Proposal: Experimental Investigation of the Current Filamentation Instability

Presented by Brian Allen - USC

PI: P. Muggli - USC

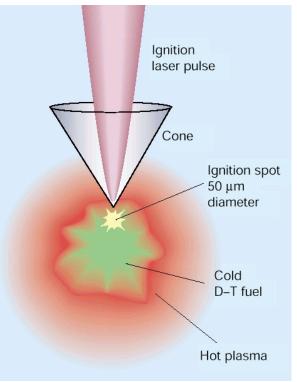
Collaborators:

V. Yakimenko, K. Kusche, J. Park, M. Babzien, D. Stolyarov, R. Malone - BNL-ATF

C. Huang - UCLA

L. Silva, J. Martins - IST

Work Supported by US DOE


Motivation

- Particle beam transport in plasmas is subject to Current Filamentation Instability (CFI)
- CFI results in breakup of the beam into narrow high current filament
- Generation of magnetic fields
- Gamma Ray Bursts (GRBs)
 - Phenomena which creates GRBs, afterglow and associated magnetic fields is unknown
 - Fireball theory relativistic, collisionless shocks of electrons, positrons and ions
 - Energy Spectrum of GRB's radiation produced by synchrotron radiation in random tangled magnetic fields (jitter radiation)

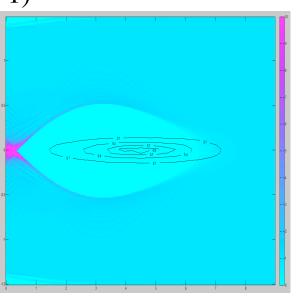
Motivation

- Fast Igniter Inertial Confinement Fusion (ICF)⁽¹⁾⁽²⁾⁽³⁾
 - Contribute to generation of magnetic fields
 - Affect energy transport and deposition in fusion pellet

⁽¹⁾Sentoku et al., Phys. Rev. Lett. 90, 155001 (2003)
⁽²⁾Bret et al., Phys. Rev. Lett. 94, 115002 (2005)
⁽³⁾Deutsch et al., Transport Theory and Statistical Physics, Volume 34, Issue 3 - 5, 353 (2005)
(image) M. Key Nature 412, 775-776 (23 August 2001)

Proposal

- Directly and systematically study Current Filamentation Instability (CFI)
 - Previous measurements yielded inconclusive results⁽¹⁾
 - ATF offers independent control of both beam and plasma
 - Basic plasma instability, potential impact on Astrophysics and Inertial Confinement Fusion⁽²⁾
 - Interdisciplinary: Simulations and Experiments
 - Plasma physics
 - Beam physics
 - Radiation physics
 - With ATF parameters simulations show CFI should unambiguously be observed
 - Study CFI as function of beam and plasma parameters


⁽¹⁾Tatarakis et al., Phys. Rev. Lett. 90, 175001 (2003); ⁽²⁾ Honda, Phys. Rev. E 69, 016401 (2004)

CFI Overview

- Two regimes for electron beam/plasma interactions based on ratio of transverse beam size (σ_r) to collisionless skin depth (c/ω_{pe})
- Regime 1: $\sigma_r \ll c/\omega_{pe} (k_p \sigma_r \ll 1)$ wakefield generation
 - Plasma return current flows outside of beam
 - Drives wakefields, used in PWFAs
 - Dominant instability hosing, $\sigma_z \gg c/\omega_{pe} (k_p \sigma_z \gg 1)$

Defintions:

Plasma/Electron angular frequency: $\omega_{pe} = (n_e e^2 / \epsilon_0 m_e)^{1/2}$ Collisionless skin depth: $k_p^{-1} = c/\omega_{pe}$

CFI Overview

- Regime 2: $\sigma_r \gg c/\omega_{pe}$ ($k_p \sigma_r \gg 1$), CFI Regime
 - Plasma return current flows inside beam
 - Dominant instability dependent on relativistic beam factor (γ_0)
 - $\gamma_0 \sim 1$ two stream instability (parallel instability)
 - $\gamma_0 >> 1$ CFI (transverse instability)
 - Particular case of the Weibel instability⁽¹⁾
 - » Temperature anisotropy
 - Purely transverse electromagnetic instability purely imaginary frequency
 - Non-uniformities in the transverse beam/plasma profile lead to unequal opposite currents and magnetic fields
 - Opposite currents repel each other -> instability and filamentation
 - Filament size and spacing $\,\sim c/\omega_{pe}$
 - Growth rate⁽²⁾:____

$$\Gamma = \beta_0 \sqrt{\frac{\alpha}{\gamma_0}} \omega_{pe}$$
 or $\Gamma = \beta_0 \omega_{pb} / \sqrt{\gamma_0} \sim n_b \sim Q/(\sigma_r^2 \sigma_z)$

