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Outline: Neural Networks for XANES and EXAFS data analysis

1. What is a neural network used for? How do they
work?

1. How can we frame XANES and EXAFS data
analysis as a machine learning problem?

1. A few past examples.

1. Some guidance if you want to DIY.




The (generative) Al revolution is currently underway.

labs.openai.com last year: 2022
“short course on x-ray spectroscopy. taught by dogs. in space.”
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“3d render. photoelectron backscattering off Anatoly's head”
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“short course on x-ray spectroscopy. taught by dogs. in space.”




3d render . a lattice of atoms. but the atoms are cat paws

2022



.... and now we have ChatGPT



m Can you write me a Python function to generate chi(k) (using the EXAFS equation) with
variables N, R, S5, S02, and placeholde '
for now) for lambda(k), feff(k), and delt:
resolution. If I'm missing anything, just

Sure, let's start by writing down the Extended X
equation:

o2i05(k)

x(k) = 83 ) Nj—g— ferr;(k
i J

Here, NJ, is the number of backscattering atoms, Rj is the distance to the backscattering
atoms, Sj is the amplitude reduction factor, 4 (k) is the phase shift, fer ; (k) is the effective

scattering amplitude, and A ; (k) is the mean free path.

Now let's proceed to write a Python function for this. I'll use NumPy for numerical operations
and Matplotlib for plotting. I'l use placeholder functions for A(k), fex(k),and 6 (k) as you
requested.

1 2.2
_ _2R;/A(K) ,~2k2G? _;
x(k) = szjS{f]j(k)e 2R;/3(0 =270 sin [2kR; + &, (k)]
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le-5 EXAFS x(k)

—— Real part
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Here's the plot of x (k) using the EXAFS equation with placeholder functions for A(k),
feir(k),and §(k). 1 used example parameters for N, R, SS, and S02.

Let me know if you'd like to adjust anything!



can you show the real part with k*2 weighting

Finished working Show work v
le-5 Real Part of EXAFS y(k) with k? Weighting
al —— Real part with k? weighting {\
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Here's the plot of the real part of ¥ (k) with k? weighting. Anything else you'd like to adjust?
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First, let’s take a step back.

What’s the point of modeling data, and data analysis in general?

Generative factors
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Parameters

A model that explains the observations and can accurately predict new observations is general.

The hope is that a model can be created in which the model parameters are functions of the generative factors. In this

case, the model can be used to extract useful information from the observations.

Generative factors
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Model
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How deep should we go?
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x(k) = ng g(R)fE{k};f) sin[2kR + ¢(k)]dR (More general)
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(More general?

more flexibility with
parameters?)




Neural Networks, conceptually.

Neural networks are Neural networks learn by:

e Mathematical models of human neurons
* non-linear functions

e Optimization of weights and biases.
* The minimization of a loss function.
* Universal approximators e Seeing many examples of inputs and associated
* Chains of nodes linked together by non- outputs.
linear functions * Receiving rewards when it gets the answer right.
* A mathematical object constructed of * Being rewired or destroyed when it gets the
linked matrices and/or vectors. answer wrong.

Neural networks are trained to

* Transform an input into an output.

* Map inputs to outputs.

* Predict outputs given an input

* Learn the relationship between the
input and the output.

* Learn arepresentation of the input
so that the representation allows for
the prediction of the output.

* Minimize the difference between
the input and the output

Depending on your background and context, one of these
statements make more sense to you than the others. (the concept
is encoded (parameterized) in terms of our experiences)




Neural Networks, ELI5.

Trainin
Features g Descriptors
(Input) (Output)
Cat
Not Cat

Round 1: random weights
Round 2 to oo: minimize loss

Features Validatio Features Testin

(Input) N (Input) g
\

Cat Cat

Not Cat Not Cat
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Neural Networks, ELI1O0.

Regression: find such y = h(x, 5) — R" that for given x “predicts” respective y value

- NN node X y
n f(a) = tanh(a) (for hidden layers) il ey

fla)=a (for outputlayer  input layer
] hidden layer
No hidden nodes: 1 hidden node: 3 hidden nodes:

y=91x+901
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Neural Networks. training, and testing. ELI10.

J(0)

Cost function

10) =5 (v — a®)?

