Deliverables for BNL Internships (1): Abstract for a General Audience & Project Presentation

Mike Stegman
mstegman@bnl.gov

June 15, 2021
Required deliverables

1. Weekly Report, due on Thursdays by 3pm
2. DOE Pre-Survey for SULI, CCI, and VFP interns – due end of week 1
3. Abstract for a General Audience – 300 word limit
4. Project Report Paper – Length between 1500 and 3000 words, excluding this report’s abstract (approx. 5% of total), footnotes, appendices (< 3 pages), the bibliography, and similar items.
5. Poster, including an abstract – 150 word limit for abstract
6. Project Presentation (A PowerPoint of your project)
7. Peer Review of Posters
8. BNL Departure Survey (complete before “leaving”)
9. DOE Post-Survey for SULI and CCI interns – due before leaving BNL
OEP Resource page at bnl.gov
https://www.bnl.gov/education/resources.php

Faculty Program
- Acknowledgement Reference
- Visiting Faculty Deliverables Requirements and Guidelines
- VFP Research Proposal Guidance

College Program
- Master Schedule
- Participant Weekly Report Template
- Peer Review Template
- Acknowledgement Reference
- Exit Survey

Submit Weekly Reports and Deliverables

Safety at Home
Poor office ergonomics, such as using an uncomfortable chair, prolonged sitting or lifting something too heavy can easily result in injury.

Make sure to take stretch breaks and develop an ergonomically friendly environment.

Poster References
- Creating a Poster
- Sample Poster 1
- Sample Poster 2
- DOE Poster Logos
- BNL Poster Logos
- Acknowledgement Reference

Writing Guidelines
- Intro to Deliverables
- Project Abstracts
- Project Reports
- Virtual Internship Presentation Template
- Virtual Internship Presentation Template (Blank)
- Peer Review Guidelines

Internship Reports
- 2020 Compilation
- 2018 Compilation
- 2017 Compilation
- 2016 Compilation
- 2015 Compilation
- 2014 Compilation
- 2013 Compilation
- 2012 Compilation

DOE Exit Surveys
- CCI Students
- SULI Students
- VFP Students
- VFP Faculty

All College Participants: Complete this Exit Survey
Document Naming Convention

All document names must begin using the following template:
Lastname_FirstInitial_Deliverable_week# or draft# or final

Examples:
• stegman_m_weekly_1
• stegman_m_abstract_2
• stegman_m_report_final
• stegman_m_poster_final
• stegman_m_review_final
• stegman_m_abstract_final

Use_underscores_not_spaces
Collaborating & Submitting

• If you are part of a collaborative team, you only need to complete ONE abstract for a general audience, ONE report, and ONE poster.
• List all collaborative authors and simply swap the order for each deliverable when you submit your individual copy of a deliverable.
• Create a subfolder named FINAL DELIVERABLES in your SharePoint folder.
• Drop all deliverables in the FINAL DELIVERABLES SharePoint folder.
General types: Abstract for a General Audience, Project Report, Poster

Standard outlines:

• I – M – R – A – D
 Introduction, Methods, Results, And Discussion

• Narrative, Process, et al.
Abstract for a General Audience

Length: <300 words

This summary should highlight research accomplishment(s), be written at a level approachable by a broad and largely non-subject matter expert audience (*Scientific American* level of sophistication), describe Department of Energy programmatic or mission relevance of your activities, define the institutional setting, and generally discuss activities, outcomes, impacts, lessons learned, and professional growth and development resulting from your appointment.
Abstract for a General Audience

Length: <300 words

This summary should highlight research accomplishment(s), be written at a level approachable by a broad and largely non-subject matter expert audience (Scientific American level of sophistication), describe Department of Energy programmatic or mission relevance of your activities, define the institutional setting, and generally discuss activities, outcomes, impacts, lessons learned, and professional growth and development resulting from your appointment.
Abstract for a General Audience

Length: <300 words

This summary should highlight research accomplishment(s), be written at a level approachable by a broad and largely non-subject matter expert audience (Scientific American level of sophistication), describe Department of Energy programmatic or mission relevance of your activities, define the institutional setting, and generally discuss activities, outcomes, impacts, lessons learned, and professional growth and development resulting from your appointment.
Abstract for a General Audience