Ratio of beam to plasma density: $\alpha = n_b/n_e$

⁽¹⁾E. Weibel - Phys. Rev. Lett. 2, 83 (1959); ⁽²⁾Bret et al., Phys. Rev. Lett. 94, 115002 (2005)

CFI with ATF Beam

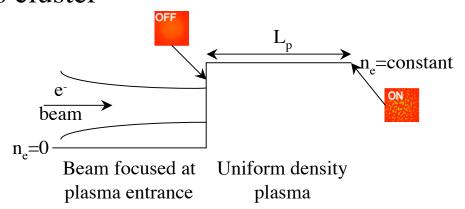
ATF Over-compressed Beam Parameters		
Parameter	Value	
Charge (pC)	150 to 200	
Beam Transverse Waist	100 to 200	
Size (µm)		
Bunch Length (fs)	100	
Beam Density (cm ⁻³)	10^{14}	
Energy (MeV)	59	
Emittance (mm-mrad)	1 to 2	

W.D. Kimura et. Al, AIP Conference Proceedings Volume 877, 534

- $\gamma_0 = 117$, CFI regime
- Growth rate estimate: $\Gamma = 8.6 \times 10^{10} \text{ s}^{-1} \text{ or } 3.5$ mm at *c*
- γ₀>>1, σ_r>> c/ω_{pe} and Γ ~
 n_b
 Need large σ_r and large n_b

CFI should be observable on a cm-length plasma scale

Simulation - Tools/Resources


• Simulation Tools: Particle-in-cell codes

UC

– OSIRIS

CALIFORNIA

- QuickPIC
- PWFA and ICF
- Both codes have been benchmarked against other codes and with experimental results
- Hardware Resources:
 - NERSC supercomputer
 - USC HPCC 30 Tflops cluster
- Simulation Setup

Simulation - Filamentation

Beam focused at the entrance of a uniform density plasma

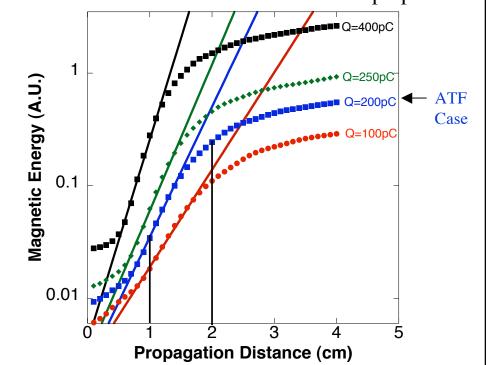
0.6, z=2 cm z=0 cm Beam Density (a.u.) 0 700 0 700 0 700 Beam Density (a.u.) 0.3 0 400 400 400 400 200 200 200 200 X (µm) 0 y (µm) X (µm) 0 y (µm) 350 z=0 cm z=2 cm (und) 250 150 150 250 350 150 250 350 x (µm) x (µm)

CALIFORNIA

ATF Beam and Plasma Simulation Parameters		
Parameter	Value	Value
Simulation Box – X	548 µm	512 cells
Simulation Box – Y	548 µm	512 cells
Simulation Box – Z	136 µm	128 cells
Plasma Particles/Cell	4.0	
3-D Time step (µm)	100	
Number Beam Particles -X	128	
Number Beam Particles -Y	128	
Number Beam Particles -Z	512	
Relativistic Factor	100	
Beam Transverse Waist	100	
Size (µm)		
Bunch Length (µm)	15	
Charge (pC)	200	
Plasma Density (cm ⁻³)	$5x10^{17}$	
Capillary Length (cm)	2	
Skin depth (c/ ω_{pe}) (μ m)	7.5	

Filament size 4 μ m Filament spacing 20 μ m Both $\approx c/\omega_p$

These images are similar to those we expect to measure in the expt. 9

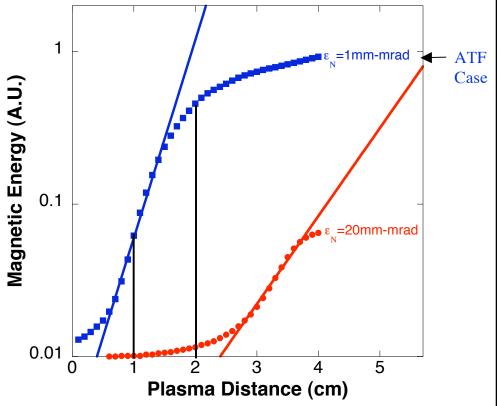

CFI Growth Rate (Γ)