Local min
l Globa

}

| min

A) _ 2 (6)
Backpropagation | 00
Layer 1 Layer 3
Input Layer:2 Output
0, 0, Forward propagation
X >
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.E 7 =dflx z3=0;a°
© a?=g(HW o =g(z)
S
— Target
y
B)
Data sets

test,

test
. 2

J(6)

training

Testing

Epoch

How does the cost function change
with respect to the weights? i.e.

9](6) 9](6)
30, and 20,

Starting from the last layer,
calculate the partial derivatives of
the cost function using the chain
rule. This is known as
backpropagation

Loss functions

1

J(0) = E(testz — output)?
1

J(8) = = (test, — output)?

1
J(0) = E(rmmm;; — output)?

The more the data
differs from the
training set, the larger
the min of the cost
function.

The training set is the only data that takes part in weight optimization.

The training set needs to be robust!

6

What is g(z)?

The activation function
defines the output of a

node.
Relu

Tanh

v




Putting it all together. A real example.

Some observations

y

m random data point
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Neural Networks: Architectures

: Input Cell
@ Backfed Input Cell
@ Noisy Input Cell
@ Hidden cell
. Probablistic Hidden Cell
@ spiking Hidden Cell
. Capsule Cell
. Output Cell
@© Matchinput Output Cell
. Recurrent Cell
. Memory Cell
. Cated Memory Cell
~ Kernel

© Convolution or Pool

asimovinstitute.org/neural-network-zoo/
A mostly complete chart of

Neural Networks

©2019 Fjodor van Veen &Stefan Leiinen  asimovinstitute.org

Deep Feed Forward (DFF)

TANAN
by,
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Feed Forward (FF) Radial Basis Network (RBF)

Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
. - [ . () ()

Perceptron (P)

Recurrent Neural Network (RNN)
. [

= TN < TN < TN
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Auto Encader (AE) Sparse AE (SAE)

Variational AE (VAE)

Denoising AE (DAE)

Convolutional

https://www.ibm.c
om/cloud/learn/co
nvolutional-neural-
networks

Output [0][0] = (9*%0) + (4*2) + (1*4) +
(1*1) + (1%0) + (1%1) + (2*0) + (1%1)

=0+8+1+4+1+0+1+0+1

Input image Filter Output array

Markov Chain (MC)

Hopfield Network (HN)

Deep Convolutional Network (DCN)
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Generative Adversarial Network (GAN)

VeV ay
aTATaTa
WAWAWA WA

A

7 \
AV

Deep Residual Network (DRN])

Liquid State Machine (L.SM)

Boltzmann Machine (BM)

Deconvolutional Network (DN)
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Differentiable Neural Computer (DNC)
) -] -~

Restricted BM (RBM)

Deep Belief Network (DBN)

Deep Convolutional Inverse Graphics Network (DCICN)
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Extreme Learning Machine (ELM)

Echo State Network (ESN)

s

Neural Turing Machine (NTM)

Attention Network (AN)
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The choice of architecture influences generalization. Generalization is key.

EXAMPLE to demonstrate the idea

A) max
rof —
04F

== Training data
== Test-1 data
== Test-2 data

A)

A)
maximum value from each

A)
training and testing data.

The training data and two sets of test data.

Training MLP and CNN-MLP to predict the

curve.

MLP and CNN-MLP predicted vs. true plots for

B)

C)

MSE

(multilayer perceptron)

(convolutional neural network)

0.10 - 0.014:—‘
MLP ; CNN-MLI
0.012 1
0.08 [ .
0.0t0] There are points when
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| w 0008}
= r |
... The MLP has a problem oovs! on all three datal :
..  With the orange data! oo ‘
) 0.002 | .
000, — oo O T e e e ——
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Round Round
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True (Test)
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All three ok! But could do better




The choice of architecture influences generalization. Generalization is key.

* This is important because this is the exact situation that we are dealing with.

A) max

100 M == Training data

== Test-1 data
Test-2 data

e.g., is experiment,
blue and red are two different
theories.

* Theory does not exactly match the experiment.
* It can get close.
e Qualitative trends are usually reproduced

 Bottom line: we need models that bridge the gap between theory and experiment.




What about uncertainties?

Aleatoric Uncertainty: Due to inherent noise in the data
Epistemic Uncertainty: Due to model uncertainty; the model doesn't know
what it doesn't know.

Aleatoric Epistemic
Random stochastic differences in the - Correlated variables are not
model parameters that were separated. or are just unknown.
determined in training - The training data and experimental
Noise in experimental data data are too different.

Noise in theoretical data

= Test-set benchmarking: Test multipte
trained models on data that was not
included in the training set. Use the
variance of their predictions to estimate
uncertainty.

