Laser plasma accelerators

Wim Leemans

Lawrence Berkeley National Laboratory

US-Japan HEP Collaboration

30th Anniversary Symposium, Kona, HI

October 20-21, 2010

http://loasis.lbl.gov/
Accelerators: drivers for science

SLAC
50 GeV

LHC
7 TeV
Laser plasma acceleration enables development of “compact” accelerators

Plasmas sustain extreme fields => compact accelerators

Can this technology be developed for energy frontier machines, light sources, medical or homeland security applications?
Building a laser plasma accelerator following conventional linac paradigm

Leemans and E. Esarey, Physics Today, March 2009
Esarey, Schroeder and Leemans, Rev. Mod. Phys (2009)
Channel guided laser plasma accelerators achieve high quality, up to GeV beams

2004 result: 10 TW laser, mm-scale plasma

2006 result: 40 TW laser, cm-scale plasma

Kei Nakamura
PhD from UTokyo, experiments at LBNL
(with M. Uesaka and W. L.)
Winner JPAS outstanding dissertation

Major investments are being made in advanced plasma based accelerators

- Example: DOE-HEP has funded two facilities to explore high gradient acceleration

Driver technology

- Laser
 - Direct laser accelerator
 - Laser plasma accelerator
- E-beam
 - Plasma wakefield accelerator
 - Dielectric accelerator

Both launched in 2009
Concepts are being explored towards a Laser Plasma Linear Collider

- Injector techniques
- Staging techniques
- Bunch properties
- 10 GeV module
- Collisions, synchrotron losses, efficiency

W. Leemans and E. Esarey, Physics Today (2009); C.B. Schroeder et al., PRST-AB 2010
Key technical challenges for Laser Plasma Accelerators

- High quality beams
- Lasers: high average power
- Modeling
- Multi-GeV beams
- 10-100 TW
- Staging, optimized structures
- Diagnostics/Radiation sources
- PW-class
Electrons surfing on a wave: controlled injection

Since we are in Hawaii...
Techniques for improving beam quality, reproducibility, control being improved

- Tunable energy, low $\Delta E/E$

- Emittance control via laser mode

- Beam detection and transport

Coherent Optical Transition Radiation
BELLA Facility: state-of-the-art PW-laser for laser accelerator science

Control Room

Gowning Room

BELLA Laser

Compressor

High power diagnostic

Plasma source

10° Off-axis parabola
BELLA laser opens significant opportunities

Lorentz boosted frame simulation
Full 1 m BELLA stage -- major advance
Courtesy of J.-L. Vay

2013 Experiments

- Accelerator science studies
 - 10 GeV Module for collider, (10 GeV, beam optimization, efficiency etc…)
 - Positron production; plasma wakefield acceleration, etc...
- Applications:
 - Hyperspectral radiation: coherent THz; X-ray FEL driver
 - Detector testing; Non-linear QED
Laser average power increase will enable more advanced laser plasma accelerator
Laser technology: key component for sustained progress

• How to reach laser average power levels needed for science?

• Develop roadmap for science and technology to develop next generation lasers:
 – Important for accelerators (see Accelerators for America’s Future document)
 – Unique differences between lasers for defense and for science
 – Will require major research investment at National Labs, Universities and Industry with potential for international collaborations
ICFA-ICUIL Joint Task Force for Laser Technology: engaging two communities

- Joint ICFA-ICUIL taskforce on “Roadmap for high average power laser technology for future accelerators”
 - Leadership: Chou (ICFA-BD), Uesaka (ICFA-ANA), Leemans (JTF Chair, ICFA-ANA&ICUIL), Barty (ICUIL), Sandner (ICUIL)

- First Workshop by JTF held @ GSI, Darmstadt, April, 2010

- 47 experts from accelerator and laser communities

- Requirements on lasers for colliders, light sources, medical applications

- Identifying promising laser technologies and bottlenecks

- Developing strategic roadmap

- Report in progress
Laser requirements:

Peak power vs. Rep rate

- Laser based non-linear QED
- BELLA
- TREX
- Godzilla
- Medical Apps
- Colliders

Power levels:

- 1 PW
- 1 TW
- 100 PW

Frequency levels:

- 1 Hz
- 1 kHz
- 1 MHz

- 40 W
- 4 kW
- 400 kW
Novel lasers and materials are being developed

- Amplifiers - Rods, slabs, discs and fibers
- Materials for amplifiers, mirrors and compressor gratings - Ceramics and diamond, Nano-fabricated structures
- Diodes and small quantum defect materials
Critical Technology:
Multi-kW lasers are being developed

Ceramic materials:
- Japan leading the world
- Promise for large scale sintered, engineered gain media

Fiber lasers

- Multiplexing, coherent addition
- Two fibers recently demonstrated

Courtesy: B. Byer and C. Barty
Major investments
- Example: European Extreme Light Infrastructure
- Four pillars (three funded at 790Meuro):
 1. attosecond and XUV science: Hungary
 2. High-brightness x-ray and particle sources: Czech Republic
 3. Photo-nuclear science, transmutation,...: Romania
 4. Ultra-high intensity science (non-lin QED): ???
Conclusion

- Laser plasma accelerator science is vibrant
 - 10 GeV, high quality beams towards collider applications
 - FEL proof-of-principle experiments towards Light Source Facility
 - Gamma-ray sources
 - Medical and other applications
 - Attracting many students, postdocs into field

- Very significant investments being made around world:
 - Example: USA, Europe, Japan, China, Korea,…with collaborations

- “Big science” apps will require major investment in high average power laser technology
 - multi-kW (light sources, medical) to 100’s of kW (colliders), Petawatt lasers needed
 - Sustained, long range R&D needed for accelerator relevant lasers -- similar to klystron effort, 50 yrs ago

- Opportunities for US-Japan collaborative efforts