Progress on the LACARA Vacuum Laser Accelerator Experiment

Sergey V. Shchelkunov ${ }^{1}$, T.C. Marshall ${ }^{1}$, J.L. Hirshfield ${ }^{2,3}$, M.A. LaPointe ${ }^{2}$
${ }^{1}$ Department of Applied Physics, Columbia University, New York City, NY 10027
${ }^{2}$ Department of Physics, Yale University, P.O. Box 208124 New Haven, CT 06520-8124
${ }^{3}$ Omega-P, Inc., 199 Whitney Ave, Suite 200, New Haven, CT 06520

The authors acknowledge

- \quad The financial support of the DoE.
- Helpful discussion with the ATF staff

References:

1) J.L. Hirshfield, C. Wang, Physics Rev. E 61, 7252 (2000)
2) T. C. Marshall, C. Wang, J.L. Hirshfield, Physics Rev. vol. 4. 121301, (2001)
3) S.V. Shchelkunov, T.C. Marshall, J.L. Hirshfield, C-B. Wang, and M.A. LaPointe, AIP Conf. Proc. 647, 349, Editors C.E. Clayton and P. Muggli, (2002)
4) S.V. Shchelkunov, T.C. Marshall, J.L Hirshfield, C-B. Wang, M.A. LaPointe, AIP Conf. Proc. 877, 880, Editors M. Conde and C. Eyberger (2006)

FIG. 1: LACARA (principal layout, not to scale)
(The LACARA will operate at the ATF-BNL experimental floor, BL \#2)

LACARA - Laser Cyclotron Auto-Resonance $\underline{\text { Accelerator }}$

essential parameters:

* An up-to 6T solenoidal field (length ~1m, provided by a "dry" SC magnet.)
* A Gaussian CO_{2} laser beam ($\lambda \approx 10.6 \mu \mathrm{~m}$, Rayleigh Length of $\sim 60 \mathrm{~cm}$, Power up to 1 TW, Energy up to 10 J)
expected performance:
* Accelerate electrons in vacuum using the laser energy in a smoothbore structure
* Use a un-bunched electron beam (initial test will be for a beam with $100 \mu \mathrm{~m}$ waist, and an emittance of $0.015 \mathrm{~mm}-\mathrm{mrad}$)

A 50 MeV bunch should gain another 25 MeV (initial test plan), i.e. the laser power provides $25 \mathrm{MV} / \mathrm{m}$ of acceleration (initial test plan)

Acceleration is done by a nearly-gyro resonant interaction, and all the electrons of a bunch undergo the same acceleration

FIG. 2: Inside the solenoid

$$
\begin{aligned}
& E=E(z, r) \\
& B=B(z, r)
\end{aligned}
$$

- both are slow functions of z

Red = magnetic field profile; Magenta = laser beam envelope; Green = energy behavior
$\sigma \approx 100 \mu \mathrm{~m}, \varepsilon_{\text {norm }} \approx 1.5 \mathrm{~mm}$-mrad

Laser power, $G W$	$\varepsilon_{\text {norm, }}$, final, mm-mrad	Energy gain, MeV
30	12.5	0.85
800	19.2	25

FIG 1: Energy gain (MeV) vs. the maximum magnetic field (kGs) when the laser power is always 0.8 TW (the laser light is focused in the magnet middle plane with $w=1.3 \mathrm{~mm}$) red = initial energy is 65 MeV ; blue = initial energy is 50 MeV ; magenta $=$ initial energy is 35 MeV

Initial Energy (MeV)	$\mathbf{B (T)}$ when energy gain is max	Width of resonance (kGs) at 75% level of max. energy gain	
$\mathbf{3 5}$	$\mathbf{8 . 4}$	$\mathbf{9 . 4}$	$/ 100 \%$
$\mathbf{5 0}$	$\mathbf{6 . 1}$	$\mathbf{1 0 . 1}$	$/ 107 \%$
$\mathbf{6 5}$	$\mathbf{5 . 2}$	$\mathbf{1 2 . 6}$	$/ 134 \%$

FIG 2: Energy gain (MeV) vs. the laser power (TW) when the magnetic field is always constant (the laser light is focused in the magnet middle plane with $w=1.3 \mathrm{~mm}$) red = initial energy is 65 MeV and $\mathrm{B}_{\text {max }}=52 \mathrm{kGs}$; blue $=$ initial energy is 50 MeV and $\mathrm{B}_{\text {max }}=62 \mathrm{kGs}$; magenta $=$ initial energy is 35 MeV and $\mathrm{B}_{\text {max }}=84 \mathrm{kGs}$

FIG 3: Energy gain (MeV) vs. the waist position (mm) when the magnetic field is always constant, and the laser power is 0.8 TW (note that "zero" corresponds to the magnet middle plain) red = initial energy is 65 MeV and $\mathrm{B}_{\max }=52 \mathrm{kGs}$; blue $=$ initial energy is 50 MeV and $\mathrm{B}_{\max }=62 \mathrm{kGs}$; magenta $=$ initial energy is 35 MeV and $\mathrm{B}_{\max }=84 \mathrm{kGs}$

E and B change negligibly over the distance interval occupied by an electron bunch

The example shows the energy spread [\%/m] induced by the difference in the electromagnetic force acting on a 5 psec (1.5 mm) long e-bunch as a function of bunch position z (the distance along the magnet axis)

Final energy spread $\approx 0.02 \%$

E and B change with the radius
The example shows the energy spread [\%/m] induced by the difference in the ponderomotive force acting on a e-bunch with the initial $\sigma_{\mathrm{x}, \mathrm{y}}=$ $100 \mu \mathrm{~m}$ as a function of bunch position z (the distance along the magnet axis)

Final energy spread $\approx 4.7 \% \quad\left(\right.$ scales $\left.\propto \sigma^{2}\right)$

ALIGNMENT

$\mathrm{B}_{1}=0.2 \mathrm{~T}$
cor something like that)

Note: the e-beam path in the absence of the magnetic field coincides with the HeNe path, and is called the axis.

Recipe:

We can accurately determine the position of the solenoid by 1. Keeping the e-beam at the same position on the monitor \#1 2. Observing the shifts at two other BPMs: one before the magnet, and another after the magnet
3. Use at least three (3) different values of the magnetic field

$$
\binom{R_{X}}{R_{Y}}=\left(\begin{array}{cccc}
\alpha & \beta & \gamma & \Delta \\
-\beta & \alpha & -\Delta & \gamma
\end{array}\right) \times\left(\begin{array}{c}
X \\
Y \\
U_{X} \\
U_{Y}
\end{array}\right)
$$

Beam behind the solenoid (at 5.2 T)

We compared the beam position at 2.5 T and 5 T and discovered that there was a shift which can be explained if the solenoid axis is as straight as $\Delta Y=150 \mu \mathrm{~m}$, and $\Delta X=500 \mu \mathrm{~m}$

Problems:
The solenoid position presently is determined relative to its support This support (table) position may change relative to the beam line The Y-position is not very much sensitive; the X-position is very sensitive.

Solution:

