Life Sciences at the NSLS-II XAS Damping Wiggler Beamline

Ingrid J. Pickering

Canada Research Chair,
University of Saskatchewan

XAS NSLS-II Workshop – January 16, 2008 – Brookhaven National Laboratory
Acknowledgments

Graham George

- Pickering and George group (University of Saskatchewan)
 - Graham George
 - Christian J. Doonan
 - Satya Pal Singh
 - Ruth Hoffmeyer
 - Gosia Korbas
 - Limei Zhang
 - Ruwandi Andrahennadi
 - Jamie Ruszkowski
 - Dongmei Liu
 - Soo In Yang
 - Jake Pushie
 - Manuel Gnida (Stanford U)
 - Darren Sherrell (UC Berkeley)

- Staff at SSRL and CLS

- As-Se Molecule
 - Jürgen Gailer (U. Calgary)
 - Roger Prince (ExxonMobil)

- Bangladesh Clinical Trial
 - Julian Spallholtz (Texas Tech)
 - Paul LaPorte (U. Chicago)
 - www.bangladesh-selenium.org

- Lentil Project
 - Dil Thavarajah and Bert Vandenberg (Pulse Crop Research Group, U. Saskatchewan)

Ingrid J. Pickering – Life Sciences – XAS NSLS-II Workshop
Overview

- Why life science XAS is important
- Examples of life science XAS
- Significance of Damping Wiggler XAS beamline
Background

- From University of Saskatchewan
- Chaired CLS Life Science Workshop Nov. 2007
- Co-lead on BioXAS
 - 2 new CLS beamlines for life science XAS

University of Saskatchewan is home to Canadian Light Source
Background

- From University of Saskatchewan

- Chaired CLS Life Science Workshop Nov. 2007

- Co-lead on BioXAS
 - 2 new CLS beamlines for life science XAS

University of Saskatchewan is home to Canadian Light Source
The Potential

- Life Science X-ray absorption spectroscopy is poised for huge expansion

- NSLS-II XAS beamline will be positioned to take advantage of this

- XAS of intact cells and tissues is the single area with potentially greatest gain
Life Science

X-ray Absorption Spectroscopy

- Metals in purified biomolecules
 - Traditional mode of study
 - Still important

- Metals in intact cells and tissues
 - Relatively new mode of study
 - Potential for great expansion
 - Huge potential for human benefit
Metals in Intact Cells and Tissues: Environmental Parallel

- XAS is ideal for investigating chemical forms of metals and metalloids in complex systems.

- XAS is element-specific, and can give local information including oxidation state and speciation, electronic and structural information.

- X-rays pass through any matter and can detect the element of interest in any phase or form.

- Gives quantitative information on multiple forms.

- Little or no pretreatment required, such as extractions.

- Can be applied to dilute systems.
Metals in Intact Cells and Tissues: Environmental Parallel

<table>
<thead>
<tr>
<th></th>
<th>Environmental Science</th>
<th>Life Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Element</td>
<td>various, including actinides</td>
<td>mostly $Z=42$ and below for essential elements, some toxic or pharmaceutical elements higher</td>
</tr>
<tr>
<td>Matrix</td>
<td>various, often heavier elements abundant (e.g. soil, sediment with mineral content)</td>
<td>almost always light (C, H, N, O)</td>
</tr>
</tbody>
</table>
Metals in Intact Cells and Tissues: Environmental Parallel

- Field of XAS of whole cells about a decade behind environmental XAS
- Improved sensitivity allows measurement of physiologically relevant levels
- Huge potential benefits, particularly in human health
Metals in Intact Cells and Tissues: Types of Study

- Essential elements
- Metal-based drugs
- Toxic elements
Essential Elements

- Metals and metalloids needed for wellbeing
- Fundamental studies of mechanisms/mode of action
- What happens when mechanisms malfunction? How can we fix it?
Metal-Based Drugs

- Particularly anti-cancer drugs
- Cis-platin is classic example
- Many novel metal-based drugs appearing
 - Are they optimized?
 - A detailed understanding of the mechanism of action aids in developing better drugs which are more targeted and less generally toxic
 - XAS of metal in cell culture provides vital information
Toxic Elements

- Examples include mercury, arsenic, cadmium, lead
 - However, all essential metals are toxic at high concentrations
- How do they poison us?
- Can XAS help to find the antidote?
Chemical Form Matters!