Ensemble Methods: Train multiple models
and use the variance of their predictions.
Bootstrapping: Resample the training data
with replacement and train multiple
models.




NNs in XANES and EXAFS

Experimentaﬁ

m_,\/iiti\\

£

Absorpti
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Nanopafticles

Neural
network

structure
model

Shape changes
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{ssembly;

eeeERES Co Single Atom Catalyst

N. Marcella, P. Routh, S. Xiang,
K. Zheng, M. Mahboob, S. D’Halleweyn,
R. Shimogawa, Y. Liu, J. Timoshenko

Restructuring of
bimetallic catalysts

Transformations

RDF g(R)




NNs for XANES

In this case (AuPt):

 When EXAFS is inadequate, XANES is usually available. - The Au edge cuts off the Pt edge.
14 — : : : Sometimes... - Pt contributions exist in the Au
5 y edge that are not easily fit.
m Tr : . - ol
X 08 : : XANES y m
O : - * : 3 08 |
© 06 = Low sensitivity to disorder “ | - |
= : : ‘ =  Great time/energy resolution N o6 | [1 Noise ]
g 04 - | = Sensitive to electronic structure . E ol | [ I
= : : \. = Sensitive to 3D structure e " Glitching
8 02 F ' Challenging to interpret & model - 02| .) ]
02 1 1 1 1 1 1
24300 24400 24500 24600 24700 24800
-0.2 = l l l ] ] Energy (eV) E (ev)

11400 11600 11800 12000 12200 12400
Energy (eV)

Idea: we know the XANES is related to the local structure of the material being investigated. A neural network should be
able to learn (model) the spectrum-structure relationship.

Training data: Testing data:
* We need XANES spectra labeled with some structural * Experimental XANES spectra with good quality EXAFS for
characteristics. labeling structure parameters.

* Getting the training set experimentally is impossible.
* We can use ab initio codes (FEFF, FDMNES, or OCEAN) to

calculate the spectrum from atomistic models.




NNs for XANES

Input: aligned, normalized, discretized XANES spectrum u(E)
Output: average coordination numbers for the 1st, 2nd, 314 coordination shells

1
.+ G =3-Xcj «— Site-specific coord. numbers
T Number of atoms in particle

* Can be used to identify metallic particle size/shape
* Can be directly compared with EXAFS

Experimental Neural  Coordination
data network numbers
| > This approach was successful for
3D structure . . .
2 model determination of local structure in Pt
=2 nanoparticles:
= “«k&\.\l :
Timoshenko, Frenkel et al,
° J. Phys. Chem. Lett., 8, 5091 (2017)
°_ . W— * Additional descriptor: effective interatomic distance R

Absorption
coefficient




What about the agreement between theory and experiment

Pt nanoparticles

a ——— =
12 (@
. Pt L;-edge 5 [omeory _ As S
3. « [ © Experiment “‘wd‘é\ Bulk
8 L (impregnation) «:::&11..
Q E 10} A e
5 2
~ = ¢t ) S,
O Y
Q A % e
S E 8 i " 52 <
3 —o—- Experiment g “&/ s, %
@ — FDMNES 8 | Al s
FEFF Z 6} * &0
Z - Z | WS
§ I O Experiment
- (micellar NPs)
L L 1 L 1 4 A . 1 .
-40 -20 0 20 40 60 80 100 4 6 8 10 12

True/EXAFS coordination number C;

Energy AE (eV)

Timoshenko, Frenkel. ACS Catalysis 2019 9 (11), 10192-10211

MLP works fine, no special treatment needed.

Validation of the model on
well-defined systems is
required.

If you can’t check the
model against “true”
values, an alternative
validation scheme should
be developed.




Marcella et al. Phys. Chem. Chem. Phys. 22, 18902-18910, 2020.

Coordination
numbers
A-A, A-B |

_ — (@

XANES inversion: spectrum to structure 38 ([
(XANES) (coordination number) & | Q:

Absorption

Training data:

Large set of XANES spectra labeled with “True”
coordination numbers.

We can use ab initio code (FEFF9) to calculate
the spectrum from atomistic models.

Diversity: neural networks are interpolative. We
include many variations in particle size, shape,
composition, compositional distribution, lattice
constant.

A) Pd K-edge

B
4

Normalized Absorption Coefficient

— Au Bulk
- FEFF9

60 80

coefficient

Neural
network A

Validation / Testing data:
* Experimental XANES spectra with good quality EXAFS for labeling
structure parameters.

