the discontinuities of the derivatives of pressure along the first-

order line. As noted by Rehr and Mermin [162], mixing leads to two non-trivial consequences

namely the average density at first order phase transition in liquid gas systems ρd = (ρl+ρg)/2

where ρl and ρg are the densities in the liquid and gas phase respectively, becomes singular and

goes as,

ρd = ρc − (2− α)rµg−(0)r
1−α + . . . (3.14)

which is consistent with the experimental observations.The dependence of ρd on rµ is evident

from Eq. (3.14) and is also shown in (Figure 18): Similarly, the derivatives of susceptibility on
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Figure 10: ∆ρ = ρ − ρc along the first-order line in a ϕ4 model described by Eq. (3.43) in

Section. (3.4.1) is shown by thick black curve for rµ < 0 (left), rµ = 0 (middle) and rµ > 0

(right). The axis are scaled by arbitrary units. Notice that ρd−ρc is positive, zero and negative

for rµ < 0 (left), rµ = 0 (middle) and rµ > 0 (right) respectively. The dashed curve is the

spinodal line where the second derivative of pressure with respect to number density ρ vanishes.

Therefore, the region inside the spinodal curve where ∂2P/∂ρ2 < 0 is unstable.

the first-order line also shows the following divergence:

∆
∂ρ

∂µ
= −4β

∂h

∂µ

∂r

∂µ
g
′
−(0±)r

β−1 + . . . (3.15)

(3.16)

and the specific heat at constant volume (or equivalently at constant number density) diverges

as:

Cv

T
= −(2− α)(1− α)

(
∂r

∂T

)2

h=0

f−(0)r
−α + . . . (3.17)
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(
∂r
∂T

)
h=0

can be related to rµ, hµ, hT and rT as follows:

(
∂r

∂T

)
h=0

= rT − hT rµ
hµ

(3.18)

Similarly, the parameters ρ and w in the mapping can also be related to pressure derivatives.

In order to do that we also need an expression for r:

r =

(
−
g
′′
(0)2APµµTT

g′′′′(0)PµµPTT

)− 1
β(δ+1)

. (3.19)

Using that expression in Eqs. (3.10) and (3.11) we can obtain ρ and w by substituting hX and

rX into the following expressions:

ρ =

√
h2µ + h2T
r2µ + r2T

; (3.20)

wTc =

√
r2µ + r2T

|rThµ − rµhT |
. (3.21)

The normalization convention in Ref. [63] which we follow corresponds to A = T 4
c /2. The

angles α1 and α2 do not depend on this normalization whereas ρ and w do. (See next subsection

for more details.) To fix the normalization of h and r we follow the standard convention, also

used in Ref. [63]:

g′−(0
+) = −(−1)β , lim

x→∞+
x−1/δg′±(x) = −1 . (3.22)
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Using equations in this subsection we can determine α1, α2, ρ and w given the EoS as a

function of µ and T . There are many ways of expressing α1, α2, ρ and w in terms of ratios of

pressure derivatives. We chose to present the expressions that treat T and µ variables the most

symmetrically.

Recall that, the two point correlation function of number density is related to baryon sus-

ceptibility as follows

⟨δn2⟩ = T

V

∂2P

∂µ2
(3.23)

and similarly, the two point correlation function of entropy density is similarly related to the

derivatives of pressure as follows:

⟨δs2⟩ = T

V

∂2P

∂T 2
(3.24)

⟨δsδn⟩ = T

V

∂2P

∂T∂µ
(3.25)

Let δx and δy be any two linear combinations of δn and δs. Upon re-expressing the mapping in

terms of the conjugate densities of the two systems, given by Eq. (3.8), we find that the leading

singular behavior of the two point correlations of δx and δy along the coexistence line goes as:

⟨δxδy⟩ ∼ rβ−βδ if δx ̸∝ σ ̸∝ δy (3.26)

⟨δxδy⟩ ∼ rβ−1 if either δx ̸∝ δy ∝ σ or δy ̸∝ δx ∝ σ (3.27)

⟨δxδy⟩ ∼ rβ+βδ−2 if δx ∝ δy ∝ σ (3.28)
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From Eq. (3.26),we note that most of the two point correlations have the same leading singular

behavior which goes as r−γ (γ = β − βδ) along the cross-over line.

3.2.3 Corrections to scaling due to uncertainties in α1, α2, ρ and w

We discussed how to obtain α!, α2, ρ and w when the EoS is known. But for most important

applications of universality of critical phenomenon, the EoS of one of the systems is not known.

However, one may be able to make some informed guesses based on the available information.

In these circumstances, it is important to know the corrections to scaling part of the EoS due

to uncertainties in the parameters. This will be discussed in this subsection.

In the equations given below, the following notations are used:

c12 ≡ cos(α1 − α2) , s12 ≡ sin(α1 − α2) , x ≡ hr−βδ (3.29)

The change in pressure due to small changes in α1, α2, ρ and w are shown below:

• Case1: α2 → α2 + δα2

dPα2 = −r2−αδα2

{
c12
s12

g
′
(x)x+ rβδ−1

[
−2− α

ρs12
g(x)x+

βδ

ρs12
g
′
(x)x2

]}
(3.30)

• Case 2: ρ→ ρ+ δρ

dPρ = −r2−α δρ

ρ

[
−(2− α)g(x) + βδg

′
(x)x

]
(3.31)
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• Case 3:w → w + δw

dPw = −r2−α δw

w

[
−(2− α)g(x) + (βδ − 1)xg

′
(x)
]

(3.32)

• Case 4:α1 → α1 + δα1

dPα1 = −r2−αδα1

{
r1−βδg

′
(x)

ρ

s12
+

[
−(2− α)c12

s12
g(x) +

βδc12
s12

g
′
(x)x

]}
(3.33)

Some special linear combinations of these transformations that are discussed below corre-

spond to an equivalent change of the mapping parameters α1, α2, ρ and w as shown below:

• r → r + vh

This transformation is equivalent to the following change in the mapping parameters:

δα2 = vρs12 , δρ = −vc12ρ2 , δw = vwρc12 , δα1 = 0 (3.34)

This changes pressure by:

∆P = vr2−α+βδ−1
[
(2− α)g(x)x− βδg

′
(x)x2

]
(3.35)
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• h→ h+ vr

This change is equivalent to the following transformation:

δα1 = −v s12
ρ
, δρ = vc12 , δw = 0 , δα2 = 0 (3.36)

Note that δw = 0, which was not expected. The change in pressure due to this transfor-

mation is:

∆P = vr3−α−βδg
′
(x) (3.37)

• While matching the Gibbs free energy of the Ising model to the QCD pressure, the scale

factor A was arbitrary. The choice of A determines the magnitude of w and ρ. P → AP ,

is equivalent to the following transformation

ρ → A
βδ−1
β(δ+1) ρ , w → A− δ

1+δw (3.38)

δ log ρ → βδ − 1

β(δ + 1)
logA , δ logw → − δ

1 + δ
logA (3.39)

Therefore a change of A when accompanied by a change of ρ→ A
− βδ−1

β(δ+1) ρ and w → A
δ

1+δw

leaves the pressure unchanged.
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3.3 The size of the critical region

As discussed before, the mapping parameters determine the size of the critical region. This

region is where the dominant singular contribution to a thermodynamic quantity at the critical

point is larger than the the regular terms. We note that this an ambiguous definition and

depends crucially on the quantity used as a measure for the singularity. Pressure itself doesn’t

diverge at the critical point. However, we could use any of its derivatives which diverge at

the critical point to defined this characteristic region. Here we use the baryon susceptibility,

χ2 = Pµµ as a reasonable measure to describe the size of this region. We shall evaluate the size

of the critical region along the crossover, h = 0, line. The singular part of χ2 is given by, at

h = 0,

χsing
2 ∼ AGµµ(r, 0) ∼ AGhh(r, 0)h

2
µ ∼ Ar−γ

(
s1

wTcs12

)2

∼ A

(
∆µ

ρwTcc1

)−γ ( s1
wTcs12

)2

(3.40)

where s1 = sinα1, c1 = cosα1 and s12 = sin(α1 − α2). Comparing this to the regular contribu-

tion of order χreg
2 ∼ T 2

c , we find for the extent of the critical region in the µ direction:

∆µCR ∼ Tcρwc1

(
s1
√
A

wT 2
c s12

)2/γ

(3.41)

Therefore, while increasing parameters ρ and A increases the size of the critical region, the

effect of increasing the parameter w is the opposite: ∆µCR ∼ w1−2/γ . In the mean-field theory

γ = 1 and ∆µCR is inversely proportional to w. Another quantity that may be used to define
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the critical region is kurtosis, which is related to the fourth derivative of pressure. This has

been done in [108].
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3.4 Mean-field Equation of State

3.4.1 Symmetry and scaling in mean-field theory

If one neglects fluctuations, the equation of state near the critical point can be described

using a mean-field Landau-Ginsburg potential. The pressure, thus is given by the minimum of

this potential, which is a function of the mean-field order parameter, ϕ:

P (µ, T ) = −Amin
ϕ

Ω(ϕ, µ, T ) . (3.42)

We make a simple and useful observation: by changing the variable ϕ→ f(ϕ) we can obtain a

family of potentials Ω̂(ϕ) obeying Ω̂(ϕ) = Ω(f(ϕ)) each of which gives the same pressure. We

shall refer to this property as reparametrization invariance.

Close to the critical point, Ω can be expanded around the critical value of ϕ (chosen to be

ϕ = 0):

Ω(ϕ, µ, T ) = Ω0 − hϕ+
r

2
ϕ2 +

u

4
ϕ4 + . . . , (3.43)

where we eliminated cubic term ϕ3 by a shift of variable ϕ (such an operator or term is called

redundant in renormalization group terminology). Parameters Ω0, h, r and u are analytic

functions of µ and T . The critical point is located at h = 0 and r = 0 (with u > 0). If we
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truncate the expansion at order ϕ4 as in Eq. (3.43) the ϕ-dependent part, Ω − Ω0, possesses

two important properties. The first is the Z2 symmetry:

ϕ→ −ϕ, h→ −h, r → r . (3.44)

The second is scaling:

ϕ ∼ r1/2, h ∼ r3/2, Ω− Ω0 ∼ r2 . (3.45)

This corresponds to the scaling of the Gibbs free energy G in Eq. (3.2) with mean-field exponents

β = 1/2 and βδ = 3/2.

One could be tempted to expand the coefficients h and r in Eq. (3.43) to linear order in ∆T

and ∆µ and identify the mixing parameters α1, α2, etc., by using Eq. (3.5). This, however, is

not entirely correct as it would ignore the fact that the mixing of h and r described by Eq. (3.5)

necessarily violates scaling, since h ∼ r3/2 and r have different scaling exponents. Therefore,

we need also to look at the omitted terms which violate scaling in Eq. (3.43), or more precisely,

provide corrections to scaling of relative order h/r ∼ r1/2 (i.e., rβδ−1). Furthermore, mixing

of h and r also violates Z2 symmetry in Eq. (3.44), i.e., we need also to look at omitted Z2

breaking terms in Eq. (3.43).

Since ϕ ∼ r1/2, omitted higher order terms in Eq. (3.43) represent corrections to scaling.

The leading correction is due to the ϕ5 term. Because in mean-field theory this term is smaller
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by exactly a factor of r1/2 compared to the terms in Eq. (3.43), and also because it violates the

Z2 symmetry in Eq. (3.44) (being odd), this term will affect the mixing of h and r.

3.4.2 The effect of the ϕ5 term

Let us denote the coupling of the ϕ5 term by vu, i.e.,

Ω = Ω0 − h̄ϕ+
1

2
r̄ϕ2 +

u

4
ϕ4 + vuϕ5 +O(ϕ6), (3.46)

where we also changed the notation for the coefficients of the ϕ and ϕ2 terms in anticipation of

them being different from h and r in Eq. (3.5).

To understand the effect of the ϕ5 term on the mixing of h and r we can use reparametriza-

tion invariance of pressure to change the variable ϕ in such a way as to eliminate the ϕ5 term

from Ω. This can be achieved by the following transformation:

ϕ→ ϕ+ v
( r̄
u
− ϕ2

)
, (3.47)

which eliminates ϕ5 and as well as ϕ3 term at order up to r5/2:

Ω =

(
Ω0 −

vh̄r̄

u

)
−
(
h̄− vr̄2

u

)
ϕ+

( r̄
2
+ vh̄

)
ϕ2 +

u

4
ϕ4 +O(ϕ6, r3) , (3.48)
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where we kept only terms up to order r5/2, since we are interested in the leading correction to

scaling. From Eq. (3.48) we can now read off the parameters h and r:

h = u−1/4

(
h̄− vr̄2

u

)
= u−1/4h̄+O(r̄2), (3.49)

r = u−1/2
(
r̄ + 2vh̄

)
, (3.50)

which match Eq. (3.48) onto a mean-field potential without leading asymmetric (Z2-breaking,

non-Ising) corrections to scaling. The additional rescaling ϕ→ u−1/4ϕ was applied to bring the

potential to the canonical form:1

Ω = −hϕ+
r

2
ϕ2 +

1

4
ϕ4. (3.51)

The scaling function g(x) corresponding to this potential via G = minϕΩ = r2g(hr−3/2) (see

Eq. (3.4)) satisfies

x+ g′(x) + g′3(x) = 0, (3.52)

which agrees with the normalization in Eq. (3.22). Therefore, parameters h and r in Eqs. (3.49)

and (3.50) are the parameters which appear in the mapping equations (3.5).

1The rescaling does not affect the slopes of h = 0 or r = 0 (angles α1 and α2), but needs to be taken
into account when calculating ρ and w.
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Note that the main effect of the asymmetric corrections to scaling is to modify r̄ in Eq. (3.50)

by a term linear in h̄, which has direct effect on the angle α2 determining the slope of the r = 0

axis. The slope of the h = 0 axis is not affected as the shift of h̄ in Eq. (3.49) is quadratic in r̄.

3.4.3 Direct relation to derivatives of the potential

It is also useful to relate mapping parameters hX and rX , where X = T or µ, directly

to the Ginzburg-Landau potential Ω. The relation can be obtained straightforwardly from

Eqs. (3.9a-3.9c) using

PXX = −ΩXX +Ω2
XϕΩ

−1
ϕϕ , (3.53)

PXXX = −ΩXXX − 3Ω−2
ϕϕΩXϕ(ΩXϕΩXϕϕ − ΩϕϕΩXXϕ) + Ω3

ϕXΩ−3
ϕϕΩϕϕϕ . (3.54)

To simplify the expressions we shall first consider potential Ω̂ obtained from Ω by bringing it

into the “Ising” form in Eq. (3.43) with no ϕ3 or ϕ5 terms (up to order r5/2). We showed that

this can be always achieved by a reparametrization as in Eq. (3.47), Eq. (3.48). In this case,
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Ω̂ϕϕϕ = 0 on the h = 0 line along which we take the limits in Eqs. (3.10), (3.11) and expressions

simplify:

tanα1 =
Ω̂ϕµ

Ω̂ϕT

; (3.55)

tanα2 =
Ω̂ϕϕµ

Ω̂ϕϕT

; (3.56)

ρ =

(
Ω̂ϕϕϕϕ

6

)1/4
√√√√ Ω̂2

ϕµ + Ω̂2
ϕT

Ω̂2
ϕϕµ + Ω̂2

ϕϕT

; (3.57)

wTc =

(
Ω̂ϕϕϕϕ

6

)1/4
√

Ω̂2
ϕϕµ + Ω̂2

ϕϕT

|Ω̂ϕµΩ̂ϕϕT − Ω̂ϕT Ω̂ϕϕµ|
. (3.58)

Note that in the mean-field theory these expressions are analytic at the critical point and can be

simply evaluated at the critical point without taking a limit. This is in contrast to Eqs. (3.10)

and (3.11) where the derivatives of pressure are singular and a careful limit has to be taken to

cancel singularities.

One can then generalize these expressions to arbitrary potential (Ωϕϕϕ ̸= 0 at h = 0) by

observing that combinations

ΩϕX , ΩϕϕX −
ΩϕϕϕϕϕΩϕX

10Ωϕϕϕϕ
, and Ωϕϕϕϕ, (3.59)
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are reparametrization “covariant” to leading order in r in the sense that under ϕ → f(ϕ) they

transform multiplicatively by factors f ′, (f ′)2 and (f ′)4, respectively. Thus, we can drop ‘hats’

and replace

Ω̂ϕϕX → ΩϕϕX −
ΩϕϕϕϕϕΩϕX

10Ωϕϕϕϕ
(3.60)

in Eqs. (3.55-3.58) to obtain general formulas applicable to any potential. Note that the last

term in Eq. (3.60) corresponds to the last term in Eq. (3.50) describing the mixing of r and h

due to the ϕ5 term.
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3.5 Mapping parameters for the van der Waals equation of state

In this Section, to illustrate the use of the formalism developed in Section 3.4 we shall derive

the equations for the mapping parameters in the van der Waals equation of state. The well-

known equation of state expresses pressure as a function of particle density n and temperature

T :

P =
nT

1− bn
− an2 , (3.61)

where a and b are van der Waals constants corresponding to the strength of the particle attrac-

tion and the hard-core volume, respectively. The van der Waals equation of state possesses a

critical point at

nc =
1

3b
, Tc =

8a

27b
, Pc =

a

27b2
. (3.62)

The equation of state (3.61) can be expressed in the mean-field (Ginzburg-Landau) form

P (µ, T ) = −Amin
n

Ω(n, T, µ) , (3.63)

where

AΩ(n, T, µ) = µn− F (T, n) (3.64)
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is expressed in terms of the free energy F (n, T ), which is the Legendre transform of P (µ, T ):

F (n, T ) = nµ(n, T )− P (µ(n, T ), T ) . (3.65)

In Eq. (3.65), but not in Eq. (3.64), the chemical potential µ(n, T ) must be determined as a

solution to n = ∂P/∂µ. This can be done by integrating the following set of partial differential

equations:

(
∂µ

∂n

)
T

=
1

n

(
∂P

∂n

)
T

; (3.66)(
∂µ

∂T

)
n

=
1

n

(
∂P

∂T

)
n

− s

n
; (3.67)(

∂s

∂T

)
n

=
cvn

T
, (3.68)

where cv is the heat capacity per particle (e.g., 3/2 for monoatomic gas). Using the values of µ

and s at the critical point, µc and sc, as initial conditions one finds

µ(n, T ) = T

(
log

2bn

1− bn
− log

2bnc
1− bnc

)
+

T

1− bn
− Tc

1− bnc

−2a(n− nc)− cvT log
T

Tc
+

(
cv −

sc
nc

)
(T − Tc) + µc . (3.69)

Expanding the potential Ω one obtains

AΩ(n, T, µ) = AΩ(nc, Tc, µc)−
(
∆µ−

(
3

2
− 3bsc

)
∆T

)
η +

27b

8
∆Tη2 +

9ab2

8
η4 − 27ab3

40
η5 + . . . ,(3.70)
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where η = n− nc, ∆T = T − Tc and ∆µ = µ− µc. Comparing to Eq. (3.46) we identify

Ah̄ = ∆µ−
(
3

2
− 3bsc

)
∆T, (3.71)

Ar̄ =
27b

4
∆T, (3.72)

Au =
9ab2

2
, v = −3b

20
. (3.73)

Using Eqs. (3.49), (3.50) one then finds

h = A−3/4

(
9ab2

2

)−1/4(
∆µ−

(
3

2
− 3bsc

)
∆T

)
(3.74)

r = −A−1/2 3

10

(
9a

2

)−1/2

(∆µ+ 3 (b sc − 8)∆T ) . (3.75)

Using Eqs. (3.12), (3.13), (3.20) and (3.21) one finally obtains

tanα1 = −
(
3

2
− sc
nc

)−1

; (3.76)

tanα2 = −
(
24− sc

nc

)−1

; (3.77)

ρ = 5

(
3Pc

T 4
c

)1/4
√

4sc (sc − 3nc) + 13n2c
sc (sc − 48nc) + 577n2c

; (3.78)

w =
1

40

(
T 4
c

3Pc

)3/4
√
sc
nc

(
sc
nc

− 48

)
+ 577 . (3.79)

One can use Eq. (3.8) to rewrite the mapping in terms of the densities. From this mapping,

we learn that the "magnetization" like density in van der waals gas is a linear combination of

∆n and ∆s.
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3.6 Critical point near a tricritical point

A tricritical point arises in many systems where the order of the finite-temperature transition

from broken to restored symmetry phase depends on an additional thermodynamic parameter,

such as pressure or chemical potential. The point where the order of the transition changes

from second to first is a tricritical point. There are reasons to believe QCD to be one of the

examples of such a theory [9, 20]. A nonzero value of a parameter which breaks spontaneously

broken symmetry explicitly (quark mass in QCD) removes the second order phase transition

and replaces it with analytic crossover, while the first order transition then ends at a critical

point.

We shall apply mean-field theory near the tricritical point. The potential needed to describe

the change from a first to second order transition needs to include a Φ6 term which becomes

marginal in d = 3. Therefore, mean field theory should be applicable in d = 3 if one is willing,

as we are, to neglect small logarithmic corrections to scaling.1

As in Section 3.4 we want to express the pressure as a minimum of the Ginzburg-Landau

potential Ω. We can do that using the Legendre transform of pressure P with respect to mq:

V (Φ, µ, T ) = −P (µ, T,mq(Φ)) +mq(Φ)Φ , (3.80)

1For example, if these corrections have negligible consequences for applications, such as heavy-ion
collisions or lattice QCD simulations. To be rigorous, we can also formally consider d > 3. In fact,
our analysis near the critical point is constrained by an even stronger condition, since the upper critical
dimension in this case is d = 4 and, in practice, we work in d = 4− ϵ > 3 when we study the effects of
fluctuations in Section 3.8.
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where mq(Φ) is the solution of

∂P/∂mq = Φ, (3.81)

which means Φ is the chiral condensate (times Nf – the number of light quarks).

It is easy to see that the potential Ω defined as

AΩ(Φ, µ, T,mq) = V (Φ, µ, T )−mqΦ (3.82)

is related to pressure by

P (µ, T,mq) = −Amin
Φ

Ω(Φ, µ, T,mq) (3.83)

where we chose the normalization constant A to match Eq. (3.42).

The potential V has to be symmetric under Φ → −Φ (this is a discrete subgroup of the con-

tinuous chiral symmetry) and to describe a tricritical point we need terms up to Φ6. Expanding

V we find:

V (Φ, µ, T ) = V0 +
a

2
Φ2 +

b

4
Φ4 +

c

6
Φ6 + . . . , (3.84)
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where a, b and c are functions of T and µ. The tricritical point occurs when a = b = 0 with

c > 0. If we truncate V at order Φ6 as in Eq. (3.84) the Φ-dependent part of V and Ω, has the

following scaling property:

Φ ∼ a1/4, b ∼ a1/2, mq ∼ a5/4 V − V0 ∼ a3/2 . (3.85)

The minimum value of Ω in Eq. (3.83) is achieved at Φ satisfying, to lowest order in a→ 0,

mq =
∂V

∂Φ
= aΦ+ bΦ3 + cΦ5 . (3.86)

At nonzero mq the critical point occurs when both second and third derivatives of Ω vanish at

the minimum given by Eq. (3.86). I.e.,

∂2V

∂Φ2
=
∂mq

∂Φ
= a+ 3bΦ2 + 5cΦ4 = 0. (3.87)

and

∂3V

∂Φ3
= 6bΦ+ 20cΦ3 = 0. (3.88)

Eqs. (3.86), (3.87) and (3.88), can be solved simultaneously to find the critical values of Φ, a

and b for a given mq:

Φc =

(
3mq

8c

)1/5

, ac = 5cΦ4
c , bc = −10c

3
Φ2
c . (3.89)
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As a function of mq, the trajectory (mq, ac(mq), bc(mq)) corresponds to the line of critical

points on the edges of “wings” – coexistence surfaces in the mq, T , µ phase diagram (see,

e.g., Figure 12 for illustration). Note that critical values of parameters in Eq. (3.89) scale as

Φc ∼ m
1/5
q , ac ∼ m

4/5
q and bc ∼ m

2/5
q consistent with the scaling in Eq. (3.85). We can now

expand Ω around that solution:

AΩ(Φ;µ, T,mq) = AΩ(Φc;Tc, µc,mq)+(∆aΦc+∆bΦ3
c)ϕ+

1

2
(∆a+3∆bΦ2

c)ϕ
2+

1

4

(
20cΦ2

c

3
+ ∆b

)
ϕ4

+∆bΦcϕ
3 + cΦcϕ

5 +
c

6
ϕ6 , (3.90)

where ∆a = a−ac, ∆b = b− bc and ϕ = Φ−Φc. We can now compare this expansion to the ϕ4

theory in the previous section. The redundant term ϕ3 can be eliminated, as usual, by a shift

of ϕ. Comparing with Eq. (3.46) we find:

A h̄ = −(∆a+∆bΦ2
c)Φc , (3.91)

A r̄ = ∆a+ 3∆bΦ2
c , (3.92)

Au =
20Φ2

c

3
, v =

3

20Φc
. (3.93)
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The ϕ5 term causes mixing of h̄ and r̄ as in Eq. (3.50). Using Eqs. (3.49) and (3.50) to linear

order in ∆a and ∆b (i.e., linear order in ∆T and ∆µ) we find

Ah = −u−1/4
(
∆a+∆bΦ2

c

)
Φc,

A r = u−1/2

(
7

10
∆a+

27

10
∆bΦ2

c

)
.

Since a and b are analytic functions of T and µ near the critical point we can expand to linear

order:

∆a = aT∆T + aµ∆µ ;

∆b = bT∆T + bµ∆µ . (3.94)

Using Eqs. (3.55), (3.56), we determine the slopes at the critical point:

tanα1 = −
(
dT

dµ

)
h=0

=
hµ
hT

=
aµ + bµΦ

2
c

aT + bTΦ2
c

; (3.95)

tanα2 = −
(
dT

dµ

)
r=0

=
rµ
rT

=
aµ + 27bµΦ

2
c/7

aT + 27bTΦ2
c/7

. (3.96)
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In general, the two slopes are different and non-universal (i.e., depend on the non-universal

coefficients aµ, aT , etc. However, the limit mq → 0 is special. In this limit the two slopes

approach each other with the difference vanishing as Φ2
c ∼ m

2/5
q (see Eq. (3.89)):

tanα1 − tanα2 =

(
dT

dµ

)
r=0

−
(
dT

dµ

)
h=0

=
20

7a2T

∂(a, b)

∂(µ, T )
Φ2
c +O(Φ4

c)

=
20

7a2T

∂(a, b)

∂(µ, T )

(
3

8c

)2/5

m2/5
q +O(m4/5

q ) ,(3.97)

where ∂(a, b)/∂(µ, T ) = aµbT − aT bµ is the Jacobian of the mapping in Eq. (3.94).

The relative orientation of the slopes, i.e., the sign of the slope difference, is determined

by the sign of the Jacobian of the (a, b) → (µ, T ) mapping. It is positive in the case of the

mapping without reflection and negative otherwise. In that sense, it is topological. We show

how to determine the sign on Figure 11 by comparing the phase diagram in the vicinity of

the tricritical point in (a, b) coordinates with the standard scenario of the QCD phase diagram

in (µ, T ) coordinates. We see that the two graphs are topologically the same: the first order

transition is to the right of the tricritical point and the broken (order) phase is below the

tricritical point. This means that the Jacobian of the (a, b) to (µ, T ) is positive (no reflection

is involved). This means that, since h = 0 slope is negative, the r = 0 slope must be less steep,

or if α1 itself is small, α2 could be slightly negative. We shall see in the next Section that in

the random matrix model both slopes are negative and small (i.e., α1 > α2 > 0 in the model).
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Figure 11: Left: The phase diagram of the Φ6 theory described by Eq. (3.90) in the a − b

plane. Right: QCD phase diagram in the µ−T plane. The blue and red lines correspond to the

first-order and second-order phase transitions at mq = 0 respectively. They join at a tricritical

point. The green line represents the first-order phase transition at mq ̸= 0 ending in a critical

point. The symmetry broken (ordered) phase is in the lower left corner in both cases. The

slopes of the h = 0 and r = 0 lines at the critical point are indicated by the dashed and dotted

lines respectively.

The Jacobian in Eq. (3.125) can be rewritten in a more geometrically intuitive form in terms

of the difference of slopes of a = 0 and b = 0 on the (µ, T ) phase diagram of QCD at mq = 0:

1

a2T

∂(a, b)

∂(µ, T )
=

(
∂b

∂a

)
µ

((
∂T

∂µ

)
b=0

−
(
∂T

∂µ

)
a=0

)
. (3.98)

The a = 0 slope is, of course, the slope of the chiral phase transition line at the tricritical point.
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One can also determine the dependence of ρ and w on mq using Eqs. (3.57) and (3.58).

Using Eq. (3.90) we find, in the limit of mq → 0:

√
Ω

2

ϕµ +Ω
2

ϕT ∼ m1/5
q ,

√
Ω

2

ϕϕµ +Ω
2

ϕϕT ∼ m0
q ,

ΩϕµΩϕϕT − ΩϕµΩϕϕT ∼ m3/5
q , Ωϕϕϕϕ ∼ m2/5

q ,

and thus

ρ ∼ m3/10
q , w ∼ m−1/2

q . (3.99)
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3.7 Random Matrix Model

To illustrate the general results derived in the previous section we consider the random

matrix model (RMM) introduced by Halasz et al in Ref. [48] in order to describe the chiral

symmetry restoring phase transition in QCD. This is a mean-field model which has features

similar to the effective Landau-Ginsburg potential near a tricritical point discussed in the

previous section. The QCD pressure in this model is given by

P (µ, T,mq) = −N min
ϕ

ΩRMM (Φ;µ, T,mq) , (3.100)

where

ΩRMM (Φ;µ, T,mq) = Φ2 − 1

2
ln
{[

(Φ +mq)
2 − (µ+ iT )2

]
.
[
(Φ +mq)

2 − (µ− iT )2
]}

(3.101)

and N = ninstNf where ninst ≈ 0.5fm−4 is the typical instanton number 4-density and Nf = 2

is the number of flavors of light quarks. The units for T, µ and mq here are such that T = 1,

µ = 1 and mq = 1 in these units correspond to approximately 160MeV, 2300MeV and 100MeV

respectively (as in Ref. [48]).

To use the results of the previous section we identify

AΩ(Φ;µ, T,mq) = N ΩRMM (2Φ;µ, T,mq) , (3.102)

which takes into account that ∂ΩRMM/∂mq = 2Φ.
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The equation of state that follows from this potential, ∂Ω/∂Φ = 0, is a fifth order polynomial

equation. The phase diagram resulting from this potential is shown in Figure 12.

Figure 12: The phase diagram for the random matrix model in Ref. [48]. On the mq = 0 plane,

the thick and the thin lines represent the first-order and the second-order phase transitions

respectively. Upon turning on mq, the tricritical point where these two lines meet turns into a

line of Ising-like critical points (µc(mq), Tc(mq)). For the discussion that follows, we fix mq to

a particular value and obtain the map from (µ− µc(mq), T − Tc(mq)) to (h, r) variables.
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The tricritical point for this model is at (µ3, T3) =
(√

−1 +
√
2,
√

1 +
√
2
)
/2. Expanding

the potential given by Eq. (3.101) we find

N −1AΩ(Φ;µ, T ) = N −1AΩ(0;µ, T ) +
a

2
Φ2 +

b

4
Φ4 +

c

6
Φ6 − dΦ+ . . . , (3.103)

where

a =
1

2

(
µ2 − T 2

(µ2 + T 2)2
+ 1

)
; b =

µ4 + T 4 − 6µ2T 2

8 (µ2 + T 2)4
;

c =

(
µ2 − T 2

) (
µ4 + T 4 − 14µ2T 2

)
32 (µ2 + T 2)6

; d = mq
T 2 − µ2

(T 2 + µ2)2
,

and dots denote terms such as Φ8, mqΦ
3, etc., which are of order a2 and smaller, negligible

compared to the terms kept (which are of order a3/2), according to the scaling in Eq. (3.85).

For a given mq, the critical values Φc, µc and Tc are obtained by simultaneously requiring

the first, second and third derivatives of Ω with respect to Φ to vanish. As mq → 0,

µc(mq) = µ3 +O(m2/5
q ) , Tc(mq) = T3 +O(m2/5

q ) , Φc(mq) = (6mq)
1/5 +O(m3/5

q )(3.104)

Using Eq. (3.97), we can now obtain the slope difference:

tanα1 − tanα2 =
20

7
(2 +

√
2)(6mq)

2/5 +O(m4/5
q ) . (3.105)
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As mq → 0, the lines h = 0 and r = 0 become nearly parallel to each other with the difference

in their slopes being proportional to m
2/5
q as predicted in the previous section. Comparing

Eq. (3.105) to Eq. (3.97), one can see that ∂(a, b)/∂(µ, T ) is positive, as expected.