Characterize instability by the resulting magnetic energy $\approx \int B_{perp}^{2} dv$

Growth rate is ~ beam density (n_b) ~ charge

CALIFORNIA

• For Q=200 pC, $\Gamma = 8.0 \times 10^{10} \text{ s}^{-1} \text{ or } 3.8 \text{ mm}$, agrees with estimated ($\Gamma = 8.6 \times 10^{10} \text{ s}^{-1} \text{ or } 3.5 \text{ mm}$)

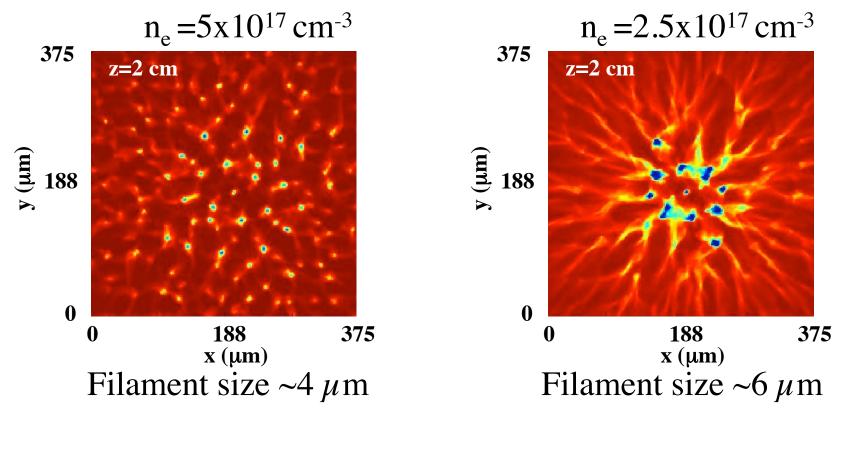


Instability appears over available plasma lengths (1 and 2 cm)

Parameters: $\varepsilon_{x,y} = 1$ mm/mrad, all other parameters as shown in simulation parameters table

Emittance Effects

- Emittance competes with CFI ⁽¹⁾
- Increased emittance reduces CFI growth rate
- Similar to temperature effect in Weibel instability ⁽²⁾

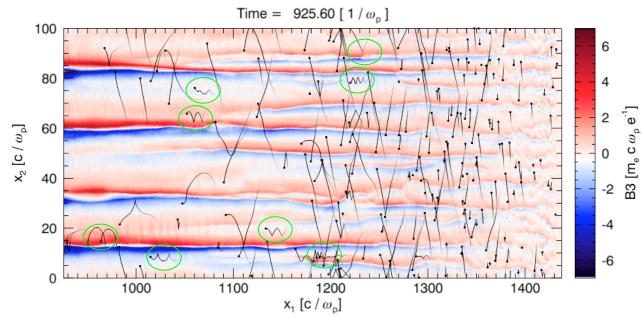


Transverse emittance not an issue for ATF parameters (ϵ_N =1 - 2 mm-mrad)

Parameters: $\varepsilon_{x,y} = 1$ mm-mrad and 20 mm-mrad, all other parameters as shown in simulation parameters table ⁽¹⁾ J.R. Cary et al., Phys. Fluids 24, 1818 (1981); ⁽²⁾ L. Silva et. al - Phys. of Plasmas 9, 2458 (2002)

