Surface wave accelerator based on silicon carbide (SWABSiC)

V. Khudik, S. Trendafilov, Kamil B. Alici

P.I. Gennady Shvets

The University of Texas at Austin
V. Yakimenko, M. Babzien, M. Fedurin, K. Kusche BNL/ATF

Laser Beam Damage: Dielectrics vs. Metals vs. Semiconductors

Silicon Carbide: -Can operate at high temperature ($>\mathbf{1 0 0 0}^{\circ} \mathrm{C}$)

- Has high electrical breakdown voltage ($\mathrm{DC} \longrightarrow$ threshold > $\mathbf{3 0 0} \mathbf{~ M V} / \mathrm{m}$)
-Is low-loss polaritonic material with $\varepsilon<0$ in mid-IR

$$
\varepsilon=\varepsilon(\infty) \frac{\omega_{L}^{2}-\omega^{2}-i \gamma \omega}{\omega_{T}^{2}-\omega^{2}-i \gamma \omega}
$$

($\omega_{\mathrm{L}}=2 \pi \mathrm{c} / 10.3 \mu \mathrm{~m}$,
$\left.\omega_{\mathrm{T}}=2 \pi \mathrm{c} / 12.5 \mu \mathrm{~m}\right)$

Surface-wave accelerator driven by a high-power CO_{2} laser

Consider vacuum channel between two thin layers of SiC.

By widely available tunable CO_{2} laser SiC/vacuum SPP's can be excited

Kalmykov, Polomarov, Korobkin, Otwinowski, Power, and Shvets, Phil. Trans. Royal Soc. 364, 725 (2006); AAC'08 Conf. Proc., p. 538 (2009).
-Structure supports two modes ($\omega=$ kc mode) \rightarrow can accelerate relativistic particles

- Near field (small gap) \rightarrow attractive ratio $\mathrm{E}_{z} / \mathrm{E}_{\mathrm{x}}$ -Application: injector into laser-plasma accelerator -Cherenkov diagnostics for compressed ATF beam?

Electromagnetic modes of the Surface Wave Accelerator Based on SiC (SWABSiC)

Parasitic transverse wake @10.708 $\mu \mathrm{m}$

$$
\left(\omega_{\mathrm{L}}=2 \pi \mathrm{c} / 10.3 \mu \mathrm{~m}, \omega_{\mathrm{T}}=2 \pi \mathrm{c} / 12.5 \mu \mathrm{~m}\right)
$$

> Coupling and propagation challenge: how to couple $10.6 \mu \mathrm{~m}$ radiation into a $4 \mu \mathrm{~m}$ hole \rightarrow not only the hole small, the mode's symmetry is not good for coupling!

Si Prism + SiC Film Fabrication

-Step 1: cutting Si discs ($\mathrm{D}=5 \mathrm{~cm}, \mathrm{t}=5 \mathrm{~mm}$) into $22 \times 12 \times 5 \mathrm{~mm}$ "bricks"
-Step 2: growth of $1.7 \mu \mathrm{~m} \mathrm{SiC}$ in Lyon, France
-Step 3: cutting Si "bricks" into prisms (ISP Optics)

10 mm

20
mm

SWABSiC: two interface SPPs

Step 1: Grow $1.7 \mu \mathrm{~m}$ of SiC

Step 3: Patterning with photoresist

Step 4: BOE Etch

Longitudinal and Transverse Wakes

Cherenkov diagnostics for compressed (or sliced) ATF beam?

- Goal: Pre-bunched electron beam to generate coherent mid-IR Cherenkov radiation.
- Application: Diagnostic tool for high-energy electron bunches.
- Angular and spectral distribution of the coherent IR radiation can be used to characterize the bunch length and transverse size.

Resonant interaction of beam propagating in channel

To avoid scattering, beam can be launched in vacuum channel. It can excite surface waves there.
$k_{\|}=\omega / c$

In this wave, polarization charges are located on surfaces.
Waves are localized near the channel.

$$
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\frac{\omega^{2}}{c^{2}} \boldsymbol{\varepsilon}
$$

Surface waves with

$$
k_{y}<\frac{\omega}{c}(\varepsilon-1)^{1 / 2}
$$

leak in the second medium
Problem: still, these waves cannot leak into vacuum!

Accelerator/Radiation-Source Structure

Solution: use Si-prism!

Radiation is incident almost normally to air-prism interface!

Beam is slowly decelerating.
$1.7 \mu m$
$6.0 \mu m$
$1.7 \mu m$
5.0 mm

Remember the accelerator configuration:

Burton Neuner III, Dmitriy Korobkin, Gabriel Ferro, and Gennady Shvets, Phys. Rev. ST Accel. Beams (2012)

Dispersion Equation for waves in SiC Structure.

Do the simple case, the electric field in thick SiC plates. Make inverse Fourier transform:

$$
\vec{E}(\vec{r}, t)=\frac{i}{(2 \pi)^{2}} \iint d \vec{k}_{\|} e^{i \vec{k}_{\|} \vec{r}_{\|}-i \omega t} \frac{4 \pi q e^{-\sigma(z-a)}}{D\left(\omega, \vec{k}_{\|}\right)} \frac{\left(\sigma \vec{\sigma}_{\|}+i \vec{e}_{z} k_{\|}^{2}\right)}{k_{\|}^{2}}
$$

In this mode, E_{x} is symmetric with respect to the plane $z=0$.