3D structure
model

Neural
network B
g2
8
S o
3 o m
< (nd
w
4 o
g w
-
s
Absorption
coefficient

|ejuawiadxy

2. A) Pd K-edge

- B)AuL;-edge

o] I e
<Z: § ﬁ’
A : ANai
d %ﬁ Pd-Pd Pd-Au © ﬁ Au-Au Au-Pd
g Peptide (validation) ® e | ot Peptide (validation) e e
RCT-1 (test) o o ; + RCT-1 (validation) o o
RCT-2 (test) a 4 LQHL* TiO,support (test) * *
0 6 12 0 6 12
C, EXAFS C, EXAFS
p4e]




Decoding reactive structures

ML-XAS descriptors

Refining the active sites with experimental
and theoretical activity modeling

£

—/s/p/c;ctrum o

Active structure

first-principles-based
microkinetic modeling

AN

H2+D2=2HD

Activity

Energy
é )

Temperature

Reaction Coordinate

A

Computed activation Measured activation
energy energy

Marcella et al. Nature Commun. 13, 832 (2022)
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NNs for XANES: unsupervised learning

Previous machine learning works are supervised, i.e., they require us to label our training data

The future may rely on unsupervised approaches.  Routh, Liu, Marcella et al. J. Phys. Chem. Lett. (Perspective) 12, 2086-2094, 2021.

Key findings:
Input Output
— Latent — * Autoencoder creates compressed latent
LN i . .
|\ °~,_.space -~/ representation of the input space.
1 /|| W Code oy L\ ro
VN e o . : : .
N \/\/ N \<" \>/ Y O * Dimensionality of the latent space is related to
/ . . . .
= AN AN H A H the information content in the input space
] // \ /- \\\\_// \
— / /)_&/ \-\._,\\ W —
—/ .7 \i\* * Unsupervised and generative modeling allows to
T’ ) . i learn latent variables and correlate them with
e Deeier physical variables (descriptors)
Eﬂ “bottlenec
kII
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NNs for XANES: unsupervised learning

Example latent space
>

Pd nanoparticles

-

-

-
~

i3 : CTTTITTTIT

If we can decode the latent space, we have
access to all varying information contained
in the XANES spectrum.

Neural Network

Theoretical data

Predicted R (Pd—Pd)(A)

Predicted CN (Pd-Pd)

Pd nanoparticles

2.70f ° Pd nanoparticles 0.0
2.70 2.75 2.80 2.85 2.90 2.95 00 02 04 06 08 1.0

CN(Pd-Pd) R(Pd-Pd)(A) H Fraction
gz.ss- ' ]
v Pd/Al,O,
c x
o H, He
. :;; 2.80+ 7 EXAFS o @
Experimental 3 XANES O O
v
data £ 5l
o - =
-t
o
[
£ 2.70

0 50 100 150 200
Temperature (°C)

The autoencoder has no idea what coordination number,
distance, or hydrogen fraction is, however, we find this
information stored in the latent space.




NNs for EXAFS

NN-EXAFS — workflow

Use neural network to extract g(r) from EXAFS

(absorber-specific radial distribution function)
Au in this case

EXAFS x(k)
x (k)

WT-EXAFS

Value

—
L=

(y) %
05§
apou ndy|
0001 00%

00st

0oL

»

)
oooz

00sZ

Au Foil

Pdg;Au,;, Nanoparticles

1NdNI

Fully connected Multilayer Perceptron
(MLP) using Tanh activations

o)
)
- Activation
= o 8 &5 8 8
— - |
! ‘.
5 'z
| 1
o 5 | 9
§ s =
o g = |
< _
e > > _{E; 5%
c . :
—~+ B |
>
<
>
c

(LM)3ay

Timoshenko and Frenkel et al.,Nano Letters 19, 520-529 (2019)




Produce training data:

3D Structure model (xyz coordinates)

Average structure over x time steps

MD for x time steps
@ some temp

Build in:
1) Particle size Distance matrix for = g(
2) Crystallographic structure each time step. ? )
3) Lattice parameter g ot < sl S
4) Composition A Histogram R ¢
5) Segregation motifs Au-Au, Au-Pd ( ?

6) Whatever you want...
g(r)




NN-Model Validation with experimental data

How do we prove that the trained NN-model is valid?