Using more general (finite mq) Eqs. (3.55-3.58,3.60) we computed the values for the param-

eters α1, α2, ρ and w at mq = 0.05 (which corresponds to quark masses of 5 MeV in the units

of Ref. [48]) in RMM:

α1 ∼ 13◦, α2 ∼ 1◦, ρ ∼ 0.5, w ∼ 1.4 . (3.106)
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Figure 13: Contour plots of susceptibilities χ2 = Pµµ, χ3 = Pµµµ and χ4 = Pµµµµ near the

critical point corresponding to mq = 0.05 in the RMM. The black and white dots represent

the critical point and the tricritical point (at mq = 0) respectively. The dotted and the dashed

lines are the r = 0 and h = 0 lines respectively. The slope of r = 0 is negative for this value

of mq. The negative valued regions are red and positive valued regions are blue. Note that the

value of χ3 along the h = 0 line on the cross-over side is negative.



83

The contour plots of singular pressure derivatives χ2 = Pµµ, χ3 = Pµµµ and χ4 = Pµµµµ

(baryon number cumulants, or susceptibilities, of second, third and fourth order) around the

critical point at small quark mass are shown in Figure 13. The following observations can be

made:

• The slopes of h = 0 and r = 0 are both negative and h = 0 axis (coexistence line) is

steeper than than r = 0 axis.

• ρ < w, which is in qualitative agreement with the small mq scaling in Eqs. (3.99).

• The signs of the cumulants χ2 and χ4 on the crossover side of h = 0 line are in agreement

with Eqs. (3.9a) and (3.9c) with g′′+(0) = −1 < 0 and g′′′′+ (0) = 6 > 0 according to

Eq. (3.52).

• Most interestingly, the sign of χ3 on the crossover side of h = 0 line, according to

Eq. (3.9b), is determined by the sign of −rµ. This is clearly seen in Figure 13b where

χ3 < 0 in accordance to rµ > 0 (α2 > 0). If the same holds true in QCD, this may have

phenomenological consequences as the sign of cubic cumulant (skewness) is measured in

heavy-ion collisions (see also discussion in Section 3.9).

RMM is a model of QCD, capturing some of its physics, such as chiral symmetry breaking,

and missing other features, such as confinement. Its results should be treated with caution to

avoid mistaking artifacts for physics. The behavior of the equation of state near the tricritical

point is, however, subject to universality constraints, which we verified are satisfied by the

model. The numerical values for the mapping parameters we obtained in Eq. (3.106) should be
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Figure 14: The contours of χ4 obtained using RMM EoS(left) are compared with the contours

of χ4 obtained using ϕ4 theory mapped to RMM(right) for mq = 5MeV. T3 ≈ 120MeV and

µ3 = 700MeV are the values of the temperature and chemical potential at the tri-critical point in

the chiral limit. The same contours are shown in both the plots. The striking similarity between

the plots in the region of phase space shown above demonstrates that the critical region, where

the singular part of χ4 dominates over the regular part is significant. The description for the

dots and the lines are same as in Figure 13.

treated as estimates, or informed guesses. These parameters are not universal. However, their

dependence on mq is universal, and is manifested in RMM (e.g., the slope difference is small

and ρ < w in accordance with Eqs. (3.99)). Since no other information about these parameters

is available as of this writing, we believe our estimates in Eq. (3.106) could be helpful for

narrowing down the parameter domain of the approximate equations of state constructed along

the lines of Ref. [63].
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3.8 Beyond the mean-field theory

In Sections 3.4-3.7, we discussed the mean-field theory near a critical point and derived

scaling relations for tanα1− tanα2, ρ and w in the mq → 0 limit in Eqs. (3.97) and (3.99). The

upper critical dimension near the critical point is d = 4. This means that in three dimensions,

the contribution of fluctuations becomes important as they become correlated at larger length

scales. This leads to the breakdown of mean-field theory sufficiently close to the critical point.

Ginsburg criterion provides an estimate for the range of the region where this breakdown

happens. This is obtained by comparing the strength of the one-loop correction (infrared-

divergent for d < 4) to the coupling to its tree-level value as shown in Figure 15.

~

Figure 15: The one-loop contribution of fluctuations compared to the tree-level coupling. The

fluctuation contribution diverges as ξϵ, where ϵ = 4− d. The mean-field approximation breaks

down at sufficiently large ξ when the contribution of fluctuations is no longer negligible. The

scaling of u ∼ Φ2
c ∼ m

2/5
q follows from Eq. (3.90).
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Since the mean-field limit is essentially weak-coupling limit, a quicker argument is to com-

pare the coupling u expressed in dimensionless units, i.e., uξϵ, where ϵ = 4 − d is the mass

dimension of u, to unity. Since in the mean-field region h ∼ ξ−3 and r ∼ ξ−2, the boundary

of the Ginsburg region where the mean-field theory breaks down is parametrically given by

hG ∼ m
6/5
q , rG ∼ m

4/5
q in d = 3. Note that the Ginzburg region is parametrically small for

small mq. It is also parametrically smaller than the distance between the critical and the tri-

critical points bc ∼ m
2/5
q , Eq. (3.89). The characteristic size and shape of the Ginzburg region

is illustrated in Figure 16.

Figure 16: Schematic representation of the scaling of various parameters characterizing the

location, the size and the shape of the Ginzburg region (shown in blue) around the QCD

critical point in the T vs µ plane for small quark mass mq. The empty circle denotes the

location of the tricritical point at mq = 0. The dotted and dashed lines are the r = 0 and h = 0

axes, respectively, with an angle between them vanishing as m2/5
q in the chiral limit.
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In this section we will study whether the effects of the fluctuations modifies our mean-field

results in the Ginzburg region. We will use ϵ expansion to order ϵ2 to address this question.

The focus will be on the key result from the previous sections on the – the convergence of the

slope angles α1 and α2 in the chiral limit mq → 0 described by Eq. (3.97).

We notice that that an additional mixing of r−h axes, that is not present in the mean-field

theory is required to change the direction of r = 0 axis relative to the h = 0 axis. This requires

contributions which break Z2 symmetry. The contributions of the fluctuations which modify the

expression for r̄ in Eq. (3.92), for example the contibution to ϕ2 term in the effective potential

Ω from a tadpole diagram doesn’t do this. These corrections simply lead to modification of the

scaling exponent βδ−β (see also Ref. [166,167]). The correction to scaling exponents, obviously,

doesn’t change the condition r = 0Furthermore, r−h mixing violates scaling, since h ∼ rβδ and

thus we need terms which violate scaling by rβδ−1. In mean-field theory this corresponds to

scaling violations of order r1/2, which are produced by terms in the potential Ω which scale as

r5/2, i.e., operators of dimension 5. We have already seen how operator ϕ5 induces r−h mixing

in Section 3.4. Here we need to generalize this discussion to include effects of fluctuations.

When ϕ is a fluctuating field, in d = 4, the scaling part of the potential Ω also includes

additional dimension 4 operator, (∇ϕ)2, i.e.,

Ω =
1

2
(∇ϕ)2 + r̄

2
ϕ2 +

u

4
ϕ4 − h̄ϕ+ . . . , (3.107)
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where ellipsis denotes higher-dimension operators. Unlike in the mean-field theory, when fluctu-

ations of ϕ are considered there are two Z2 breaking terms: ϕ5 (which was present in mean-field

theory) and ϕ2∇2ϕ. We shall see that one special linear combination of these terms has the

scaling property needed to induce r − h mixing when d < 4.

We make the following observation. The variable transformation ϕ → ϕ + ∆ϕ, where

∆ϕ = −v(ϕ2− r̄/u) similar to Eq. (3.47) cancels a certain linear combination of ϕ5 and ϕ2∇2ϕ,

while introducing an additional ϕ2 term:

∆Ω = ∆ϕ
∂Ω

∂ϕ
= −v

(
uϕ5 − ϕ2∇2ϕ

)
+ vh̄ϕ2 + . . . , (3.108)

In the above equation, ellipsis denotes terms which do not affect the mapping (being nonlinear

in r̄ or simply total derivatives). Therefore, the effect of the perturbation vV3, where

V3 = uϕ5 − ϕ2∇2ϕ , (3.109)

is equivalent to the shift r̄ → r̄ + 2vh̄. The correction to scaling induced in G due to a

perturbation v3V3 can be absorbed by “revised scaling”

G(r̄, h̄) = r̄β(δ+1)
(
g(h̄r̄−βδ) + v3r̄

∆3g3(h̄r̄
−βδ)

)
+ . . . = rβ(δ+1)g(hr−βδ) + . . . , (3.110)



89

where

r = r̄ + 2v3h̄ and h = h̄. (3.111)

This property also guarantees [168,169] that operator V3 is an eigenvector of the RG matrix of

anomalous dimensions which mixes uϕ5 and ϕ2∇2ϕ.

The corresponding correction-to-scaling exponent is given by [168,170]

∆3 = βδ − 1 = 1/2 +O(ϵ2) , (3.112)

which is simply the difference between h and r scaling exponents, as expected, since V3 induces

r − h mixing.

The other eigenvalue of the anomalous dimension matrix is

∆5 = 1/2 + ϵ+O(ϵ2) , (3.113)

and the corresponding eigenvector is

V5 ≡ uϕ5 − (10S5/3)ϕ
2∇2ϕ. (3.114)

The mixing parameter S5 has been calculated in Ref. [168]:

S5 = −ϵ/108 +O(u), (3.115)
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where, consistent with our interest in the mq → 0 limit, we assumed that u≪ ϵ, since u ∼ m
2/5
q .

The eigenvalue degeneracy is lifted at one-loop order, however, the mixing only appears at two-

loop order due to the sunset diagram shown in Figure 17. Despite the diagram being of order

ϵ2, the mixing, i.e., S5, is of order ϵ2/(∆5 −∆3) = O(ϵ).

Figure 17: The two-loop diagram responsible for the mixing of ϕ5 and ϕ2∇2ϕ operators.

The values of the critical exponents, β, δ in the 3D Ising model and also the leading asym-

metric correction to scaling are known to high precision from conformal bootstrap calcula-

tions [171]. Using the values given for the scaling dimensions presented in Table-II of [171] we

compute, ∆3 = βδ − 1 ≈ 0.56 and ∆5 ≈ 1.443. Prior to calculation of exponents using confor-

mal bootstrap, the exponents β and δ have been determined using different methods, including

experimental [172–175]. However, before the bootstrap calculations, the exponent ∆5 was less

known, with ϵ expansion estimates showing notoriusly poor convergence. Typically one found

∆5 ≈ 1.3− 1.6 from these earlier calculations [168,176–178].
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The operator V5 does not (and cannot, in d < 4) change the mixing of r and h because its

scaling dimension, ∆5 is different from βδ − 1. The corrections to scaling due to operator V5

show up, as corrections to scaling generally do, in the form:

G(r, h) = rβ(δ+1)
(
g(hr−βδ) + v5r

∆5g5(hr
−βδ)

)
. (3.116)

Since ∆5 > ∆3 the corrections to scaling from V5 are significantly suppressed compared to the

correction accounted for by revised scaling in Eq. (3.110).

In the purely mean-field theory the operator ϕ2∇2ϕ is essentially zero (there is no spatial

dependence) and, therefore, the coefficient v3 is undefined. In this case, however, we can

completely absorb the ϕ5 term by revised scaling as we have described in Section 3.2. On the

other hand, when ϕ is a spatially-varying field and its fluctuations are important, we can only

absorb the linear combination V3, and not V5 (in contrast to the mean-field theory where the

two operators are essentially identical and equal uϕ5). The coefficient v3 of the operator V3

which determines the revised scaling mixing depends on the coefficients of the terms ϕ5 and

ϕ2∇2ϕ.

Let us denote the contribution of the operators ϕ5 and ϕ2∇2ϕ to Ω in Eq. (3.107) as ∆ΩA,

and denote the coefficients of uϕ5, ϕ2∇2ϕ and their linear combinations V3 and V5 so that

∆ΩA = w5uϕ
5 − w3ϕ

2∇2ϕ = v3V3 + v5V5. (3.117)
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The coefficient v3 responsible for the revised scaling is given by:

v3 = (1− 10S5/3)
−1 (w3 − 10S5w5/3) , (3.118)

while v5 = (1− 10S5/3)
−1 (w5 − w3).

For small mq, we have already determined the coefficient of the ϕ5 term (in d = 4 mean-field

theory) by expanding the Φ6 potential in powers of ϕ = Φ− Φc in Eq. (3.90), see Eq. (3.93):

w5 =
3

20Φc
∼ m−1/5

q . (3.119)

To find the coefficient of the ϕ2∇2ϕ we need to consider fluctuating, i.e., spatially varying

field Φ and the corresponding potential in Eq. (3.107). For small mq, the largest contribution

to ϕ2∇2ϕ term comes from the expansion of higher-dimension term Φ2(∇Φ)2, and therefore w3

is vanishing as Φc ∼ m
1/5
q in the mq → 0 limit. Hence w5 ∼ m

−1/5
q ≫ w3 ∼ m

1/5
q . Thus, for

m
2/5
q ≪ ϵ≪ 1, the dominant contribution to v3 in Eq. (3.118) comes from w5 and, therefore,

v3 = −S5(ϵ)
2Φc

+O(ϵ2) ∼ ϵm−1/5
q . (3.120)

Using Eq. (3.111) we can now determine the O(ϵ) correction to the slope difference:

hµ
hT

− rµ
rT

=
h̄µ

h̄T
− r̄µ + 2v3h̄µ

r̄T + 2v3h̄T
=

(
h̄µ

h̄T
− r̄µ
r̄T

)(
1 + 2v3

h̄T
r̄T

)−1

. (3.121)
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From Eqs. (3.91) and (3.92) we conclude that

h̄µ

h̄T
− r̄µ
r̄T

=
2

a2T

∂(a, b)

∂(µ, T )
Φ2
c +O(Φ4

c) , (3.122)

and that, to leading order in Φc ∼ m
1/5
q , h̄T /r̄T = −Φc. Substituting into Eq. (3.121) we find

hµ
hT

− rµ
rT

=
2

a2T

∂(a, b)

∂(µ, T )
(1 + S5(ϵ) +O(ϵ2))Φ2

c +O(Φ4
c) . (3.123)

We conclude that, at two-loop order, fluctuations do not modify the exponent m2/5
q of the

slope difference of r = 0 and h = 0 given by Eq.(3.122), but change the coefficient by an amount

O(ϵ). To summarize, the leading (and next-to-leading) singular part of QCD pressure can be

expressed as

Psing(µ, T ) = −Ar2−α
(
g(hr−βδ) + v5r

∆5g5(hr
−βδ)

)
, (3.124)

where h and r are given by the map in Eq. (3.5). The leading behavior of the slope difference

of r = 0 and h = 0 in the limit of small quark masses is given by

tanα1 − tanα2 =

(
dT

dµ

)
r=0

−
(
dT

dµ

)
h=0

=
2

a2T

∂(a, b)

∂(µ, T )

(
3

8c

)2/5

(1 + S5(ϵ) +O(ϵ2))m2/5
q +O(m4/5

q )

(3.125)
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Note that in the limit ϵ = 0 this result does not agree with Eq. (3.97) in the mean-field theory.

This is because in this limit ∆5 = ∆3 and the second term in Eq. (3.124) for pressure can, and

should, be absorbed via revised scaling, modifying the slope of the r = 0 line (i.e., although v3

is not well-defined in the mean-field limit, v3 + v5 = w5 is).

Thus, we have verified the robustness of our main result, α1 − α2 ∼ m
2/5
q , to fluctuation

corrections up to two-loop order. This should not be unexpected since the scaling m
2/5
q is

related to the tricritical scaling exponents (δt = 5) which are unaffected by fluctuations in

spatial dimension d = 3 and above.
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3.9 Summary, outlook and phenomenological consequences

The dominant singularity of the QCD equation of state near its critical point can be pre-

dicted using the universality of critical phenomena. This prediction is expressed in terms of the

mapping of the (µ, T ) variables of QCD onto (h, r) variables of the Ising model, Eqs. (3.1), (3.5).

The mapping parameters are not dictated by the Ising (ϕ4 theory) universality class and thus

most of them have been treated as unknown parameters in the literature. In this work we find

that, due to the smallness of quark masses, some of the properties of the other parameters are

also universal. This universality follows from the closeness of the critical point to the tricritical

point in the chiral limit.

Our main focus is on the slope of the r = 0 line in the (µ, T ) plane. The slope is determined

by the value of α2 which depends on the strength of the Z2 breaking at the Ising critical point

due to leading corrections to scaling driven by irrelevant and non-scalling operators, such as ϕ5.

The central result of this study is that in the chiral limit mq → 0, when the critical point of the

ϕ4 theory approaches the tricritical point of the ϕ6 theory, the (µ, T )/(h, r) mapping becomes

singular in a specific way: the difference between the r = 0 and h = 0 slopes vanishes as m2/5
q ,

Eq. (3.125).

The h = 0 line is essentially the phase coexistence (first-order transition) line and its slope

is negative. Therefore, for sufficiently small mq, the slope of the r = 0 line should also become

negative, with the r = 0 line being less steep than h = 0 line.

We use the random matrix model of QCD to estimate the mapping parameters for physical

value of the quark mass. The r = 0 slope is indeed negative, and quite small, α2 = 1◦ in this
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model at the physical quark mass value. We also estimate the values of scale factors in the

mapping ρ and w, Eq. (3.106), and find them in agreement with small mq scaling expectations

from Eq. (3.99).

The small value of α2 may have important implications for thermodynamic properties near

the QCD critical point. In particular, an enhancement in the magnitude of the baryon cu-

mulants, determined by the derivatives with respect to the chemical potential at fixed T is

expected. This is because for α2 = 0 these derivatives are essentially derivatives with respect to

h, which are much more singular than r derivatives: e.g., ∂2G/∂h2 ∼ r−γ vs ∂2G/∂r2 ∼ r−α,

where γ ≈ 1 and α ≪ 1. When rµ = 0 (which corresponds to α2 = 0), the quartic cumulant

of baryon number⟨δN4
B⟩ ∼ rβ−3βδ close to the critical point. When hµ = 0 (which corre-

sponds to α1 = 0), close to the critical point ⟨δN4
B⟩ ∼ r0 along the cross-over line. When

0 < α2 < α1, [108] demonstrated that there could potentially be a dip and peak in the kurtosis

as a function of µB along the freeze-out curve, unlike the α2 − α1 = 90◦ case, where the dip

wasn’t observed. Assuming the freeze-out curve lies close to the cross-over line h = 0, the dip

and the peak can be attributed to the relative dominance of the leading and subleading terms

in Eq. (3.9c).

A phenomenologically relevant consequence is the relation between the sign of the r = 0

slope

(
∂T

∂µ

)
r=0

= − rµ
rT

= − tanα2 (3.126)
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and the sign of the cubic cumulant χ3 = Pµµµ of the baryon number (or skewness) on the

crossover line. This relationship can be seen directly in Eq. (3.9b) with X = µ, given g′′+(0) =

−1, and is illustrated in Figure 18 using a ϕ4 mean-field model defined in Eqs. (3.1), (3.43).

Since the skewness is measurable in heavy-ion collisions [179, 180], such a measurement could

potentially provide a clue to the values of the nonuniversal parameters mapping the QCD phase

diagram to that of the Ising model. This is after all a prediction based entirely on equilibrium

considerations, and it remains to be checked whether the qualitative result discussed above

survives after a dynamical treatment of fluctuations.
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Figure 18: Contours of χ3 when the slope (3.126) of the r = 0 line (dotted) is negative, zero

and positive (from left to right). The contour χ3 = 0 is shown by the thin dashed line. The

thick dashed line is the h = 0 axis (crossover). The regions of negative χ3 are shown in red,

and the regions of positive value of χ3 are in blue. Note that χ3 on the crossover line has the

same sign as the slope of the r = 0 line.
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The tangent of angle α1 is equal to the slope of the first-order curve or equivalently the

pseudo critical curve at the critical point. The pseudo critical curve in QCD is often estimated

using the Taylor expanded EoS obtained from lattice calculations. We found that in Random

Matrix Model with mq = 5MeV, α1 estimated from the pseudo-critical obtained using a Taylor

expanded form for chiral susceptibility, agrees with the actual value within ∼ 20%. This is

studied in Appendix. (B). The only two remaining non-universal mapping parameters whose

estimation we haven’t detailed in this chapter correspond to the location of the critical point

itself. The location of the critical point is often estimated using the ratios of successive deriva-

tives of pressure at µ = 0 (radius of convergence estimators) obtained from lattice calculations.

In Appendix. (A), we have studied how universality can be employed to improve these esti-

mates. We have also presented sample calculations using Random Matrix Model and van der

Waals gas.

In this chapter, we have detailed a general framework to map QCD near its critical point

to 3D Ising model. We hope the insights on the scaling features of the non-universal mapping

parameters in the chiral limit and model calculations presented here will lead to future works

which reliably constrain the range of parameter values quantitatively. These results combined

with constraints from stability and causality requirements [63] from studies using machine

learning [181] can be useful in placing bounds in the parameter space. The objective of these

studies is to model the EoS of QCD in the regime of non-zero baryon chemical potential and
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temperature that is relevant for BES program. The general form of the EoS in this regime may

be expressed as:

P (µ, T ) = Preg(µ, T ) +A(µ, T )PIsing(µ, T ) + Psub(µ, T ) (3.127)

where Preg(µ, T ) accounts for all terms that are regular at T = Tc, µ = µc. A(µ, T ) is another

function that is also analytic at the critical point. PIsing(µ, T ) correspond to the scaling EoS

obtained by matching to the Gibbs free energy of 3D Ising model as in Eq. (3.1). Psub(µ, T )

refers to the subleading singular corrections to scaling at the critical point. EoS obtained

by mapping QCD to 3D Ising model has been discussed by various authors [62–64]. These

approaches differ from each other by the choice of Preg, A and Psub functions. One feature that

all these studies have in common is that α2 − α1 = 90◦ in each of these EoSs. The result

obtained in this chapter, i.e α1 − α2 ∼ m
2/5
q for mq ≪ ΛQCD motivates further studies of these

EoSs with smaller values of α1 − α2.

As listed above there have been various studies incorporating the universal scaling behavior

described by 3D Ising model. The subleading corrections to scaling given by Psub are also

universal (in an RG sense, with non-universal mapping parameters) [59] and can in principle

can be obtained by mapping QCD EoS to ϕ4 theory with sub-leading corrections. We defer

this to future work.

In this chapter, we described the leading singular behavior of derivatives of the EoS, which

are directly related to the equilibrium correlations of particle multiplicity via Eq. (2.15). As we
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shall see in the next chapter, dynamics of fluctuations become important near the critical point

due to critical slowing down. EoS will serve as an input for the hydrodynamical simulation

with fluctuations that we discuss in the next chapter.



CHAPTER 4

DYNAMICS OF FLUCTUATIONS NEAR THE CRITICAL POINT

This Chapter is based on the reference [2] which I co-authored with K. Rajagopal, M.Stephanov

and Y.Yin.

In the previous Chapter, we discussed the Equation of State (EoS) and properties of ther-

modynamic quantities near the QCD critical point. The non-analyticities of the QCD EoS

determines the phase structure of the theory. As discussed in the introduction, hydrodynamiza-

tion is achieved within 1 fm after the collision. In the hydrodynamic regime, the fluctuations

of thermodynamic quantities are local. As the system approaches the critical point, the corre-

lation length ξ begins to increase and fluctuations become long ranged. The overall magnitude

of fluctuations diverges in the thermodynamic limit, V ≫ ξ3, where V is the system volume,

as ξ → ∞. We discussed that the static universality class of QCD is that of the 3D Ising

model [48,51,58,59], with a single scalar field becoming soft and slow at the critical point.The

critical field in QCD is a linear combination of scalar operators such as the chiral condensate

⟨q̄q⟩ and the hydrodynamic densities, baryon number density and entropy density. We discussed

in Chapter. (2) that the leading singular divergence of the thermodynamic densities is given by

Eq. (2.14), i.e
⟨
δnkB

⟩
eq ∼ ξ

k(5−η)
2

−3 when the correlation length ξ → ∞.

Hydrodynamics is a deterministic theory of fluid evolution with the EoS and constitutive

relations for the currents and stress energy tensor taken as inputs. The hydrodynamic variables

are the local fluid velocity u(x) as well as average densities of conserved quantities like the energy

101
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density ε and the baryon number density n, or, equivalently, the corresponding conjugate vari-

ables such as the temperature T and chemical potentials (like the chemical potential for baryon

number, µB) characterizing the local equilibrium conditions. As discussed in Section. (2.5.1),

models of heavy-ion collisions involving a viscous hydrodynamic description over timescales of

1− 10 fm have been found to be extremely successful in describing the experimental data from

heavy-ion collisions at high energies.

The prediction based on equilibrium considerations is that the magnitude and higher cu-

mulants of fluctuations should show characteristic non-monotonic dependence, as the location

of the freeze-out point on the phase diagram moves in response to experimentally varying a

parameter such as center of mass collision energy
√
s, approaches and then passes the loca-

tion of the QCD critical point. As emphasized in the introduction, dynamically evolving the

thermodynamic fluctuations and developing a new freeze-out procedure to translate the hy-

drodynamic fluctuations into particle correlations are necessary steps to connect the elegant

scaling equation (2.14) to experimental observables. This chapter will be about dynamics of

fluctuations. Connecting the hydrodynamic fluctuations to the event by event correlations in

particle multiplicities will be the topic of chapters (5) and (6).

The matter produced in a heavy-ion collision expands and cools down rapidly and hence it is

far from being a static thermodynamic system. There arises a question of whether fluctuations

in the fluid have the time to develop in the way that they would in equilibrium. As we shall see

in Section (4.1), this is determined by a competition between different times scales involved in

the problem. Near a critical point, the system experiences critical slowing down, i.e the time
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needed for fluctuations to grow becomes longer the closer one gets to a critical point [113,114].

The description of such non-equilibrium effects is provided by an extension of hydrodynamics

known as Hydro+ [116] that we shall review briefly in Section (4.1).

This chapter is organized as follows. In Section 4.1 we review some basic aspects of hydro-

dynamics, fluctuations of conserved densities, critical slowing down and introduce the Hydro+

equations that describe the dynamics of out-of-equilibrium fluctuations near a critical point. In

Section. (4.2), we introduce a simplified set-up to study how the magnitude of hydrodynamic

fluctuations are affected in a beam-energy scan "like" scenario. In Section 4.3 we solve the Hy-

dro+ equation for the Gaussian fluctuations of ŝ in a fluid that is undergoing boost-invariant

longitudinal expansion (Bjorken scenario). In Section 4.4 we describe the dynamics in a more

realistic Hydro+ simulation of Ref. [128] in which the fluid is boost invariant and azimuthally

symmetric but is finite in transverse extent and thus exhibits radial flow. In Section 4.5 we

compare the results from Section 4.4 with Model A evolution where the fluctuating density

is not hydrodynamical. We conclude in Section 4.6 with a summary of the main qualitative

lessons that we draw from our results of Sections 4.3 and 4.4.
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4.1 Hydrodynamics with fluctuations

4.1.1 Hydrodynamic variables and relevant length scales

When the length scales of interest, are spatial cells of linear size b, which are much larger than

microscopic lengths such as inverse temperature,1/T or the typical mean-free path between the

constituents, it may suffice to restrict the dynamical degrees of freedom to conserved densities

which are the slowest degrees of freedom in the system. One can employ a hydrodynamic

description to study the dynamics over much larger scales like the size of the fireball, say

L ≫ b. The hydrodynamics equations for the stress-energy tensor and conserved currents

therefore become sufficient to describe this system of size L partitioned into fluid cells of size b

when the following scale separation exists 1/T ≪ b≪ L.

Away from the critical point, the correlation length ξ ∼ T−1 and hence over length scales

of order b, the correlation functions are simply delta functions in spatial separation between

the points. Hydrodynamics describes small deviations from equilibrium and is an expansion in

gradients of the local thermodynamic variables defined over the fluid cells. The evolution of

this conserved densities to catch up with the local equilibrium values is governed by diffusive

processes. If γ is the relevant diffusion constant, then local equilibrium is achieved over a length

scale, denoted by leq ∼ √
γτev ∼

√
γL/cs where cs is the speed of sound in the fluid [121]. leq ≫ b

for typical values of γ ∼ T−1 and therefore for wave vectors l−1
eq ≪ q ≪ b−1, equilibration is

not complete. The evolution of these out-of-equilibrium fluctuations can be described either via

stochastic hydrodynamic equations with a noise term [130, 134] or via deterministic equations
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for the n-point functions of these fluctuating quantities [117,121,182]. The stochastic evolution

becomes harder to implement in a numerical simulation due to the infinite noise problem as

b → 0 [134]. This limitation of stochastic hydrodynamic favors the deterministic approach to

studying fluctuations. The deterministic equations for the evolution of the n-point fluctuations

in a systematic derivative expansion (or equivalently in powers of q for l−1
eq ≪ q ≪ b−1) has

been derived in the context of heavy-ion collisions for boost invariant scenario in [117] and for

a general scenario for a neutral and charged fluid in [121] and [124,182] respectively.

The domain of applicability of hydrodynamics is restricted to ξ ≪ L and hence near the

critical point where ξ grows rapidly , hydrodynamic description breaks down. Infact, hydrody-

namics breaks down much earlier than that. It happens when the rate of evolution of the slowest

non-hydrodynamic mode becomes comparable to the hydrodynamic evolution rates. The slow-

est non-hydrodynamic mode near a critical point corresponds to the fluctuations of the slowest

hydrodynamic mode, entropy per baryon s/n, which we denote by ŝ. These modes relax on

the (parametrically) longest times scale [116]. The characteristic rate for this mode goes as ξ−z

where z is described by the dynamic universality class relevant to the phenomenon.The dynamic

universality class appropriate for the QCD critical point is Model H [183] in which z ≈ 3 [184].

The UV cut-off b−1 near the critical point is set by ξ−1. For q < ξ−1, the relaxation rate of the

slow mode described above γλq2 ∼ γλξ
−2 ∼ ξ−3 as γλ vanishes near the critical point as ξ−1.

Therefore, the hydrodynamic description has to be supplemented with a dynamical description

for the slowest non-hydro mode when ξ3 ∼ L [116,118,124].



106

The phenomenon of relaxation rates of correlation functions becoming vanishingly small as

ξ → ∞ is called critical slowing down [113]. "Hydro+" introduced in [116] is an effective field

theory which has both the averages of the conserved densities and their fluctuations (character-

ized via their correlation functions) as dynamical degrees of freedom. It provides an extension

to the ordinary hydrodynamics by enhancing its range of validity to wave-vectors k = L−1 as

large as k ∼ ξ−2. This limitation is imposed by the break down of Hydro+ when the relaxation

rate of the next to slowest non-hydrodynamic mode becomes comparable to the k. These modes

corresponds to fluctuations of the velocity vector along the components transverse to k and the

dominant fluctuations of this mode have relaxation rate that vanishes as ξ−2. Extension to Hy-

dro+ with these next to slowest non-hydro modes as dynamical variables was proposed by the

authors of [124] and termed "Hydro++". Summarizing, near the critical point, the hierarchy of

scales ξ−3 < ξ−2 < ξ−1 sets the cut-off for hydrodynamics, Hydro+ and Hydro++ respectively.

In this work, we’ll restrict to the study of fluctuations of only the slowest hydrodynamic

mode, i.e ŝ ≡ s/n. For practical applications like incorporating in models to compare with

experimental data from heavy-ion collisions, this might be sufficient. 1 In this Chapter, both

for simplicity and as a necessary first step, we shall focus on the magnitude of fluctuations of

ŝ and defer the discussion of non-Gaussianity measures to future work. The magnitude of the

1The fluctuations of ŝ show the leading singular behavior in most cases expect in the very special
scenario when the mapping parameter corresponding to the slope angle α1 (defined in Eq.(3.5) is fine-
tuned such that cotα1 = sc/nc, where sc and nc are the corresponding critical values of entropy and
number densities. This special case corresponds to Eq. (3.26) with δx = δy = δŝ ∝, i.e when fluctuations
of ŝ are proportional to those of Ising entropy density σ. We assume this to be not the fine-tuned case
here.
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fluctuations is characterized by a two-point correlation function. The Wigner transform of the

equal-time correlation function of ŝ in the local rest frame of the fluid is given by:

ϕQ(x) ≡
∫
∆x

⟨δŝ (x+) δŝ (x−)⟩ eiQ·∆x . (4.1)

Here x = (x+ + x−)/2 and ∆x = x+ − x− = (0,∆x) in the local rest frame of the fluid at the

point x. The relaxation of this quantity to its local equilibrium value ϕ̄Q is governed by the

equation [116]:

u(x) · ∂ϕQ(x) = −Γ(Q)
(
ϕQ(x)− ϕ̄Q(x)

)
. (4.2)

For the purposes of this chapter, the equilibrium ϕ̄Q can be adequately approximated by the

Ornstein-Zernike ansatz 1

ϕ̄Q ≈ cp/n
2

1 + (Qξ)2
, (4.3)

where Q ≡ |Q| and cp and n are the heat capacity at constant pressure and the baryon number

density.