Main contribution is from poles where $D\left(\omega, \vec{k}_{\|}\right)=0$
$D\left(\omega, \vec{k}_{\|}\right) \equiv e^{k_{y} a}\left(\varepsilon+\sigma / k_{y}\right)+e^{-k_{y} a}\left(\varepsilon-\sigma / k_{y}\right)=0$,
Solve dispersion equation and find $\boldsymbol{\omega}=\boldsymbol{\omega}_{*}\left(k_{y}\right)$

$$
\begin{aligned}
& \boldsymbol{\sigma}=\left(k_{\|}^{2}-\boldsymbol{\varepsilon} \boldsymbol{\omega}^{2} / c^{2}\right)^{1 / 2}, \\
& \boldsymbol{\omega}=\vec{k}_{\|} \cdot \vec{v}, \\
& \boldsymbol{\varepsilon}=\boldsymbol{\varepsilon}_{\infty} \frac{\boldsymbol{\omega}^{2}-\boldsymbol{\omega}_{L O}^{2}+i \gamma \omega}{\boldsymbol{\omega}^{2}-\boldsymbol{\omega}_{T O}^{2}+i \gamma \omega}
\end{aligned}
$$

Dispersion Equation for Waves in Si-SiC Structure II.

$$
\frac{\operatorname{Re} \omega}{c}, \mathrm{~d}=\infty, \mathrm{d}=4.7 \mu \mathrm{~m}
$$

The second plot tells us that radiation occurs at $k_{y} \leq 1 \mu m^{-1} \quad \rightarrow \quad \boldsymbol{\theta}_{\text {out }} \approx 30^{\circ}$.

Intensity vs. wavevector of the waves entering Si plate

$a=3 \mu m$
$d=4.7 \mu \mathrm{~m}$
$\varepsilon_{S i} \approx 11.7$

Pulse length of the generated radiation $\Delta x \approx \frac{1}{\operatorname{Im}(\omega) / c} \sim 50 \lambda$

The radiation occurs at $k_{y} \leq 0.6 \mu \mathrm{~m}^{-1} \rightarrow \boldsymbol{\theta}_{\text {out }} \approx 18^{\circ}$.

Refraction at the prism (Fresnel formulas).

$$
\begin{aligned}
& \text { Unit vectors } \vec{e}_{s} \propto \vec{n} \times \vec{k} \text {, } \\
& \vec{e}_{p} \propto \vec{e}_{s} \times \vec{k}, \quad \vec{e}_{p, r} \propto \vec{e}_{s} \times \vec{k}_{r}, \quad \vec{e}_{p, t} \propto \vec{e}_{s} \times \vec{k}_{t} \\
& k_{t, x}^{2}+k_{t, z}^{2}=\frac{\omega^{2}}{c^{2}}-k_{y}^{2} \\
& \vec{E}_{t}=\frac{2\left(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{k}}^{2}\right.}{(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{k}})+\left(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{k}}_{\mathrm{t}}\right)}\left(\vec{E} \cdot \vec{e}_{s}\right)+\frac{2(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{k}})}{\varepsilon^{-1 / 2}(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{k}})+\varepsilon^{1 / 2}\left(\overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{k}}_{\mathrm{t}}\right)}\left(\vec{E} \cdot \vec{e}_{p}\right)
\end{aligned}
$$

In vacuum propagation possible for

$$
k_{y}<0.6 \mu m^{-1}
$$

Dependence of Emission on various parameters

- Radiation into Si-plate:

- Radiation into vacuum:

T

$\mathrm{I}\left(k_{y}\right)$

Final output:

Lower and upper estimates of radiation energy

Coherent radiation of the point charge:

$$
W \sim \frac{2 \times F F \times q^{2} k_{x}^{2} L_{x}}{4 \pi \varepsilon_{0}} \quad \begin{aligned}
& \mathrm{L}_{\mathrm{x}}-1 \mathrm{~cm}-\text { length of the structure } \\
& \mathrm{k}_{\mathrm{x}}-0.6 \mu \mathrm{~m}-\mathrm{x}-\text { component of wavenumber of the radiation } \\
& \mathrm{q}-\text { charge } \\
& \\
& \\
& \mathrm{FF} \sim 0.01 / 3 \text { - form factor }
\end{aligned}
$$

Radiation energy for 100 pC (coherent) $\quad W \approx 2 * 10^{-3} J$
Radiation energy for 1 pC (coherent) $\quad W \approx 2 * 10^{-7} J$

Incoherent radiation
e- electron charge
$W \sim \frac{2 \times F F \times e^{2} k_{x}^{2} L_{x}}{4 \pi \varepsilon_{0}} \frac{q}{e}$
Radiation energy for 100pC (incoherent)

$$
\begin{aligned}
& W \approx 3.5 * 10^{-12} \mathrm{~J} \\
& W \approx 3.5 * 10^{-14} \mathrm{~J}
\end{aligned}
$$

CAD preparation

Status of the experiments

Status of the experiments

- Electron beam was aligned and tested.
$-\sigma_{x}, \sigma_{y} \sim 430 u m$
- 1D motorized stagge, alignment target, Cassegrain objective were installed
- The sbjective was aligned to the externalicamera with 3.9 um resolution:
- The triplet vivas plácediand aligned
$-\sigma_{x}, \sigma_{y}$ of the microbean at the focus ~6umx 12 um