Arsenic – sometimes poisonous, sometimes not

Lewisite – war gas – known as the “Dew of Death”.
It is a deadly poison.

Arsenobetaine – 0.02% in fish.
It is not poisonous at all.
Need for Spatial Information

- XAS can look at:
 - Subcellular structures
 - Individual cells, cell cultures
 - Tissues, organs
 - Organisms

- Biological materials are inherently structured, so there is a need for simultaneous spatial and chemical information
Fluorescence Imaging of Metals

- Experiments in three different length scale ranges
 - Macro (>50 μm)
 - Micro (1-5 μm)
 - Sub-Micro (<1 μm)
Scientific Disciplines

- Biochemistry
- Biology
- Biomedical sciences
- Agriculture
- Environmental sciences
Examples

- Methyl mercury in zebrafish larvae
- Wide-format imaging of brain
- Arsenic, selenium and Bangladesh

Data from BL 9-3 at SSRL
(unless otherwise indicated)
Wide Format Imaging of Metals in Brain and other Tissues

Helen Nichol
and many other collaborators at the University of Saskatchewan
Metal accumulations in brain have been implicated in a number of neurodegenerative diseases.

Example: Alzheimer’s:

- “Plaques” of β-amyloid protein form in brain cortex.
- These plaques accumulate zinc, iron, and copper, and form in tandem with the progress of the disease (cognitive problems, initially as memory loss, followed by impairment of language and planning).
Alzheimer’s disease – How can XAS help?

- XAS can help develop a deeper understanding of the disease

Open Questions:
- Are metals a cause or an effect of the disease?
- New U of S finding – not all plaques are alike; some contain more zinc, some more iron. Are there correlations between the metal in plaques and disease development?
- What are the molecular forms of the metals?
Wide Format Imaging: A Different Approach

- Microbeam work often uses the smallest beam possible.
- However, sometimes lower resolution and greater area is much more valuable.
- In this approach, we scan rapidly to cover large areas such as a complete section of human brain.
Wide Format Imaging

- Rapidly shows localizations of metals on a scale similar to medical X-ray, MRI, etc.

- Chemical information upon metals available

- Potential for understanding and treating disease:
 - Showing how metals may be implicated in disease
 - Testing effect of drug treatments in animal models
3. Arsenic, selenium and Bangladesh

www.bangladesh-selenium.org
Arsenic and Selenium

In the periodic table, Arsenic (As) and Selenium (Se) are located in the main group under the column of non-metals. Arsenic is found in the 15th group (Group V) and Selenium in the 16th group (Group VI).

Periodic Table Layout

- **Group 15 (V):** H, Li, Be, B, C, N, O, F, Ne, As, Se, Br, Kr
- **Group 16 (VI):** H, He, Li, Be, B, C, N, O, F, Ne, S, Se, Br, Kr

Lanthanides

- La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu

Actinides

- Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr

Metals and Non-metals

- **Metals:** Li, Be, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Po, At, Rn
- **Non-metals:** He, Ne, Ar, O, F, N, C, H, As, Se, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Po, At, Rn
Arsenic and Selenium

- Arsenic has no confirmed biological role
- Selenium is an essential ultra-trace element
 - Arsenite and selenite have approximately equal toxicities at higher amounts

- But taken together...:
 - A lethal dose of arsenite can be completely counteracted by an equal and otherwise lethal dose of selenite (or vice versa).
Arsenic-Selenium Antagonism

- Bile As and Se K near-edge spectra identical with model synthesized from arsenite, selenite and glutathione.