The Q-dependent relaxation rate, Γ, controls how slowly ϕQ(x) evolves toward its equi-

librium value ϕ̄Q via Eq. (4.2). The leading critical behavior of Γ depends on the dynamic

1While the value of ϕ̄Q at Q = 0 in Eq. (4.2) is determined by thermodynamics, the dependence on
Q in this expression is an often used approximation which takes into account the nonzero correlation
length. A more sophisticated form can be found in Ref. [116].
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universality class. For the QCD critical point [183], it is the one of Model H (liquid-gas critical

point) in Halperin and Hohenberg’s classification [184], where the linear combination of δε and

δn given by δŝ = (δε − (w/n)δn)/(Tn) is the slow, diffusive, scalar mode nonlinearly coupled

to diffusive (transverse) momentum modes. At the same level of approximation as in Eq. (4.3),

the leading critical behavior of the relaxation rate in model H is given by [185]:

Γ(Q) =
2D0ξ0
ξ3

K(Qξ), (4.4)

where ξ0 is a typical value of the correlation length well away from the critical point, D0 is a

constant with the dimensions of length that we shall take as a free parameter, and

K(x) ≡ 3

4

[
1 + x2 + (x3 − x−1) arctanx

]
. (4.5)

As we shall demonstrate, the most important property of the critical mode relaxation rate given

by Eqs. (4.4-4.5) is that it vanishes as Q→ 0:

Γ(Q) =
2D0ξ0
ξ

Q2 +O(Q4) .

This reflects the fact that ϕQ measures the fluctuation of hydrodynamic variables, which are

conserved. The relaxation rate of the 2-point correlator of fluctuations is twice the rate of
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the relaxation of the corresponding mode, whose relaxation is also diffusive with a diffusion

coefficient given by

D = D0
ξ0
ξ

(4.6)

which vanishes at the critical point, where ξ → ∞. We can think of the parameter D0 which we

introduced as the diffusion constant at some reference point well away from the critical point.

A crude estimate for D0 could be obtained by using [184,185]

D0 ≈
T

6πηξ0
≈ 2T

3s(T )ξ0
, (4.7)

where η and s are the shear viscosity and entropy density, respectively, and where we have taken

η ≈ s/(4π). Taking s(T ) = s̃T 3 with s̃ ≈ 6 as is reasonable around T = Tc [10,38] and choosing

Tc = 160 MeV and ξ0 = 0.5 fm as we shall throughout, we estimate a critical contribution of

D0 ≈ 0.3 fm. Assuming that the non-critical contribution to D0 is not too large, we expect

D0 > 0.3 fm but not D0 ≫ 0.3 fm. To bracket the uncertainty in this estimate, we shall

illustrate our results by plotting the results obtained from calculations employing D0 = 0.25 fm

and D0 = 1 fm.

To emphasize the importance of the conservation laws in the dynamics of fluctuations and,

consequently, in the experimental signatures (Chapter (5)) of the critical point we shall compare

and contrast results obtained using the model H universality class with those which one would

have obtained using model A universality class, in which the order parameter is not a conserved

quantity and the relaxation rate of the fluctuations does not vanish as Q → 0. To the same
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critical point

Figure 19: Schematic view of a trajectory followed by an expanding cooling droplet of matter

produced in a heavy ion collision on the QCD phase diagram in the vicinity of the critical point.

level of approximation as we have been using so far we can utilize the following ansatz for the

relaxation rate in model A:

Γ(Q) =
Γ0ξ

2
0

ξ2
(
1 + (Qξ)2

)
, (model A), (4.8)

where Γ0 is a constant with the dimensions of rate (1/time) which we can think of as the

relaxation rate at a point well away from the critical point where the correlation length is ξ0.

In this work, we assume that the dynamical back-reaction of the fluctuations on the equation

of state and on the hydrodynamic solution is negligible. This assumption has been tested
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quantitatively in different model calculations [128,129] and is a good approximation: the effects

of such back-reaction are typically at the sub-percent level.

The relevance of simulating dynamical fluctuations near the critical point was realized since

the work of Berdnikov and Rajagopal [113], where the authors studied fluctuations of a order

parameter in the dynamic universality class of Model C [186] appropriate for a system where

a non-conserved order parameter couples to a one-component conserved field. Dynamics of

fluctuations of a non-conserved quantity like chiral condensate was studied in [114,128,187–190].

Fluctuations of conserved density , like those in a diffusion process can be modeled by dynamic

universality class of Model B and various simulations in this category have been performed

in [129, 136, 137, 139, 191, 192]. In the chiral limit, the second order-phase transition at low

values of baryon chemical potential is expected to be in the O(4) universality class, and the

dynamic universality class appropriate for an N component non-conserved order parameter that

is coupled to a N(N − 1) component conserved field is Model G and was studied in [140]. The

work presented in this chapter demonstrates the Model H dynamics, which applies to the QCD

critical point at finite quark masses [183] where the fluctuations of a conserved field couples to a

transverses components of a conserved field. Although performed in rather simplified scenarios

via a deterministic approach, it provides crucial insights into the role of conservation and the

relevance of low Q modes in determining the magnitude of fluctuations at freeze-out. Stochastic

hydrodynamic simulations for Model H are harder to implement due to infinite noise-problem

in the UV limit [134].
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4.2 Simplified set-up to demonstrate dynamics in a beam-energy scan

We study trajectories of the fireball which lie on the cross-over side of the QCD phase

diagram. With the expansion and the cooling of the fireball, the trajectory of the point charac-

terizing the thermodynamic state of the fireball moves closer and then farther from the critical

point as it evolves. The correlation length ξ as a function of chemical potential µ and tempera-

ture T varies along the trajectory of this point. The maximum value of the correlation length ξ

denoted by ξmax (see Figure 19) is attained at the point on the trajectory which is closest to the

critical point. The parameter ξmax is controlled experimentally by varying the collision energy

√
s [9,40] since collisions with lower

√
s produce droplets of matter containing a greater excess

in the number of quarks over the number of antiquarks, meaning a higher baryon chemical

potential µB. Lowering the collision energy in steps, as in the Beam Energy Scan program

at RHIC, moves the entire expansion trajectory in Figure 19, including the freeze-out point,

rightward in steps. Therefore, similar to how
√
s can be taken as a proxy to the closeness of

the trajectory to the critical point, ξmax becomes the proxy in our simplified set-up.

The fluctuation evolution equation (4.2) depends on the correlation length ξ via the depen-

dence of ϕ̄Q and Γ(Q) on ξ. In a realistic hydrodynamic simulation, ξ will be determined upon

solving the hydrodynamic equations with a given equation of state. Since our purpose in this

chapter is to describe how to freeze out critical fluctuations in hydrodynamics and translate

them into observables based on particle multiplicity fluctuations, we shall instead, for simplicity,

choose a plausible parametrization of ξ along the expansion trajectory in terms of T .
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Figure 20: The dependence of the correlation length ξ on temperature for different trajectories

of the fireball expansion (i.e., different ξmax).

Specifically, we shall adopt the parametrization of the correlation length along the trajectory

of the expanding fireball on the QCD phase diagram in terms of temperature used previously

in Ref. [128]:

(
ξ

ξ0

)−4

= tanh2
(
T − Tc
∆T

)[
1−

(
ξmax
ξ0

)−4
]
+

(
ξmax
ξ0

)−4

, (4.9)

with ∆T = Tc/5. We shall not attempt to refine this parametrization in this work. Alternate

parametrizations for the correlation length are discussed, e.g., in Refs. [105, 129]. The ansatz

in Eq. (4.9) reflects the main features of ξ(T ) relevant for this work — the correlation length

reaches a maximum value ξmax at a certain temperature Tc (close to the crossover temperature)
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and then decreases as the system continues to cool on its way to freeze-out — as shown in

Figure 20 which is how we imagine ξ varying along a trajectory like that illustrated by the

green dashed line in Figure 19. In our explicit calculations, we shall choose Tc = 160 MeV and

ξ0 = 0.5 fm.
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4.3 A Hydro+ simulation with Bjorken symmetric background

In this Section, we apply our approach to the well-known Bjorken scenario: a hot fluid that

is undergoing idealized boost-invariant longitudinal expansion, so that it cools as a function of

proper time, but that is translation-invariant and at rest in the transverse directions [193]. We

shall obtain some results in this simplified scenario in analytic form (which we’ll describe more

in Section (5.4), thus allowing us to elucidate general features that we shall observe again in a

more realistic scenario with transverse expansion in the next Section.

4.3.1 Evolution of ϕQ

The Bjorken scenario implies that all thermodynamics quantities such as the temperature,

T , or the energy density, ε, or net baryon number density, n, as well as quantities describing the

fluctuations of these conserved densities depend only on the Bjorken proper time τ ≡
√
t2 − z2,

and are independent of the longitudinal spacetime-rapidity, η, as well as of the transverse

coordinates. Thus, the hydrodynamic equations reduce to ordinary differential equations for

functions of τ which can be solved easily for a given equation of state. We shall employ the

simplified equation of state from Ref. [128] that we summarize briefly in Appendix C.The

hydrodynamic evolution sets in at τ = τi where the temperature T (τi) = Ti and it continues

until freeze-out at τ = τf where the temperature T (τf ) = Tf . In the Bjorken scenario where

there is no radial flow, the flow velocity unit-four-vector is u = τ̂ in Bjorken coordinates. The

evolution equation (4.2) for the fluctuation measure ϕQ becomes:

∂τϕQ = −Γ(Q)
(
ϕQ − ϕ̄Q

)
, (4.10)
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where Γ(Q) depends on τ through ξ(τ) and is specified via Eqs. (4.4,4.5,4.9). Since our focus

throughout is on the effects caused by fluctuations near a critical point, for simplicity we shall

assume that the initial fluctuations are in equilibrium, i.e., 1

ϕQ(τi) = ϕ̄Q

∣∣∣
T=Ti

. (4.11)

Since, in the Bjorken scenario, the temperature depends only on τ , the unit four-vector normal

to the isothermal freeze-out hypersurface T (τf ) = Tf at a spacetime point x is given by n̂(x) =

τ̂(x) = u(x).

In Figure 21 we plot ϕQ obtained by solving Eq. (4.10) numerically at three values of τ .

In order to highlight the significance of the conservation laws, we compare and contrast the

results obtained with two choices of the relaxation rate: model A where Γ(Q) is as given in

Eq. (4.8) and model H (the universality class of the QCD critical point) where Γ(Q) is as given

by Eq. (4.4). The most important feature of the model H evolution of ϕQ is that Q = 0 mode

doesn’t evolve. On the other hand, ϕ0 in model A “tries” to follow the dynamics that would

have been obtained in equilibrium. This feature of ϕ0 in model H is, obviously, a consequence

of the conservation laws in hydrodynamics, since the Q = 0 mode corresponds to the volume

1As we shall see, one of the important conclusions of our study is the importance of conservation in
the overall suppression of the critical signatures relative to equilibrium expectations. This motivates the
need to use more realistic initial conditions as they will be crucial for estimating overall magnitude of
the correlations among particles.
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integrated fluctuations of conserved quantities which do not change with time , while in model

A it involves volume integrations of the fluctuations a non-conserved order-parameter.

In Figure 22 we show the effect of varying the parameter D0 in the Model H relaxation

rate Eq. (4.4) on the fluctuation measure ϕQ and its inverse Fourier transform ϕ̃(∆x⊥) defined

in Eq. (5.20) at freeze-out, after Hydro+ evolution from τ = τi to τ = τf . The large Q, or

equivalently, small ∆x (defining ∆x ≡ |∆x⊥|) behavior of the fluctuations is not affected much

as the fluctuations at short length scales equilibrate fast. The characteristic Q where the peak of

ϕQ is situated shifts to smaller values of Q with increasing D0 because stronger diffusion tends

to homogenize the system, including fluctuations. This can also be seen in spatial correlator ϕ̃

becoming longer ranged. In addition, stronger diffusion (larger D0) enhances the effect of the

critical point on the fluctuations since the system is able to equilibrate more quickly towards

the large equilibrium fluctuation values as it passes the critical point on its way to freeze-

out. This effect results in a more pronounced (higher) peak in ϕQ and, correspondingly, in an

enhancement of ϕ̃ at corresponding intermediate values of ∆x (of order 3 fm or so).

ϕQ at Q = 0 being a constant is mathematically same as keeping the integral of ∆x2 ϕ̃

constant. This means that their effect in panel (b) of Figure 22 is that if there is a (large,

critical) correlation at small ∆x they produce a corresponding compensating anticorrelation at

longer ∆x. One can also show generally that a peak in ϕQ away from Q = 0 corresponds to
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the anticorrelation (i.e., negative tail) in its Fourier transform ϕ̃(∆x⊥). Indeed, if there exist a

value of Q at which ϕQ > ϕ0, then

∫
d3∆x ϕ̃(∆x) <

∫
d3∆x cos(Q ·∆x) ϕ̃(∆x), (4.12)

where we used the fact that ϕ̃(∆x) is an even function. Since | cos(Q ·∆x)| ≤ 1, the inequal-

ity (4.12) cannot be satisfied if ϕ̃(∆x) is always positive.

In Section. (5.4), we’ll analytically perform the freeze-out of the Hydro+ simulation de-

scribed above and discuss how the dynamical features of critical slowing down and conservation

present in ϕQ translate into variance of particle multiplicities.
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Figure 21: Evolution of ϕQ as a function of Bjorken time τ , using model A and model H

dynamics, corresponding to the relaxation rates given by Eqs. (4.8) and (4.4), respectively. We

have taken Γ0 = 1 fm−1, D0 = 1 fm and ξmax = 3 fm in both panels. The three solid curves

in each figure correspond to different times τ as the boost-invariant, spatially homogeneous,

Bjorken fluid is expanding and cooling in the vicinity of a critical point. The temperatures

are given by T = 235, 160 and 140 MeV, for times τ = 1, 4.6 and 8.8 fm, respectively. The

dashed curves represent the equilibrium values ϕ̄Q for the corresponding temperatures (times).

We have initialized the hydrodynamic solution and the fluctuations at τi = 1 fm: at that time

ϕQ = ϕ̄Q at Ti = 235 MeV. The dashed curves are highest at τ = 4.6 fm because that is when

the evolution trajectory was closest to the critical point; the fluctuations would be largest at

that time if they were in equilibrium. We see that in Model H the fluctuations (in our full,

out-of-equilibrium, calculation) remain considerably enhanced at τ = 8.8 fm over a range of

nonzero values of Q. It is evident from the right plot that ϕQ does not evolve at Q = 0 in

Model H. This is a consequence of conservation laws. In both plots, at all times shown, ϕQ and

ϕ̄Q are both normalized by their non-critical value (their value at a location far enough away

from the critical point that ξ = ξ0) at Q = 0 in equilibrium, i.e., ϕ̄nc
0 = Z T ξ20 .
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Figure 22: Normalized ϕQ (a) and its inverse Fourier transform ϕ̃ (b) at freeze-out Tf = 140MeV

after evolution according to Model H dynamics with two values of D0. In the text, we explain

the dependence of the shapes of the curves in both panels on D0, and the consequences of the

conservation laws on the shapes of these curves.
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4.4 A numerical hydro+ simulation with radial expansion

The system considered here is boost-invariant along the longitudinal direction, has azimuthal

symmetry, is finite in radial extent and exhibits radial flow A brief description of the details of

simulation is given below. For more details the reader may refer to Ref. [128].

The evolution of the energy density, ε(r, τ) and the fluid four-velocities u(r, τ) in our sim-

ulation is determined using the standard MIS second order hydrodynamic equations as imple-

mented in the publicly available VH1 + 1 hydrodynamic code [194–196]. The equation of state

p(ε) used in the simulation was introduced in Ref. [128] and was already employed in Section 4.3

and, for convenience, is reviewed in Appendix C. We set the shear viscosity to entropy density

ratio to η/s = 0.08 throughout, and solve the equations numerically using a spatial (radial)

lattice with 1024 points spaced by 0.0123 fm and a time step of 0.005 fm. In this Section, we

initialize the hydrodynamic simulation at τi = 1 fm, with an initial central temperature of 330

MeV, following Ref. [194]. We set the radial flow vr and the viscous part of the stress-energy

tensor Πµν to zero initially at τ = τi. We employ the standard Glauber model radial profile

corresponding to a central Au-Au collision at
√
s = 200 GeV for ε(r) at τ = τi, again following

Ref. [194].

As in Ref. [128], in our Hydro+ simulation the hydrodynamic densities ε(r, τ) and Πµν(r, τ)

and the four-velocities u(r, τ) provide the background for the evolution of the fluctuations

described by ϕQ according to Eq. (4.2). Again following Ref. [128], we choose to initialize the
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fluctuations ϕQ at τ = τi by setting them to the corresponding equilibrium values determined

by the local temperature at this initial time, i.e. 1

ϕQ(r, τi) = ϕ̄Q

∣∣∣
T (r,τi)

. (4.13)

We calculate the evolution of ϕQ using the same code as in Ref. [128], with two important

changes. First, we employ Model H dynamics 2 which takes into account conservation laws.

This gives us an opportunity to highlight the effects of conservation laws on the dynamics of ϕQ

and on the resulting particle multiplicity fluctuations by comparing the results of this Section

to those obtained by repeating the calculations of this Section using Model A evolution. We

perform this comparison in Section. 4.5. Secondly, we shall neglect the back-reaction of the

fluctuations on the hydrodynamic densities. The modifications to the bulk dynamics of the

hydrodynamic fluid, in particular its entropy density s(r, τ), introduced by the presence of the

fluctuations was computed in Ref. [128,129] and in fact the fluctuations and the hydrodynamic

densities were computed self-consistently. However, these authors showed that including back

reaction self-consistently introduces fractional changes to ε(r, τ) and vr(r, τ) that are small,

rarely comparable to 1% and typically much smaller.

1The limitations of the various assumptions made in setting up this Hydro+ simulation, as well as
possible future improvements to it, are detailed in Ref. [128].

2 Ref. [128] considered Model A dynamics for a non-conserved order parameter. We’ll make a com-
parison of Model H to Model A results later.
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In the remainder of this Section, we demonstrate the the Hydro+ simulation with the

background described above for some reasonable values of D0. After describing and illustrating

the evolution of ϕQ in Subsection 4.4.1 and the fluctuations on an isothermal surface (which will

become our choice for the freeze-out surface in Chapter. (5)) in Subsection 4.4.2, in Section 5.5

we describe the resulting fluctuations in particle multiplicities.

4.4.1 Evolution of ϕQ

In this Subsection, we discuss the space-time dependence of the fluctuation measure ϕQ as

it evolves according to the relaxation equation given by Eq. (4.2) with the Model H relaxation

rate given by Eq. (4.4). The radial dependence of the flow and temperature profiles makes ϕQ

dependent on the radial variable r in addition to the Bjorken time τ . Several representative

characteristic curves, or flow lines, determined by the flow velocity u, are shown in Figure 23.

In Figure 24, we plot our results for the fluctuation measure ϕQ in the hydrodynamic

background illustrated in Figure 23 at three different times τ along two hydrodynamic flow

lines, one close to the center of the fireball (r(τi) = 0.7 fm) and one further out (r(τi) = 5

fm). We display results from simulations performed with D0 = 0.25 fm (slower diffusion) and

D0 = 1 fm (faster diffusion) and ξmax = 1 fm (trajectory further away from the critical point)

and ξmax = 3 fm (trajectory closer to the critical point). In all the panels, at τ = 1 fm (black

curve) ϕQ is given by its equilibrium value. In the upper (lower) four panels, the red curves at

τ = 9.19 fm (τ = 5.14 fm) are drawn at the time when when the fluid cell moving along the flow

line that started at ri = 0.7 fm (ri = 5 fm) has cooled to the temperature T = Tc = 160 MeV and

the blue curves at τ = 11.36 fm (τ = 6.72 fm) are drawn at the time when these fluid cells have
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Figure 23: The space-time dependence of the temperature (represented by color) and flow

velocity in the hydrodynamic simulation of the expanding cooling droplet of quark-gluon plasma.

The magnitude of the radial flow at each space-time point is indicated by the tilt of the arrows.

The dashed, dotted and solid black curves are the isothermal curves at T = 160MeV, 156MeV

and 140MeV, respectively. Examples of fluid cell trajectories, or hydrodynamic flow lines, are

illustrated by solid black lines tangential to local flow vectors.

cooled further to T = 140 MeV. Increasing ξmax, i.e., bringing the evolution trajectory closer

to the critical point, causes the magnitude of equilibrium fluctuations to increase. However the

relaxation to the equilibrium value becomes slower since its rate Γ(Q) ∝ DQ2 and D = D0ξ0/ξ

is proportional to 1/ξ. We find that the former effect “wins” in the sense that ϕQ at the time

the fluid cell trajectory cools to T = 140 MeV (i.e. the blue curves in Figure 24), which is well
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after the fluid cell trajectory passes the point where ξ = ξmax, see Figure 19, increases with

ξmax, at least in the range of the parameters we have considered.

We see by comparing the left and right columns of Figure 24 that increasing the diffusion

parameter D0, which increases the relaxation rate, has the consequence that ϕQ is closer to

its instantaneous equilibrium form ϕ̄Q during the course of the evolution. The value of ϕQ at

Q = 0, however, remains invariant during the evolution due to the conservation laws inherent

in model H: Γ(Q = 0) = 0.

The Q-dependence of ϕQ is shaped by two competing effects. As a given hydrodynamic

cell, represented by a point on the phase diagram (see Figure 19) moving along the expansion

trajectory, approaches the critical point, the “desired” equilibrium values of ϕ̄Q, to which ϕQ

is forced to relax by Eq. (4.2), increases across all values of Q. However, while at larger Q,

the relaxation is fast enough to effectively equilibrate ϕQ to these larger equilibrium values,

at lower Q conservation laws slow down the evolution, making the ϕQ values lag behind ϕ̄Q

more significantly. This produces a peak in ϕQ at a characteristic value of Q denoted by Qpeak

in Ref. [129] which moves to lower values of Q as D0 is increased. These features are evident

in Fig. Figure 24 across the range of parameters we have considered. It is also instructive to

compare and contrast Figure 24 with the results that would be obtained if the fluctuations

followed model A dynamics where the relaxation rate of low-Q modes is not suppressed and,

consequently, Qpeak = 0. We perform this comparison in Section 4.5; see Fig. Figure 29 from

that Section which is to be compared with Figure 24.
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In the simpler Bjorken scenario of Section 4.3, we described “memory effects” and looked

at their dependence on Q and the diffusion parameter D0. We can do the same here, for

the ϕQ obtained in this more realistic r-dependent calculation, by displaying our results as in

Fig. Figure 25, where suitably normalized ϕQ and ϕ̄Q are plotted as a function of the local

temperature along a fluid cell trajectory for three different values of Q. In accordance with

Eq. (4.10), the value of ϕQ increases when ϕQ < ϕ̄Q and decreases when ϕQ > ϕ̄Q, as ϕQ

“tries” to relax toward the rising, and later falling, equilibrium value ϕ̄Q, as the critical point

is approached and later passed. For larger values of D0 (as in the bottom half of Figure 25)

the rate of relaxation is greater, meaning that ϕQ rises more rapidly, and therefore higher,

in the critical region. Although it also drops more rapidly as the temperature drops further,

overall a larger D0 yields larger fluctuations, at least within the reasonable range of values of

D0 that we explore. For small Q (see the left column in Figure 25), the value of ϕQ grows

very slowly, and reaches values much lower that the equilibrium ϕ̄Q before it starts decreasing.

However, for low Q, the rate at which ϕQ decreases after the critical point has been passed is

also slow, and as a result significant memory of the fluctuation magnitude near the critical point

(albeit itself smaller than equilibrium magnitude) is retained at freeze-out. This dynamics is

qualitatively similar to the dynamics first described in Ref. [113] in a very simplified model of

the out-of-equilibrium evolution of critical fluctuations with no spatial- or Q-dependence.

4.4.2 Hydrodynamic fluctuations on the freeze-out surface

As in the Bjorken scenario discussed in Section 4.3, we consider two isothermal hypersurfaces

with Tf = 140MeV and Tf = 156MeV. Unlike in Section 4.3, here the temperature is a function
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of τ as well as the radial coordinate r. An isothermal surface, therefore, is not simply τ = const

for all r, as in the previous section. The surface T (τ, r) = Tf can be parametrized according to

the discussion in Section 5.3.3 and we use the notations and approximations discussed in that

section. We choose the parameter α = r in Eq. (5.33).

The magnitude of fluctuations at T = 156MeV in equilibrium is several times higher than

that at Tf = 140MeV, since T = 156MeV is closer to the critical temperature Tc = 160 MeV.

However, the time that the system spends in the critical region before freezing out is shorter

for Tf = 156MeV than for Tf = 140MeV. By comparing these two freeze-out scenarios, we can

understand the sensitivity of out-of-equilibrium fluctuations to the proximity of the freeze-out

temperature to the critical point.

In Figure 26, suitably normalized plots of ϕQ are shown for three points on the freeze-out

hypersurface, characterized by radial coordinate r = 0, 3 and 6 fm, for two choices of freeze-out

temperature Tf and two values of the diffusion parameter D0. These plots of ϕQ should be

compared to the equilibrium ϕ̄Q at three characteristic points: at T = Tc, at T = Tf and at

a point far away from critical, where ξ = ξ0, shown by the dashed and dotted curves. The

left and right plots differ by the choice of the freeze-out temperature, Tf = 156 MeV and 140

MeV, respectively. As expected, Q = 0 modes are “stuck” at their initial values and are not

affected by the critical point. (To see how different this would be in the absence of conservation,

Fig. Figure 26 can be compared with the results obtained in the case of Model A dynamics

in Figure 30 in Section 4.5.) At moderate Q the “memory” effect weakens and at large Q the

modes closely track their equilibrium values, which rises and then falls as the critical point is
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approached and then passed. By comparing the plots in Figure 26 for different Tf , we can also

see that at smaller, but not too small, Q, the “memory” causes the fluctuation measure ϕQ to

be larger than its equilibrium value ϕ̄Q. This effect is more pronounced for lower Tf , due to

the fact that the equilibrium fluctuations are smaller there.

Having understood the effects of varying the parameter D0 and the proximity to the critical

point on the fluctuation measure ϕQ, as in Section 4.3 the next step toward the calculation of

observable particle multiplicity fluctuations is to compute ϕ̃(∆x⊥), the inverse Fourier trans-

form of ϕQ defined in Eq. (5.20). In Figure 27, we plot ∆x2ϕ̃(∆x⊥) as a function of the spatial

separation ∆x ≡ |∆x⊥| between the two points in the correlator ⟨δŝ(x+)δŝ(x−)⟩, see Eq. (5.19).

By comparing to Figure 22(b), we see that the D0-dependence is qualitatively similar to that

in the Bjorken scenario, discussed at length in Section 4.3. The small ∆x (large Q) behavior of

the fluctuations is not affected by changing D0, while at the same time the spatial correlator

becomes longer ranged as D0 is increased. The correlator goes negative at larger values of ∆x;

this is a consequence of conservation as can be seen by comparing Figure 27 to Figure 31 in

Section. 4.5 and as explained in the context of the Bjorken scenario in Eq. (4.12). Finally,

consistent with what we have already seen in Figure 26, with either value of D0 memory effects

are strong enough that the magnitudes of the fluctuations are not much smaller if the freeze-out

temperature is Tf = 140 MeV (well below the critical point) as compared to their magnitudes if

Tf = 156 MeV (very close to Tc = 160 MeV) despite the fact that the equilibrium fluctuations

at these two temperatures differ substantially.



129

τ=1.1 fm

τ=9.19 fm

τ=11.36 fm

0 1 2 3 4 5
0.0

0.5

1.0

1.5

Q (fm-1)

ϕ
Q
/
ϕ
0n
c

ri= 0.7 fm, D0= 0.25 fm , ξmax=1 fm

τ=1.1 fm

τ=9.19 fm

τ=11.36 fm

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

Q (fm-1)

ϕ
Q
/
ϕ
0n
c

ri= 0.7 fm, D0= 1 fm , ξmax=1 fm

τ=1.1 fm

τ=9.19 fm

τ=11.36 fm

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

Q (fm-1)

ϕ
Q
/
ϕ
0n
c

ri= 0.7 fm, D0= 0.25 fm , ξmax=3 fm

τ=1.1 fm

τ=9.19 fm

τ=11.36 fm

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q (fm-1)

ϕ
Q
/
ϕ
0n
c

ri= 0.7 fm, D0= 1 fm , ξmax=3 fm

τ=1.1 fm

τ=5.14 fm

τ=6.72 fm

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Q (fm-1)

ϕ
Q
/
ϕ
0n
c

ri= 5 fm, D0= 0.25 fm , ξmax=1 fm

τ=1.1 fm

τ=5.14 fm

τ=6.72 fm

0 1 2 3 4 5
0.0

0.5

1.0

1.5

Q (fm-1)

ϕ
Q
/
ϕ
0n
c

ri= 5 fm, D0= 1 fm , ξmax=1 fm

τ=1.1 fm

τ=5.14 fm

τ=6.72 fm

0 1 2 3 4 5
0.0

0.5

1.0

1.5

Q (fm-1)

ϕ
Q
/
ϕ
0n
c

ri= 5 fm, D0= 0.25 fm , ξmax=3 fm

τ=1.1 fm

τ=5.14 fm

τ=6.72 fm

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q (fm-1)

ϕ
Q
/
ϕ
0n
c

ri= 5 fm, D0= 1 fm , ξmax=3 fm

Figure 24: Hydro+ fluctuation measure ϕQ along two hydrodynamic flow lines passing through

r = ri at initial time τ = τi, with ri = 0.7 fm (top four panels) and 5 fm (bottom four panels).

The four plots in the left (right) column are for D0 = 0.25 fm (D0 = 1 fm), with ξmax = 1 fm

and ξmax = 3 fm in alternating rows. The solid and dashed curves are, respectively, the ϕQ and

ϕ̄Q (normalized to their values at Q = 0 away from the critical point, where ξ = ξ0) at three

times τ indicated in the plot legends; the choice of τ ’s is explained in the text.
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Figure 25: The values of ϕQ (suitably normalized) for three representative values of Q (same

for each column), and for values D0 (same in top and bottom six panels) and ξmax (same in

alternating rows) as in Figure 24. The values of ϕQ are taken along a fluid cell trajectory

and plotted as a function of temperature, which is a monotonous function of time τ along the

trajectory. The trajectory chosen for these plots begins at ri = r(τi) = 1.8 fm. The dashed and

solid curves represent the equilibrium ϕ̄Q and non-equilibrium ϕQ, respectively.
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Figure 26: The Hydro+ variable ϕQ (normalized to its value at Q = 0 away from the critical

point, where ξ = ξ0) at freeze-out evolved with two different diffusion parameters D0 = 0.25 fm

(upper panels) and 1 fm (lower panels) and ξmax = 3 fm. The left (right) panels show results for

evolution until the decreasing temperature has reached a higher (lower) freeze-out temperature.

The blue, red and purple curves show the values of ϕQ at different points on the freeze-out

hypersurface, characterized by the radial coordinate r. The black dashed and dotted curves

are the equilibrium curves at T = Tf and T = Tc respectively. The dashed brown curve is the

(non-critical) equilibrium curves corresponding to ξ = ξ0.



132

r = 6 fm

r = 3 fm

r = 0 fm

0 2 4 6 8 10 12 14

0.00

0.02

0.04

0.06

0.08

Δx (in fm)

Δ
x2

ϕ˜
(i
n
fm

2
)

Tf = 156 MeV, D0 = 0.25 fm

r = 6 fm

r = 3 fm

r = 0 fm

0 2 4 6 8 10 12 14

0.00

0.02

0.04

0.06

0.08

Δx (in fm)

Δ
x2

ϕ˜
(i
n
fm

2
)

Tf = 140 MeV, D0 = 0.25 fm

r = 6 fm

r = 3 fm

r = 0 fm

0 2 4 6 8 10 12 14

0.00

0.02

0.04

0.06

0.08

Δx (in fm)

Δ
x2

ϕ˜
(i
n
fm

2
)

Tf = 156 MeV, D0 = 1 fm

r = 6 fm

r = 3 fm

r = 0 fm

0 2 4 6 8 10 12 14

0.00

0.02

0.04

0.06

0.08

Δx (in fm)

Δ
x2

ϕ˜
(i
n
fm

2
)

Tf = 140 MeV, D0 = 1 fm

Figure 27: ϕ̃×∆x2, the measure of fluctuations of ŝ described by the correlator ⟨δŝ(x+)δŝ(x−)⟩,

at freeze-out as a function of the spatial separation between the points ∆x ≡ |∆x⊥|. In the

calculations depicted in different panels, the ϕQ’s were evolved with two different D0’s until

freeze-out at two different Tf ’s, with the inverse Fourier transform to obtain ϕ̃(x⊥) performed at

Tf . In all panels, we have chosen a trajectory with ξmax = 3 fm. The three r values depicted via

the colored curves correspond to three r values on the freeze-out surface in the lab frame. The

black dashed and dotted curves are the equilibrium curves at T = Tf and T = Tc respectively.

