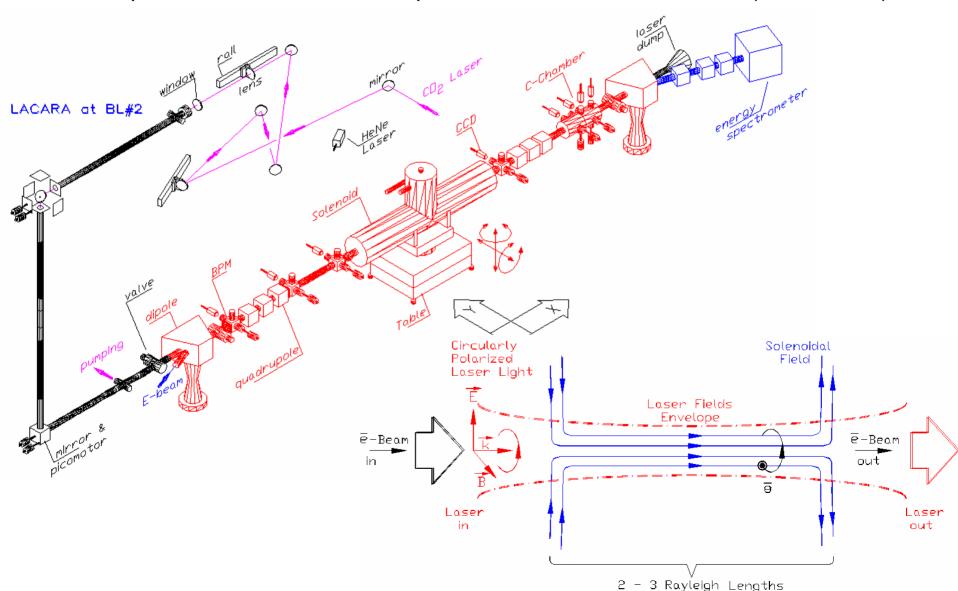
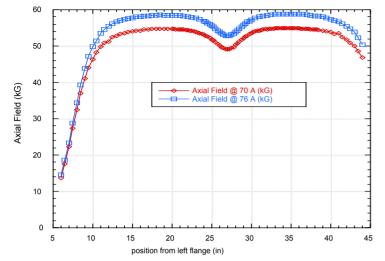
LACARA: First Results and their Interpretation

Sergey V. Shchelkunov (Yale Univ.), Thomas C. Marshall (Columbia Univ.), Jay L. Hirshfield (Yale Univ./Omega-P, Inc)

Vitaly Yakimenko, Igor Pogorelsky (ATF, Brookhaven Natl. Lab.)


ACKNOWLEDGEMENT:

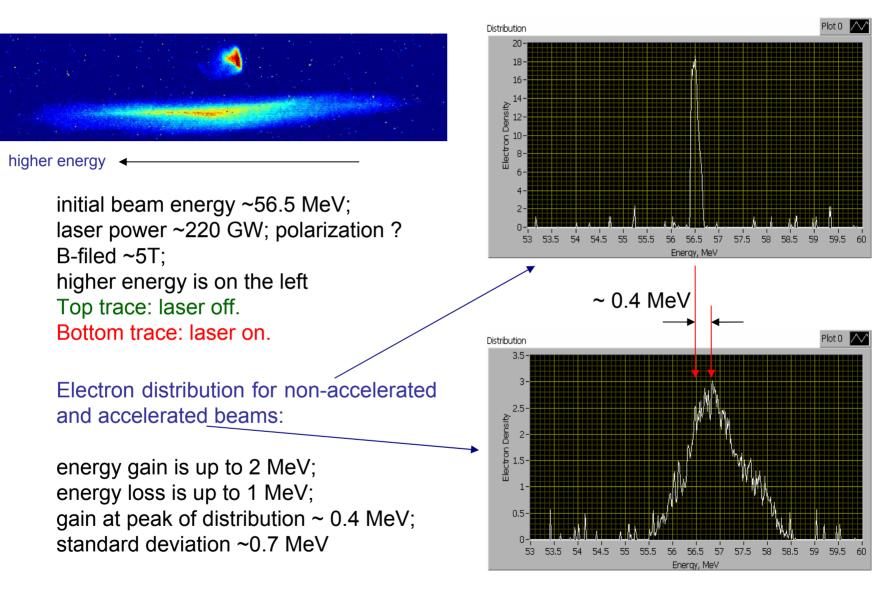

DoE Office of HEP

References:

- * J.L. Hirshfield, C. Wang, *Phys. Rev.* E 61, 7252 (2000).
- * T. C. Marshall, C. Wang, J.L. Hirshfield, *Phys. Rev. ST Accel. Beams* **4**, 121301 (2001).
- * S.V. Shchelkunov, T.C. Marshall, J.L. Hirshfield, C-B. Wang, and M.A. LaPointe, *AIP Conference Proceedings* 877: 12th Advanced Accelerator Concepts Workshop, p. 880, eds: M. Conde and C. Eyberger (2006).

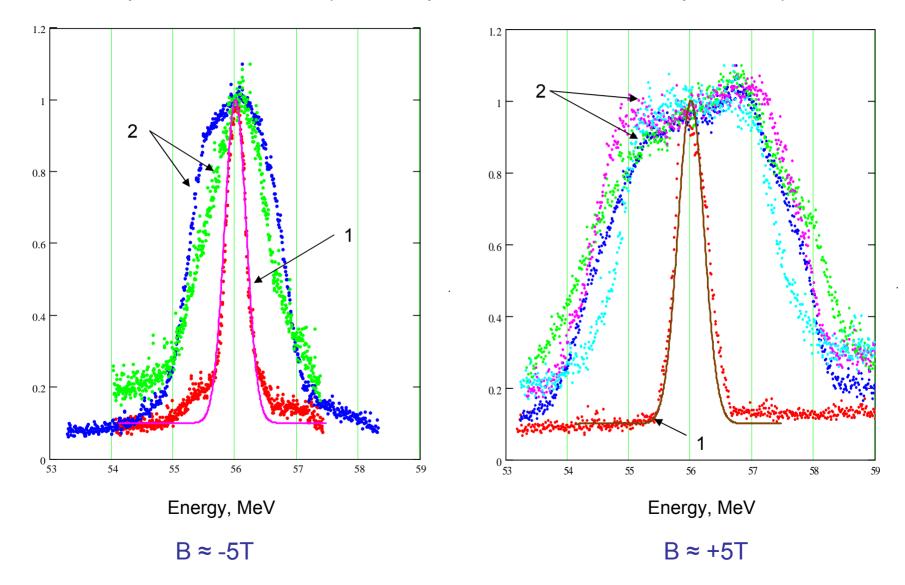
LACARA - <u>Laser Cyclotron Auto-Resonance Accelerator</u> operates at the ATF-BNL experimental floor, 2nd beam line, (not to scale)

Magnetic field profile measured along the bore axis (marked by 'squares') compared to the calculated field presented by continues curves.



Requirements:

- ~5T solenoidal field (length ~1m, provided by a "dry" SC magnet.)
- Gaussian CO2 laser beam, $\lambda\approx$ 10.6 $\mu m,$ Rayleigh length of ~70cm, power up to 1 TW


Expectations:

- * acceleration of electrons in vacuum using the laser energy in a smoothbore structure
 * using a not pre-bunched electron beam
- * a ~50-60MeV bunch should be accelerated at 25 MV/m, provided ideal alignment
 * acceleration is done by a nearly-gyro resonant interaction, and all the electrons of a bunch undergo the same acceleration ?

*the results were reported at AAC 2008

More examples: initial beam energy 56.5 MeV; laser power ~220GW; polarization ~85% (1 - laser power off; 2 - with laser power on)

Parameter	Base value	Accuracy (range)	Deterioration in performance as compared to the energy gain for the base values			Time to measure	Time to tune
			5%	10%	15%	1	
Laser angle, µrad	0	+/- 300 µrad	550	800	1000	1/2 days	1 hr
Laser waist, mm	1.6	1.4-1.8 mm	1.7	1.85	1.95	2 days	?
Laser power, GW	~200 ?	?	scales linearly with power				
E-beam sigma σ, μm	200	+/- 35µm	210	225	240	minutes	days
Emittance, not-norm.,10 ⁻⁸ m-rad	1.5	1.5-2	1.9	2.35	2.7	<1 hr	?
E-beam shift, µm	0	Together result in +/- 500 µm relative to the axis (inside solenoid)	75	125	150	1 day	days
E-beam angle, µrad	0		125	190 ♠	230	1 day	days
Alone res In energy	rop together result deterioration in						

This misalignment + the other contributions [see green column], result in the gain drop by ~ 85%, leading to energy gain ~ 0.65MeV at ~200-250GW (instead of ~4MeV).

The observed value ~0.4 MeV is close, but perhaps can be further explained by lesser laser power of ~ 130-150 GW.

Red – average energy gain (MeV) and blue – energy spread (std, MeV) vs. Laser Angle relative to the solenoid (µrad) - parameter that does not inflict much the performance.

8

Ela OC AEla

2

0

Ω

0

200

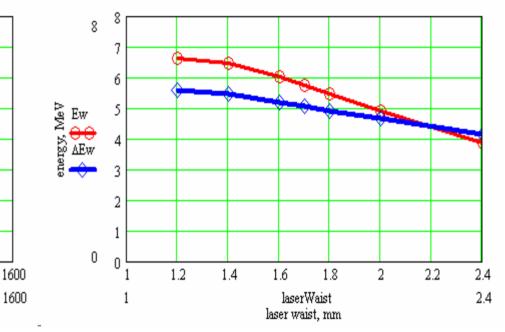
400

600

800

laserAngle

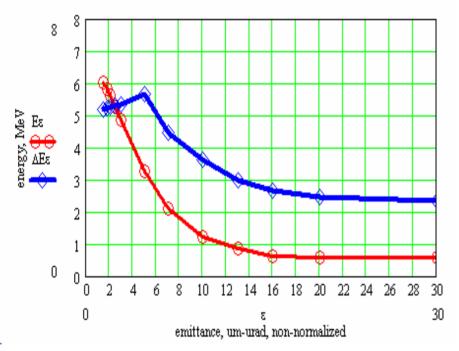
laser angel, micro-rad


1000

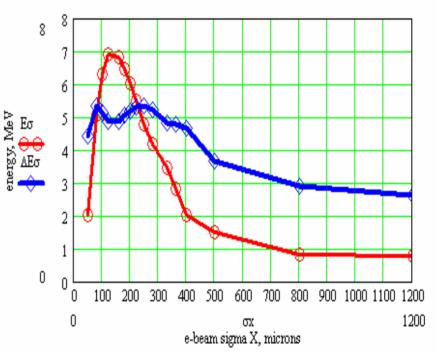
1200

1400

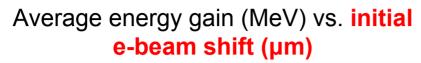
0


Red – average energy gain (MeV) and blue – energy spread (std, MeV) vs. Laser Waist $W_x = \sim W_y$ (mm, reasonably well known parameter)

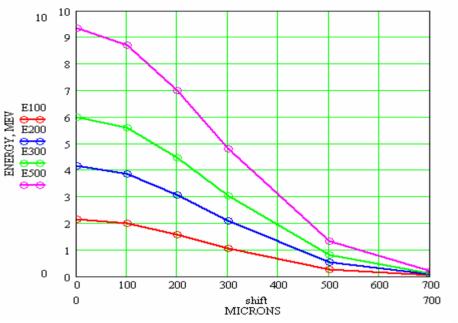
The curves are given for 300GW laser power (simulation). One may conclude that the loss in gain is 5% for 550 micro-rad , 10% - for 800 micro-rad, and 15% - for 1000 micro-rad (note that calculation is done for a discrete set of points [marked])

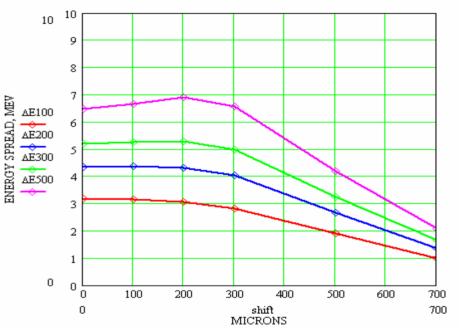

The curves are given for 300GW laser power (simulation). One may conclude that the loss in gain is 5% for 1.7 mm, 10% - for 1.85 mm, and 15% - for 1.95 mm, all compared to the gain at the expected Wx = \sim Wy = 1.6 mm (note that calculation is done for a discrete set of points [marked])

Red – average energy gain (MeV) and blue – energy spread (std, MeV) vs. initial e-beam emittance (non-normalized, μ m – μ rad, well known parameter)


The curves are for 300GW laser power (simulation). One may conclude that the loss in gain is 5% for 1.9 μ m- μ rad, 10% - for 2.35 μ m- μ rad, and 15% - for 2.7 μ m- μ rad, all compared to the gain at the expected ϵ x= ~ ϵ y =1.5 μ m- μ rad (note that calculation is done for a discrete set of points [marked])

Red – average energy gain (MeV) and blue – energy spread (std, MeV) vs. initial e-beam sigma $\sigma x = \sim \sigma y$ (µm, well controlled parameter)