Gailer et al., J. Am. Chem. Soc. 122, 4637-4639 (2000).
Arsenic-Selenium Antagonism

- Bile As and Se EXAFS used to structurally characterize species in bile

Ingrid J. Pickering – Life Sciences – XAS NSLS-II Workshop
As-Se Species Identified in Bile

- An unusual molecule with 1:1 Se:As
 - The seleno-bis(S-glutathionyl) arsinium ion

Ingrid J. Pickering – Life Sciences – XAS NSLS-II Workshop
As-Se Species Identified in Bile

- Formation of this species in the body is a mutual detoxification mechanism for arsenic and selenium.

Ingrid J. Pickering – Life Sciences – XAS NSLS-II Workshop
Arsenic Poisoning in Bangladesh

LOCATION: Bangladesh & parts of India

PROBLEM: In 1960’s contaminated surface water is causing disease

SOLUTION: Sink tube wells to provide clean drinking water from deep underground

NEW PROBLEM: Tube well water contains low-levels of arsenic which gradually makes people sick
The World’s Worst Mass Poisoning

- **Disease called:**
 - Arsenicosis

- **Symptoms:**
 - Dermatitis and skin disorders
 - Malignant tumors
 - Death

- **Estimated number of people affected:**
 - 35 to 77 million*

* Estimated by World Health Organization, 2000
Arsenic Poisoning in Bangladesh

- **Puzzles:**
 - Not all people drinking from same well get sick
 - Other areas in the world have high arsenic but not the same symptoms
 - Biochemistry of arsenicosis is (or was) unknown

- **Clues:**
 - Bangladesh is low in dietary selenium
 - Very low selenium levels in livers of victims
 - Other arsenicosis areas also have low selenium
Selenium and Arsenic

- Our bodies use the arsenic-selenium molecule to get rid of arsenic
 - For every arsenic that is eliminated, one selenium is lost too

- But humans need selenium!
 - deficiency results in skin disorders, cancers, and death
What We Think is Happening

- **Our hypothesis:**
 - The people are not being poisoned by arsenic but are becoming selenium deficient!

- **Proposed solution:**
 - Add selenium to diet

- **Testing the hypothesis:**
 - Phase III clinical trial ongoing in Bangladesh
Clinical Trial of Selenium Supplementation
www.bangladesh-selenium.org

Selenium Treatment of Arsenic Toxicity & Cancers in Bangladesh [SETAC]
Phase III, Double-Blind, Randomized, Placebo-Controlled Trial on the Use of Long-term, Dietary Selenium in Countering Arsenic Toxicity | Sponsors: NIH/NCI, American Cancer Society

- Project Leaders:
 - Julian Spallholz (Texas Tech)
 - Paul LaPorte (U. Chicago)
 - Selim Ahmed (Institute of Child & Mother Health, Bangladesh)
Clinical Trial of Selenium Supplementation

www.bangladesh-selenium.org

Selenium Treatment of Arsenic Toxicity & Cancers in Bangladesh [SETAC]
Phase III, Double-Blind, Randomized, Placebo-Controlled Trial on the Use of Long-term, Dietary Selenium in Countering Arsenic Toxicity | Sponsors: NIH/NCI, American Cancer Society

- Patients exposed to arsenic are given selenite
- We measure As and Se K-edge XAS of blood from treated patients
Clinical Trial in Bangladesh: Breaking News

- Blood samples taken from treated patients on Christmas Day, 2007

- XAS measured January 2008 at SSRL
Arsenic, Selenium and Bangladesh

- As-Se detoxification molecule has been identified
- Selenium supplementation as a solution to arsenicosis in Bangladesh is currently under test by clinical trial
- XAS of ultra-dilute species is key to this project
NSLS-II Damping Wiggler XAS

- Proposed beamline will provide:
 - Exceptionally wide, continuous energy range
 - Exceptionally high flux

- How will these characteristics be important in life science studies?
Wide, Continuous Energy Range

- Continuous source
 - No need to tune undulator gap
 - No residual undulator structure (unlike some high-flux, multi-pole wigglers)
- Should lead to excellent stability with time and energy
 - improved signal to noise for more challenging low-concentration experiments
- Very attractive for life science applications
High Energies (<90 keV)