The dashed brown curve is the (non-critical) equilibrium curve corresponding to ξ = ξ0.
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4.5 Contrasting with Model A evolution

In this Section, we repeat the calculations of Section 4.4 with the same hydrodynamic

background (as in Ref. [128]) but with the dynamical evolution of the fluctuations given by

Model A universality class of Hohenberg and Halperin [184]with the relaxation rate given by

Eq. (4.8), which we repeat here:

Γ(Q) = Γ0
ξ20
ξ2
(
1 + (Qξ)2

)
, (model A). (4.14)

In contrast to Section 4.4 where the fluctuating slow mode is hydrodynamic density, here

the fluctuating slow mode is not a conserved quantity. We have performed simulations with

Γ0 = 1 fm−1 and 8 fm−1, which correspond to Γ0ξ
2
0 = 0.25 fm and 2 fm, respectively. Comparing

the results plotted in this Section to those in the analogous Figures in Section 4.4 provides us

with another way to analyze the impact of conservation laws on the results from Section 4.4.

The main difference between Model A and Model H evolution arises from the qualitatively

different relaxation rate for the low Q modes, Qξ ≪ 1, which goes as Γ0ξ
2
0/ξ

2 in Model A and

as (D0ξ0/ξ)Q
2 in Model H, with the Q2-suppression being a manifestation of conservation. We

proceed now to discuss the Model A dynamics of the two point fluctuations. 1 We will be

1The plots shown below are from the original work in which the author was directly involved in,
although this system with Model A dynamics was elaborately studied in Ref. [128] which the author
wasn’t a part of.
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freezing out these Hydro+ simulations into particle multiplicity fluctuations in the Chapter. (5)

in Section. (5.5.2).

4.5.1 Evolution of ϕQ

Figure 28, can be compared to the analogous Model H results shown in Figure 24. Here,

we present the Model A dynamics of ϕQ for fluid cells following two different hydrodynamic

characteristic trajectories, with two choices of Γ0 and two choices of ξmax. As in Section 4.4,

varying ξmax corresponds to the closeness of the cooling trajectory of the fluid cell to the critical

point on the phase diagram. Due to conservation ϕ0 fixed to its initial value, in Figure 24 and

hence ϕQ first rises as a function of increasing Q and then falls. In the Model A dynamics of

this Section the maximum value of ϕQ is found at Q = 0, and this value is time dependent. In

Model A, here, as in Model H in Figure 24, the fluctuations ϕQ fall out of equilibrium, lagging

behind the equilibrium fluctuations ϕ̄Q as the latter change with time.

In Figure 29, which can be compared to the analogous Model H results shown in Figure 25,

for all three representative Q modes that are plotted we notice the ϕQ’s lagging behind their

respective ϕ̄Qs, with the degree to which they fall out of equilibrium greater for smaller Γ0,

meaning slower relaxation toward equilibrium. For the values of Γ0 that we have considered in

Figure 29, we can see that fluctuations do depend on whether we choose a freeze-out temperature

of 156 MeV or 140 MeV. As we also observed in Figure 25, ϕQ has an inflection point at T = Tc

where the relaxation rate takes its minimum value and the growth of ϕQ stops when ϕQ equals

the instantaneous ϕ̄Q.
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4.5.2 Fluctuations on the freeze-out surface

In Figure 30, which can be compared to Figure 26, suitably normalized plots of ϕQ are shown

for three points on the freeze-out hypersurface, characterized by radial coordinate r = 0, 3 and

6 fm, for two choices of freeze-out temperature Tf and two values of the parameter Γ0. Most of

the discussion of Figure 26 in Section 4.4 applies here also, with the one significant difference

being the Q = 0 mode which now changes with time.

As in Figure 27, in Figure 31 we have computed ϕ̃(∆x⊥), the inverse Fourier transform

of ϕQ defined in Eq. (5.20), and plotted ∆x2ϕ̃(∆x⊥) as a function of the spatial separation

∆x between the two points in the correlator ⟨δŝ(x+)δŝ(x−)⟩. As in the Model H evolution

of Figure 27, the small ∆x (large Q) behavior of the fluctuations in Figure 31 is not affected

by changing Γ0, while at the same time the spatial correlator becomes longer ranged as Γ0 is

increased. The central difference between the Model A dynamics here in Figure 31 and the

Model H dynamics in Fig. Figure 27 is that here ϕ̃(∆x⊥) is positive at large ∆x: the fact that

it becomes negative in the large ∆x region in Figure 27 is a direct consequence of conservation

in Model H.
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Figure 28: Hydro+ fluctuation measure ϕQ evolved according to Model A dynamics along two

hydrodynamic flow lines passing through r = ri at initial time τ = τi, with ri = 0.7 fm (top

four panels) and 5 fm (bottom four panels). Plots in the left (right) column are for Γ0 = 1 fm−1

(Γ0 = 8 fm−1), with ξmax = 1 fm and ξmax = 3 fm in alternating rows. The solid (and dashed)

curves are the ϕQ (and ϕ̄Q), normalized to the zero mode of the non-critical fluctuations. The

black, red and blue curves correspond to ϕQ’s at the initial time τi and at the times when the

equilibrium temperature reaches 160MeV and 140MeV respectively.
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Figure 29: The values of ϕQ (suitably normalized) for three representative values of Q (same

for each column), and for two values Γ0 (same in top and bottom six panels) and ξmax (same

in alternating rows) as in Figure 28. The values of ϕQ are taken along a fluid cell trajectory

and plotted as a function of temperature, which is a monotonous function of time τ along the

trajectory. The trajectory chosen for these plots begins at ri = r(τi) = 1.8 fm. The dashed and

solid curves represent the equilibrium ϕ̄Q and non-equilibrium ϕQ, respectively.



138

r = 6 fm

r = 3 fm

r = 0 fm

0 1 2 3 4
0

2

4

6

8

Q (in fm-1)

ϕ
Q
/
ϕ
0n
c

Tf = 156 MeV , Γ0 = 1 fm
-1

r = 6 fm

r = 3 fm

r = 0 fm

0 1 2 3 4
0

1

2

3

4

Q (in fm-1)

ϕ
Q
/
ϕ
0n
c

Tf = 140 MeV , Γ0 = 1 fm
-1

r = 6 fm

r = 3 fm

r = 0 fm

0 1 2 3 4
0

2

4

6

8

Q (in fm-1)

ϕ
Q
/
ϕ
0n
c

Tf = 156 MeV , Γ0 = 8 fm
-1

r = 6 fm

r = 3 fm

r = 0 fm

0 1 2 3 4
0

1

2

3

4

Q (in fm-1)

ϕ
Q
/
ϕ
0n
c

Tf = 140 MeV , Γ0 = 8 fm
-1

Figure 30: The Hydro+ variable ϕQ (normalized to its value at Q = 0 away from the critical

point, where ξ = ξ0) at freeze-out evolved with Γ0 = 1 fm−1 (upper panels) and 8 fm−1

(lower panels) and with ξmax = 3 fm. The left (right) panels show results for evolution until

the decreasing temperature has reached a higher (lower) freeze-out temperature. The blue,

red and purple curves show the values of ϕQ at different points on the freeze-out hypersurface,

characterized by the radial coordinate r. The black dashed and dotted curves are the equilibrium

curves at T = Tf and T = Tc respectively. The dashed brown curve is the (non-critical)

equilibrium curve corresponding to ξ = ξ0.
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Figure 31: ϕ̃×∆x2, the measure of fluctuations of ŝ described by the correlator ⟨δŝ(x+)δŝ(x−)⟩,

at freeze-out as a function of the spatial separation between the points ∆x ≡ |∆x⊥|. In the

calculations depicted in different panels, the ϕQ’s were evolved with two different Γ0’s until

freeze-out at two different Tf ’s, with the inverse Fourier transform to obtain ϕ̃(x⊥) performed

at Tf . In all panels, we have chosen a trajectory with ξmax = 3 fm. The three r values

depicted via the colored curves correspond to three r values on the freeze-out surface in the lab

frame. The black dashed and dotted curves are the equilibrium curves at T = Tf and T = Tc

respectively. The dashed brown curve is the (non-critical) equilibrium curve corresponding to

ξ = ξ0.
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4.6 Summary and Outlook

In this Chapter, we presented the numerical results for the dynamics of fluctuations of

the slowest non-hydrodynamic mode corresponding to the fluctuations of entropy per baryon,

denoted by ŝ in the critical region in simplified scenarios. We demonstrated the effects of critical

slowing down and conservation of charges and energy-momentum by varying the relaxation rate

and "picking" trajectories at different proximities to the critical point, by varying a parameter

denoted by ξmax (Eq. (4.9)) in our model.

The main lessons from this study can be read off from the plots of (Figure 25) and (Figure 26)

(or (Figure 22)). We find that due to conservation, the fluctuations corresponding to the

wavevectors with low magnitudes are suppressed substantially in the critical region. This

observation will turn out to be very important for the cumulants of particle multiplicities as

the freeze-out picks out lower Q modes due to thermal smearing. This will be discussed in

more detail in Chapter. (5). In the coordinate space, fluctuations at sufficiently large distances

become anti-correlated as a consequence of conservation of charges and energy.

The main limitations of this study stem from the simplified setup that is used here which

prevents us from making quantitative estimates relevant for Beam-Energy Scan program. The

simplifications that could be improved in future involve using more realistic conditions for

fluctuations in the initial stage, including background effects of charge diffusion, deriving the

equilibrium fluctuations from a realistic EoS rather than the simplified scaling EoS determined

using a parameterized ξ in this work and using a 3+1 D hydrodynamic background in place

of the 1+1 scenario discussed here. Despite these limitations, we think this work is a sig-
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nificant advancement as it is the first Model H simulation of hydrodynamic fluctuations in a

deterministic approach and adds to our qualitative understanding. We defer these quantitative

calculations for future work.

In Chapter. (5) we’ll demonstrate the freeze-out of the setups discussed in this chapter and

estimate the effects of dynamics on Gaussian multiplicities of proton and pion multiplicities.



CHAPTER 5

FREEZE-OUT OF CRITICAL FLUCTUATIONS

This Chapter is based on the reference [2] which I co-authored with K. Rajagopal, M.Stephanov

and Y.Yin.

In the last Chapter, we discussed how the dynamics of fluctuations of the slowest mode

is affected by critical slowing down. In particular, we demonstrated the Model H dynamics

in two semi-realistic scenarios, one corresponding to a Bjorken symmetric background and

a numerical azimuthally symmetric , longitudinally boost-invariant Hydro+ simulation with

radial expansion and compared it with Model A dynamics (where the order parameter was not

a hydrodynamic mode). We discussed the suppression of the lower Q modes of the fluctuations

due to charge and energy conservation. In this chapter, we’ll develop a novel procedure to

freeze-out these hydrodynamic fluctuations near the critical point, and thereby estimate the

variance of proton and pion multiplicities.

Traditionally, freeze-out of hydrodynamic simulations are performed using Cooper-Frye pro-

cedure or some modifications of the same to account for viscous effects. However, prior to the

work presented in this chapter, a freeze-out procedure to convert fluctuations of hydrodynamic

densities into correlations of particle multiplicities wasn’t available. Such a framework for

freeze-out critical fluctuations is the main result of this chapter. The chapter is organized as

follows. In Section 5.1 we review the standard Cooper-Frye freeze-out procedure that neglects

fluctuations. With this groundwork in place, in Section 5.3, we derive and explain our freeze-out

142
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procedure that extends the Cooper-Frye approach so as to match the critical fluctuations just

before freeze-out, as described by Hydro+, to observable fluctuations in particle multiplicities

just after. In Section 5.4 we apply our freeze-out procedure to the Bjorken scenario: a fluid

that is undergoing boost-invariant longitudinal expansion, meaning that it is cooling, but that

is translation-invariant and at rest in the transverse directions. In this simplified setting, we

are able to push much of the calculation through analytically and in so doing gain intuition and

elucidate general features that arise again in the next Section. In Section 5.5 we illustrate the

use of the freeze-out procedure that we have introduced and fully exercise its salient features

by obtaining the two-point correlations of particle multiplicities from the more realistic Hy-

dro+ simulations discussed in Chapter. (4) and Ref. [128] in which the fluid is boost invariant

and azimuthally symmetric but is finite in transverse extent and thus exhibits radial flow. We

conclude in Section 5.6 with a summary of the main qualitative lessons that we draw from our

results of Sections 5.4 and 5.5 as well as a look ahead at important next steps.
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5.1 Cooper-Frye freeze-out

Hydrodynamics describes hot and dense QCD matter created in heavy-ion collisions in

terms of densities of conserved quantities such as energy or baryon charge, or the corresponding

thermodynamic variables such as temperature T or baryochemical potential µB, as well as the

local fluid velocity. Heavy ion collision experiments, on the other hand, measure multiplicities

and momentum distributions of particles which emerge from the expanding and cooling droplet

of fluid as it breaks up into hadrons. These multiplicities and distributions are well described

by a procedure which we shall summarize below known as Cooper-Frye freeze-out [142] which

starts from the output of a hydrodynamic simulation.

In the traditional Cooper-Frye procedure, the macroscopic evolution of the conserved charges

and fluid velocity field obtained from a hydrodynamic calculation are converted into a micro-

scopic description in terms of particles in a Hadron Resonance Gas model. The freeze-out

hypersurface where this switching is done is determined based on some thermodynamic condi-

tion for eg., fixed temperature or energy density. The averages of the conserved densities are

equated to those of a hadron resonance gas of particles via the Cooper-Frye formula. Let dSµ

be the differential element pointing along the normal vector to the freeze-out surface. The mean

multiplicity of particle species A (⟨NA⟩) according to the Cooper-Frye formula is given by,

⟨NA⟩ = dA

∫
dSµ

∫
DpA p

µ ⟨fA(x, p)⟩ (5.1)
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Here, dA is the degeneracy of particle species A and DpA is the Lorentz invariant measure:

DpA = 2
d4p

(2π)3
δ
(
p2 −m2

A

)
θ(p0) .

⟨fA⟩ is the momentum-dependent particle distribution function which is either taken to be

Fermi-Dirac or Bose-Einstein based on the spin and statistics of hadron species A. For simplic-

ity, throughout this chapter we shall ignore the spin and statistics and consider ⟨fA⟩ to be the

Boltzmann distribution

⟨fA(x, p)⟩ = exp

(
−p · u(x) + µA(x)

T (x)

)
, (5.2)

where T (x), µA(x) and u(x) are the temperature, the chemical potential of species A, and the

local fluid velocity at a point x on the freeze-out hypersurface. For mesons, µA = 0, while for

baryons/antibaryons µA = ±µB, respectively. In addition to ignoring the modification of the

distribution function due to spin and statistics, we also ignore further modifications to ⟨fA⟩ due

to viscous effects [197–202] in this preliminary study.

In Section 5.3 we shall turn to describing our extension of the Cooper-Frye procedure that

will enable us to translate the output of a Hydro+ simulation, with traditional hydrodynamic

variables as well as fluctuations described by ϕQ(x), into particles in a way that faithfully turns

the critical fluctuations in the fluid into fluctuations and correlations of the hadrons. We are

pursuing this goal within what is often referred to as a deterministic framework for describ-

ing the fluctuations: Hydro+ adds new deterministic equations of motion to the equations of
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hydrodynamics, equations that describe the evolution of quantities that characterize the fluc-

tuations starting with ϕQ(x) that describes their two-point correlation function. Fluctuations

can also be described stochastically, where one evolves an ensemble of configurations each with

its own realization of the fluctuations [130–140]. It would be natural in a stochastic description

to analyze freeze-out via extending the Cooper-Frye procedure in a manner that follows an

analogous logic to that we shall employ here, but we leave this to future work.
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5.2 Estimates for cumulants assuming local equilibrium

Cooper-Frye freeze-out assumes that hadrons at freeze-out are not correlated and the event-

by-event fluctuations are simply of Poisson nature. Owing to the smallness of these fluctuations,

this may be a justified approximation far from the critical point. One important feature Cooper-

Frye freeze-out misses are the effects of local and global conservation. There have been various

studies to incorporate such effects into hadron resonance gas descriptions which act as baseline

for non-critical fluctuations [203–207]. Assuming that within the coarse-grained volume, local

equilibrium has been achieved, one could calculate the cumulants of baryon number from the

derivatives of hydrodynamic EoS , i.e using Eq. (2.14). Using an effective field theory for

the fluctuations of the leading singular mode, one could estimate the cumulants for particle

multiplicity. This will be described in more detail in Section. (5.3 ). It was found in ( [105]),

that estimates for the cumulants of proton multiplicities evaluated in equilibrium are huge. The

acceptance dependence of the cumulants in equilibrium have been studied in [106,111,112].

As discussed in Chapter. (4), the approximation that fluctuations are given by their local

equilibrium temperature and baryon chemical potential is not justified in the critical region due

to critical slowing down of these fluctuations. In Section. (5.3), we’ll describe an extension of

the procedure employed in [105] to freeze-out out of equilibrium fluctuations near the critical

point. In Chapter. (6), we’ll discuss a more general freeze-out procedure that can be applied

for freezing out hydrodynamic fluctuations anywhere in the phase diagram.
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5.3 Cooper-Frye freeze-out for critical fluctuations

We shall now describe a freeze-out procedure to connect the fluctuations of hydrodynamic

variables to the fluctuations of the particle multiplicities. Such a description is crucial in the

special case of heavy ion collisions that freeze out in the vicinity of a critical point. In this case,

fluctuations are both enhanced and of considerable interest, since it is via detecting critical

fluctuations that we hope to discern the presence of a critical point [9, 40]. These fluctuations

are due to thermal noise and their magnitude, or more importantly, their correlations are a

sensitive signature of the proximity of a thermodynamic singularity, such as the critical point.

Obviously, we cannot match these critical fluctuations using a free gas of hadrons which doesn’t

have a critical point. We discussed in Chapter. (3) that the fluctuations in equilibrium can

be modeled by using a critical field theory for scalar field (which we denote by σ) in three

dimensions. σ is a collective mode which becomes "soft”, long-range correlated and slow, at the

critical point, justifying its treatment as a collective field. One can then match the singular part

of fluctuations of hydrodynamic variables to the fluctuation of the field σ. σ field couples to the

observed particles, causing their masses to fluctuate at the time of freeze-out and consequently

leads to observable fluctuations in particle multiplicities.

In the chiral limit mq → 0, the σ field represents the fluctuations of the chiral order parame-

ter about its value at the tri-critical point. But at non-zero quark masses, the order parameter is

not well-defined and is some general linear combination of number density and entropy density.

In this Chapter, we’ll be concerned only with the leading singular behavior of the fluctuations of

σ near the critical point. Here, we shall match them to two-point fluctuations of ŝ, which show
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the same leading singular behavior except in a very special scenario mentioned in a footnote in

Section. (4.1) of Chapter. (4).

In Hydro+ the two point function of this mode is given by (its Fourier transform) ϕQ. Our

goal is to connect it to the two-point correlation function of the multiplicity fluctuation δf

fA(x, p) = ⟨fA(x, p)⟩+ δfA(x, p) (5.3)

where ⟨fA(x, p)⟩ is given by Eq. (5.2). We shall use the model of critical correlations which

incorporates critical fluctuations in the hadronic description via the interaction of the hadrons

with a critical σ field. Such a description of critical fluctuations in a hadron gas has been used

in equilibrium [40,56,57,105,106,111,112,187,208,209] as well as with some out-of-equilibrium

effects included [210]. 1 In this approach the interaction with the σ field modifies the masses

of the hadrons, to linear order in σ, as follows:

δmA = gAσ . (5.4)

We define the value of σ as the deviation of the critical field from its equilibrium value and thus,

by definition, ⟨σ⟩ = 0. The proportionality constant gA plays the role of the coupling constant

1Unlike [210], we have connected the out of equilibrium fluctuations of σ to out of equilibrium
fluctuations of hydrodynamic densities.
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between the hadron species A and the σ field. 1The critical contribution to the fluctuations

of fA is due to the dependence of the averaged particle distribution function ⟨fA⟩ on the mass,

and is given by

(δfA(x, p))σ = gA
∂ ⟨fA(x, p)⟩

∂mA
σ(x) ,

where ⟨fA⟩ is the Boltzmann distribution in Eq. (5.2). As a result, fluctuations of the σ field

translate into fluctuations and correlations between particles, as in

⟨δfA1(x1, p1)δfA2(x2, p2)⟩ = ⟨fA1(x1, p1)⟩δ1,2

+ gA1gA2

∂ ⟨fA1(x1, p1)⟩
∂mA1

∂ ⟨fA2(x2, p2)⟩
∂mA2

⟨σ(x1)σ(x2)⟩ . (5.5)

Since hydrodynamic variables, such as baryon density, are expressed in terms of momentum

space integrals of the particle distribution functions, the correlation functions of hydrodynamic

variables are proportional to the correlation functions of the σ field. This reproduces the

essential property of fluctuations at the critical point – the critical (most singular at the critical

point) contribution of all correlation functions are proportional to the correlator of a single

critical scalar field.

1In this chapter, we consider gA to be a constant independent of the particle momenta. As we shall
see in the next chapter, when one enforces charge, momenta and energy conservation at freeze-out, gA
s are no longer constants and have a definite momentum dependence which we derive. We expect that
this explicit dependence on momenta will not modify the qualitative and semi-quantitative estimates for
Gaussian cumulants that we obtain in this chapter.
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Our main focus is on the correlation functions of ŝ. Universality of critical behavior dictates

that in equilibrium this critical contribution to this correlator should be also proportional

to the correlator of σ. In this chapter, we shall also assume that this remains true out of

equilibrium. This allows us to connect the correlations of ŝ at the end of the Hydro+ evolution

to the fluctuations of σ in the kinetic description at freeze-out and consequently to observable

fluctuations and correlations of hadron multiplicities.

The equilibrium fluctuations of the critical field are dictated by the universality of critical

behavior and are controlled by the probability functional P = exp{−Ω/T}, where Ω[σ] the

effective action (or free energy) which can be written for small fluctuations at long wavelengths

in an expansion in powers of the field σ and its gradients around its equilibrium value, ⟨σ⟩ = 0,

as follows:

Ω(σ) =

∫
d3x

[
(∇σ)2

2
+
m2

σ

2
σ2 +

λ3
3
σ3 +

λ4
4
σ4 + . . .

]
. (5.6)

The equilibrium two-point correlator can be then found from Eq. (5.6) and is given by

⟨σ(x+)σ(x−)⟩ ≈
T

4π |∆x|
e−|∆x|/ξ (5.7)

where ∆x = x+ −x− and ξ ≡ 1/mσ is the correlation length of the σ-field fluctuations. As we

shall only be interested in the two-point correlator in this work and as we are neglecting the

(small) nonzero value of the critical exponent η, we will be able to neglect the terms of order σ3
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and higher in the expansion (5.6). The Fourier/Wigner transform of the two-point correlator

is then given by

χQ ≡
∫
∆x

e−iQ·∆x⟨σ(x+)σ(x−)⟩ ≈
Tξ2

1 + (Qξ)2
. (5.8)

In the approximate equalities in Eqs. (5.7) and (5.8) we ignore loop corrections, which are

known to be small in the 3D Ising universality class in which η is small.

We choose the units of length in Eq. (5.6) so that the value of ξ introduced in Eqs.(5.6) and

(5.7) matches the value of the correlation length of the thermodynamic fluctuations introduced

above, in Section 4.2. The universality of the critical behavior then dictates that the relationship

between the two-point correlators of the fluctuating soft mode in the hydrodynamic description

of the physics at the freeze-out point and the fluctuating σ-field in the kinetic theory description

of the physics at the same point takes the simple form

⟨δŝ(x+)δŝ(x−)⟩ = Z⟨σ(x+)σ(x−)⟩ . (5.9)

Equivalently, the Wigner transforms are related via the same proportionality constant Z:

ϕ̄Q = ZχQ . (5.10)

Using Eqs. (4.3) and (5.8) we find

Z ≈ cp
Tn2ξ2

. (5.11)
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Note that, while both cp and ξ2 diverge at the critical point, their ratio is finite in the approx-

imation we are using.1

Z can be obtained in terms of the parameters hµ, hT , rµ, rT defined in Eqs. (3.5) as:

Z = lim
T,µ→Tc,µc

cp
n2Tξ2−η

≈ 1

n2cξ
2−η

[
hT − s

n
hµ

]2(∂2G
∂h2

)
r

(5.12a)

=
1

n2cξ
2−η

[
hT − s

n
hµ

]2 M0

h0

(
ξ

ξ0

)2−η

(5.12b)

=
M0A

h0n2cξ
2−η
0

[
(tanα1)

−1 − sc
nc

]2 sin2 α1

w2T 2
c sin2(α1 − α2)

(5.12c)

=
M0A

h0n2cξ
2−η
0

[(
dP

ndT

)
n

]2 sin2 α1

w2T 2
c sin2(α1 − α2)

(5.12d)

where α1, α2, A and w are the mapping parameters between QCD EoS and 3D Ising model near

the QCD critical point with critical temperature at Tc. In Eq. (5.12a), we have approximated

the second derivative of pressure with second derivative of Ising Gibbs free energy with respect

to the magnetic-field h near the critical point.

We shall apply the relationship in Eq. (5.9), or equivalently in Eq. (5.10), to express the

fluctuations of σ at freeze-out also when these fluctuations are out of equilibrium. While

these relationships are true in equilibrium due to universality near the critical point, strictly

speaking this is not justified in an out of equilibrium scenario. We assume that the deviations

1Our approximation sets the critical exponent to its mean-field value η = 0, which is a good approxi-
mation to make for a critical point in the 3D Ising universality class where η ∼ 0.04. If one uses a more
sophisticated, non-mean-field equation of state as in, e.g., Ref. [63], and/or more sophisticated form of
ϕ̄Q and χQ as in Ref. [116], the value of the normalization constant will nevertheless be determined by
the matching equation (5.10), which is more general than the approximation in which we have derived
it.
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from equilibrium are still not large, and in a partial equilibrium state where the treatment of

Hydro+ is valid, we can apply the same relationship.

We shall thus determine the correlation functions of σ at freeze-out as follows:

⟨σ(x)⟩ ≡ 0 (5.13a)

⟨σ(x+)σ(x−)⟩ = Z−1 ⟨δŝ(x+)δŝ(x−)⟩ (5.13b)

where Z is a normalization constant which can be obtained by matching the fluctuations ob-

tained in the kinetic description to fluctuations (i.e., susceptibilities) obtained from the QCD

equation of state using Eq. (5.10). Since in this chapter our focus is entirely on developing

and exploring the implementation of the freeze-out prescription that we introduce to describe

fluctuations, we shall take the constants Z in Eq. (5.13b) and gA in Eqs. (5.4)-(5.5) as given and

postpone their determination by matching a particular QCD EoS to the next chapter (6). We

also note that we shall find ways to express our results that are independent of those unknown

parameters. Note that there is a subtlety in defining Eq. (5.13b) relating to the choice of frame

in which x+ and x− are at equal time; we shall discuss this in Section 5.3.1.

Due to Eq. (5.13a), the mean number of particles is unmodified by critical fluctuations and

is given by Eq. (5.1). Integrating the spatial correlations given by Eq. (5.5) over the full freeze-
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out hypersurface and using Eq. (5.13b), we can express the leading critical contribution to the

correlator of particle multiplicities NA and NB as:

⟨δNAδNB⟩σ =

∫
dSµ,+

∫
dSν,− Jµ

A(x+) J
ν
B(x−)Z

−1 ⟨δŝ(x+)δŝ(x−)⟩ (5.14)

Jα
A(x±) ≡ gAdA

∫
DpA p

α ∂⟨fA(x±, p)⟩
∂mA

(5.15)

with dA the spin (and/or isospin) degeneracy of the particle species A. The subscript σ in

⟨δNAδNB⟩σ is there to remind us that this is the contribution due to critical fluctuations. The

expressions (5.14) and (5.15) constitute the central result whose consequences we shall explore

over the course of the rest of this chapter by making them explicit in simplified settings. In

(5.14) and (5.15), we have a relationship between the critical fluctuations of hydrodynamic

variable on the right-hand side of (5.14) and the correlator of observable particle multiplicities

on the left-hand side.

One can obtain a straightforward generalization of Eq. (5.14) yields the form for freeze-out

of leading singular higher point fluctuations as:

⟨
δNk

A

⟩c
σ
=

∫
dSµ1 · · ·

∫
dSµk

Jµ1

A (x1) . . . J
µk
A (xk)Z

−k/2 ⟨ŝ(x1) . . . ŝ(xk)⟩c (5.16)

for the critical contribution to the kth cumulant of the multiplicity of particle species A. We

have extended the Cooper-Frye procedure in a way that will allow us to see how the critical,
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i.e. most singular, contribution the two-point correlations of ŝ translates into the variance of

observed particle multiplicities.

Finally, we note that the total variance of the particle multiplicity has an additional non-

critical contribution which is usually taken as Poissonian:

⟨
δN2

A

⟩
= ⟨NA⟩+

⟨
δN2

A

⟩
σ
. (5.17)

There can certainly be corrections to the non-critical contributions that we represent here by

the Poisson distribution. These may arise from global charge conservation [203, 211] or initial

fluctuations [109], for example, but we shall not discuss them in this work. This work is

intended only as a prescription for freezing out the fluctuations near the critical point that

encode information about the leading singularity. We will discuss freeze-out in a unified and

more comprehensive framework, (treating the freeze-out of critical and non-critical parts in

the same way) in the next chapter (6). The prescription that we describe here for criitcal

fluctuations will emerge in that framework in a natural way, with some slight modifications

which won’t change the qualitative and semi-quantitative discussions in the chapter.

5.3.1 Toward explicit evaluation

We’ll now turn these expressions for the extended Cooper-Frye procedure that we have

derived into tools that can be used in explicit calculations.

The Wigner transform ϕQ, as defined in Eq. (4.1), involves integration over the hyperplane

orthogonal to the 4-vector u(x). That is, the points x+ and x− are equal-time points in the rest
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frame of the fluid at point x, or ∆x · u(x) = 0. However, in general, the freeze-out surface over

which the integration in Eq. (5.14) is to be performed does not necessarily have the property

that any two points on it are simultaneous in the rest frame of the fluid at their midpoint x.

For example, this property holds for boost-invariant Bjorken flow. But, it does not hold for the

numerical simulation with radial flow discussed in Ref. [128] and discussed in Section 4.4. In

order to translate ϕQ into the correlator ⟨δŝ(x+)δŝ(x−)⟩ in such a case one needs to be able

to evolve this correlator not only in time u · x (using Eq. (4.2)) but also in time difference

u · ∆x. We shall show below that because this evolution is slow (and especially slow at the

critical point) one can neglect the effect of such evolution. This enables us to express the time

correlator of interest which is un-equal in the local rest frame in terms of ϕQ.

Let us consider a small region of the freeze-out surface around a point x that lies on the

surface and let us assume that the surface is not perpendicular to the 4-vector u(x). This means

that freeze-out does not happen simultaneously at all points in this region. Let us denote the

velocity of the frame in which this patch of the freeze-out surface is an equal-time surface by β.

(β = 0 for Bjorken flow). If the typical range of the correlator is of order ℓ∗, then the typical

value of the time difference u(x) · ∆x ∼ βℓ∗. The typical scale ℓ∗ can be determined by the

condition that the relaxation rate Γ(Q∗) ∼ DQ2
∗ of the corresponding modes Q∗ = 1/ℓ∗ is of

order the expansion rate 1/τ , where D was introduced in Eq. (4.6). That is, ℓ∗ ∼
√
Dτ .

The evolution of the correlator ⟨δŝ(x+)δŝ(x−)⟩ as a function of the time separation u ·∆x

occurs with the same rate, also of order Γ(Q∗). As a result, the correction to the correlator is of

order Γ(Q∗)u ·∆x ∼ β
√
D/τ . This quantity is small already because τ is a macroscopic scale,
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Figure 32: Geometric representation of Eq. (5.18). x+ and x− are on the freeze-out surface; x

is the midpoint between them. The four-vector ∆x⊥ (red) is perpendicular to the fluid four-

velocity at the point x, u(x), meaning that in the local fluid rest frame it is a four-vector with

no time-component.

while D is microscopic, i.e., τ ≫ D. Furthermore, near the critical point, D itself is vanishing:

as seen in Eq. (4.6), it is smaller than the microscopic scale by another factor of ξ0/ξ.

More formally, let us define a projection of the separation four-vector ∆x onto the plane

perpendicular to u(x):

∆x⊥ ≡ ∆x− [u(x) ·∆x] u(x) . (5.18)

Then we can express the correlator ⟨δŝ(x+)δŝ(x−)⟩ in Eq. (5.14) in terms of ϕQ defined in

Eq. (4.1), obtaining

⟨δŝ(x+)δŝ(x−)⟩ = ϕ̃(x;∆x⊥) +O(
√
D/τ) , (5.19)
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where the three-component vector ∆x⊥ is the projection of the four-vector ∆x onto the equal-

time hyperplane orthogonal to the vector u(x) as defined in Eq. (5.18) and illustrated in Fig-

ure 32, and ϕ̃(x;∆x⊥) is the inverse Fourier (Wigner) transform of ϕQ(x):

ϕ̃(x;∆x⊥) ≡
∫

d3Q

(2π)3
eiQ·∆x⊥ϕQ(x) . (5.20)

Eq. (5.19) formalizes the qualitative argument from the preceding paragraph.