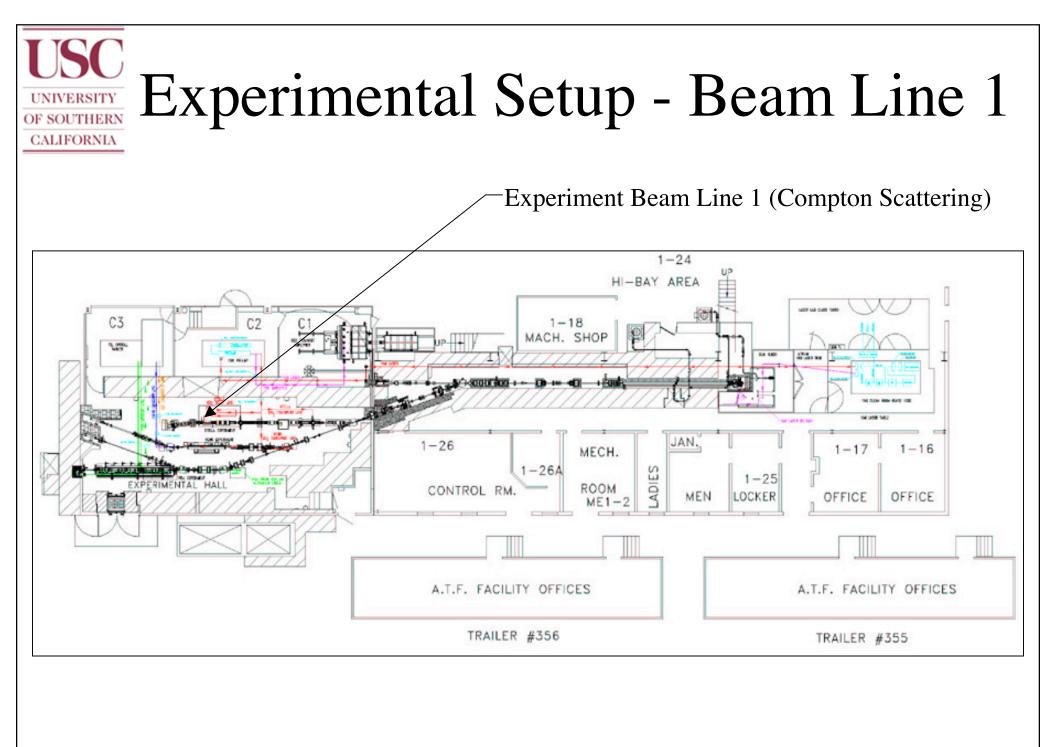
Plasma Density Effects

- Filament size ~ $c/\omega_{pe} \sim 1/\sqrt{n_e}$
- Filament size increases with decreased n_p

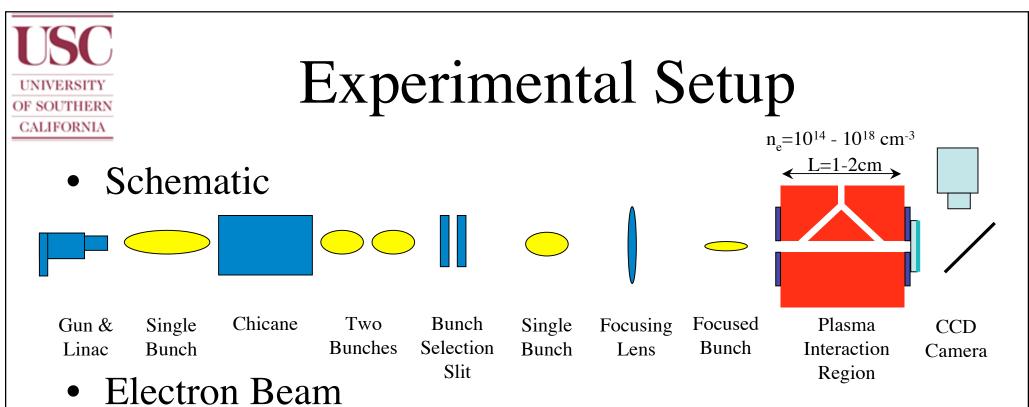


At $n_e = 1 \times 10^{17} \text{ cm}^{-3}$ no filamentation observed ¹²

Radiation Simulations


- CFI generates magnetic fields
- Beam and plasma particles oscillate and radiate
- Example of simulation result

Particle tracks in magnetic field strength contours in plasma/plasma collision



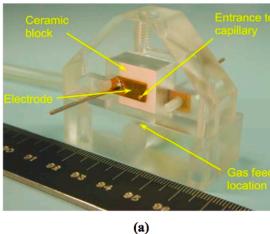
•Radiation parameters can be calculated from particle trajectories

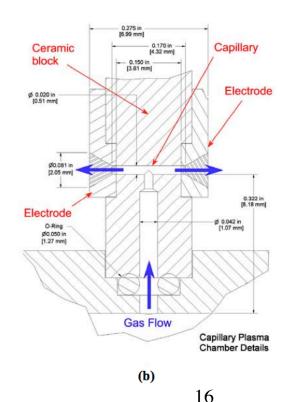
Appearance of radiation indicates appearance of CFI

Ref: (image) http://www.bnl.gov/atf/core_capabilities/images/ATF_Layout.pdf

- Focused to $\sigma_r = 100 \ \mu m$ at capillary entrance
- Compressed density⁽¹⁾: 2.6x10¹⁴ cm⁻³
- Uncompressed density: 4.4x10¹³ cm⁻³
 - Simulations show no instability
- Variable beam parameters:
 - Beam radius (σ_r)
 - Emmitance $(\varepsilon_{x,y})$
 - Charge (with x-band cavity)

⁽¹⁾ E. Kallos et. al - Phys. Rev. Lett. 100, 074802 (2008)


