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Impacts of Severe Storms




Impacts of Severe Storms
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Mitigate Impacts:
Understand nature and timing of storms




Different Structures of
Summertime Storms




Use Radar to Identify Structures over the Northeast U.S.

How common are these structures? . LA
TS&IC fr

Looked at NOWrad radar reflectivity data for
2 warm seasons; available every 15 minutes; B
2-km resolution

Convective >= 35 dBZ

High dBZ = Intense storm
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Distribution of Storm Structures over the Northeast U.S.
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Lombardo and Colle (2010)




Why do we care about convective
storm structures?

e Different severe weather threats

— Probability, common type

— Inter-regional differences

e Spatial extent of storm influences the number of
people impacted

— Larger storms impact a greater area

* Synoptic climatology for each structure

— Dynamic and thermodynamic conditions that favor
development: predictability




Why do we care about convective
storm structures?




Probability of Severe Weather for Storm Structures

Distribution of Storm Structures over Percent of Severe Events from each
the Northeast Structure over the Northeast
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Linear Storms: 1/5 of all convective modes create 1/3 of the severe weather events




Severe Weather Type over the Northeastern U.S.
Northeast Wind Events (276 events)

number of events

Lombardo and Colle (2011) Cell NL Lin
Northeast Hail Events (195 events) Northeast Tornado Events (125 events)
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Severe Weather Type over the Northeast Coastal Region
Coastal Wind Events (226 events)

number of events

’ 6 warm seasons
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Coastal Hail Events (116 events) Coastal Tornado Events (27 events)
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number of reports
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When do these Coastal Storms Create Severe Weather?
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Predictability: Need to Understand Local Impacts

* Regional climatologies provide us with a general idea of our biggest threats

 Local Scale: Who will it impact? When will it impact them?

MNew York City
and Long lsland
soun®
o

Atlantic Ocean




Coastal Squall Lines: Tricky Forecasting Problem

* Responsible for 1/3 of all severe weather over NE, ~40% over coastal region

(Lombardo and Colle 2010, 2011)
 Spatially large = High impact

 Flash flooding events

12053171700 WSINOWRAD 2 KM US MOSAIC

31 MAY 2002 1700 UTC -

01 JUN 2002 1000 UTC

020723/1600 WSI NOWRAD 2 KM US MOSAIC

23 JUL 2002 1600 UTC —
24 JUL 2002 0400 UTC




Predicting Coastal Squall Lines

wr

* Constructed dataset of squall lines
1. decay at the coastline (limited threat)
2. decay just offshore (NYC threat)
3. survive over LI/Atlantic waters (LI threat)

Lombardo and Colle (2012)




Predicting Coastal Squall Lines

-

* Constructed dataset of squall lines
1. decay at the coastline
2. decay just offshore
3. survive over LI/Atlantic waters

» Survival/Decay not related to month

« Survival/Decay not related to time of day

Month vs Evolution
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Predictable Atmospheric Conditions

- ,,,,,"‘ Large Scale: 12-24+ hrs

Decaying systems are associated with larger
offshore instability, cold fronts (frontogenesis
maximum)

Sustaining systems are associated with a
maximum in low-level warm air advection

Storm Scale: 1-12 hrs

For sustaining systems:

Stronger low-level shear (0-3 km) over the
coastal waters

Deeper, more stable marine boundary layer
over the coastal waters

(Lombardo and Colle 2012, 2013)




The Role of Numerical Models

Relatively Coarse Models (i.e. 12km, 28km)

» Good at predicting mass fields (highs/lows) and
thermodyanmic (temperature/moisture) environments

e 12-24+ hrs lead time

High Resolution Models (<4 km)

* Can resolve storm scale processes

» Simulate storm structure, time/location of
initiation/decay, storm evolution

e 1-12 hrs lead time
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Summary: Identification & Prediction Tools

Radar reflectivity is a useful tool when classifying the structure of warm season

storms
* Spatial extent of storm threat, most probable type of severe weather

Synoptic/thermodynamic situations favor different storm structures
* Lead time order of days; Heightened awareness of potential threat

High resolution numerical models provide additional guidance for storm structure,

more precise timing/location for initiation/decay
* Lead time order of hours
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