- Life science studies
 - Mostly use light matrices
 - Mostly investigate elements with edges below 30 keV

- The hard X-ray spectroscopy can be achieved using “conventional” energy ranges

- Specialized applications of higher energies might include:
 - Cross-over with biomedical imaging (i.e. probing heavier elements in thick objects)
 - Spectroscopy of trace elements in heavier matrices such as bone or teeth
High Flux

Higher flux (if no other limits) should enable:

- Lower concentrations
 OR
- Higher throughput
 OR
- “Improved” data e.g. longer k-ranges

All important in Life Sciences

- Ultra-low concentrations most important
Concentration: How Low Can We Go?

- Se in blood
 - SSRL BL 9-3:
 - 2 µM Se
 - 150 ppb Se

- How low at NSLS-II DW-XAS?

- Lower concentrations facilitate study of metals at physiologically relevant levels
Low Concentration Needs

- High flux
- High stability
- State of the art detectors
 - (to capitalize on the flux)
- Low temperatures
 - (to stop sample being blown away)
- Low background signals
 - (to avoid “contamination”)

Ingrid J. Pickering – Life Sciences – XAS NSLS-II Workshop
Detectors

- Bulk XAS usually is a detector-limited experiment
 - Need detectors to capitalize on the flux

- Current options:
 - Solid state (Ge, Si-drift) arrays (pixels or elements)
 - Bent-Laue diffraction-based

- Advice:
 - Buy late – to capitalize on latest developments
 - BUT retain enough money to buy the best
Low Temperatures

- Preserve biological samples
- Improve EXAFS amplitudes
Low Temperatures

- Preserve biological samples
- Improve EXAFS amplitudes
- Minimize “photo-induced chemistry”

Beam damage is bigger problem with:

- Higher flux density
- Slower data collection
Low Temperatures

- Temperature?
 - LN2 NOT low enough
 - Still see effects at 10 K
 Would lower help?

- lHe displex
 - Economical in lHe

- Flowing lHe cryostat
 - Rapid sample change
 - Low mechanical vibrations

- Other cryotechnologies?
Background Contamination

- For lower concentrations, background signals become increasingly significant.

- Background contamination can be:
 - Inherent, from construction materials (e.g. cryostat, detectors)
 - Introduced, e.g. dust, previous samples

- A big problem for e.g. Fe, Cu, Zn (which are important bio elements)
Conclusions

- Life science is a fertile area of potential growth for XAS
- Measurements on intact cells and tissues show great potential in terms of human benefit
- NSLS-II DW XAS is well-suited for low-concentration life science measurements
Acknowledgments

Graham George

- Pickering and George group
 (University of Saskatchewan)
 - Graham George
 - Christian J. Doonan
 - Satya Pal Singh
 - Ruth Hoffmeyer
 - Gosia Korbas
 - Limei Zhang
 - Ruwandi Andrahennadi
 - Jamie Ruszkowski
 - Dongmei Liu
 - Soo In Yang
 - Jake Pushie
 - Manuel Gnida (Stanford U)
 - Darren Sherrell (UC Berkeley)
- Staff at SSRL and CLS
- As-Se Molecule
 - Jürgen Gailer (U. Calgary)
 - Roger Prince (ExxonMobil)
- Bangladesh Clinical Trial
 - Julian Spallholtz (Texas Tech)
 - Paul LaPorte (U. Chicago)
 - www.bangladesh-selenium.org
- Lentil Project
 - Dil Thavarajah and
 Bert Vandenberg
 (Pulse Crop Research Group,
 U. Saskatchewan)
Acknowledgements

Stanford Synchrotron Radiation Laboratory, (U.S. DOE and NIH)

Canadian Light Source (NSERC, NRC, CIHR, and U. Saskatchewan)

Canada Research Chairs Program
University of Saskatchewan
Province of Saskatchewan
CFI, NSERC, NIH, CIHR, SHRF