We shall be comparing our results with what one would obtain upon assuming the fluctua-

tions are in equilibrium. Up to corrections suppressed by ratios of microscopic (e.g., correlation

length ξ) to macroscopic scales (such as hydrodynamic gradient scales, e.g., τ) we can replace

the correlation function in Eq. (5.7) with a delta function:

Z−1 ⟨δŝ(x+)δŝ(x−)⟩ = ⟨σ(x+)σ(x−)⟩ = Tξ2δ(3)(∆x) . (5.21)

Substituting into Eq. (5.14) we find

⟨δNAδNB⟩eqbmσ =

∫
dSµ(x) J

µ
A(x) n̂ν(x) J

ν
B(x)T (x)ξ

2(x) . (5.22)

where n̂(x) is the unit vector along the normal on the freeze-out hypersurface at x. This

expression straightforwardly generalizes existing results for equilibrium fluctuations, see for

example Ref. [105], to locally equilibrated fluctuations in a (more realistic) inhomogeneous

fireball. We shall make comparisons between our full results and the equilibrium fluctuation
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predictions (5.22) in order to highlight the importance of non-equilibrium effects, especially the

effects due to conservation laws.

5.3.2 Ratios of observables

We shall calculate the contribution of critical fluctuations to the variance of the particle

multiplicity of species A (we shall consider protons, A = p, and pions, A = π) in a specified

finite rapidity and transverse momentum acceptance window. To eliminate the dependence on

the volume (i.e., the transverse size) of the droplet of QGP we shall introduce the intensive

ratio

ωA ≡
⟨δN2

A⟩σ
⟨NA⟩

, (5.23)

which was referred to as ωA,σ in Ref. [105]. We note that ωA depends on the choice of acceptance

window. (See, e.g., Ref. [111].) Since this acceptance dependence is not the main focus of the

present study, while criticality and non-equilibrium effects are, we shall often illustrate our

results by plotting the ratio

ω̃A =
ωA

ωnc
A

, (5.24)

where ωnc
A is the ωA calculated upon assuming freeze-out well away from the critical point, i.e.,

upon setting ξmax = ξ0. We have checked (for a few sets of parameters) that the acceptance

dependence of the numerator and denominator in Eq. (5.24) is similar and, thus, largely cancels.

In contrast, the numerator ωA is strongly enhanced by critical fluctuations (for example, in
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equilibrium ω̃eqbm
A = ξ2/ξ20) and is sensitive to the non-equilibrium effects of critical slowing

down, while the denominator ωnc
A is, by construction, not affected by critical fluctuations.

Although ωA defined in Eq. (5.24) depends on the unknown parameters gA and Z via the ratio

gA/
√
Z, all dependence on these unknowns cancels in the ratio of ratios defined in Eq. (5.24),

within the approximations that we shall make.

In this Chapter, we perform the freeze-out of the two semi-realistic Hydro+ scenarios - with

a Bjorken symmetric background and a numerical simulation with radial expansion, azimuthal

symmetry and longitudinal boost invariance discussed in Chapter. (4). Before we proceed to

these in Sections. (4.3) and (4.4), we will establish some useful notations.

5.3.3 Notations for azimuthally symmetric boost invariant case

For a general freeze-out hypersurface, the differential element can be expressed as d3Sµ =

nµN dθ1dθ2dθ3 where θ1, θ2, θ3 are variables used to parametrize the points on the freeze-out

hypersurface. The normal vector n can be expressed as:

nα(x) = N−1ϵαβγδ
∂xβ

∂θ1

∂xγ

∂θ2

∂xδ

∂θ3
(x) (5.25)

where

N =

√√√√ 4∑
j=1

(
det

∣∣∣∣∣∂(xα
j
1 , xα

j
2 , xα

j
3 )

∂(θ1 , θ2 , θ3 )

∣∣∣∣∣
)2

, α
′
i ϵ {0, 1, 2, 3} − {j} (5.26)
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The basis vectors can be defined for the tangent space to the normal at the freeze-out hyper-

surface at x along the lines of the example given in Appendix A of [121] is:

ea = e̊a + (̊u− n̂)
n̂.̊ea

1− n̂.̊u
(5.27)

where a = 1, 2, 3 and e̊as correspond to unit vectors along the spatial coordinate in the lab frame

and ů is the unit vector along the time direction in the lab-frame. n̂ is a unit vector normal to

the tangent space. Any two points x± on the freeze-out hypersurface can be expressed in terms

of these basis vectors, their mid-point x and separation vector ∆x as follows:

x± = x± ∆xi

2
ei +

∆xi∆xj

8
(ei · ∂)ej + . . . (5.28)

The equations above can be used in a generalized setting. To specify the shape of an azimuthally

symmetric boost-invariant freeze-out surface, it is convenient to use Bjorken coordinates defined

in terms of the Cartesian coordinates ( t, x1, x2, x3) in the lab frame via

t = τ cosh η, x1 = r cosφ, x2 = r sinφ, x3 = τ sinh η .
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The mutually orthogonal set of unit vectors corresponding to each of the Bjorken coordinates

can be expressed in terms of the Cartesian coordinates as

τ̂ = ( cosh η, 0, 0, sinh η ) (5.29)

η̂ = ( sinh η, 0, 0, cosh η ) (5.30)

r̂ = ( 0, cosφ, sinφ, 0 ) (5.31)

φ̂ = ( 0, − sinφ, cosφ, 0 ) . (5.32)

The radial profile of a boost-invariant and azimuthally-symmetric freeze-out surface can then

be expressed in a parametric form using an arbitrary parameter α as in Ref. [212]

τ = τf (α), r = rf (α) , (5.33)

so that the point on the freeze-out hypersurface corresponding to parameters α, η, φ is given

by:

x(α, η, φ) = τf (α)τ̂(η) + rf (α)r̂(φ) . (5.34)

Then, the volume vector normal to the freeze-out hypersurface can be written as d3S =

ndατdηrdφ where the vector n is given by:

n(α, η, φ) =
∂x

∂α
∧ ∂x

τ∂η
∧ ∂x

r∂φ
= r′f (α)τ̂(η) + τ ′f (α)r̂(φ) . (5.35)
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The flow four-velocity on the freeze-out surface is given by

u(α, η, φ) = ur(α)r̂(ϕ) + uτ (α)τ̂(η) (5.36)

in the coordinates with which we are working.

In defining the two-point correlation function we shall need to specify two points on the

freeze-out hypersurface. Let x± ≡ x(α±, η±, φ±) be any two such points on with x ≡ (x+ +

x−)/2 being their midpoint and ∆x ≡ x+ − x− being the separation vector between them. Let

us denote similarly τ = (τ+ + τ−)/2, r = (r+ + r−)/2, η = (η+ + η−)/2, φ = (φ+ + φ−)/2 and

∆τ = τ+ − τ−, ∆r = r+ − r−, ∆η = η+ − η−, ∆φ = φ+ − φ−. Then

x = τ cosh
∆η

2
τ̂ + r cos

∆φ

2
r̂ +

∆τ

2
sinh

∆η

2
η̂ +

∆r

2
sin

∆φ

2
φ̂ (5.37a)

∆x = 2τ sinh
∆η

2
η̂ + 2r sin

∆φ

2
φ̂+∆r cos

∆φ

2
r̂ +∆τ cosh

∆η

2
τ̂ (5.37b)

u ·∆x = uτ (x)∆τ cosh
∆η

2
− ur(x)∆r cos

∆φ

2
(5.37c)

∆x⊥ ≡ 2τ sinh
∆η

2
η̂ + 2r sin

∆φ

2
φ̂

+

[
−∆τur(x) cosh

∆η

2
+ ∆ruτ (x) cos

∆φ

2

]
(ur(x)τ̂ + uτ (x)r̂) , (5.37d)

where ∆x⊥ was defined in Eq. (5.18). While the points x+ and x− are on the freeze-out surface

by construction, the midpoint x, in general, is not. The displacement between the midpoint

and the freeze-out surface is, however, small when the typical range of the correlator is much

shorter than the typical curvature radius of the freeze-out surface. We can use an argument
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similar to the one preceding Eq. (5.18) to simplify the calculation by neglecting the difference

between the correlator at the actual midpoint and the correlator at the point on the freeze-out

surface given by

x ≡ τf (α)τ̂(η) + rf (α)r̂(φ) (5.38)

where α ≡ (α++α−)/2. Henceforth, we shall use x to denote the on-hypersurface approximation

(5.38) to the actual midpoint. Again, neglecting the effect of the curvature and linearizing in

∆η, ∆φ and ∆α = α+−α−, the projection of the separation vector ∆x⊥ from Eq. (5.37d) onto

the hyperplane normal to the four-vector u can be approximated as

∆x⊥ ≈ n · u∆α α̂⊥ + τf ∆η η̂ + rf∆φφ̂ , (5.39)

where u is the 4-velocity of the fluid at the point x, the vector n is defined in Eq. (5.35), and

we have introduced a spacelike unit vector

α̂⊥ ≡ ur τ̂ + uτ r̂ .

The vectors α̂⊥, η̂ and φ̂ form a basis in the hyperplane perpendicular to the four-vector u

given by Eq. (5.36) (the equal-time hyperplane in the rest frame of the fluid at the point x.)
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With all of this notation established, we can now take a step toward making the expression

Eq. (5.14) for the squared variance of the multiplicity of species A that we have derived above

as our central result more explicit, writing it as

⟨
(δNA)

2
⟩
σ
=

∫
dα+ τ+dη+ r+dφ+

∫
dα− τ−dη− r−dφ− (n · JA)+ (n · JA)− Z−1ϕ̃(x,∆x⊥) ,

(5.40)

where ∆x⊥ is a three-vector whose components in the α̂⊥, η̂, φ basis are given by Eq. (5.39)

and (n · JA)± ≡ n(x±) · JA(x±), where n is given by Eq. (5.35).

The integral in Eq. (5.15) expressed in Bjorken coordinates takes the form

JA(x±) =
dAmA

T

∫ ymax

ymin

dy

2π

∫ 2π

0
dϕ

∫ pT,max

pT,min

pTdpT
(2π)2

⟨fA(x±, p)⟩
p

p · u(x±)
, (5.41)

where we used Eq. (5.2). The Cartesian coordinates in the lab frame of the particle four-

momentum are given by

p = (mT cosh y, pT cosϕ, pT sinϕ,mT sinh y) (5.42)

in terms of the particle rapidity y and transverse mass mT ≡
√
p2T +m2.
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5.4 Analytical calculations in a Bjorken scenario

In Section. (4.3), we solved the relaxation equation for ϕQ in a Bjorken symmetric back-

ground and studied how conservation and critical slowing down affects ϕQ during its evolution.

In this Section, we’ll chose an isothermal surface and allows the system to freeze-out into par-

ticles via the prescription detailed above.

We begin by noting that in the Bjorken scenario we have the following expressions for x

and ∆x⊥ at τ = τf :

x = τf cosh∆η τ̂ + xT (5.43a)

∆x⊥ = ∆x = 2τf sinh
∆η

2
η̂ + ∆xT . (5.43b)

Eqs. (5.43) are exact for two points x+ and x− on the freeze-out hypersurface and can be

obtained by substituting uτ = 1, ur = 0, τ = τf and ∆τ = 0 in Eqs. (5.37). We have used xT

and ∆xT to denote the transverse parts of x and ∆x⊥, namely their projections onto the plane

spanned by r̂ and φ̂. Note that because points on the freeze-out surface, including x+ and x−,

all have the same τ in the Bjorken scenario, ∆x⊥ = ∆x in this setting and Eq. (5.40) need not

be corrected as described around Figure 32.
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Next, we note that the ϕ̃ that arises in the expression (5.40) that we wish to evaluate is the

inverse Wigner transform of ϕQ, see Eq. (5.8). In the Bjorken scenario, this transform takes

the form

ϕ̃(x,∆x) =

∫
dQ⊥dQη

(2π)3
ei2Qητf sinh ∆η

2
+iQ⊥·∆xTϕQ(τf cosh∆η) (5.44)

where Qη ≡ Q · η̂ and Q⊥ ≡ Q − Qηη̂. Note that since points on the freeze-out hypersurface

all have the same τ in the Bjorken scenario, the expression for the two-point correlator of σ

between two points on the freeze-out hypersurface given by Eq. (5.19) does not receive the

correction described following that equation. Note that ϕQ that enters Eq. (5.44) is obtained

by solving Eq. (4.10), as discussed in Section 4.3. Later in this Section, we shall need the formal

solution to Eq. (4.10) that satisfies the initial conditions (4.11); it is given by

ϕQ(τ) = ϕ̄Q(Ti)e
−

∫ τ
τi

Γ(Qξ(τ
′
)) dτ

′

+

∫ τ

τi

e−
∫ τ

τ
′′ Γ(Qξ(τ

′
)) dτ

′

Γ(Qξ(τ
′′
)) ϕ̄Q(T (τ

′′
)) dτ

′′

(5.45)

The functional form for the evolution of temperature T (τ), which also determines ξ(τ) through

Eq. (4.9), can be obtained from the condition

τs(T (τ)) = τis(T (τi)) (5.46)
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that follows from the isentropic nature and Bjorken symmetry of the flow and that must be

satisfied for all τi < τ < τf . And, we employ the equation of state s(T ) from Ref. [128] that we

describe briefly in Appendix C.

With these preliminaries in place, we now substitute Eq. (5.44) into Eq. (5.40) and integrate

over dxT, d∆xT and dQ⊥, obtaining

⟨δN2
A⟩σ = g2AA⊥ τ

2
f

∫ ∞

−∞
dη

∫ ∞

−∞
d∆η IA (η+, η−)

∫
dQη

2π
ei2Qητf sinh ∆η

2 ϕQ∥ (τf cosh∆η) ,

(5.47)

where we have defined Q∥ ≡ Qηη̂, where A⊥ is the transverse area in the plane spanned by r̂

and φ̂, and where we have defined

IA(η+, η−) ≡ n(η+) · JA(η+)n(η−) · JA(η−) .

Upon explicit evaluation, this function is given by

IA(η+, η−) =

∫ ymax

ymin

dy+

∫ ymax

ymin

dy−FA(y+ − η+)FA(y− − η−) (5.48)

where

FA(y± − η±) ≡
dAmA

Tf

dy

2π

∫ mT,max

mT,min

mTdmT

2π
e
−mT cosh(y±−η±)

Tf . (5.49)
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Upon specifying mT,min = mA and choosing mT,max = ∞ and ymin = −ymax, FA is given by

FA(x) = dA
mA

Tf

∫ ∞

mA

mTdmT

(2π)2
e
−mT cosh x

Tf (5.50a)

= dAmA(2π)
−2sech2x (mA coshx+ Tf ) e

−mA cosh x

Tf . (5.50b)

Using the expressions above, Eq. (5.47) can be evaluated directly, numerically. However,

to elucidate its main features we ignore the subleading corrections due to the curvature of the

freeze-out hypersurface and assume that mA ≫ T , in both cases as discussed in Section 5.3.3.

This allows us to make the following approximations:

ϕQ∥ (τf cosh∆η) ≈ ϕQ∥(τf ) (5.51a)

FA(η±) ≈ dAm
2
A(2π)

−2sech η e
−mA

Tf
[cosh η± sinh η

2
∆η+ cosh η

8
∆η2] (5.51b)

The assumption mA ≫ T has allowed us to simplify Eq. (5.51b) by expanding only the

exponential term in FA as a function of ∆η and not its prefactor. We have verified by explicit

calculation that this assumption is well justified for protons. With the above simplifications,

after defining ∆y ≡ y+ − y− and redefining the variables η and ∆η according to η → η− (y+ +

y−)/2 and ∆η → ∆η −∆y, Eq. (5.47) becomes

⟨δN2
A⟩σ

≈ g2ATfA⊥τ
2
f

∫ ∞

−∞
dη

∫ ∞

−∞
d∆ηFA(η+)FA(η−)

∫ ymax

−ymax

dy+

∫ ymax

−ymax

dy−

∫
dQη

2π
eiQη τf (∆η+∆y)ϕQ∥(τf ) .

(5.52)
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This explicit expression for the observable measure of the fluctuations ⟨δN2
A⟩σ is the first main

result of this Section.

5.4.1 Multiplicity fluctuations and their rapidity correlator

Upon substituting the solution to Eq. (4.10) into Eq. (5.52), or rather its inverse Fourier

transform ϕ̃, into Eq. (5.40), we can now calculate the square variance of multiplicity fluctu-

ations
⟨
δN2

A

⟩
. In the simplified setup that we are employing in this Section, we can go one

step farther and exploit Bjorken boost invariance to compute explicit results for the rapidity

correlator defined as

CA(y+, y−) =

⟨
dNA

dy

⟩−1⟨
δ
dNA

dy+
δ
dNA

dy−

⟩
σ

. (5.53)

(In the next Section where we employ a more realistic hydrodynamic solution, we shall only

compute
⟨
δN2

A

⟩
, not CA.) The correlator CA measures the correlations between the multiplicity

of particle species A at rapidities y+ and y− and can be determined similarly to Eq. (5.40) in

terms of ϕQ or its inverse Fourier transform ϕ̃(∆x⊥). For the idealized Bjorken scenario, some

of the integrals in Eq. (5.40) (e.g., over transverse coordinates) can be taken analytically. In

order to make even further analytical progress we shall consider the case of particles with mass

much bigger than the temperature, mA ≫ T . This is an adequate approximation for protons

and will allow us to perform an additional integral analytically in that case. We shall not use

this approximation in the next Section, where we shall anyway be doing the analogous integrals

numerically, but it will be helpful here to make the result and its general features more explicit.
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Upon inspection of the result (5.52), we see that the two point rapidity space correlator

occurring in CA(∆y) is given by

⟨
δ
dNA

dy+
δ
dNA

dy−

⟩
σ

≈ g2ATfA⊥τ
2
f

∫ ∞

−∞
dη

∫ ∞

−∞
d∆ηFA(η+)FA(η−)

∫
dQη

2π
eiQη τf (∆η+∆y)ϕQ∥(τf )

(5.54)

≈ 1

8π7/2
g2A d

2
A Z

−1m
7/2
A T

1/2
f A⊥ τ

2
f

∫
dη sech5/2 η e

− 2mA cosh η

Tf

∫
dQη

2π
eiQητf∆y e

−
Q2
ητ2f Tf

mA cosh η ϕQ∥(τf ) .

(5.55)

The implications of Eq. (5.55) are discussed below. We see that in the simplified setup of this

Section in which the fluid is translation invariant in the transverse directions, the modes that

contribute in Eq. (5.55) are those whose Q is directed along the η̂ direction. Also, the effect of

the last Gaussian factor in the Qη integral in Eq. (5.55) is to limit the range of that integral to

values of order

Qη ≲
(
τf

√
Tf

mA cosh η

)−1

. (5.56)

The fact that the characteristic wavenumber Q of the fluctuations responsible for the correla-

tions at freeze-out is not zero (despite considering a volume of fluid that is infinite in extent in

rapidity η in this idealized scenario) is ultimately due to the fact that in the laboratory frame

the fireball is not spatially homogeneous: the fluid velocity varies over a longitudinal distance

of order τf due to the longitudinal expansion. One can check that taking τf → ∞ results in

only Q = 0 contributing. However, the characteristic Qη is not just 1/τf , but rather depends on

the mass of the particle. This is due to the thermal smearing, or “blurring”, which translates
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Figure 33: Normalized proton multiplicity correlator C̃(∆y) for protons from Eq. (5.58) as

a function of the rapidity gap ∆y in the Bjorken scenario for two choices of the diffusion

parameter D0.

spatial Bjorken rapidity η into kinematic particle rapidity y [111, 213]. As we are assuming

that mA ≫ T , the factor
√
Tf/(mA cosh η) in Eq. (5.56) is the typical thermal rapidity of the

particles at temperature Tf/ cosh η, which can be understood as the freeze-out temperature

“red-shifted” by longitudinal expansion.

The final piece that we need in order to compute CA is the denominator in Eq. (5.53). By

explicit calculation starting from Eq. (5.1), in the Bjorken scenario in which we are working

⟨dNA/dy⟩ is given by:

⟨
dNA

dy

⟩
= dAA⊥ τf (2π)

−2

∫ ∞

mA

m2
TdmT

∫
dη e

−mT cosh η

Tf cosh η . (5.57)
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Substituting Eqs. (5.55) and (5.57) into Eq. (5.53), we can evaluate CA which, because of

boost invariance, is a function of ∆y only. In Figure 33, we plot our results for CA, normalized

by the its non-critical value at ∆y = 0, Cnc
A (0), which we estimate by substituting ϕQ =

Z T (Q2 + ξ−2
0 )−1 into Eq. (5.55), where ξ0 is, as before, the correlation length away from

critical point defined in Eq. (4.9). That is, we define the ratio that we have plotted in Figure 33

as

C̃A(∆y) ≡ CA(∆y)

Cnc
A (0)

. (5.58)

Since ξmax > ξ0, critical fluctuations make the ratio C̃A(0) larger than unity.

In Figure 33 we also illustrate the dependence of the rapidity correlations on the value of

the diffusion parameter D0. Stronger diffusion (larger D0) enhances the effects of the critical

point in ϕQ, as we saw in Figure 22. This enhancement is reflected in the corresponding

particle rapidity correlations, as seen in Figure 33 at small ∆y. Due to conservation laws,

anticorrelations at large ∆y are also enhanced. (For any value of D0, the consequence of

conservation is that the integral under the curve C̃A over all separations ∆y is independent of

D0 and is determined by the initial fluctuations. This means that when we increase D0 and

see C̃A(∆y) growing at small ∆y, it must also become more negative at large ∆y.) However,

unlike the direct effect of diffusion on the range of the spatial correlator ϕ̃ in 22b, the effect

on the range of C(∆y) in Figure 33 is minor. This is due to the fact that this range is mostly

determined by the effect of thermal rapidity smearing or “blurring” [111].
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Now, the variance of the particle multiplicity ⟨δN2
A⟩σ that in the general case takes the

form (5.40) can in this Bjorken scenario be obtained from the rapidity correlator C(∆y) by

integration over the rapidity window y± ∈ (−ymax, ymax), i.e.,

⟨
δN2

A

⟩
σ

⟨NA⟩
=

∫ 2ymax

−2ymax

d∆y

(
1− |∆y|

2ymax

)
C(∆y) . (5.59)

Upon using our expression for C(∆y) from Eqs. (5.53), (5.55), and (5.57) and using the fact

that boost invariance implies that ⟨NA⟩ = 2ymax⟨dNA/dy⟩, we now obtain the result

⟨δN2
A⟩σ ≈ 1

2
Z−1m

7/2
A T

1/2
f π−7/2 g2A d

2
AA⊥ τ

2
f

∫
dη sech5/2 η e

− 2mA cosh η

Tf ×∫
dQη

2π

sin2 (τf Qη ymax)

τ2fQ
2
η

e
−

Q2
ητ2f T

mA cosh η ϕQ∥(τf ) (5.60)

The ∆y dependence of C(∆y) translates into the rapidity acceptance window dependence of

⟨δN2
A⟩σ, which has been discussed in the literature, e.g., in Ref. [111], and will not be discussed

here.

5.4.2 Dependence of dynamical fluctuations on proximity of freeze-out to the

critical point

In this chapter we focus on the magnitude of fluctuations and their dependence on the

proximity of freeze-out to the critical point as well as on the diffusion parameter D0. The

proximity of the freeze-out to the critical point is controlled by two major factors. One is the

proximity of the trajectory to the critical point, which in our analysis is quantified by ξmax – the

maximum equilibrium correlation length along the expansion trajectory on the phase diagram.
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The larger the value ξmax, the closer the system has passed to the critical point on its way to

freeze-out. The smallest values of ξmax ≈ ξ0 correspond to trajectories furthest away from the

critical point, on the edge of the critical region. In Figure 34, we plot the normalized critical

contribution to the squared variance of the proton multiplicity from Eq. (5.24) on ξmax. One

can see the effect of the critical point on the fluctuations at freeze-out increases as the trajectory

approaches the critical point (as ξmax increases).

The other factor controlling the proximity of the critical point to the freeze-out is the

freeze-out temperature Tf . The higher the freeze-out temperature is (while still below critical

temperature), i.e., the earlier the freeze-out occurs and the closer the freeze-out is to the critical

point. Correspondingly, the fluctuations at freeze-out increase with ξmax as well as with Tf in

Figure 34.

The results in Figure 34 also demonstrate that the magnitude of the critical point signatures

crucially depends on dynamics. As we already discussed in Figure 22 and Figure 33, stronger

diffusion (larger D0) leads to larger effects of the critical point. We can see this in Figure 34 by

comparing the plots for two different values of D0. In addition, as a result of the conservation

laws the magnitude of fluctuations is significantly smaller than the equilibrium expectation at

freeze-out, as can be seen by comparing to panel (c) in Figure 34. It is also apparent from this

comparison that, while the equilibrium expectation in panel (c) depends very strongly on the

freeze-out temperature (the higher the temperature the closer is the freeze-out to the critical

point, since Tc > Tf ), the dynamical predictions in panels (a) and (b) of Figure 34 are much

less sensitive to the freeze-out temperature. This can be understood as a “memory” effect: the
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fluctuations at freeze-out encode some information about fluctuations at earlier times because

they do not have time to equilibrate, an effect which is enhanced by critical slowing down.

This has the consequence that even though freeze-out happens at a temperature below that

of the critical point, effects of critical fluctuations persist until freeze-out and yield signatures

in observables. The magnitude of such memory effects depends on the value of D0. We see

that the results of our out-of-equilibrium calculation at freeze-out illustrated in panels (a) and

(b) of Figure 34 arise via an interplay between the suppression of fluctuations relative to their

magnitude in equilibrium due to conservation and the enhancement of fluctuations arising from

memory effects.

In panel (c) of Figure 34, the equilibrium magnitude of fluctuations saturates as ξmax in-

creases and the trajectory followed by the cooling plasma gets closer to the critical point. This

happens because the freeze-out occurs at a temperature Tf below the critical point, where

ξ(Tf ) < ξmax, and as the trajectory approaches the critical point, ξmax diverges while ξ(Tf )

goes to some (large) constant value which is independent of ξmax as ξmax → ∞. The saturation

is less pronounced in panels (a) and (b) because of dynamical memory effects: the blue curve

“remembers where it was” at earlier times.

To summarize some central results of this Section: (i) in the Bjorken scenario considered

here there is a clear suppression in the normalized fluctuation measure ω̃A at freeze-out for the

values of D0 considered, because the slow modes are fluctuations of a conserved quantity; (ii) in

Model H dynamics, ω̃A is less sensitive to the freeze-out temperature than would be the case if
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the fluctuations were in equilibrium throughout. In the next Section, we shall investigate how

radial flow modifies these and other observations.

5.4.3 Importance of low Q modes

Eq. (5.56) and hence Eq. (5.55) signify the importance lower Q modes in describing the

critical effects. In this Subsection, we shall demonstrate that the low Q modes of ϕQ contribute

the most to the variance of particle multiplicities,
⟨
δN2

A

⟩
σ

by direct comparison. We shall

expand ϕQ, given by Eq. (5.45), in powers of Q to O(Q2) and compare the result for
⟨
δN2

A

⟩
σ

that we obtain starting from this expansion to the result that we obtain starting from the full

form of ϕQ. We denote the polynomial expansion for ϕQ to quadratic order by

ϕQ ≈ ϕ(0) + ϕ(2)Q2 (5.61)

where

ϕ(0) = Z Tf ξ
2(Ti) (5.62a)

ϕ(2) = −Z Tf ξ4(Ti) + 2D0ξ0 Z Tf

∫ τf

τi

dτ

(
ξ(T (τ))− ξ2(Ti)

ξ(T (τ))

)
. (5.62b)

The expression (5.61) is a good approximation to ϕQ for its low-Q modes, as we illustrate in

35a.
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Upon making the low-Q approximation and working to order Q2 as in Eq. (5.61), we can

perform the Qη integral in Eq. (5.55), obtaining

⟨
δ
dNA

dy+
δ
dNA

dy−

⟩
σ

≈
g2Ad

2
AA⊥ τfZ

−1m4
A

(2π)4

∫
dη

cosh2 η
e
− 2mA cosh η

Tf

(
1+∆y2

8

) [
ϕ(0) +

2TfmA cosh η −∆y2m2
A cosh2 η

4τ2fT
2
f

ϕ(2)

]
.

(5.63)

In 35b, we compare C̃p(∆y) (defined via Eqs. (5.53,5.57,5.58)) obtained from
⟨
δ dNA
dy+

δ dNA
dy−

⟩
σ

computed without making a low-Q approximation, namely Eq. (5.55), which is plotted as the

solid curves in 35b, to that computed upon working only to order Q2, namely Eq. (5.63), which

is plotted as the dashed curves in 35b. The qualitative, even semi-quantitative, agreement

between them indicates that the low-Q modes contribute significantly to the variance of particle

multiplicities.
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Figure 34: The normalized fluctuation measure for protons, Eq. (5.24), as a function of ξmax,

the maximum value of the equilibrium correlation length achieved along the system trajectory.

Panels (a) and (b) correspond to different diffusion strengths, quantified by D0, while red

and blue curves correspond to different freeze-out temperatures. Panel (c) shows the result

that would have been obtained under the assumption that fluctuations are in equilibrium at

freeze-out.
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(b) C̃(∆y) for protons

Figure 35: Panel (a): Normalized ϕ as a function of Q evolved according to Model H dynamics

with two values ofD0, plotted at freeze-out τ = τf , corresponding to an equilibrium temperature

of Tf (τf ) = 140MeV. The solid and dashed curves were obtained from the full solution (5.45)

for ϕQ and its truncated polynomial expansion (5.61) respectively. Panel (b): Normalized

fluctuation measure observable (rapidity space correlator) for protons C̃p(∆y) obtained with the

full form (solid) and truncated form (dashed) of ϕQ. The qualitative and even semi-quantitative

agreement between the same colored curves in the right plot indicates that the low-Q modes

contribute significantly to the variance of particle multiplicities. In obtaining these plots, ξmax

was set to 3 fm and the fluctuations at τi = 1 fm were initialized to their equilibrium value at

τ = τi = 1 fm with Ti(τi) = 235MeV.
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5.5 Freeze-out of the simulation of Hydro+ from Section. (4.4))

In this section, we will apply the freeze-out procedure discussed in Section 5.3, to extract the

two-point correlations of particle multiplicities from the Hydro+ simulation presented in [128]

and Section. (4.4) which have not been frozen out yet.

5.5.1 Variances of particle multiplicities with Model H dynamics

We shall obtain the variance of the multiplicity of particles of species A from ϕ̃ by employing

the general expressions in Eqs. (5.40) and (5.41). As we did in Section 5.4, we shall compute

ωA, the ratio of the variance of the multiplicity of species A to its mean, see Eq. (5.23).

We can obtain the mean multiplicity of protons and pions for a rapidity acceptance window

[−ymax, ymax] and acceptance cuts in pT using the Cooper-Frye formula,

⟨NA⟩ = dA

∫
dSµ

∫ ymax

−ymax

dy

2π

∫ pT,max

pT,min

pT dpT
2π

∫ 2π

0

dϕ

2π
e
− p·u

Tf pµ , (5.64)

employing the flow velocity u(x) profile and freeze-out hypersurface for the simulation from

Ref. [128] illustrated in Figure 23. The fluctuation measure ωA is then obtained by taking the

ratio of Eq. (5.40) and Eq. (5.64). In this Subsection, we present the results for the normalized

fluctuation measure ω̃A as defined in Eq. (5.24) as a function of ξmax (which measures the

proximity of the trajectory in the phase diagram is to the critical point) for protons and pions

obtained with our two choices of D0 and with our isothermal freeze-out scenario with two

different choices of the freeze-out temperature Tf , as discussed above. In all calculations, we

choose the acceptance cuts pT ϵ (0.4GeV, 2GeV) and ymax = 1. As already discussed above,
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ω̃A, should not depend on the acceptance. This is explicitly the case in equilibrium and this

remains approximately the case in our simulations.
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Figure 36: Normalized measure of the fluctuations in proton multiplicity, ω̃p =
ωp

ωnc
p

, as a function

of the maximum equilibrium correlation length along the system trajectory, which is to say as a

function of how closely the trajectory passes the critical point. As D0 → ∞, the ω̃p’s approach

their equilibrium values shown in panel (c).



