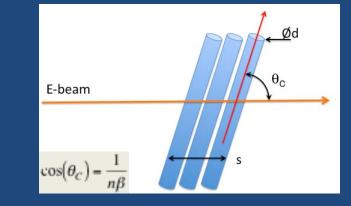

Fiber Mesh Diagnostic for Transverse Profile Measurements

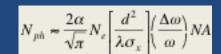
RadiaBeam Technologies October 2010 ATF User's Meeting R. Agustsson (PI), G. Andonian, A. Murokh, R. Tikhoplav Funded by DOE SBIR 2010 Phase II


Motivation

- Advanced accelerators and light sources require better resolution on beam transverse profile
 - Current techniques require scintillating materials or OTR
 - Resolution limited to \sim 40 μ m,
 - Need imaging optics
 - Blooming, limited depth-of-focus, etc.
 - COTR can contaminate data for compressed bunches
- Exploit advances in fiber industry, nano-fabrication techniques
- Fibers mesh laid across beam path
 - Cerenkov radiation is collected/analyzed
- Fiber-mesh diagnostic (FMD)
 - adequate photon yield
 - minimal real-estate
 - FOV is arbitrarily large
 - Sub-10µm resolution
 - With appropriate fiber choice

Angular Acceptance and yield

- Typical fibers n~1.5
 - $\theta_c \sim 47^\circ$
 - Angular acceptance peaked at θ_c
 - Rotation of fibers can increase/decrease acceptance
- Photon yield
 - $N_{ph}^{2} 10^{5}$


 $\frac{dE}{dzd\omega} \approx \frac{e^2 \omega}{4\pi \varepsilon_0 c^2} \sin^2(\theta_c)$

 $d\sqrt{2}\sin(\theta_c)$

 $N_0 \approx 2\pi\alpha$

Cerenkov radiation from single e⁻

Avg Photon flux per e

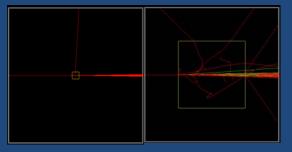
Total Photon yield

E-beam properties & Cerenkov yield	ATF
Charge	300 pC
Energy	50 MeV
Cerenkov angle	46.7
RMS spot size	50 µm
Peak photon yield per fiber	2.2×10^{5}

Central Wavelength	850 nm
Bandwidth	10%
Mode Fiber Diameter (MFD)	6.8µm
Numerical Aperture (NA)	0.13

Radiation dose on fiber

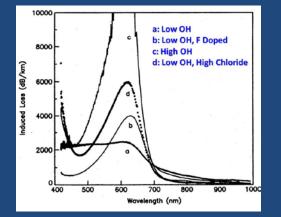
Background radiation (analytic)


- ATF parameters
 - Dose ~0.7kGy per shot
- For 1 hr operation
 - Dose ~100MGy
- Crosstalk (simulations)
 - Monte Carlo (GEANT4)
 - SiO₂ fibers
 - No significant crosstalk for up to 1mm
 - Avg. dose = 1.37×10^{-6} Gy per e⁻
 - Total dose ~ 2kGy per shot
- FMD is viable in lab environment

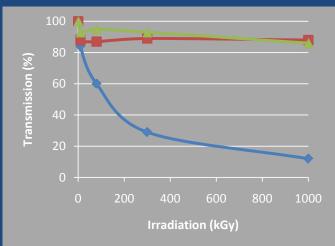
$$\langle E_0 \rangle = \mu \langle z \rangle = \frac{\mu d \gamma m_e c^2}{\sqrt{2} \sin(\theta_C)}$$

Energy deposited by single e⁻

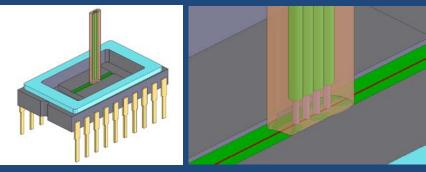
$$\Gamma_0 = \frac{\langle E_0 \rangle N \sin^2(\theta_C)}{\pi d^2 \sigma_x \rho} \approx \frac{\mu}{\rho} \frac{\sin(\theta_C)}{4\pi {\sigma_x}^2} E_b$$


Dose rate per shot per area

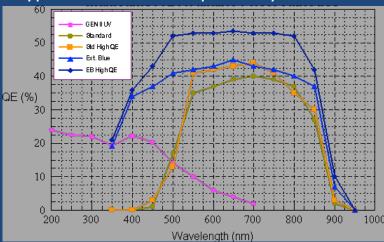
100 μ m thick fiber (left) and 1mm thick fiber (right). Red lines are e⁻ trajectories.