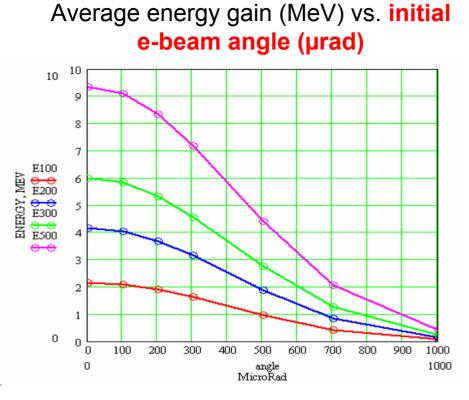

The curves are for 300GW laser power (simulation). One may conclude that the loss in gain is 5% for 210 μ m, 10% - for 225 μ m, and 15% - for 240 μ m, all compared to the gain at the expected $\sigma x = \sim \sigma y = 200 \ \mu$ m (note that calculation is done for a discrete set of points [marked])

Parameter (s) that inflict much the performance (simulation)

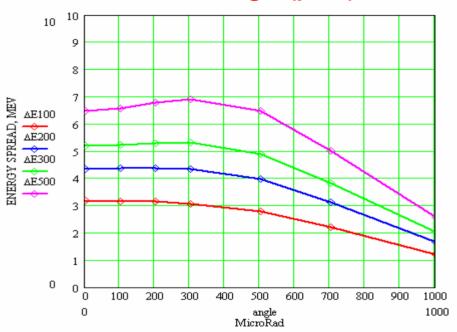
Energy spread (std, MeV) vs. initial e-beam shift (µm)

The curves are for different **laser powers:** red – 100 GW, blue – 200 GW, green – 300 GW and magenta – 500GW (calculation is done for a discrete set of points [marked])

The interesting thing to note is that energy gain scales directly proportional to the laser power for up to 500 GW,


 $E_{qain} \sim P_{laser}$

The curves are for different **laser powers:** red – 100 GW, blue – 200 GW, green – 300 GW and magenta – 500GW (calculation is done for a discrete set of points [marked])


The interesting thing to note is that energy spread scales directly proportional to the square root of laser power for up to 500 GW,

$$\Delta E_{spread} \sim \sqrt{P_{laser}}$$
 (2)

Parameter (s) that inflict much the performance (simulation)

Energy spread (std, MeV) vs. initial e-beam angle (µrad)

The curves are for different **laser powers:** red – 100 GW, blue – 200 GW, green – 300 GW and magenta – 500GW (calculation is done for a discrete set of points [marked])

The interesting thing to note is that energy gain scales directly proportional to the laser power for up to 500 GW,

(1)

The curves are for different **laser powers:** red – 100 GW, blue – 200 GW, green – 300 GW and magenta – 500GW(calculation is done for a discrete set of points [marked])

The interesting thing to note is that energy spread scales directly proportional to the square root of laser power for up to 500 GW,

$$\Delta E_{spread} \sim \sqrt{P_{laser}}$$
 (2)

 $\mathsf{E}_{\mathsf{gain}} \sim P_{\mathsf{laser}}$

Things to do:

a) Measuring the laser power:

- a.1) relatively straightforward to measure the total energy
- a.2) proven to be difficult to know the pulse shape presently ATF is doing work on that, and we solely rely on their progress
- b) Improving the alignment between the e-beam and the solenoid
- b.1) present procedure, where we align the solenoid with e-beam, is lengthy in duration and has poor convergence
- b.2) poor convergence may be because of deviation of the solenoid axis from the straight line at high field
- b.3) a new procedure, where we will align the e-beam with the solenoid (not vice versa) is being considered and is under development
- c) Improving the simulation code:
- c.1) to include known, but not accounted by it parameters (the laser beam shift relative to the solenoid axis)
- c.2) to solve legacy issues. i.e. the absence of output of the detailed distribution (histograms) of electrons after or in the process of acceleration

Summary:

• First experimental results from LACARA at BNL-ATF were obtained July 14-22, 2008 by Yale/ATF team.

• Both energy gains and energy losses were observed, with either linear-or circularly-polarized laser light, and for both directions of B-field.

The magnitude of energy changes agrees with theory; the complex physics involved in the interaction process is understood.

• Experimental arrangement require refinement, e.g. improved alignment of laser and magnetic field axes and e-beam; improved accuracy of synchronization, and laser power measurements.

• In order to explore better operation (and better data) of LACARA, and based on our experience, we conclude that we need at least 8 run session (~ 1-2 years of operation at ATF). Productivity can be greater if support for a postdoc can be obtained.