184

Tf = 156 MeV

Tf = 140 MeV

0 1 2 3 4 5
1.0

1.2

1.4

1.6

1.8

ξmax (in fm)

ω˜
π

D0 = 0.25 fm

(a)

Tf = 156 MeV

Tf = 140 MeV

0 1 2 3 4 5
1.0

1.5

2.0

2.5

3.0

ξmax (in fm)

ω˜
π

D0 = 1 fm

(b)

Tf = 156 MeV

Tf = 140 MeV

1 2 3 4 5
1

2

3

4

5

6

7

8

ξmax (in fm)

ω˜
π

Equilibrium

(c)

Figure 37: Normalized measure of the fluctuations in pion multiplicity, ω̃π = ωπ
ωnc
π

, as a function

of the maximum equilibrium correlation length along the system trajectory, which is to say

as a function of how closely the trajectory passes the critical point. As D0 → ∞, the ω̃π’s

approach their equilibrium values shown in panel (c). The definition of the normalized measure

of fluctuations ω̃ is such that it is species-independent in equilibrium, meaning that panel (c)

here is identical to panel (c) in Figure 36.
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We present our final results for the normalized fluctuation measure for protons and pions,

ω̃p and ω̃π, in Figure 36 and Figure 37. These results demonstrate that for trajectories passing

closer to the critical point (i.e., for trajectories with larger ξmax) the magnitude of fluctuations

is larger, as we have already seen in Figure 34 for the Bjorken expansion scenario. Again as in

the Bjorken scenario, the magnitude of the effect depends on the rate of the diffusive relaxation

of the fluctuations controlled by parameter D0. The conservation laws (i.e., “memory”) lead to

significant suppression of the magnitude of fluctuations compared to the prediction based on

the assumption that fluctuations have enough time to equilibrate. (The equilibrium predictions

are shown in Figure 36(c) and Figure 37(c).) When the diffusion is slower or in other words,

the value of the diffusion parameter D0 is smaller, the stronger is the suppression.

We also compare the magnitude of fluctuations for the same value D0 and ξmax, but for

two different freeze-out temperatures. Equilibrium consideration leads to a prediction of larger

fluctuations at higher freeze-out temperature, since the higher temperature freeze-out occurs

closer to the critical point. However, non-equilibrium effects not only suppress the magnitude

of the fluctuations relative to the equilibrium prediction but also introduce memory effects

that substantially reduce the decrease in the magnitude of the fluctuations that occurs between

T = 156 MeV and the lower freeze-out temperature Tf = 140 MeV. This makes the fluctuations

obtained upon assuming a freeze-out temperature of Tf = 140 MeV much more similar in

magnitude to those that would be obtained if Tf = 156 MeV than is the case in equilibrium.

So much so, in fact, that, depending on the choice of the parameters such as D0, it is even

possible to find larger fluctuations at Tf = 140 MeV than would have been obtained at the
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higher freeze-out temperature Tf = 156 MeV, see Figure 36(a) and Figure 37(a)! This effect

arises because, as we have already discussed, the fluctuations continue to grow even after the

system has passed the critical point, as long as their value is below the equilibrium, as can be

seen in Figure 25. This effect is not seen in the Bjorken scenario in Section 5.4 because the drop

of the temperature during the one-dimensional expansion is much slower than the temperature

drop in this case where there is radial expansion also. As a result, in the Bjorken scenario

the freeze-out temperatures are reached at somewhat later times, after the non-equilibrium

fluctuations have begun to decrease. For the same reason, in our more realistic calculations

in this Section this effect disappears for larger values of D0 which yields faster relaxation of

fluctuations toward equilibrium, see Figure 36(b) and Figure 37(b).
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5.5.2 Variance of particle multiplicities with Model A dynamics
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Figure 38: Normalized measure of the fluctuations in proton multiplicity, ω̃p =
ωp

ωnc
p

, as a function

of the maximum equilibrium correlation length along the system trajectory, which is to say as a

function of how closely the trajectory passes the critical point. As Γ0 → ∞, the ω̃p’s approach

their equilibrium values shown in panel (c).
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Figure 39: Normalized measure of the fluctuations in pion multiplicity, ω̃π = ωπ
ωnc
π

, as a function

of the maximum equilibrium correlation length along the system trajectory, which is to say as a

function of how closely the trajectory passes the critical point. As Γ0 → ∞, the ω̃π’s approach

their equilibrium values shown in panel (c).

As in the previous subsection, we compute and plot the normalized fluctuation measure

for protons and pions, ω̃p and ω̃π with Model A dynamics, in Figure 38 and Figure 39. As
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in Figure 36 and Figure 37, these results demonstrate that for trajectories passing closer to

the critical point (i.e., larger ξmax) the magnitude of fluctuations is larger. As in Section 4.4,

the magnitude of the effect depends on the rate of the relaxation of the fluctuations, controlled

by parameter Γ0. We see that for large enough values of Γ0, eg. 8 fm−1, the proton and pion

fluctuations are able to come reasonably close to their equilibrium values. This means that

sensitivity of the magnitude of fluctuations to the freeze-out temperature increase as D0 is

made that large. The differences that we analyzed in Section 5.5 result from the charge and

energy conservation.
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5.6 Summary and Outlook

In this study, a new method has been proposed to link hydrodynamic fluctuations that

occur during the expansion and cooling of QGP droplets in heavy ion collisions to fluctuations

in observable particle multiplicities. The approach focuses on critical fluctuations, which are

the most singular, slowest, and most out-of-equilibrium modes of fluctuations near the critical

point. On the particle side of the freeze-out, these fluctuations are matched by introducing a

new critical scalar field called σ, which couples to observable particles. The field is considered

an effective critical field, a precursor of the critical point, and has the same quantum numbers

as the σ meson. The study establishes a connection between the fluctuations of this field and

observable fluctuations in particle multiplicities by linking them to the Hydro+ variable ϕQ

[116], which describes the non-equilibrium evolution of fluctuations during the hydrodynamic

stage of the collision. Prior estimates of the observable consequences of critical fluctuations

assumed that the σ field and its fluctuations remain in equilibrium near the critical point due

to the lack of an approach to describing their non-equilibrium evolution.

Our approach builds upon the Cooper-Frye freeze-out [142], which is a well-established

method for translating hydrodynamic degrees of freedom into particle distributions. However,

the Cooper-Frye procedure only deals with event-averaged single-particle quantities such as

multiplicities and spectra of each hadron species, and thus cannot account for the freeze-out of

fluctuations or correlations. Our more comprehensive freeze-out procedure extends this method

to enable the translation or matching of hydrodynamic and fluctuation degrees of freedom

described by Hydro+ to particle multiplicities and their fluctuations.
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We have shown how our generalized freeze-out procedure can be applied in practice by

considering two scenarios. The first scenario is a simplified case where we have analyzed the

Hydro+ description of boost-invariant Bjorken expansion without any transverse expansion.

This simple case allows for analytical calculations and provides useful insights. In the second

scenario, we have performed a numerical Hydro+ simulation of a more realistic situation that

includes both boost invariance and azimuthal symmetry and also incorporates transverse radial

expansion, similar to the scenario analyzed in Ref. [128] and described in Chapter. (4).

The results from both examples showed that the non-equilibrium fluctuations were signif-

icantly suppressed compared to their equilibrium values for the parameter values considered.

Additionally, we also noted that while the equilibrium fluctuations sensitively depend on how

far below the critical temperature, the freeze-out occured, this sensitivity is almost eliminated

by non-equilibrium (“memory”) effects, see Figure 34, Figure 36 and Figure 37.

The Hydro+ variable ϕQ is used to describe the magnitude of the fluctuations at different

wavevectors Q, and the characteristic value of Q that determines the magnitude of the mul-

tiplicities after freeze-out is influenced by various factors, including the inhomogeneity of the

expanding fluid, radial flow, thermal velocity spread of the particles, and acceptance window

in rapidity. (In the case of the Bjorken scenario, can describe analytically as in Eq. (5.56).

) This characteristic Q value is typically small compared to microscopic scales and is of the

order of 1/τf , where τf is the freeze-out time (see Eq. (5.56)). Because fluctuations at small

Q are suppressed by conservation laws and the smallness of the characteristic Q relevant for
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freeze-out, the fluctuations are also suppressed relative to their equilibrium values, which is also

a form of a "memory" effect resulting from out-of-equilibrium dynamics.

Our study focused on Gaussian measures of fluctuations. The higher, non-Gaussian, cu-

mulants are more sensitive to the proximity of the critical point [56, 105]. It is, therefore,

important to generalize our freeze-out procedure to higher-order cumulants. At this stage,

the most straightforward generalization of our procedure leads to a formula for Non-Gaussian

freeze-out given by Eq. (5.16). In Chapter. (6), we’ll learn that this can be improved further

and and more general freeze-out expression that applies equally for fluctuations not related to

critical point can be derived using the maximum-entropy principle.

We could generalize to the cross-correlation of different particle species, as was done in

Ref. [105] for equilibrium fluctuations in a straightforward manner. We leave an investigation

of how best to combine measurements of different (cross-)correlations so as to optimize the sen-

sitivity to critical fluctuations while reducing dilution of their effects by backgrounds to future

work. We’ll discuss some qualitative differences that arise for cross-correlations in Chapter. (6).

We have focused on the dependence of the observable fluctuations on the proximity of the

critical point, either by varying ξmax, which corresponds to varying freeze-out µB via changing

collision energy
√
s (see Figure 19), or by varying the freeze-out temperature (for the same

trajectory). We also studied the dependence on the (thus far unknown) value of the diffusion

parameter D0. In order to illustrate these dependencies, we chose to present our results using

normalized variables which did not depend on the absolute magnitude of the effect. In order to

predict the absolute magnitude one would have to know the equation of state, i.e., the parameter
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Z in Eq. (5.9) which determines the absolute strength of the singularity. Also, one would have

to determine the couplings gA of hadrons to the critical collective field σ. These couplings are,

of course, also related to the equation of state and it would be interesting to make this relation

more explicit. This relation will be derived in the Chapter. (6).

The freeze-out prescription that we proposed freezes-out only the leading singular and the

slowest non-hydrodynamic mode. More quantitative studies on the hydrodynamic side are

needed to determine the relevance of the next slowest modes , corresponding to fluctuations of

pressure and hydrodynamic velocities. In Chapter. (6), we will discuss a very general freeze-out

procedure based on the maximum entropy freeze-out that naturally generalizes the procedure

developed here to fluctuations of all. hydrodynamic variables

We emphasize that our study focuses on fluctuations and freeze-out on the crossover side

of the critical point (as shown in Figure 19). However, it is important to recognize that un-

derstanding what happens on the other side, where the first-order phase transition occurs, is

also of great interest and significance. This is a challenging domain, already at the level of

hydrodynamics, and is beyond the scope of our current work.



CHAPTER 6

MAXIMUM-ENTROPY FREEZE-OUT OF HYDRODYNAMICS WITH

FLUCTUATIONS

This Chapter is based on the published work in [5] which I co-authored with my advisor,

M.Stephanov.

In this Chapter, we’ll develop a very general freeze-out procedure for hydrodynamics with

fluctuations, called maximum entropy freeze-out that exemplifies the probabilistic nature of the

freeze-out process. The application of this freeze-out procedure is not restricted to the critical

region where critical fluctuations are dominant, as it was for the freeze-out procedure discussed

in chapter. (5).

Freeze-out happens because the finite sized fireball in the strongly interacting phase becomes

dilute enough after a finite time (at about ∼ 10 fm) such that hydrodynamics is not a good de-

scription anymore. This weakly interacting gas of hadrons whose composition can be described

by a set of particle distribution functions (one for each meson and baryon whose production is

kinematically allowed), which interact amongst each other only through formation of resonances

and/or other mean-field interactions that are modeled appropriately. In the hydrodynamic de-

scription (without fluctuations and viscous effects), the only degrees of freedom are the fields

corresponding to the energy, momenta and charge densities. On the other hand, hadrons with

different masses and spins also carry momenta. The process of going from hydrodynamic de-

scription to hadron gas thus involves increasing the "number" of degrees of freedom. As we shall

194
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see in Section. (6.1), there are infinitely many sets of hadron gas distribution functions that

match with the hydrodynamic description. In order to convert the outcome of a hydrodynam-

ical simulation into a prediction for the particle distribution functions, one needs a freeze-out

procedure. While in principle, freeze-out is a stochastic process, the freeze-out procedure may

be thought of as a well-motivated ansatz for choosing one hadron gas distribution function that

satisfies the matching conditions.

The freeze-out procedure that is often used in comparison with experiments is the Cooper-

Frye freeze-out (with additional modifications to involve viscous effects). Such an ansatz has

been successful in describing experimental data at higher energies . As we shall see in Sec-

tion (6.2), Cooper-Frye prescription follows from the principle of maximum entropy if the hy-

drodynamic EoS matches with the EoS of the gas model on the space-time hypersurface where

the matching is done and if higher point correlations are in equilibrium. Our original contri-

bution in this thesis work is a generalization of the maximum entropy freeze-out procedure to

freeze-out of fluctuations of hydrodynamic densities. In order to do this, we need to introduce

a generalization for the thermodynamic entropy to a non-equilibrium scenario. We use the con-

nection between entropy and and information theory in Section (6.3), to introduce the concept

of relative entropy, which measures the excess information in the state relative to the specified

equilibrium state. This quantity is mathematically similar to the n-particle irreducible action

discussed in quantum field theory literature [214]. In Section. (6.4) and Section. (6.5), we pro-

pose the maximum entropy freeze-out of Gaussian and non-Gaussian fluctuations respectively,

according to which the particle distribution that is realized at freeze-out is the one which max-



196

imizes the relative entropy and agrees with all the information provided by the hydrodynamic

description. In Section. (6.6), we discuss how the relevance of factorial cumulants in heavy-ion

collisions naturally emerges from the maximum entropy freeze-out. Maximum entropy freeze-

out as we show, also provides a solution to the long standing question of how to subtract the

lower order self correlations from a higher point correlations to obtain the non-trivial correla-

tions that appear at that order. In Section. (6.7), we show how maximum entropy freeze-out

can be applied to freeze-out critical fluctuations to relate the effective coupling gAs(which were

treated as unknown in the previous works and in Chapter (5)) between hadron fields and the

critical field σ to the QCD EoS. In Section. (6.8), in the limit of large number of events, the

probability of observing the maximally entropic distribution becomes a delta function in the

space of distributions. This argument justifies its applicability in heavy-ion collisions where

large number of events are recorded to obtain the probability distribution of particles. We

summarize the main results from the chapter in Section. (6.9).
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6.1 Matching conditions at freeze-out that follow from conservation

Hydrodynamics prescribes evolution equations for densities of conserved quantities, energy,

momenta and charge expressed in terms of the stress-energy tensor, Tµν and the charge currents

Jµ
i s as follows

∂µT
µν = 0 , ∂µJ

µ
i = 0 (6.1)

Tµν is a second rank anti-symmetric tensor and Jis are four vectors. i can refer to baryon

charge, electric charge, strangeness etc. For simplicity, we consider only one conserved charge,

so that we can ignore the subscript i. The discussion can be generalized for a scenario with

multiple charges in a straightforward manner. One also needs constitutive relations to close the

system of equations. These are commonly expressed as:

Tµν
hyd = ϵuµuν − (peq +Π)∆µν + πµν , Jµ

hyd = nuµ +∆Jµ (6.2)

where

∆µν = gµν − uµuν (6.3)

projects a vector onto the subspace normal to the velocity vector, u. ϵ and n are the energy

density and charge density in the local rest frame of the fluid. πµν and ∆Jµ represent the

viscous and fluctuating corrections to stress-energy tensor and charge currents respectively.
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There are 4+1 (4 for four momenta and 1 for number of conserved charges) independent fields

in the ideal hydrodynamic description, ϵuµ, n. These need to be matched to their counterparts

in the description of the gas on the three-dimensional freeze-out hypersuface, S. In addition the

EoS , p(ϵ, n) on the hydrodynamic description also has to be matched with the pressure of the

hadron gas. The stress energy tensor in the kinetic description at the freeze-out is expressed in

terms of the particle distribution functions fA in the local rest frame of the fluid. A refers to

the particle species labels. Following Cooper-Frye, this can be written as [142]:

Tµν
kin(x) =

∑
A

∫
DpA fA(x) p

µ
A p

ν
A (6.4a)

Jµ
kin(x) =

∑
A

qA

∫
DpA fA(x) p

µ
A (6.4b)

where qA is the charge of the particle. In ideal hydrodynamics the matching conditions can be

written as (1):

ϵ =
∑
A

∫
d3kA fA(x,kA)EA(x) (6.5a)

n =
∑
A

∫
d3kA fA(x,kA) (6.5b)

1Technically speaking, there is no freeze-out in ideal hydrodynamics, where the system is infinite in
extent and perfectly homogeneous. In this case, we are simply matching a macroscopic description given
in terms of conserved quantities to a (more) microscopic description of the gas.
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3p(ϵ, n) =
∑
A

∫
d3kA fA(x,kA)

k2
A

EA(x)
(6.5c)

0 =
∑
A

∫
d3kA fA(x,kA)

kA

EA(x)
(6.5d)

where EA = u · pA is the energy density of the particle kind A in the local rest frame at x.

The right hand side of Eq. 6.5a and Eq. 6.5b imply conservation of energy-momentum

density and number density in the local rest frame of the fluid. Eq. (6.5c) enforces that the

pressure p(ϵ, n) is the same in the hydrodynamic and the gas descriptions. Eq. 6.5d means that

the average particle momenta points along the direction of the fluid velocity at each point on

the freeze-out hypersurface (in the absence of viscous corrections to Tµν and Jµ). Notice, that

for each x ∈ S, there are only six equations in (6.5), whereas the number of unknown variables

is infinite since fAs are functions in momenta. Therefore, there are infinitely many solutions

to these set of equations. This allows for multiple freeze-out scenarios. In Section. (6.8), we’ll

argue that the most probable scenario corresponds to Maximum Entropy freeze-out when the

number of events are large, as in typical HICs. In what follows we’ll further assume that the

freeze-out happens in a thermodynamic regime where the hydrodynamic EoS, p(ϵ, n) matches

with the hadron resonance gas EoS. This has been shown to be the case for typical freeze-out

temperatures in references [215]. This simplification implies that matching condition given by

Eq. (6.5c) is already satisfied when the other five conditions(Eq. (6.5a,6.5b,6.5d)) are met. 1

1Note that one can use maximum entropy freeze-out even without this simplification. In that case,
the matching condition Eq. (6.5c) becomes an independent condition which also needs to be satisfied.
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It is customary to define fA as the particle distribution function in the local rest frame.

fA can be defined with a different frame choice, matching conditions can be more generally

expressed as:

ϵ(x)uµ(x) =

∫
A
fA(x) p

µ
A (6.6a)

n(x) =

∫
A
qA fA(x) (6.6b)

where
∫
A refers to a sum over all particles and the appropriate Lorentz invariant measure in

momentum space.

In nature, there are few systems that are infinite and stay in global equilibrium. The more

interesting ones are described by local equilibrium and finite in extent and their dynamics can

be described by low-energy effective description given by viscous hydrodynamics expressed as

an expansion in gradients of the stress-energy tensor Tµν and currents Jµs. Freezing out a

system described by viscous hydrodynamics requires additional matching conditions for the

gradients of these conserved densities [216]. There have been various studies to modify the

Cooper-Frye freeze-out prescription to include viscous corrections in the literature [198, 216–

222]. Moreover, since hydrodynamics is a coarse grained description after integrating over the

high-momentum modes, a legitimate hydrodynamic description inevitably involves fluctuations

whose magnitudes are related to the viscous corrections via the fluctuation-dissipation theorem.

There have been attempts to develop appropriate procedure for fluctuation freezeout of two-

point fluctuations, starting from [130] and freeze-out procedures catered specifically for critical
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fluctuations [2]. But to our knowledge, a more general approach which applies to higher point

fluctuations and fluctuations of arbitrary origin has not been developed prior to this work

presented in this chapter which is already published in [5].

In stochastic hydrodynamics, local energy density, number density and fluid density are

fluctuating quantities. Following [121], we denote the stochastic quantities with a breve (eq. ϵ̆)

and the mean quantities without a breve (eg. ϵ). The difference between these quantities, i.e

the fluctuations is denoted with a delta preceding the quantity, (eq. δϵ = ϵ̆− ϵ). We define the

collective notation Ψa , a ∈ {1, . . . 5} :

Ψa = ϵua for a ∈ {1, . . . 4} , Ψ5 = n (6.7)

We define the n-point connected correlations of δΨa by H:

Hab...(xa, xb . . . ) = ⟨δΨa(xa)δΨ
b(xb) . . .⟩c (6.8)

On the gas side, let f̆A = fA + δfA be the fluctuating particle distribution function for particle

species A. We denote their n-pont connected correlations by Gs,

GAB... = ⟨δfA(xA)δfB(xB) . . .⟩c (6.9)
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We also define P a
A as:

P a
A = paδ3(xa − xA) a ∈ {1, . . . 4} , P 5

A = qAδ
3(xa − xA) (6.10)

where pµ µ ∈ {1, . . . 4} is the four-momenta of the particle and qA is its conserved charge.

Eqs. (6.6) are true on an event by event basis. We’ll use these equations to write matching

conditions for n-point correlations of δ(ϵuµ) and δn at freeze-out where the EoS between the

hydrodynamic and gas descriptions are assumed to be equivalent. In terms of the notations

defined above, the matching conditions for k-point correlation functions would read as follows:

Hab...k(xa, . . . xk) =

∫
A,B...K

GAB...KP
a
AP

b
B . . . P

k
K (6.11)

where
∫
A involves integration over xA, pA and summation over all species A.

For example, the matching condition for the two point correlations functions of the con-

served densities in the hydrodynamic and kinetic descriptions locally given by Eq. (6.11) can

be expanded as:

⟨δ(ϵ(xA)uµ(xA))δ(ϵ(xB)uν(xB))⟩ =

∫
Ã

∫
B̃
GAB p

µ
A p

ν
B (6.12a)

⟨δ(ϵ(xA)uµ(xA))δn(xB))⟩ =

∫
Ã

∫
B̃
GAB p

µ
AqB (6.12b)

⟨δn(xA)δn(xB))⟩ =

∫
Ã

∫
B̃
GABqAqB (6.12c)
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We denote the gas correlation functions in equilibrium as Ḡ and H̄ as follows:

H̄ab(xA, xB) =

∫
Ã

∫
B̃
ḠAB P

a
A P

b
B (6.13)

Since the EoSs are the same in hydrodynamic and gas descriptions, H̄ can be either calculated

using Eq. (6.13) or directly from the susceptibilities obtained using the hydrodynamic EoS.
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6.2 Cooper-Frye freeze-out Vs Maximum Entropy freeze-out

In this Section, we will discuss maximum-entropy freeze-out of ordinary hydrodynamics

(without considering fluctuations) and compare it with the commonly employed Cooper-Frye

freeze-out procedure. The gas of particles at freeze-out is characterized by the set of particle dis-

tribution functions fA(xA, pA) where variable A labels the particle species with four-momentum

pA and the space-time coordinate xA on the freeze-out hyper-surface.The entropy density for

such a non-interacting gas of particles may be expressed as:

S0 =

∫
x

∫
A
SA (6.14)

where SA is the entropy density of a system of non-interacting particles described by a single

particle distribution function is given by:

SA = −fA log fA +
1 + θAfA

θA
log(1 + θAfA) (6.15)

When θA = ±1, it corresponds to the quantum gas which obeys Bose-Einstein/Fermi-Dirac

statistics. In the limit of θA → 0, it corresponds to a classical Boltzmann gas. To match the

hydrodynamic description (locally in equilibrium) given locally by average energy density ϵ(x),

fluid velocity uµ(x) and baryon charge density n(x) with a kinetic description for a system



205

of non-interacting particles, one needs to maximize the entropy density S given by Eq. (6.14)

subject to the constraints of energy-momentum and charge conservation.

ϵuµ(x) =

∫
d3p pµf(x, pA) (6.16a)

n(x) =

∫
d3p fA(x, pA) (6.16b)

We introduce Lagrange parameters βµ, α, and extremize the following functional subject to

constraints of conservation.

S{β,α} = S0 − βµ

(
ϵuµ −

∫
A
pµf(xA, pA)

)
+ α

(
n−

∫
A
fA(xA, pA)

)
(6.17)

This gives,

δS{β,α}

δfA
= − log

fA
1 + θAfA

− βµp
µ + α = 0 (6.18)

whose solution is given by,

fA =
(
eβ·p−α − θA

)−1
(6.19)

After substituting Eq. (6.19) in Eq. (6.16), βµ and α are determined to be T = −(β.u) and

µ = Tα where T and µ are the temperature and chemical potential of the gas corresponding

to the local energy and number density of fluid. I.E, the maximum-entropy freeze-out of ordi-
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nary hydrodynamics, produces particles distributed according to Bose-Einstein/ Fermi-Dirac of

Boltzmann distribution functions at a local temperature T and chemical potential µ determined

from the local average energy and number densities at freeze-out.

Note that this is same as the Cooper-Frye freeze-out prescription described in Section. (5.1).

Therefore, Cooper-Frye freeze-out coincides with the maximum entropy freeze-out when the

equation of states are same between the hydrodynamic description and the Hadron Resonance

Gas(HRG) description. If we freeze-out in a regime where the EoS between the two descriptions

are not same, one needs to consider additional Lagrange parameters to match the pressure. In

a viscous setting, the stress energy tensor has corrections due to the gradients. Therefore,

one needs additional matching conditions for the gradients of these conserved densities. The

maximum entropy principle with these extra matching conditions has already been utilized in

freezing out viscous hydrodynamics in Ref. [216].

Cooper-Frye freeze-out cannot be employed when the two and higher point fluctuations of

the hydrodynamic variables are out of equilibrium. In the Sections that follow, we’ll introduce

a freeze-out procedure, that generalizes the concept of maximum-entropy freeze-out to out-of-

equilibrium higher point fluctuations of conserved densities. This becomes relevant when the

relaxation rates of the higher point fluctuations become comparable to the expansion rate of

the system. In-order to do this, we need to generalize the concept of thermodynamic entropy

to entropy of out-of equilibrium fluctuations in a gas and then we maximize it subject to the

matching conditions.
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6.3 Entropy of fluctuations

The exponential of the entropy S0 in a microcanonical ensemble given by Eq. (6.14) is

proportional to the number of microstates of the system with given values of occupation numbers

fA of the hydrodynamic cells. In the thermodynamic (large volume) limit there is a large number

of single-particle quantum states in each hydrodynamic cell and the number of possible ways

to occupy these elementary quantum states is exponentially large, of order eS0 . A macroscopic

state is an ensemble of this exponentially large number of microscopic states with occupation

numbers close to mean fA. The values fA are not the same in all microscopic states, but

fluctuate. The magnitude of fluctuations is suppressed in the thermodynamic limit such that

average over these states is fixed. If the fluctuations are in equilibrium and the mean distribution

functions of each particle species is f̄A, then the probability distribution for f is given by (upto

to a normalization factor):

P (f) ∝ exp

[∫
C
JCfC

]
(6.20)

where

JA = −
(
∂S0
∂fA

)
fA=f̄A

(6.21)
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where S0 is given in Eq. (6.14). Using this probability distribution one can calculate the

expectation values ḠAB... of the fluctuation correlators in equilibrium which will depend on f̄A.

ḠAB =

[∫
DfA exp

(
S0 +

∫
C
JCfC

)]−1 ∫
exp

(
S0 +

∫
C
JCfC

)
δfAδfB (6.22)

Note that exp(S0) which is the number of microscopic states appears in the measure of the

integration.

We can also consider states with (some of) the correlators GAB... having specific values, not

necessarily equal to ḠAB.... These states must have lower entropy since more information is

available about these states. To find their entropy we can consider the probability distribu-

tion perturbed by additional factor exp(KAB...fAfB . . . ), where KAB... play the role similar to

Lagrange multipliers.

P (f) = exp

(
S0[f ] +

∫
A
JAfA +

1

2

∫
AB

KABfAfB −W2(J,K)

)
(6.23)

where

W2(J,K) =

∫
f
exp

(
S0[f ] +

∫
A
JAfA +

1

2

∫
AB

KABfAfB

)
(6.24)
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Integrating over fluctuations of fA we can then obtain f̄A, GAB..., which will depend on J and

KAB...s, we get the following relations:

CA = −JA −KAB f̄B (6.25)

G−1
AB = −CAB −KAB (6.26)

where CAB ≡ δ2S0/(δfAδfB) and CA ≡ δS0/δfA are evaluated at the mean particle distribution

function f̄A. From now on, we will use Cs to denote derivatives of thermodynamic entropy of S0

with respect to fAs. The number of subscripts will denote the order of the derivative. Solving

for K and substituting back into the probability distribution we find the joint probability

distribution for fA as well as the correlators GAB....

P (f) = exp

(
S0[f ]−

∫
A
(CA +

(
G−1 + C

)
AB

f̄B)fA − 1

2

∫
AB

(
G−1 + C

)
AB

fAfB −W2

)
(6.27)

The generalized entropy is then related to the probability distribution P (f) as follows:

S[P ] = −
∫
f
P (f) logP (f) (6.28)

The expression for generalized entropy is similar to the von Neumann entropy used in quantum

information. The calculation of the entropy of fluctuations along these lines for a two-point

correlator can be found in Ref. [116], where it is also pointed out that the result mathematically
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resembles the 2-PI action in quantum field theory [223–227]. We we’ll denote this entropy which

is a function of f̄ and G2s by S2. S2 can be related to W2 as follows:

S2 =W2(J,K)− JAf̄A − 1

2
KAB f̄Af̄B − 1

2
Tr [KACGCB] (6.29)

In the saddle point approximation W2 can be calculated as:

W2(J,K) = S[f̄ ] + JAf̄A +
1

2
KAB f̄Af̄B − 1

2
log det(−C −K) (6.30)

The result is:

S2 = S1 +
1

2
Tr [log(−GC) +GC + 1] , (6.31)

where G ≡ G2. S1 is the 1-PI effective action given by:

S1 = S0 −
1

2
Tr log(−C) (6.32)

The difference S2 −S1 vanishes when G equals −C−1 ≡ Ḡ and can be viewed as the additional

(negative) entropy of the state with additional constraints on correlators relative to the entropy

of the state with correlations given simply by Ḡ.

Our goal in this chapter to generalize maximum entropy freeze-out to Gaussian as well as

non-Gaussian fluctuations of hydrodynamic densities. In particular, for practical applications

to experiments, we need freeze-out prescriptions for atleast three and four point functions of
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hydrodynamic densities. In order to do this, one can proceed in a similar fashion as above i.e

perturb the probability distribution function by additional factors of exp(KABCfAfBfC). etc.,

P (f) = exp

(
S[f ] +

∫
A
JAfA +

1

2

∫
AB

KABfAfB +
1

6

∫
ABC

KABCfAfBfC

+
1

24

∫
ABCD

KABCDfAfBfCfD −W4(J,K2,K3,KD)

)
(6.33)

where

W4(J,K2,K3,KD) =

∫
f
exp

(
S[f ] +

∫
A
JAfA +

1

2

∫
AB

KABfAfB +
1

6

∫
ABC

KABCfAfBfC

+
1

24

∫
ABC

KABCDfAfBfCfD

)
(6.34)

The n-particle irreducible entropy can then be calculated using Eq. (6.28). For an arbitrary

states with all higher point fluctuations deviating from their equilibrium values, can be expressed

mathematically as follows:

P (f) = exp
(
−W∞[J,K(2),K(3),K(4), . . . ] + Jf +

1

2
K(2)f2 +

1

3!
K(3)f3 +

1

4!
K(4)f4 + . . .

)
(6.35)

where JΨ ≡ JAfA, K
(2)Ψ2 ≡ K

(2)
ABfAfB, K

(3)Ψ3 ≡ K
(3)
ABCfAfBfC , K

(4)Ψ4 ≡ K
(4)
ABCDfAfBfCfD

and so on. The indices represent both discrete and continuous sets of variables. The repeated

indices A,B,C . . . imply summation over species and integration hydrodynamic phase space
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cells. The subscripts will be suppressed in some of the expressions that appear below for brevity.

W∞[J,K(2),K(3),K(4), . . . ] is the normalization constant such that:

∫
DΨP (Ψ) = 1 (6.36)

i.e,

W∞[J,K(2),K(3),K(4), . . . ] = log

[∫
Dfexp

(
S0[f ] + Jf +

1

2
K(2)f2 +

1

3!
K(3)f3 +

1

4!
K(4)f4 + . . .

