

Surface wave accelerator based on silicon carbide (SWABSiC)

V. Khudik, S. Trendafilov, Kamil B. Alici

P.I. Gennady Shvets The University of Texas at Austin

V. Yakimenko, M. Babzien, M. Fedurin, K. Kusche BNL/ATF

Laser Beam Damage: Dielectrics vs. Metals vs. Semiconductors

From Du and Byer (1999). Most measurements at 0.8-1 micron wavelength

(Most) Dielectrics + electron beams = charging Pure semiconductors → few free carriers + full valence band

Silicon Carbide: -Can operate at high temperature (>1000°C) -Has high electrical breakdown voltage (DC threshold >300 MV/m) -Is low-loss polaritonic material with ε < 0 in mid-IR

$$\varepsilon = \varepsilon(\infty) \frac{\omega_L^2 - \omega^2 - i\gamma\omega}{\omega_T^2 - \omega^2 - i\gamma\omega}$$

 $(\omega_{\rm L} = 2\pi \text{ c}/10.3 \ \mu\text{m}, \omega_{\rm T} = 2\pi \text{ c}/12.5 \ \mu\text{m})$

X

S<u>urface-wave</u> accelerator driven by a high-power CO₂ laser

Consider vacuum channel between two thin layers of SiC.

By widely available tunable CO₂ laser SiC/vacuum SPP's can be excited

Kalmykov, Polomarov, Korobkin, Otwinowski, Power, and Shvets, Phil. Trans. Royal Soc. **364**, 725 (2006); AAC'08 Conf. Proc., p.538 (2009). Structure supports two modes ($\omega = \text{kc mode}) \rightarrow$ can accelerate relativistic particles •Near field (small gap) \rightarrow attractive ratio E_z/E_x Application: injector into laser-plasma accelerator Cherenkov diagnostics for compressed ATF beam?

Electromagnetic modes of the Surface Wave Accelerator Based on SiC (SWABSiC)

 $(\omega_{\rm L} = 2\pi \text{ c}/10.3 \ \mu\text{m}, \omega_{\rm T} = 2\pi \text{ c}/12.5 \ \mu\text{m})$

Coupling and propagation challenge: how to couple 10.6 μ m radiation into a 4 μ m hole \rightarrow not only the hole small, the mode's symmetry is not good for coupling!

Si Prism + SiC Film Fabrication

Step 1: cutting Si discs (D=5cm, t=5mm) into 22x12x5 mm "bricks"
Step 2: growth of 1.7 μm SiC in Lyon, France
Step 3: cutting Si "bricks" into prisms (ISP Optics)

SWABSiC: two interface SPPs

Longitudinal and Transverse Wakes

Cherenkov diagnostics for compressed (or sliced) ATF beam?

- Goal: Pre-bunched electron beam to generate coherent mid-IR Cherenkov radiation.
- Application: Diagnostic tool for high-energy electron bunches.
 - <u>Angular</u> and <u>spectral</u> distribution of the coherent IR radiation can be used to characterize the <u>bunch length</u> and <u>transverse size</u>.

Resonant interaction of beam propagating in channel

To avoid scattering, beam can be launched in vacuum channel. It can excite surface waves there. $k_{\parallel} = \omega / c$

In this wave, polarization charges are located on surfaces.

Waves are localized near the channel.

$$k_x^2 + k_y^2 + k_z^2 = \frac{\boldsymbol{\omega}^2}{c^2}\boldsymbol{\varepsilon}$$

Surface waves with $k_y < \frac{\omega}{c} (\varepsilon - 1)^{1/2}$

leak in the second medium

Problem: still, these waves cannot leak into vacuum!

Accelerator/Radiation-Source Structure

Solution: use Si-prism!

Radiation is incident almost normally to air-prism interface!

Beam is slowly decelerating.

Remember the accelerator configuration:

Burton Neuner III, Dmitriy Korobkin, Gabriel Ferro, and Gennady Shvets, Phys. Rev. ST Accel. Beams (2012)

Dispersion Equation for waves in SiC Structure.

Do the simple case, the electric field in thick SiC
plates. Make inverse Fourier transform:
$$\vec{E}(\vec{r},t) = \frac{i}{(2\pi)^2} \iint d\vec{k_{\parallel}} e^{i\vec{k_{\parallel}}\vec{r_{\parallel}} - i\omega t} \frac{4\pi q e^{-\sigma(z-a)}}{D(\omega,\vec{k_{\parallel}})} \frac{(\sigma\vec{k_{\parallel}} + i\vec{e_{z}}k_{\parallel}^{2})}{k_{\parallel}^{2}}$$

In this mode, E_x is symmetric with respect to the plane z = 0.