Fiber selection

- Resolution
 - core <10μm
 - cladding 80-125µm (industry standards)
 - Coating unnecessary
- Chemical content
 - Doping (low OH preferred)
 - Improved transmission
 - Life expectancy (F-doped)
- Irradiation expt results
 - Fujikura rad-resistant fibers
 - 50µm core, 125µm cladding
 - Sterigenics (San Diego, CA)
 - Exposures from 10kGy-1MGy
 - 3 wavelengths tested
 - 658nm (blue curve)
 - 808nm (red curve)
 - 1313 (green curve)


Fiber losses vs wavelength D. Griscom

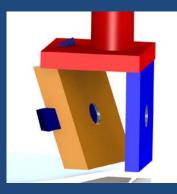
Fiber Irradiation results

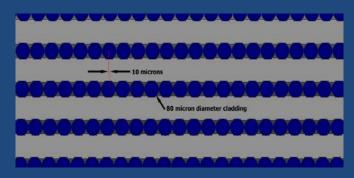


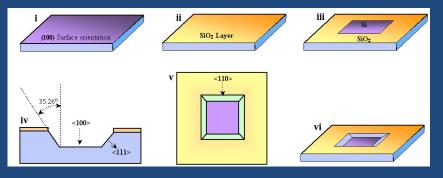
Detector

- Linear CCD
 - Coupling
 - Reduce crosstalk
 - Pixel size~10μm
 - Adjacent pixels stay dark (cladding $^{225}\mu m$)
- Fiber preparation
 - Fiber coatings must be stripped
 - Fiber ends polishing
 - Epoxy adhesive
- Single fiber detectors considered, but costly
 - PMTs
- Proof-of-concept test at UCLA Pegasus
 - 125 μ m core, 250 μ m cladding
 - Center Spacing 250μm
 - Only one dimension

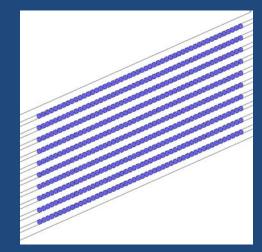

Coupling scheme renderings




Typical linear CCD responsivity

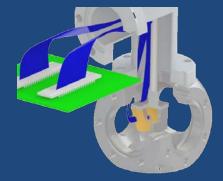

Fabrication

- Fiber holder
 - Nanofabrication techniques
 - Fiber core 8.6μm, cladding 80μm
 - Need ~10 μ m shift
 - Need 8 layers
 - Both x and y axes
- Coupling out of UHV to CCD board
 - Problem unsolved
- Precision angular alignment of holders
 - Tip/tilt stage



Testing at ATF

- Time scale ~ FY2012
- Dependent on other milestones
 - Irradiation results
 - Fabrication procedures
 - POC test in UCLA
 - Maintain UHV levels >5x10⁻⁸
- Goal: Demonstrate sub-10µm resolution in both transverse planes
 - Fiber 8.6µm core



Fiber layout with ~10µm shifts between layers

BNL ATF Parameters		
Energy	50-90 MeV	
Charge	< 1nC	
Emittance	2 mm-mrad	
Rep. rate	1.5 Hz	

Conclusions

- FMD is an innovative idea
 - Still in its infancy
 - Advances in fiber size and radiation hardness
 - Nano-fabrication techniques allow further exploration
 - Irradiation results imperative
 - POC milestone
- Competitive to current profile measurements
 - ATF has long history of testing beam profile monitors
 - Need to demonstrate lifetime
 - Cost