)]
(6.37)

In order to evaluate P (f), we need an expansion scheme in a small parameter so as to eval-

uate it in perturbation theory. There is a natural parameter that is hidden in the summations

like K
(3)
ABCfAfBfC . Note that the integration over hydrodynamic phase space cells involves

summation over coarse grained spatial hydrodynamic cells. Since in the hydrodynamic limit,

the length(l) of these cells are much larger than the microscopic length scales(a) in the theory,

the averaging over these volumes already produces a small factor ϵ ≡ (a/l)3. This is the small

parameter in which we are expanding. The expansion in this parameter is equivalent to an

expansion in number of loops [214]. Below, we will discuss the calculation of S4 upto O(ϵ2) and

in Section. (6.4) and Section. (6.5) maximize this entropy subject to constraints from matching

conditions to hydrodynamics to obtain the Gs.
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The n-point connected correlation functions of the deviations of fAs from its mean values

f̄A can be obtained using the W as follows:

GAB =

[
2
∂W

∂KAB
− f̄Af̄B

]
ABC

(6.38a)

GABC =

[
6

∂W

∂KABC
− f̄Af̄B f̄C −GAB f̄C

]
ABC

(6.38b)

GABCD =

[
24

∂W

∂KABCD
− f̄Af̄B f̄C f̄D − 3GABC f̄D − 6GAB f̄C f̄D − 3GABGCD

]
ABCD

(6.38c)

where we have introduced the notation 12...n (which will be repeatedly used in this chapter) to

imply averaging over all permutations:

[. . . ]
12 . . . n

=
1

n!
[. . . ]P1...n

(6.39)

The entropy S4 of a partial equilibrium state can be expressed as:

S4 = −
∫
Df eS0[f ]+Jf+ 1

2
K(2)f2+ 1

3!
K(3)f3+ 1

4!
K(4)f4−W4[J,K(2),K(3),K(4)] ×(

Jf +
1

2
K(2)f2 +

1

3!
K(3)f3 +

1

4!
K(4)f4 −W4[J,K

(2),K(3),K(4)]

)
(6.40a)

= W4[J,K
(2),K(3),K(4)]− Jf̄ − 1

2
⟨K(2)f2⟩ − 1

3!
⟨K(3)f3⟩ − 1

4!
⟨K(4)f4⟩ (6.40b)
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We can rewrite some of the expectation values in Eq. (6.40b) in terms of Gns:

⟨K(2)f2⟩ = K(2)G2 +K(2)f̄2 (6.41a)

⟨K(3)f3⟩ = K(3)G3 +K(3)f̄3 + 3K(3)G2f̄ (6.41b)

⟨K(4)f4⟩ = K(4)G4 +K(4)f̄4 + 4K(4)G3f̄ + 6K(4)G2f̄
2 + 3K(4) (G2)

2 (6.41c)

Substituting Eqs. (6.41) in Eq. (6.40b):

S4 = W4[J,K
(2),K(3),K(4)]− Jf̄ − 1

2
K(2)f̄2 − 1

3!
K(3)f̄3 − 1

4!
K(4)f̄4

−1

2

(
K(2) +K(3)f̄ +

1

2
K(4)f̄2

)
G2 −

1

3!

(
K(3) +K(4)f̄

)
G3 −

1

4!
K(4)

[
G4 + 3G2

2

]
(6.42)

We can determine S4 as a function of f̄ and Gns by inverting the relation between Ks and

Gs obtained using Eq. (6.38). G3 and G4 can be expressed as sum of tree diagrams using the

dressed vertices V3 and V4 as follows:

GABC = GADGBEGCFVDEF (6.43a)

GABCD = [GAEGBFGCHGDIVEFHI + 3GAEGBFGCHGDIVEFJVJHI ]
ABC

(6.43b)

The dressed vertices can be obtained as an expansion as shown in (Figure 41) in terms of

classical vertices(V0n) and classical propagator(G̃) which we define in (Figure 40).
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K + K  f =
(3) (4)

+ C(3)

K
(4)

= +  C
(4)

= K + K  f 
(3) (4)

+ C(2)2
fK

(2)
+ [ ]

-1

Figure 40: The symbols on the left hand side represent the classical propagator G̃2, the classical

vertices V03 and V04. The RHS shows expressions for them in terms of the parameters, K that

appear in Eq. (6.34) and nth derivatives of S0, denoted by C(n)s.

+ + + +1
2

1
2

1
2 + O(ε )4

+ O (ε )
4

Figure 41: The black line with the solid black dot is the full propagator (G2) which is obtained by

summing an infinite set of 1PI diagrams involving the classical propagator defined in Figure 40.

Similarly the dressed three point and four point vertices V3 and V4 (defined in Eq. (6.43)))

are obtained by summing over an infinite set of 1PI diagrams involving the classical vertices.

Notice that the propagators in these expansions have already been resummed and expressed in

terms of the full propagator. Each of these expansions have been truncated at O(ϵ4).
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In terms of Gns, S4 is obtained and diagrammatically represented in Figure 42.

S4 S[ f ] +(1/2) log[det[G ]] + (1/2)
2

+ +

+ +

-

- -

1 1

1 1

1

1
1

8 6

24 8

12

48

C  (where n is the number of legs attached)(n)

G2

+ O(ε  )3

Gn

-1

1

12

1
16

-

0

Figure 42: The figure shows S4 obtained by evaluating Eq. (6.42).
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Since we plan to maximize the entropy, it will be useful to get the expressions for derivatives

of S4 with respect to Gns as shown below.

Derivatives of S wrt G  R n

-(1/24) +(1/8)

-(1/6) + (1/4) -(1/3) -(1/4)

(1/2) +(1/4) +(1/4) +(1/12) -(1/2)

-(1/8)

+(1/2)

∂S
∂G4

R

∂S
∂G3

R =

=

∂S
∂G2

R =

+O(ε  ) 
0

+ O(ε  )
1

+ O(ε )2+(1/4) +(1/8)

:

:

: :

: :

Figure 43: The figure shows the derivatives of S4 with respect to Ψ̄, G2, G3, G4 obtained by

taking derivatives of expression in (Figure 42). The notation : X :≡ X − Xeq means differ-

ence of the diagram evaluated by with out-of equilibrium Gs from the diagram evaluated with

correlation functions in equilibrium denoted by Ḡs.
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6.3.1 Correlations in equilibrium

The two, three and four point correlation functions in equilibrium are obtained in terms of

the derivatives of S0 are obtained as:

ḠAB = −C−1
AB (6.44a)

ḠABC = −CQRSC
−1
AQC

−1
BRC

−1
CS (6.44b)

ḠABCD = C−1
AQC

−1
BRC

−1
CSC

−1
DT

[
CQRST − (CQRUCSTV + CQSUCRTV + CQRTCSUV )C

−1
UV

]
(6.44c)

Taking derivatives of S0 defined in Eq. (6.14), we obtain:

CAB = − 1

s f2A + fA
δAB , CABC =

2fAs+ 1

f2A(s fA + 1)2
δABC , CABCD = −6s fA(s fA + 1) + 2

f3A(s fA + 1)3
δABCD

(6.45)

i.e

ḠAB = fA (s fA + 1)δAB , ḠABC = fA (s fA + 1) (2s fA + 1) δABC ,

ḠABCD = fA (s fA + 1) (6s fA(s fA + 1) + 1) δABCD (6.46)

Specifically for classical (Boltzmann) statistics, (s = 0)

ḠAB = fAδAB , ḠABC = fAδABC , ḠABCD = fAδABCD (6.47)
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6.4 Maximum Entropy freeze-out of Gaussian fluctuations

In this Section, we describe the maximum entropy freeze-out procedure for two-point fluctu-

ations. The generalized entropy which is maximized in equilibrium is the 2-PI entropy density

(given by Eq. (6.31)) which is a functional of the particle distribution functions, fAs and also

their two-point correlations, GABs. The maximization is subject to the matching conditions

given by:

Hab(xa, xb) =

∫
AB

GABP
a
AP

b
B (6.48)

Define the Lagrange parameter 6× 6 matrix Λ which depends on space time points xA, xB.

The Lagrangian function for the 2-PI entropy with the above constraints is given by:

SΛ = S +
1

2

∫
xA

∫
xB

Λab(xA,xB)

(
Hab(xA, xB)−

∫
Ã

∫
B̃
GAB P

a
A P

b
B

)
(6.49)

Variation condition δSΛ/δGAB = 0 then gives

G−1
AB = Ḡ−1

AB − Λab(xA, xB)P
a
A P

b
B (6.50)

Formally, Eq. (6.50) can be expanded in an infinite series as follows:

GAB = ḠAB + ḠACΛcd(xC , xD)P
c
CP

d
DḠDB + ḠACΛcd(xC , xD)P

c
CP

d
DḠDEΛef (xE , xF )P

e
EP

f
F ḠFB + . . .

(6.51)
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Substituting Eq. (6.51) in Eq. (6.48):

Hab(xA, xB) =

∫
Ã

∫
B̃
ḠABP

a
AP

b
B

+

∫
Ã

∫
B̃

∫
C

∫
D
ḠACΛcd(xC , xD)P

c
CP

d
DḠDBP

a
AP

b
B

+

∫
Ã

∫
B̃

∫
C

∫
D

∫
E

∫
F
ḠACΛcd(xC , xD)P

c
CP

d
DḠDEΛef (xE , xF )P

e
EP

f
F ḠFBP

a
AP

b
B + . . .

= H̄ab(xA, xB) +

∫
xC

∫
xD

Λcd(xC , xD)ϕ̄
ac(xA, xC)ϕ̄

db(xD, xB)

+

∫
xC

∫
xD

∫
xE

∫
xF

Λcd(xC , xD)Λef (xE , xF )ϕ̄
ac(xA, xC)ϕ̄

de(xD, xE)ϕ̄
fb(̄xF , xB) + . . .

=
[
H̄−1 − Λ

]−1ab (6.52)

Rewriting Λ in terms of H,

Λ = H̄−1 −H−1 (6.53)

Substituting Eq. (6.53) in Eq. (6.50), the two-point correlation function that maximizes the

2-PI entropy density on the kinetic side subject to the conservation laws is then given in terms

of the hydrodynamic fluctuations as:

G−1
AB = Ḡ−1

AB −
[
H̄−1 −H−1

]
ab
(xA, xB)P

a
AP

b
B (6.54)

Linearizing in ∆H = H − H̄, the GAB which maximizes the SΛ and satisfies Eq. (6.48) is:

GAB = ḠAB +∆Hab(H̄
−1PḠ)aA(H̄

−1PḠ)bB + . . . (6.55)
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6.5 Maximum Entropy freeze-out of non-Gaussian fluctuations

In this Section we maximize the 4-PI entropy, S4 given by Eq. (6.40a) and diagrammatically

represented in Figure 42. Suppose the hydrodynamical simulation with fluctuations gives the

following inputs, the two point (Hab), three point (Habc)and four point (Habcd) functions of

conserved densities. Hab,Habc
3 as the two point and three point fluctuation matrix of δ(ϵuµ), δn.

Then the matching conditions are :

Hab(xA, xB) =

∫
Ã

∫
B̃
GABP

a
AP

b
B (6.56a)

Habc(xA, xB, xC) =

∫
Ã

∫
B̃

∫
C̃
GABCP

a
AP

b
BP

c
C (6.56b)

Habcd(xA, xB, xC) =

∫
Ã

∫
B̃

∫
C̃
GABCDP

a
AP

b
BP

c
CP

d
D (6.56c)

We define SΛ as the quantity given below that we need to maximize with respect to Gns

that satisfy the matching conditions given in 6.56.

SΛ = S4 +
1

2

∫
xA

∫
xB

Λ
(2)
ab (xA, xB)

(
Hab

2 (xA, xB)−
∫
Ã

∫
B̃
GAB P

a
A P

b
B

)
−1

6

∫
xA

∫
xB

∫
xC

Λ
(3)
abc(xA, xB, xC)

(
Habc

3 (xA, xB, xC)−
∫
Ã

∫
B̃

∫
C̃
GABC P

a
A P

a
BP

c
C

)
− 1

24

∫
xA

∫
xB

∫
xC

∫
xD

Λ
(4)
abcd(xA, xB, xC , xD)

(
Habcd

4 (xA, xB, xC , xD)−
∫
Ã

∫
B̃

∫
C̃

∫
D̃
GABCD P

a
A P

b
BP

c
CP

d
D

)
(6.57)
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The derivatives of S4 with respect to G2, G3 and G4 are given in (Figure 43). We will use

the leading terms in ϵ in each of those equations to obtain the following equations:

∂S4
∂GA1A2

= :
1

2
G−1

A1A2
: + . . . (6.58a)

∂S4
∂GA1A2A3

= : −1

6
G−1

A1B1
G−1

A2B2
G−1

A3B3
GB1B2B3 : + . . . (6.58b)

∂S4
∂GA1A2A3A4

= : − 1

24
G−1

A1B1
G−1

A2B2
G−1

A3B3
G−1

A4B4
GB1B2B3B4 +

1

8
GA1EA2GA3FA4G

−1
EF : + . . .

(6.58c)

The notation : X :≡ X−Xeq means difference of the diagram evaluated by with out-of equilib-

rium Gs from the diagram evaluated with correlation functions in equilibrium denoted by Ḡs.

The variation conditions ∂SΛ/∂GAB = 0, ∂SΛ/∂GABC = 0 and ∂SΛ/∂GABCD = 0, give:

G−1
AB = Ḡ−1

AB − Λ
(2)
ab (xA, xB)P

a
AP

b
B + . . . (6.59a)

GABC = C
(3)
QRSGAQGBRGCS + Λ(3)

qrs(xA, xB, xC)P
q
QP

r
RP

s
SGAQGBRGCS + . . . (6.59b)

GABCD = C
(4)
QRSTGAQGBRGCSGDT +G−1

JX [GJABGXCD +GJADGXBC +GJACGXBD]

+Λ
(4)
abcd(xA, xB, xC , xD)P

a
QP

b
RP

c
SP

d
TGAQGBRGCSGDT (6.59c)
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We can substitute in the matching conditions Eqs. (6.56) to obtain Λ(2),Λ(3) and Λ(4). Λ(2) can

be obtained as before and Λ(3) and Λ(4) are given by:

Λ
(2)
ab (x1, x2) = H̄−1

ab (x1, x2)−H−1
ab (x1, x2) (6.60a)

Λ
(3)
abc(x1, x2, x3) =

(
H−1

)
af

(
H−1

)
bd

(
H−1

)
ce

(
Hfde

3 (x1, x2, x3)−Dfde
3 (x1, x2, x3)

)
(6.60b)

Λ
(4)
abcd(x1, x2, x3, x4) =

(
H−1

)
af

(
H−1

)
bg

(
H−1

)
ce

(
H−1

)
dh

[
Hfgeh(x1, x2, x3, x4)−Dfgeh(x1, x2, x3, x4)

]
(6.60c)

with D3 and D4 given by:

Dfde
3 (x1, x2, x3) =

∫
Ã

∫
B̃

∫
C̃
C

(3)
QRSGAQGBRGCSP

f
AP

d
BP

e
C (6.61a)

Dabcd
4 (x1, x2, x3, x4) =

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
D

[
GAQGBRGCSGDTC

(4)
QRST

+

∫
X

∫
Y
G−1

XY [GY ABGXCD +GY ACGXBD +GY ADGXBC ]

]
(6.61b)

We can express D3 and D4 in terms of the hydrodynamic correlations,

∆̂Hfd = Hde − H̄de (6.62)

∆̂Hfde = ∆Hfde − 3
[
∆Hfg(H̄−1H3)

gde
]

fde

(6.63)
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as follows. This is shown in Appendix. (D).

Dfde
3 = H̄fde + 3

[
∆Hfg(H̄

−1H3)gde
]
fde

+ . . . (6.64a)

Dabcd
4 =

[
H̄abcd + 6∆Ĥabe

3 (H̄−1H̄3)
ecd + 4∆Ĥaf (H̄−1H̄4)

fbcd + 3∆Ĥef (H̄−1H̄3)
abe(H̄−1H̄3)

fcd
]
abcd

(6.64b)

Substituting Λs back into Eq. (6.59), we get:

G−1
AB = Ḡ−1

AB −
[
H̄−1 −H−1

]
ab
P a
AP

b
B (6.65a)

GABC =

∫
Q

∫
R

∫
S
GAQGBRGCS

[
C

(3)
QRS +

(
PAH

−1
)
f

(
PBH

−1
)
d

(
PCH

−1
)
e

(
Hfde

3 −Dfde
3

)]
(6.65b)

GABCD =

∫
Q

∫
R

∫
S

∫
T
GAQGBRGCSGDT

(
C

(4)
QRST +

[
3GJXC

(3)
JQRC

(3)
XST

]
QRST

+
(
PAH

−1
)
f

(
PBH

−1
)
g

(
PCH

−1
)
e

(
PDH

−1
)
h

(
Hfgeh

4 −Dfgeh
4

))
(6.65c)

In terms of the deviation from equilibrium correlations defined as below:

∆GAB = GAB − ḠAB (6.66a)

∆GABC = GABC − ḠABC (6.66b)

∆GABCD = GABCD − ḠABCD (6.66c)
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we can express GABC , GABCD as :

GABC =
[
ḠABC + 3∆GAR(Ḡ

−1G3)RBC

+ ∆̂Hfde(PQH̄
−1ḠAQ)f (PRH̄

−1ḠBR)d(PSH̄
−1ḠCS)e

]
ABC

+ . . . (6.67)

GABCD =
[
ḠABCD + 6∆ĜABF (Ḡ

−1Ḡ3)FCD

+4∆ĜAF (Ḡ
−1Ḡ4)FBCD + 3∆ĜEF (Ḡ

−1Ḡ3)ABJE(Ḡ
−1Ḡ3)FJCD

+∆Ĥfdeg(QḠ)fA(QḠ)dB(QḠ)eC(QḠ)gD

]
ABCD

+ . . . (6.68)

Notice, that all but the last terms on the RHS of Eqs. (6.67) and (6.68) can be expressed entirely

in terms of the lower order correlations. This decomposition gives important insight into
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6.6 Irreducible Relative Cumulants

The GAB... are the connected correlation functions between particles A,B, . . . with momenta

pA, pB, . . . and spatial coordinate xA, xB, . . . on the freeze-out hypersurface. Even in a non-

interacting ideal gas of hadrons, there are correlations , which we denote by ḠAB which are

non-zero. What we are interested in are the non-trivial correlations which arise due to the

interactions between the particles or non-equilibrium effects. In order to distinguish these

correlations, one needs to decompose the total n-point correlations GAB... into a genuine nth

order correlation + terms which can be written in terms of lower order correlations that depend

on ḠAB.... This has been accomplished in the earlier sections and expressed in the form of

Eqs. (6.55,6.67,6.68). From these equations, we can identify the term which cannot be written

in terms of lower order kinetic correlations and define them as the irreducible relative cumulants

(IRCs) of the kinetic distribution. The IRCs of the particle distribution functions are defined

as follows:

∆ĜAB ≡ GAB − ḠAB (6.69a)

∆ĜABC ≡
[
GABC − ḠABC − 3∆ĜAE(Ḡ

−1Ḡ3)EBC

]
ABC

(6.69b)

∆ĜABCD ≡
[
GABCD − ḠABCD − 6∆ĜABF (Ḡ

−1Ḡ3)FCD

−
[
4∆ĜAF (Ḡ

−1Ḡ4)FBCD + 3∆ĜEF (Ḡ
−1Ḡ3)ABJE(Ḡ

−1Ḡ3)FJCD

]]
ABCD

(6.69c)
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We can now introduce similar correlation functions of the hydrodynamic fluctuations which we

we will call hydrodynamic irreducible relative cumulants (IRCs).

∆Ĥab ≡ ∆Hab (6.70a)

∆Ĥabc
3 ≡

[
∆Habc

3 − 3∆Ĥae(H̄−1H̄3)
ebc
]

abc

(6.70b)

∆Ĥabcd
4 ≡

[
∆Habcd

4 − 6∆Ĥabe
3 (H̄−1H̄3)

ecd −
[
4∆Ĥaf (H̄−1H̄4)

fbcd + 3∆Ĥef (H̄−1H̄3)
abe(H̄−1H̄3)

fcd
]]

abcd

(6.70c)

In terms of the kinetic and hydrodynamics IRCs, we can rewrite the linearized form of the

freeze-out of the fluctuations as follows:

∆ĜAB = ∆Ĥab(QḠ)aA(ḠQ)bB (6.71)

∆ĜABC = ∆Ĥfde
3 (QḠ)fA(QḠ)dB(QḠ)eC (6.72)

∆ĜABCD = ∆Ĥfdeg
4 (QḠ)fA(QḠ)dB(QḠ)eC(QḠ)gD (6.73)

where Qa =
(
H̄−1

)
ac
P c. The linearized form of the freeze-out of a general higher point corre-

lation function of fluctuations can be expressed compactly as follows :

∆ĜABC... = ∆Ĥfde...(PQH̄
−1ḠAQ)f (PRH̄

−1ḠBR)d(PSH̄
−1ḠCS)e · · ·+ . . . (6.74)

Note that the factors (Ḡ−1Ḡn)ABC... ≡ Ḡ−1
AXḠXBC... in Eq. (6.74), in the case of classi-

cal(Boltzmann) statistics (Eq. (6.47)), are equal to δABC.... Thus, in this case, the IRCs ∆̂Gn
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coincide with correlators Cab... described in Ref. [111], whose phase space integrals give facto-

rial cumulants. Such correlators and factorial cumulants play important role in the acceptance

dependence of the fluctuation measures [104, 111]. For an arbitrary gas with arbitrary Ḡs, the

integrals of ∆ĜABC... over phase space, Eqs. (6.69) give the expression for the non-trivial out

of equilibrium correlations that arise at that order.

We will now compare the results of the maximum entropy approach with other freezeout

procedures used in the literature to implement freeze-out of fluctuations.

Ref. [130] considered fluctuations of fA caused by fluctuations of hydrodynamic parameters

such as temperature and chemical potential, Ja in our notations, i.e., δfA = (∂fA/∂Ja)δJa =

(PḠ)aAδJa , where, as before, ḠAB = f ′AδAB. Using hydrodynamic correlators ⟨δJaδJb⟩ = H−1
ab

one then finds:

GAB = H−1
ab (PḠ)

a
A(PḠ)

b
B , (6.75)

as opposed to our Eq. (6.69a). We see that the problem with Eq. (6.75) is in the absence of

the separate contribution of the ideal gas fluctuations, ḠAB = f ′AδAB, which matches H̄ in

hydrodynamics, but does not describe correlations between two different particles [228, 229].

While the approach of Ref. [130] could satisfy the constraints (6.22), it does so, in part, via

spurious two-particle correlations. This problem was addressed in Ref. [228, 229] for charge

fluctuations, where the ideal gas (Poisson) contribution to H was subtracted before applying

“freezeout (thermal) smearing” to the remainder, H − H̄ in our notations. Thus, maximum

entropy approach reproduces, in Eq. (6.74), the procedure in Ref. [228, 229] for two-point cor-
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relators. The subtractions of lower order terms in Eqs. (6.74) generalize this procedure to

higher-order correlators.
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6.7 Determining the coupling to critical fluctuations, gAs

Fluctuations near the QCD critical point in equilibrium have been described by consid-

ering a fluctuating critical mode σ coupled to the observed particles via their σ-dependent

masses Refs. [9, 40, 56, 57, 105, 208]. This approach was further generalized in Ref. [2] to non-

equilibrium critical fluctuations by mapping the correlators of σ to correlators of the specific

entropy m ≡ s/n – the critical field in Hydro+ [116]. This freeze-out procedure was discussed

in detail in Chapter. (5). We can now compare this approach to the result of the maximum

entropy method by considering only the matrix element H ŝŝ of hydrodynamic correlator H

corresponding to the fluctuations of the specific entropy ŝ.

Furthermore, since this approach only considers the leading (most singular) critical contri-

bution, for our comparison, we can neglect lower-order correlations, which contribute subleading

behavior in terms of the dependence on the correlation length near the critical point [56]. In

practice this means ∆̂Gn = ∆Gn up to subleading (less critical) terms.

Near the critical point, the fluctuations of δŝ at constant pressure (p) are the slowest to

evolve and also exhibit the most singular behavior. Fluctuation of δ(ϵuµ) and δn can be

expressed in terms of the fluctuations of ŝ and p as follows: Let,

E = (ϵuµ, n) M = (uµ, p, ŝ) (6.76)
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Similar to Hn, which denotes the connected correlation functions of E , let:

H̃ = ⟨δMδM⟩ , H̃3 = ⟨δMδMδM⟩ , H̃4 = ⟨δMδMδMδM⟩c , (6.77)

In general, the relationship between E and M are non-linear. However, near the critical

point, the n-point fluctuations of E and M can be connected via linear transformations:

∆Hab = Xa
c∆H̃

cdXb
d + . . . (6.78a)

∆Habc
3 = Xa

dX
b
eX

c
f∆H̃

def + . . . (6.78b)

∆Habcd
4 = Xa

eX
b
fX

c
gX

d
h∆H̃

efgh + . . . (6.78c)

where [124]:

Xa
c =

∂Ea

∂Mc
≡

(ϵuµ)uν (ϵuµ)p (ϵuµ)ŝ

nuν np nŝ

 =

ϵ∆
µ
ν c−2

s uµ ϵŝu
µ

0 n
wc2s

n
w (ϵŝ − Tn)

 (6.79)

where subscript means derivative with respect to that variable when the others in the set

(uµ, p, ŝ) are kept constant, w = p+ ϵ is the enthalpy and c2s is the square of the speed of sound.

ϵŝ is given by:

ϵŝ = Tn

(
1− Ṫ

c2s

)
(6.80)
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with

Ṫ =

(
∂ log T

∂ log n

)
ŝ

(6.81)

The . . . in Eq. (6.78) represent the terms that appear due to the non-linear terms in the

transformation connecting the ϵ and n to ŝ and p. Using the universal scaling behavior near

the critical point, it can be argued that these terms vary as smaller powers in correlation length

near the critical point. The elements of X−1 are defined as follows:

X−1a

c =
∂Ma

∂Ec
≡


δ(uµ)ϵuν δ(uµ)n

pϵuν pn

ŝϵuν ŝn

 =


ϵ−1∆µ

ν 0

pϵuν pn

ŝϵu
ν ŝn

 (6.82)

where subscript means derivative with respect to that variable when the others in the set

((ϵu)µ, n) are kept constant, Define ¯̃H such that:

(
¯̃H−1

)
ab

= (X)ca
(
H̄−1

)
cd

(
XT
)d
b

(6.83)

We’ll show shortly that ¯̃H is diagonal. We, now re-express Eq. (6.69a) as:

∆ĜAB = ḠACP
c
C

(
H̄−1

)
ca
∆Ĥab

(
H̄−1

)
bd
P d
DḠDB

= ḠAC(PX
−1)cC

(
XH̄−1X

)
ca
(X−1∆ĤX−1)ab

(
XH̄−1X

)
bd
(X−1P )dDḠDB (6.84)
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Substituting Eqs. (6.83,), in Eq. (6.84), we get

∆ĜAB =
(
X−1P

)g
C

(
¯̃H−1

)
gh

∆ ̂̃Hhj

ḠAC

(
¯̃H−1

)
ji

(
PX−1

)i
D
ḠDB (6.85a)

= ∆ ̂̃Hab

(Q̃Ḡ)aA(Q̃Ḡ)bB (6.85b)

where

Q̃a =
(
X−1

)g
c

(
¯̃H−1

)
ga
P c
C (6.86)

We show below that ¯̃H−1 is diagonal: From Eq. (6.83),

(
¯̃H
)
ab

=
(
X−1

)c
a

(
H̄
)
cd

(
X−1T

)d
b

(6.87a)

=


ϵ−1∆µ

ν 0

pϵuν pn

ŝϵu
ν ŝn


⟨δ(ϵuνδ(ϵuα)⟩eq ⟨δ(ϵδ(n)⟩equ

ν

⟨δ(ϵδ(n)⟩equα ⟨δnδn⟩eq


ϵ−1∆α

β pϵuα ŝϵu
α

0 pn mn

 (6.87b)

=


⟨δuµδuβ⟩ 0 0

0 p2ϵ ⟨δϵδϵ⟩+ pϵpn⟨δϵδn⟩+ p2n⟨δnδn⟩ (pŝ)ϵ⟨δϵδϵ⟩eq + (pŝ)⟨δϵδn⟩+ (pŝ)n⟨δnδn⟩

0 (pŝ)ϵ⟨δϵδϵ⟩+ (pŝ)ϵn⟨δϵδn⟩+ (pŝ)n⟨δnδn⟩ m2
ϵ ⟨δϵδϵ⟩+m2

ϵn⟨δϵδn⟩+m2
n⟨δnδn⟩


eq

(6.87c)



234

Note that,

pϵŝϵ⟨δϵδϵ⟩eq + (pϵŝn + ŝϵpn)⟨δϵδn⟩eq + pnŝn⟨δnδn⟩eq = ⟨δpδŝ⟩eq = 0 , (6.88)

where we have used the thermodynamic relations

dp =
w

T
dT + Tndα , dŝ =

1

nT
dϵ− w

n2T
dn (6.89)

and

⟨δβδϵ⟩ = ⟨δnδα⟩ and ⟨δβδn⟩ = ⟨δαδϵ⟩ = 0 (6.90)

where β = 1/T and α = µ/T . It follows from Eq. (6.88) that ¯̃H is diagonal. Eq. (6.88) simply

means that in equilibrium fluctuations of pressure and entropy per baryon are not correlated.

Near the critical point, the equilibrium n-point correlations of p are subleading relative to the

most singular mode, corresponding to fluctuations of δŝ,i.e while ⟨δŝδŝ⟩eq ∼ Cpξ
2−η where Cp

is the specific heat capacity , ⟨δpδp⟩ ∼ c2s ∼ ξα/ν . We consider the case where the sub-leading

singular corrections to the Hadron-Resonance Gas EoS due to the fluctuations of pressure are

negligible. We also assume that in the regime we are interested in fluctuations of pressure are

fast enough to relax to their equilibrium values such that ⟨δpδp⟩ = ⟨δpδp⟩eq which is equal

to the pressure fluctuations in a HRG upto negligible corrections. Recall that the correlation
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functions of δŝ is the slowest non-hydrodynamic mode. Therefore, at times scales large enough

for all correlations except ⟨δŝδŝ⟩ to relax to equilibrium,

∆ĜAB = ∆ ̂̃H ŝŝ

(Q̃Ḡ)ŝA(Q̃Ḡ)ŝB (6.91)

where ∆ ̂̃H ŝŝ

≡ ∆⟨̂δŝδŝ⟩ and

Q̃ŝA =
(
X−1

)ŝc
a

(
¯̃H−1

)
cŝ
P a
A (6.92)

(
¯̃H
)
ab

=


⟨δuµδuβ⟩ 0 0

0 p2ϵ ⟨δϵδϵ⟩+ p2ϵn⟨δϵδn⟩+ p2n⟨δnδn⟩ 0

0 0 ŝ2ϵ ⟨δϵδϵ⟩+ ŝ2ϵn⟨δϵδn⟩+ ŝ2n⟨δnδn⟩


eq

(6.93)

From Eq. (6.93), one can read out
(
¯̃H
)
ŝŝ

as:

(
¯̃H
)
ŝŝ

= ŝ2ϵ ⟨δϵδϵ⟩eq + 2ŝϵŝn⟨δϵδn⟩eq + ŝ2n⟨δnδn⟩eq

=

∫
C̃

∫
D̃
ḠCD

1

nT

1

nT

[
(pC · u)− w

n
qC

] [
(pD · u)− w

n
qD

]
(6.94)
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where we used ŝϵ = (nT )−1 , ŝn = −w(n2T )−1. Substituting Eq. (6.94) in Eq. (6.92):

Q̃ŝA =
(
X−1

)ŝŝ
a

(
¯̃H−1

)
ŝŝ
P a
A =

(
¯̃H−1

)
ŝŝ
[ŝϵ (pD · u) + ŝnqD] =

(
¯̃H
)−1

ŝŝ

1

nT

[
(pD · u)− w

n
qD

]
(6.95)

Substituting Eq. (6.92) in Eq. (6.91), we get the prescription for freeze-out of two-point

fluctuations near the critical point as:

∆ĜAB =
(
¯̃H
)−1

ŝŝ

1

nT

[
(pC · u)− w

n
qC

] (
¯̃H
)−1

ŝŝ

1

nT

[
(pD · u)− w

n
qD

]
∆ ̂̃H ŝŝ

(Ḡ)AC(Ḡ)DB (6.96)

The prescription for critical fluctuations discussed in detail in chapter (5) [2] was:

∆ĜAB = gAgBZ
−1T−2mC

EC

mD

ED
∆ ̂̃H ŝŝ

ḠACḠDB (6.97)

where Z is given by Eq.(5.11) and gAs were taken to be constants. 1 The absence of the energy

dependence of gA in Eq. (6.97) is a consequence of the simplifying assumption that the field

σ couples to mass term. Maximum entropy method allows us to relax this assumption and

determine the “coupling” gA together with its energy dependence from the equation of state

(EOS) of QCD. Comparing Eq. (6.96) and Eq. (6.97), we identify gAs as:

gA =
√
Z
EA

mA

(
H̄−1

)
ŝŝ

wc

nc

(
EA

wc
− qA
nc

)
, (6.98)

1Eq. (6.97) when integrated over pairs of particles of all momenta emitted from all points on the
freeze-out hypersurface gives Eq. (5.14) in Chapter. (5).
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where (H̄−1)ŝŝ is the hadron gas contribution to the fluctuations of specific entropy ŝ, which

can be also found from the non-singular contribution to the EOS [63] as (H̄−1)ŝŝ = n2/c̄p.

Since the QCD EOS is not known (yet), we shall demonstrate how to estimate gA using the

parametric EOS introduced in Ref. [63]. First, following Ref. [2], we find Z by matching the

leading singularity in the QCD EOS to that in the Ising model:

Z = lim
T,µ→Tc,µc

cpT

n2(Tξ)2−η
=

M0T
4
c

h0n2c(Tcξ0)
2−η

×
(
cotα1 −

sc
nc

)2 [ sinα1

w sin(α1 − α2)

]2
,

where w, α1,2 and ξ0 are parameters, defined in Refs. [63, 107], which control the orientation

and strength of the critical point singularity located at T = Tc and µ = µc, with enthalpy given

by wc = ncµc + scTc. The same expression as in the square brackets determines the width of

the critical region [1]. The values of M0 and h0 are fixed in Ref. [63].