Experimental Setup - Plasma Source


Plasma Source

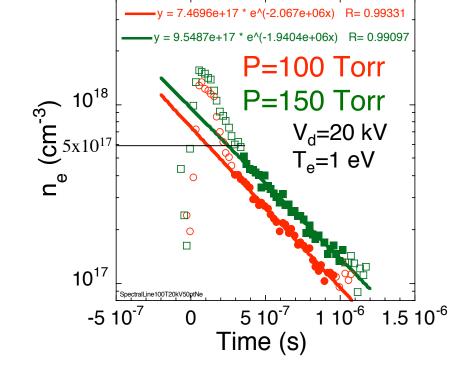
UNIVERSIT

OF SOUTHERN CALIFORNIA

- H₂ capillary discharge
- Capillary/plasma have radius of $\sim 500 \ \mu m$
- Variable plasma parameters:
 - Capillary length (1cm and 2cm)
 - Plasma density: H₂ pressure and beam arrival time

Ref: (image) W.D. Kimura et. Al, AIP Conference Proceedings Volume 877, 534

Experimental Setup - Plasma Density

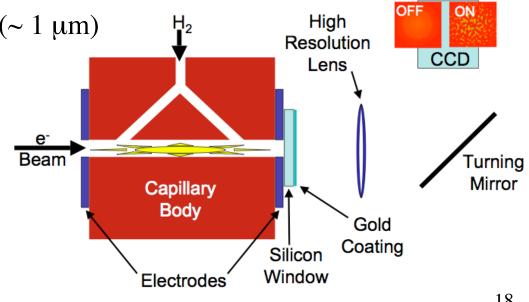

• Plasma Density

OF SOUTHERN CALIFORNIA

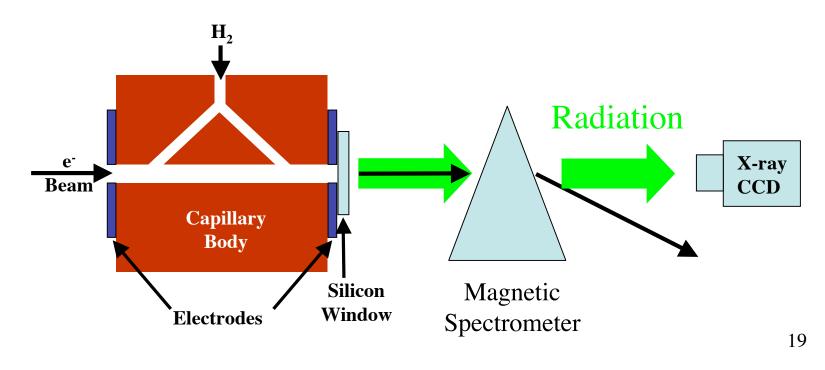
- Density controlled by delay between plasma and beam
- Measured as function of time with Stark broadening of the hydrogen H_{α} line at 656nm⁽¹⁾

$$n_e[cm^{-3}] \approx 8 \times 10^{12} \left(\frac{\Delta \lambda_{1/2}[A]}{\alpha_{1/2}}\right)^{3/2}$$
$$n_e(t), \Delta \lambda_{1/2}(t)$$

Plasma density actually measured



⁽¹⁾ R.C. Elton, H.R. Griem - Phys. Rev. 135, A1559 (1964)


Experimental Setup -Diagnostics

- CFI Imaging Diagnostic
 - Measure: filament size, spacing and number
 - Need to resolve on the scale of c/ω_p (~4µm)
 - Setup
 - Silicon window at capillary exit (~100µm, for minimun scattering)
 - Gold coating for optical transition radiation (OTR) emission
 - High resolution lens (~ $1 \mu m$)
 - Turning mirror
 - CCD camera

Experimental Setup -Diagnostics

- Radiation Diagnostic
 - Compton scattering experiment diagnostic, CCD-camera shad-o-snap 1024 sensitive in the 10-50 keV range
 - Beam-plasma interaction background
 - Look for increased radiation level at CFI onset
 - Beam/radiation separated by magnetic spectrometer
 - Radiation parameters to be determined from simulations

Summary

- Systematically study instability as function of beam and plasma parameters
 - Experimentally and through simulations
- Beam and plasma parameters are independently and well controlled
- Most hardware and experience available
- CFI has not been convincingly observed before
- Basic plasma instability, impact on Astrophysics and ICF
- Different regime than PWFA
- Calculations and simulations indicate that with ATF parameters CFI should be unambiguously observed₂₀

Thank You

INSTITUTO SUPERIOR TÉCNICO Universidade Técnica de Lisboa