Use RMC-EXAFSfitting to obtain g(r) for experimental x(k).
- This is computationally expensive, but it’s the only way to see if NNs predictions are accurate.

Requires well-known samples (i.e. the starting model used in RMC fitting is a good approximation).
- Complimentary data from TEM, compositional measurements, insights from synthesis.

fom NN Ruc|[ B fom  _ _mN Ruc|E
) AUPH s 3 Pd-Pd — ) Do )
AuLsedge La — Pdk-edge oy == == | 2 Reconstruction of PRDFs in bimetallic
83% Pd 83% Pd :
A N £ compounds by NN method:
| A Ay O Au—Pd and Au—Au (A) and Pd—Pd and
66% Pd 66% Pd £ Pd—Au (B) PRDFs obtained from Au L;-
—_ (peptide) (peptide) =
| . ] ™ edge and Pd K-edge EXAFS for PdAu NPs
— 4% Pd " 4% Pd with different Pd concentrations.
T A(Tuoi)/\ (TiOZ) , c
5 e :
N, ;
| J
f Z\ Z
2% Pd
I10 Nsioz) £
S
—_ I Lo 4 n A | { % . N e
2 3 4 5 2 3 4 5

Distance R (A) Distance R (A)
Timoshenko and Frenkel et al.,Nano Letters 19, 520-529 (2019)



NNs as theory surrogate

Unraveling the catalytic effect of hydrogen
adsorption on Pt nanoparticle shape-change
arXiv:2306.00901 [cond-mat.mtrl-sci], 2023
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Surrogate model on bare NPs and bulk at room temperature

—— P55
=== P55 surrogate
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Surrogate model on NPs in H; at room temperature
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NNs as theory surrogate Input > Output
Structure Spectrum
A. Martini et al. J. Am. Chem. Soc.
2023, 145,31,17351-17366
a) —— Component 1

— Best fit

Normalized XANES
Normalized XANES

wnv

w ~—— Component 2
E —— Best fit

x 8340 8360 8380 8400 8420 8340 8360 8380 8400 8420
T‘g Energy (eV) Energy (eV)

e c)

o

o

E

ML prediction: model 1
Exact FDM calculation: model 1

Normalized XANES

ML prediction: model 2 oNi
Exact FDM calculation: model 2 O o
ML prediction: model 3 —— Component3 @ N
- = Exact FDM calculation: model 3 —_— Oc

8340 8360 8380 8400 8420
8340 8360 8380 8400 8420 Energy (eV)

Energy (eV)




A 4

Input

NN for denoising

XANES

isolate noise from signal e

¥ XANES

Output

Noise

XANES
°
S
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Training data |
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DIY

Implementing a machine learning algorithm has been made relatively easy by the various software packages and billions of
online tutorials, books, videos, etc...

e.g.
Mathematica https://www.wolfram.com/mathematica/
Python (most common, various libraries) https://www.anaconda.com/

MATLAB https://www.mathworks.com/products/matlab.html

1) Frame your observations in terms of generating factors. Decide what parameters are reasonable to extract from the signal.

2) The hard part is related to the training data, because at the end of the day, “garbage in, garbage out.”

Toyao et. al, ACS Catal. 2020 70 (3), 2260-2297

If we want to “Use neural network to extract descriptors from the XANES and EXAFS”, then we need:

1) to have training data for which we know this relationship.

2) Determine the best way to preprocess the data

3) Find a way to validate the NN model — ideally using experimental data for which we know the relationship.


https://www.wolfram.com/mathematica/
https://www.anaconda.com/
https://www.mathworks.com/products/matlab.html

Training data



What do you expect the real system to look like, how might it behave, is it dynamic? You must create a training dataset
that interpolates the entire space of possibilities
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2) Pick randomly n of calculated spectra,
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3) Repeat (2) as many times as needed, to
generate thousands of training
examples



RDF

If you are looking at EXAFS, don’t forget the training space must include dynamic and static disorder!
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In some cases, you can decrease the size of the training data set by performing a sensitivity analysis. For example, some
nanoparticles may have symmetrically-equivalent sites that can be approximated by one unique site. If interested in
dynamics, some sites may be less sensitive to changes in thermal vibration than others, and thus one could sample
them less.

Static cases

# of Unigque Sites

“Unigue” depends on the size of the radius considered around the site

30:
25:
20:
151

10

1NN
2NN
3NN
ANN

Dynamic cases

Deviation in time-average

XANES

Spectrum from the Mean
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