Defining ĝA so that gA ≡ ĝA sinα1/[w sin(α1−α2)], we can use parameters in Refs. [63,107]

(µc = 350MeV, Tc = 143.2MeV, ξ0 = 1 fm) to estimate the values of the couplings at zero

momentum (pA = 0): ĝp,0 ≈ −3.1, ĝπ,0 ≈ 0.18, ĝp̄,0 ≈ 5.5. The factor sinα1/[w sin(α1 − α2)]

is a measure of the size of the critical region where the fluctuations are enhanced. Larger this

size, larger is the coupling between the σ field and the particles.

The approach in Refs. [2, 9, 40, 56, 57, 105, 208] leading to Eq. (6.97) leaves not only the

magnitude, but also the sign of gA undetermined. While the overall sign can be changed by

redefining the critical field σ, the relative sign of gA for different particles, or different momenta
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of the same particle, i.e., different A, is not arbitrary and can be found in the maximum entropy

approach using Eq. (6.98).

Thus, we find that the critical mode (fluctuations of ŝ) coupling to (low momentum) protons

is opposite in sign from the coupling to either pions or antiprotons. This is due to the fact

that fluctuations of the number of protons contribute to the fluctuations of the ratio s/n with

opposite sign from that of pions or antiprotons. More explicitly, pions contribute to the entropy

density, s and protons contribute (mostly) to the denominator, baryon number density n of the

ratio.

There could be experimental implications of the changing sign of gA ∼ ncEA−wcqA. These

could be studied by considering cross-species correlators discussed in Ref. [105]. Another pos-

sible place to look for these implications are in the correlations between particles with different

momenta. In both cases one would expect anticorrelation since gAgB is negative.
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6.8 Stochastic nature of freeze-out

In a heavy-ion collision experiment, hundreds of millions of events are collected and ana-

lyzed to determine the mean and cumulants of particle multiplicities. In each of these events,

shortly after the collision, a strongly coupled QGP is formed which later freezes out into a gas

of hadrons. This gas of hadrons at freeze-out may be characterized by a set of particle dis-

tribution functions {fA(xA, pA)}s. There are infinitely many sets of these particle distribution

functions that are consistent with the matching conditions at freeze-out (Eq. (6.5,6.11)). Let

the probability of observing a set of particle distribution functions f , which solves the match-

ing conditions be p̄(f). Let M be the total number of events and nf be the number of events

in which {f} is realized. In reality, where M is finite the "observed" probability denoted by

p(f) =
nf

M need not be equal to p̄(f). pf is characterized by the mean-multiplicity distribution

f̄ , the cumulants of the distribution functions G2, G3 . . . . The probability of having nf events

with distribution function f (or equivalently, observed probability being equal to p(f)) which

we denote by capital P is given by 1:

P (p) = exp

[
M

∫
DfeS0(f)p(f) log

p̄(f)

p(f)

]
(6.99)

1See Appendix. (E) for an illustrative derivation of this result
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where eS0(f) is the number of states in a microcanonical ensemble of hadron gas with mean

particle distribution function given by {fA}s. Therefore, whenM → ∞, probability of obtaining

the true probability distribution function,p̄, which maximizes the integral

∫
DfeS0(f)p(f) log

p̄(f)

p(f)
(6.100)

subject to the condition that p̄ is normalized is nearly 1. This is exciting except that our knowl-

edge about p̄(f) is limited by the information we have about the system at freeze-out. Below,

we will determine p̄(f) assuming the input from hydrodynamic simulation with fluctuations is

sufficient to describe the "true" probability distribution at freeze-out. A hydrodynamic simu-

lation with fluctuations gives us information about the averages of energy, momenta, charge

densities and the higher point correlation functions of their fluctuations. Then p̄(f) with this

information can be constructed as:

p̄(f) = exp{−βiΨi − λ− Λ(n)Hn(f)} (6.101)

where Λ(n)Hn(f) collectively refers to all the constraints on the higher point fluctuations of the

conserved densities expressed as functions of f . The normalization constant λ ensures that p̄ is

normalized to 1. Rewriting the discrete N summation expressions to integral over continuous

set of states, we get the general expression for P as follows:

P (p) = exp

[
−M

∫
DfeS0(f)p(f)

(
log p(f) + βiΨi + λ+ Λ(n)Hn(f)

)]
(6.102)
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When M → ∞, the probability P tends to a delta function that picks the distribution which

maximizes the integral:

−
∫
DfeS0(f)p(f)

(
log p(f) + βiΨi(f) + λ+ Λ(n)Hn(f)

)
(6.103)

which is essentially the p(f) (or equivalently f̄ , Gns) prescribed by the maximum-entropy freeze-

out. Therefore, maximum entropy freeze-out gives us the most likely freeze-out scenario (in a

heavy-ion collision with large number of events) that is consistent with all the information we

have about the system at freeze-out.
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6.9 Summary

Maximum entropy principle has been widely applied across diverse disciplines ranging from

statistics, information theory, economics, data science, computation, pattern recognition to

bioinformatics and biology. In fact, statistical mechanics itself can be derived from using max-

imum entropy principle [230, 231] . The thermodynamic state is, by definition, the state of

maximum entropy, i.e., the most likely ensemble of microscopic states, given the known (i.e.,

measured) properties of the system, such as total energy. The application to freezeout could be

viewed as answering the question of what is the most likely ensemble of free-streaming particles

after freezeout given the information about the hydrodynamic conditions before the freezeout.

The central idea is that this information at freeze-out could include not only the values

of conserved densities but also of the hydrodynamic fluctuations (i.e., correlators Hn) out of

equilibrium. These can be obtained, for example, from a Hydro+ calculation [2, 116, 128,

129] similar to the one described in Section. (4), or by solving full hydrodynamic fluctuation

equations [121,124,125]. Maximum entropy freezeout then determines the most likely ensemble

of particles at freeze-out which matches all this available information (equation of state and the

predictions of hydrodynamics with fluctuations).

Remarkably, the results are consistent with the picture, already considered in the litera-

ture, of hadron gas coupled to fluctuating fields inducing correlations thereby corroborating

the existing picture. In addition, it provides nontrivial insight into the entropic origin of the

correlations. Crucial for practical applications, the maximum entropy approach provides in-
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formation about the couplings determining the magnitude of the correlations as well as the

generalization to non-Gaussian fluctuations in or out of equilibrium.

The next step would be to implement this novel approach in heavy-ion collision simulations

to explore the consequences and to compare the results with experimental data from the Beam

Energy Scan at RHIC, which are currently being analyzed by the STAR collaboration. Studies

in this direction are in progress.



CHAPTER 7

CONCLUSIONS

The study of QCD phase diagram is cardinal to broadening our understanding about the

formation of nuclear matter, the early universe and the interior of neutron stars. The chiral

symmetry restoring phase transition and confinement - deconfinement transitions are funda-

mental aspects of the theory of strong interactions. The nature of QCD phase transition in the

physical realm will provide some clues to understanding these properties of QCD. This thesis

was about using fluctuations as probes to map the phase diagram.

There are encouraging hints of the possible presence of a critical point in the phase diagram

from Beam Energy Scan-I (BES-I). In order to make conclusive inferences from the data, we

need a theoretical model/ framework to study fluctuations. Such a model should include a

systematic treatment of fluctuations taking into account not only the aspects of the QCD EoS,

but also its dynamics and the hybrid nature of the sources. We used quantum field theory to

develop some components of such a model and demonstrate their applicability via simplified

scenarios. The anticipated non-monotonic behavior of the cumulants of particle multiplicities

with the collision energy is due to the enhancement of thermal fluctuations near the critical

point (otherwise called critical fluctuations). The framework that we would have to use to make

a systematic data-theory comparison must be capable of handling these non-critical sources as

well. In addition, the magnitude of observed thermal fluctuations also depend upon various

factors such as the strength of the singularity near the critical point determined by the EoS, the

244
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suppression due to dynamics due to competition between time scales and freeze-out parameters

such as the closeness of the freeze-out line to the cross-over line. In this thesis we focus on the

EoS, dynamics and freeze-out of fluctuations near the critical point.

In Chapter (3), we studied the Equation of State of QCD at high temperatures and number

density near the conjectured critical point. Due to the universality of critical phenomenon, the

physics near the QCD critical point can be mapped to that of ϕ4 theory or Ising model in three

dimensions. The mapping is in general dependent on the microscopics of QCD, and not based

on symmetries and long distance dynamics and hence cannot be deduced based on universal

arguments. Note, that due to the infamous sign problem the EoS at non-zero baryon chemical

potential is unknown from first principles, and therefore, these mapping parameters cannot

be determined from our current knowledge of QCD, although some aspects of these quantities

could be inferred. As we show in Chapter. (3), these parameters can be directly related to

higher order derivatives of pressure with respect to temperature and chemical potential, which

can be connected to observables in heavy-ion collisions. We also discovered that in the limit of

small quark masses, (which is a reasonable approximation for the case of real-world QCD), the

mapping parameters show universal scaling features as a function of quark mass. These relations

are particularly important as they allow us to place bounds on the values of non-universal

mapping parameters, thereby allowing us to construct model EoS around the conjectured QCD

critical point, which can then be used as input in hydrodynamical simulations of heavy-ion

collisions. These also have phenomenological consequences.
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In a heavy-ion collision, when the quark gluon plasma passes close to the critical point, it

spends only a finite amount of time around regions where the equilibrium fluctuations are large.

Due to critical slowing down, the fluctuations of the conserved quantities will not become as

large as the maximum equilibrium values that may be expected using the EoS. In Chapter. (4),

we studied the dynamics of the Gaussian fluctuations of the conserved quantities in semi-

realistic analytical and numerical hydrodynamic backgrounds within the Hydro+ framework.

In-order to describe the observables in heavy-ion collisions, i.e the particle distribution functions,

we need a freeze-out procedure to convert these hydrodynamic fluctuations into correlations of

particle multiplicities in momentum space. In Chapter. (5), we developed a freeze-out procedure

that converts the hydrodynamic fluctuations near the critical point into cumulants of particle

multiplicities. We demonstrated this procedure for the freeze-out of two-point fluctuations

of hydrodynamic variables in semi-realistic scenarios. We observed that due to conservation

and critical slowing down, the variances of particle multiplicities are suppressed relative to the

equilibrium expectations and are also less sensitive to the exact location of freeze-out on the

phase diagram. One of the lacunae of this framework is its regime of applicability which is

restricted to the domain where fluctuations are dominated by the critical point. That brings

us to the last part of this thesis.

We expect the critical fluctuations to dominate over non-critical sources close to the critical

point. Loosely speaking, this is what we call the "critical region". In order to make quantitative

estimates of fluctuations and thereby calculate cumulants of particle multiplicities as a function

of center of mass energy, the non-critical sources of fluctuations also need to be included. In
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Chapter. (6), we developed a generalization to the half a century old Cooper-Frye procedure

to freeze-out all fluctuations (not just the critical fluctuations) of hydrodynamic densities into

particle distribution functions using the principle of maximum entropy. Describing the entropy

associated with particle multiplicity distributions, we were able to illustrate the stochastic

nature of freeze-out. Applying the maximum entropy freeze-out to freeze-out of critical fluctu-

ations, we were able to extract the gAs, the unknown couplings between the the critical σ field

that couples to the hadrons in the effective field theory description near the critical point.

The crucial elements necessary for a fluctuation framework to estimate cumulants of particle

multiplicities in HICs are now ready. In order to make direct comparisons with the experiment,

it is necessary to perform simulations in more realistic settings than the example scenarios

which we considered here. The next step would be an implementation of the hydrodynamic

simulation with fluctuations of the slowest mode in a 3D realistic background (for eg., [232])

with realistic initial conditions and EoS, such as BEST EoS which agrees with lattice at zero

baryochemical potential and includes a critical point [63] . The fluctuations can then be con-

verted into cumulants of particle multiplicities with the maximum entropy freeze-out which was

introduced in this thesis. In addition to the model parameters that appear in the modeling of

the initial stage and the viscous coefficients, the fluctuation frame work with "BEST EoS"+

"Hydro+"+"Maximum-Entropy freeze-out" adds seven more parameters , six corresponding to

the mapping parameters to 3D Ising model in the QCD EoS and the non-critical correlation

length ξ0 which sets the scale for the correlation length in QCD. A hadronic afterburner to

account for resonance decays and elastic and inelastic scatterings could be coupled to this



248

framework. Augmenting with Bayesian tools and comparing to experimental data, we hope to

be equipped to understand the nature of phase transition from quark-gluon plasma to hadrons

at non-zero baryon densities.

Our discussion about the dynamics of hydrodynamic fluctuations was restricted completely

to the cross-over region. The dynamics becomes too non-trivial in the first-order regime where

interesting phenomenon like meta stable phases, spinodal decomposition and nucleation could

take place. While there have been some initial developments with regard to these phenomenon

in the context of heavy-ion collisions, our understanding about how hydrodynamic fluctuations

evolve and freeze-out when it encounters a first-order phase transition is rather limited. We

defer these investigations to future work.
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LOCATION OF CRITICAL POINT FROM TAYLOR EXPANSIONS OF

EOS AROUND ZERO CHEMICAL POTENTIAL

Numerical Monte Carlo methods cannot calculate the derivatives near the critical point due

to the well-known sign problem. But these derivatives can be evaluated at zero baryon chemical

potential. The radius of convergence or the distance to the closest singularity to the µ = 0 axis

can be inferred from the behavior of large n derivatives evaluated at µ = 0. Suppose,

P (µ, T ) =
∞∑
n=0

c2n(t)µ
2n (A.1)

The odd Taylor coefficients are zero due to µ → −µ symmetry. The square of the radius of

convergence as a function of temperature, µ2s(T ), can be expressed as a limit of the ratios of

the successive Taylor coefficients as:

|µ2s(T )| = lim
n→∞

c2n(T )

c2n+2(T )
≡ lim

n→∞
R2n(T ) (A.2)

If the closest singularity to µ = 0, T = Tc is the critical point located at (µc, Tc), i.e if

µ2s(Tc) = µc, the behavior of R2n for n≫ 1 can be predicted from the leading singular behavior

of pressure. The leading singular behavior of the derivatives of pressure are same along any
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direction other than h = 0 are the same. This can be obtained by taking of the leading singular

behavior in pressure expressed as follows:

P (µ, T ) ∼
(
1− µ

µc

)ap(Tc)

+

(
1 +

µ

µc

)ap(Tc)

(A.3)

where ap(Tc) = (1 + δ)/δ. For n→ ∞,

R2n(Tc) =
(2n+ 1)(2n+ 2)

(ap(Tc)− 2n)(ap(Tc)− 2n− 1)
+ · · · = 1 +

1 + 2δ

nδ
+O(n−2) (A.4)

Since δ > −1/2 in Ising model, for sufficiently large n, the radius of convergence estimators

R2n overestimate the value of chemical potential at the critical point.

Equivalently the radius of convergence estimators can also be defined as the coefficients of

µ2n in the Taylor series expansion of the second or higher order derivatives of pressure with

respect to µ, which we denote by χk, where k is the order of the derivative. The radius of

convergence estimators hence obtained can be denoted by Rχk
2n :

Rχk
2n =

cχk
2n

cχk
2n+2

(A.5)

For the ratios the successive non-vanishing Taylor coefficients of χ2k , we get:

R2k
2n

µ2c
= 1 +

ap − 2k + 1

n
+O(n−2) (A.6)
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For k = 1, which corresponds to susceptibility we find that the radius of convergence estimators

deviate much less from the actual value of µs than the estimates obtained using the Taylor

coefficients of pressure. We also find that the radius of convergence estimators obtained using

χ2k where k ≥ 2 underestimate the value of µc. This may be seen in the Random matrix model

for mq = 5MeV in the following plot.

Figure 44: The estimates made using the Taylor coefficients of pressure(blue), susceptibility

(red) and the fourth derivative of pressure(black) for RMM with mq = 5MeV at T = Tc is

shown.

If the critical point is the closest singularity to the µ = 0 line at T = Tc, the closest

singularities for for sufficiently small positive and negative δT = T − Tc ≪ 1, the closest

singularities are the Lee-Yang singularities and the spinodal points respectively. In general
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these singularities occur at complex values of µ. The local of the spinodal singularities in the

mean-field turns out to be at real values of µ.

The leading singular behavior of pressure and hence its derivatives if µ = 0 line in a general

case where the close singularity occurs at a complex value µs(T ) can be captured by the following

expression:

P (µ, T ) = N

[(
1− µ

µs(T )

)ap(T )

+

(
1 +

µ

µs(T )

)ap(T )
]
+N∗

[(
1− µ

µ∗s(T )

)ap(T )

+

(
1 +

µ

µ∗s(T )

)ap(T )
]
+ . . .

(A.7)

where N is a constant and ap(T ) is the scaling exponent which depends on the nature of

singularity. The . . . represent the singular terms which are subleading near the singularity and

the terms which are regular at the singularity.

A.0.0.1 Van der waals gas EoS

The EoS of a van der Waals gas was discussed in Section. (3.5). The gas being non-

relativistic, there is no meaning for negative values of chemical potential.

P (µ, T ) = N

(
1− µ

µs(T )

)ap(T )

+N∗
(
1− µ

µ∗s(T )

)ap(T )

+ . . . (A.8)

In this case, there is no reason for odd derivatives of P with respect to µ at µ = 0 to vanish.

Rn(T ) is defined as:

Rn(T ) =
n+ 1

n− ap

cos [(n− ap) θ + θa]

cos [(n− ap + 1) θ + θa]
(A.9)



253

APPENDIX (Continued)

where θ = arg [µs] and θa = arg [N ]. For real singularities, θ = 0.

We noticed earlier that ap(Tc) = (1+ δ)/δ, where the closest singularity is the critical point

which lies on the real µ axis. For T > Tc and δ = T −Tc << Tc, it is reasonable to assume that

the closest singularities are given by the Lee-Yang singularities. Below, we will determine ap, θ

and θa near the Lee-Yang singularities in the mean-field theory taking the universal ϕ4 model

near the critical point given by Eq. (3.43) for T > Tc. The Lee-Yang singularities are obtained

as solutions to

∂Ω

∂ϕ
=
∂2Ω

∂ϕ2
= 0 (A.10)

The solution is 1:

(
ϕLY =

√
−r
3u

, hLY/sp =
2r

3

√
−r
3u

)
and

(
ϕ∗LY/sp, h

∗
LY/sp

)

Pressure in this model can be expanded near these singularities as:

P (µ, T ) ∼ ϕ
−1/2
LY (h(µ, T )− hLY/sp(µLY/sp(T ), T ))

3/2 + ϕ
∗−1/2
LY (h(µ, T )− h∗LY/sp(µLY (T ), T ))

3/2 + . . .

∼ ϕ
−1/2
LY (−µ)3/2LY

(
1− µ

µLY/sp(T )

)3/2

+ ϕ
∗−1/2
LY (−µ)∗3/2LY/sp

(
1− µ

µ∗LY (T )

)3/2

(A.11)

1For T < Tc, the roots of these equations correspond to the spinodal singularities. They being real
in mean-field is an artifact of mean-field theory.
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Comparing with Eq. (A.8), we obtain θ = arg
[
µLY/sp

]
, θa = 3π

2 − 1
2arg [ϕLY ] ≈ 3π

2 − 1
4arg [rLY ],

which is negligible when α2 is small.
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+
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T = Tc

Figure 45: The estimates for radius of convergence scaled by their actual value plotted as a

function of n in VDW gas for a = 0.3, b = 0.3, µc = 0.5, sc = 0.1. The black curve is the curve

predicted by Eq. (A.9) with ap = 4/3, θ = 0.
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Figure 46: The estimates for radius of convergence scaled by the magnitude of the chemical

potential at the Lee-Yang singularity in Van-der-waals gas (with a = 0.3, b = 0.3, µc = 0.5, sc =

0.1) plotted as a function of n at temperature corresponding to various temperatures T > Tc

compared to the universal prediction for large n obtained using Eq. (A.9) with ap = 3/2, θ =

arg [µLY ] and θa ≈ 3π/2.
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SLOPE ANGLE α1 FROM EOS AND DERIVATIVES AT µ = 0

There are different ways to define the pseudo-critical temperature at lower baryon chemical

potential values where we know the transition is a cross-over as a function of temperature T . The

deviations between the pseudo-critical temperatures obtained using these different definitions

goes to zero as one approaches the critical point. It is common to define the pseudo-critical

temperature as the temperature at which the chiral susceptibility χ ≡ (∂2P/∂m2
q)T,µ attains

its maxima for a given µ in the cross-over region [18]. If the full form of χ(µ, T ) is known, one

expects χ(µc, T ) to have the its maxima at T = Tc. α1 is the slope of the first-order line or

equivalently the pseudo-critical curve at the critical point, (µc, Tc) [63].

χ and its lower order derivatives with respect to µ along µ = 0 axis can be calculated using

lattice techniques. One can determine the maxima T (µ) of the function χ(µ, T ) expressed

as a truncated Taylor expansion in µ (i.e polynomial in µ). Since the EoS near the critical

point is not describable by a Taylor expansion, one might suspect the validity of the pseudo-

critical curve obtained from the Taylor expansion for µ values close to µ = µc. In what

follows, we’ll compare the pseudo-critical curves obtained via evaluating the maxima of the

chiral susceptibility in Random Matrix Model ( [48], discussed in Section. (3.7) for mq = 5MeV

using the full expression for pressure in the model and that obtained from the truncated Taylor

expansion for pressure at µ = 0. In this model calculation, we find that that the pseudo-critical
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temperatures at the critical baryon chemical potential determined from the truncated Taylor

expansion agrees with the known critical temperature within 12%.

Let the truncated Taylor expansion for χ upto O(µ4) be:

χ(µ, T ) = c0(T ) + c2(T )µ
2 +

c4(T )

2
µ4 (B.1)

and the truncated Taylor expansion for the pseudo-critical curve, denoted by Tpc(µ) be:

T 2
pc(µ) = T 2

0 + κ2µ
2 +

κ4
2
µ4 (B.2)

Our objective is to obtain T0, κ2 and κ4 by evaluating the maxima of Eq. (B.1) for a fixed

µ. This can be done along lines of [233].

Taking derivative of χ given in Eq. (B.1) with respect to T 2:

∂χ

∂T 2
= c

′
0(T ) + c

′
2(T )µ

2 +
c
′
4

2
µ4

=

(
c
′
0(T0) + c

′
2(T0)µ

2 +
c
′
4(T0)

2
µ4

)
+

(
c
′′
0(T0) + c

′′
2(T0)µ

2 +
c
′′
4(T0)

2
µ4

)
(T 2 − T 2

0 )

+

(
c
′′′
0 (T0) + c

′′′
2 (T0)µ

2 +
c
′′′
4 (T0)

2
µ4

)
(T 2 − T 2

0 )
2

2
+ ..

= c
′
0(T0) +

(
c
′
2(T0) + c

′′
0(T0)κ2

)
µ2 +

(
c
′
4(T0)

2
+ c

′′
2(T0)κ2 +

c
′′
0(T0)

2
κ4 +

c
′′′
0 (T0)

2
κ22

)
µ4 +O(µ6)

(B.3)
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In the above Eqs., ′ refers to differentiation by T 2. Equating ∂χ/∂T 2 to zero order by order

in µ, one can obtain T0 by solving c′0 = 0 and

κ2 = − c
′
2

c
′′
0

(B.4)

κ4 = −c
′′′
0 κ

2
2 + 2c

′′
2κ2 + c

′
4

c
′′
0

(B.5)

We obtain, T0 ≈ 174MeV , κ2 ≈ −0.016 , κ4 ≈ −8.0∗10−9 MeV2. Evaluating the slope angle

α1 from the pseudo critical curve defined by Eq. (B.2), we get α1 ≈ 10.5◦. (Compare it with

α1 ≈ 13◦ obtained using the full EoS in Section. (3.7).

200 400 600 800
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Figure 47: The dashed and solid lines correspond to the pseudo critical Tpc(µ) curve obtained

from the full EoS and that which is truncated at O(µ4) obtained by taking square root of

Eq. (B.2) with T0 ≈ 174MeV , κ2 ≈ −0.016 , κ4 ≈ −8.0 ∗ 10−9 MeV2 respectively. The pseudo-

critical temperatures at the critical baryon chemical potential determined from the truncated

Taylor expansion agrees with the known critical temperature within 12%.
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EQUATION OF STATE USED IN THE HYDRODYNAMICAL

EVOLUTION

The equation of state that we have used in the analytical calculations of Section 4.3, done

within a Bjorken scenario, as well as in the numerical Hydro+ simulations for a semi-realistic

scenario done in Section 4.4, is taken from Ref. [128]. We describe this equation of state briefly

in this Appendix. An aspect of the physics that the Hydro+ formalism is well-suited to describe

is the way in which the out-of-equilibrium fluctuations of the slow modes modify the equation

of state [116]. However, it has been observed in Refs. [128] and [129] that these backreaction

effects are smaller than 1% in most cases. For this reason, throughout the present work we

neglect the feedback of Hydro+ modes on the equation of state. That is, in the notation

of Refs. [116, 128, 129] we approximate the Hydro+ equation of state p+(ε) by the standard

pressure p(ε) given by

p =
s

β
− ε (C.1)

where ε is the energy density, β is the inverse temperature, and where the entropy density s is

given as a function of the local temperature by

s(T ) =

∫ T

0
dT

′ cV (T
′
)

T ′ (C.2)
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with cV (T ) being the specific heat capacity at fixed volume. In Ref. [128], the equation of state

is specified close to and away from a critical temperature Tc by choosing

cV (T ) =


cno C.P
V (T ) T ≤ TL orT ≥ TH

ccrit
V (T ) +

∑5
n=0 cn

(
T−Tc
∆T

)n
TL < T < TH

(C.3)

with (TL, TH) = (Tc−∆T, Tc+∆T ) and where ∆T , which parametrizes the width of the critical

region, is the same parameter that arises in Eq. (4.9). Here as there, we take ∆T = Tc/5.

Following Ref. [128], we take ccrit
V (T ), the critical part of cV that shows the leading singular

behavior near the critical point, to have the form

ccrit
V (T ) ≡ 1

2

1

ξ30

ξ(T )

ξ0
, (C.4)

where the temperature dependence of the correlation length of critical fluctuations, ξ(T ), needs

to be specified. Following Ref. [128], we do so as in Eq. (4.9). The prefactor 1/2 in Eq. (C.4)

is a non-universal constant whose value depends on the mapping between the equation of state

of the 3D Ising model and the equation of state of QCD, whose critical point is in the 3D Ising

universality class. We have used a value that is reasonable for ∆T = Tc/5; see the argument in

Ref. [128]. Continuing to follow Ref. [128], away from the critical point we choose the form of

the specific heat capacity cno C.P
V (T ) as follows:

cno C.P
V (T )

T 3
≡
[
aH + aL

2
+
aH − aL

2
tanh

T − Tcrossover
∆Tcrossover

]
(C.5)
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with

aL = 0.1 aQGP , aH = 0.8 aQGP , and aQGP ≡
4π2(N2

c − 1) + 21π2Nf

15
, (C.6)

where Nc = 3 and Nf = 3 are the number of flavors and colors respectively, and with

Tcrossover = Tc , ∆Tcrossover = 0.6Tc . (C.7)

The specification of the equation of state is completed by choosing the six constant coefficients

cn that appear in Eq. (C.3) so as to enforce that cV (T )/T 3 and its first two derivatives are

continuous at T = TL and at T = TH .
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DERIVATION OF D3 AND D4

In this Appendix we will derive Eq. (6.64a) and Eq. (6.64b).

D3 was defined in Eq. (6.61a). Linearizing Dfde in ∆GABC = GABC − ḠABC and ∆GAB =

GAB − ḠAB,

Dfde
3 (x1, x2, x3) = H̄fde + 3

[∫
Ã,B̃,C̃

∆GAQC
(3)
QRSḠBRḠCSP

f
AP

d
BP

e
C

]
fde

+ . . . (D.1a)

= H̄fde + 3

[∫
Ã,B̃,C̃

∆GAQḠ
−1
QXḠXY C

(3)
Y RSḠBRḠCSP

f
AP

d
BP

e
C

]
fde

+ . . .(D.1b)

= H̄fde + 3

[∫
Ã,B̃,C̃

∆GAQḠ
−1
QXḠXBCP

f
AP

d
BP

e
C

]
fde

+ . . . (D.1c)

Substituting ∆GAQ given by Eq. (6.55):

Dfde
3 (x1, x2, x3) = H̄fde + 3

[∫
Ã,B̃,C̃

∆Hag(H̄
−1PḠ)aA(H̄

−1PḠ)gQḠ
−1
QXḠXBCP

f
AP

d
BP

e
C

]
fde

+ . . .(D.1d)

= H̄fde + 3

[∫
Ã,B̃,C̃

∆Hag(H̄
−1PḠ)aA(H̄

−1
gq P

g
XḠXBCP

f
AP

d
BP

e
C

]
fde

+ . . . (D.1e)

= H̄fde + 3

[∫
Ã
∆Hag(H̄

−1PḠ)aA(H̄
−1H3)gdeP

f
A

]
fde

+ . . . (D.1f)

= H̄fde + 3
[
∆Hag(H̄−1H̄)fa(H̄−1H3)

gde
]

fde

+ . . . (D.1g)

= H̄fde + 3
[
∆Hfg(H̄−1H3)

gde
]

fde

+ . . . (D.1h)
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Thus, we obtain Eq. (6.64a). D4 was defined in Eq. (6.61b). Linearizing the first term in Dabcd

in ∆GABCD = GABCD − ḠABCD, ∆GABC = GABC − ḠABC and ∆GAB = GAB − ḠAB,

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
DGAQGBRGCSGDTC

(4)
QRST

=

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
DḠAQḠBRḠCSḠDTC

(4)
QRST

+4

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
D∆GAQḠBRḠCSḠDTC

(4)
QRST (D.2)

Linearizing the second term in Dabcd in ∆GABCD = GABCD−ḠABCD, ∆GABC = GABC−ḠABC

and ∆GAB = GAB − ḠAB,

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
D

∫
X

∫
Y
3G−1

XY [GY ABGXCD]
ABCD

=

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
D

∫
X

∫
Y
3Ḡ−1

XY

[
ḠY ABḠXCD

]
ABCD

+

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
D

∫
X

∫
Y

[
6Ḡ−1

XY ∆GY ABḠXCD + 3∆(G−1)XY

[
ḠY ABḠXCD

]
ABCD

]
ABCD

(D.3)

Adding parts of Eq. (D.2) and Eq. (D.3) separately, we get

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
D

[
ḠAQḠBRḠCSḠDTC

(4)
QRST + 3

∫
X

∫
Y
G−1

XYGY ABGXCD

]
ABCD

= H̄abcd

(D.4)
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and

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
D

[
4∆GAQḠBRḠCSḠDTC

(4)
QRST +

∫
X

∫
Y
6Ḡ−1

XY ∆GY ABḠXCD

]
ABCD

=
[
6∆Ĥabe

3 (H̄−1H̄3)
ecd + 4∆Ĥaf (H̄−1H̄4)

fbcd
]

abcd

(D.5)

and

3

∫
Ã

∫
B̃

∫
C̃

∫
D̃
P a
APbBP

c
CP

d
D

∫
X

∫
Y
G−1

XY [GY ABGXCD]
ABCD

= 3
[
∆Ĥef (H̄−1H̄3)

abe(H̄−1H̄3)
fcd
]
abcd

(D.6)

Combining Eq. (D.4), Eq. (D.5) and Eq. (D.6), we get:

Dabcd =
[
H̄abcd + 6∆Ĥabe

3 (H̄−1H̄3)
ecd + 4∆Ĥaf (H̄−1H̄4)

fbcd + 3∆Ĥef (H̄−1H̄3)
abe(H̄−1H̄3)

fcd
]
abcd

(D.7)

Thus, we obtain Eq. (6.64b).
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REALIZATION OF MAXIMUM ENTROPIC FREEZE-OUT IN THE

LIMIT OF LARGE NUMBER OF EVENTS

Let us assume that there are N possible states that can be realized at freeze-out. Let p̄i be

the probability that the state {i} is realized at freeze-out in an event. Let ni be the number of

events in which {i} is realized. The probability (P ) that this happens is given by:

P (ni; p̄i) =
M !∏N
i=1 ni!

N∏
i

p̄ni
i (E.1)

Let us denote :

pi =
ni
M

(E.2)

In the limit of nis,M ≫ 1, using Stirling’s formula,

logP (pi; p̄i)

M
= −

N∑
i

pi log
pi
p̄i

(E.3)

We notice that expression on the right hand side of Eq. (E.3) is the relative entropy of the

probability distribution function pi with respect to the "true" probability distribution function

p̄i. Eq. (E.3) tells us that for large number of events, i.e M → ∞, the
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P (pi; p̄i)
M→∞
= δ (pi − p̄i) (E.4)

probability of obtaining the true probability distribution function is nearly 1.
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