 $\boldsymbol{\sigma} = (k_{\parallel}^2 - \boldsymbol{\varepsilon}\boldsymbol{\omega}^2 / c^2)^{1/2},$

 $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_{\infty} \frac{\boldsymbol{\omega}^2 - \boldsymbol{\omega}_{LO}^2 + i\boldsymbol{\gamma}\boldsymbol{\omega}}{\boldsymbol{\omega}^2 - \boldsymbol{\omega}_{DO}^2 + i\boldsymbol{\gamma}\boldsymbol{\omega}}$

 $\boldsymbol{\omega} = \vec{k}_{\parallel} \cdot \vec{v},$

Main contribution is from poles where $D(\boldsymbol{\omega}, \vec{k}_{\parallel}) = 0$ $D(\boldsymbol{\omega}, \vec{k}_{\parallel}) \equiv e^{k_y a} (\varepsilon + \sigma / k_y) + e^{-k_y a} (\varepsilon - \sigma / k_y) = 0,$

Solve dispersion equation and find $\boldsymbol{\omega} = \boldsymbol{\omega}_*(k_y)$

Dispersion Equation for Waves in Si-SiC Structure II.

The second plot tells us that radiation occurs at $k_y \leq 1 \mu m^{-1} \rightarrow \theta_{out} \approx 30^\circ$.

Intensity vs. wavevector of the waves entering Si plate

Pulse length of the generated radiation

1.0

$$\Delta x \approx \frac{1}{\mathrm{Im}(\omega)/c} \sim 50\lambda$$

 $I(k_y)$

The radiation occurs at $k_y \leq 0.6 \mu m^{-1} \rightarrow \theta_{out} \approx 18^\circ$.

Refraction at the prism (Fresnel formulas).

$$\vec{E}_{t} = \frac{2(\vec{n} \cdot \vec{k})}{(\vec{n} \cdot \vec{k}) + (\vec{n} \cdot \vec{k}_{t})} (\vec{E} \cdot \vec{e}_{s}) + \frac{2(\vec{n} \cdot \vec{k})}{\boldsymbol{\varepsilon}^{-1/2}(\vec{n} \cdot \vec{k}) + \boldsymbol{\varepsilon}^{1/2}(\vec{n} \cdot \vec{k}_{t})} (\vec{E} \cdot \vec{e}_{p})$$

Dependence of Emission on various parameters

Lower and upper estimates of radiation energy

Coherent radiation of the point charge:

 $W \sim \frac{2 \times FF \times q^2 k_x^2 L_x}{4\pi\varepsilon_0}$

 L_x - 1cm – length of the structure k_x - 0.6 μm – x-component of wavenumber of the radiation q - charge FF ~ 0.01/3 - form factor

Radiation energy for 100pC (coherent) $W \approx 2*10^{-3} J$ Radiation energy for 1pC (coherent) $W \approx 2*10^{-7} J$

e – electron charge

$$W \sim \frac{2 \times FF \times e^2 k_x^2 L_x}{4\pi\varepsilon_0} \frac{q}{e}$$

Radiation energy for 100pC (incoherent) Radiation energy for 1pC (incoherent) $W \approx 3.5 * 10^{-12} J$ $W \approx 3.5 * 10^{-14} J$

CAD preparation

Status of the experiments

Status of the experiments

Electron beam was aligned and tested.

- $-\sigma_x$, $\sigma_y \sim 430$ um
- 1D motorized stage, alignment target, Cassegrain objective were installed
- The objective was aligned to the external camera with
 - **3.9um resolution.**
- The triplet was placed and aligned
 - $-\sigma_x$, σ_y of the microbeam at the focus ~ 6um x 12um
- A compact sample holder for SWABSIC was designed and machined.
 - All the opto-mechanics and SWABSiC were vented in vacuum oven.
 - A motorized two axes minor mount was added to the chamber
 - h ith a second Helle later and pellicle beam splitter first keration for the placement of flat and parabolic microssinside the chamber was completed, R trasparent window was added Fine alignment of the SWABSiC channel to the beam line (ongoing)