Length: <300 words

This summary should highlight research accomplishment(s), be written at a level approachable by a broad and largely non-subject matter expert audience (Scientific American level of sophistication), describe Department of Energy programmatic or mission relevance of your activities, define the institutional setting, and generally discuss activities, outcomes, impacts, lessons learned, and professional growth and development resulting from your appointment.
Abstract for a General Audience

Length: <300 words

This summary should highlight research accomplishment(s), be written at a level approachable by a broad and largely non-subject matter expert audience (*Scientific American* level of sophistication), describe Department of Energy programmatic or mission relevance of your activities, **define the institutional setting**, and generally discuss activities, outcomes, impacts, lessons learned, and professional growth and development resulting from your appointment.
Abstract for a General Audience
A summary of your BNL experience OR a research paper abstract

DOE format for Abstract for a General Audience
While you should touch on each of the following topics in this checklist, you need not organize them in this sequence.

- Discuss your **activities** including a definition of the institutional setting (BNL, NSLS II, RHIC, etc.);
- Highlight **accomplishments**;
- Discuss **impact(s)** on BNL research of your research;
- Describe **relevance** of your research activities to DOE program(s) or mission;
- Highlight **lessons learned**;
- Discuss the **professional growth and development** resulting from your appointment.
Abstract for a General Audience, Sample

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory requires a highly polarized proton beam for spin-polarization studies. During each experimental run, 250 GeV protons are elastically scattered from a carbon micro-ribbon target 10 µm wide and 50 nm thick to monitor the degree of proton beam polarization. Experiments have shown that the amorphous carbon targets have poor electrical conductivity, limiting their lifetime. Since RHIC operates continuously for several months at a time under ultra-high vacuum, it is costly and inefficient to use carbon targets with short lifetimes. Our study has examined the few micro-ribbons that serendipitously survived a recent RHIC experimental run. Transmission electron microscopy diffraction pattern analysis of the micro-ribbons shows that heating from the RHIC beam has crystallized the amorphous carbon into graphite. In addition to examining micro-ribbons fabricated by Collider-Accelerator Department staff, we are exploring new methods of micro-ribbon fabrication that will have superior material properties. One possible approach consists of depositing thin films of nickel and carbon on a silicon wafer through an anisotropically-etched silicon wafer mask. By annealing amorphous carbon micro-ribbons, we consistently achieve conductivity and crystallinity results similar to those found in the surviving RHIC micro-ribbons. When annealed at 700 °C, a 10 nm thick amorphous carbon layer forms a solid solution within the 50 nm thick nickel layer before recrystallizing as graphene on the surface of the nickel. Graphene is well known to have superior electrical conductivity and tensile strength, and may well prove to be an ideal material for the next generation of micro-ribbon targets for RHIC during its next proton polarimetry experiments in 2015. As a result of this summer, I have added electron microscopy to my repertoire of materials characterization techniques. Additionally, I am now familiar with microfabrication processes and several software programs including DesignCAD, NPGS, MathCAD, and Scandium.
Activities (inc. institutional setting)

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory requires a highly polarized proton beam for spin-polarization studies. During each experimental run, 250 GeV protons are elastically scattered from a carbon micro-ribbon target 10 µm wide and 50 nm thick to monitor the degree of proton beam polarization. Experiments have shown that the amorphous carbon targets have poor electrical conductivity, limiting their lifetime. Since RHIC operates continuously for several months at a time under ultra-high vacuum, it is costly and inefficient to use carbon targets with short lifetimes. Our study has examined the few micro-ribbons that serendipitously survived a recent RHIC experimental run. Transmission electron microscopy diffraction pattern analysis of the micro-ribbons shows that heating from the RHIC beam has crystallized the amorphous carbon into graphite. In addition to examining micro-ribbons fabricated by Collider-Accelerator Department staff, we are exploring new methods of micro-ribbon fabrication that will have superior material properties. One possible approach consists of depositing thin films of nickel and carbon on a silicon wafer through an anisotropically-etched silicon wafer mask. By annealing amorphous carbon micro-ribbons, we consistently achieve conductivity and crystallinity results similar to those found in the surviving RHIC micro-ribbons. When annealed at 700 °C, a 10 nm thick amorphous carbon layer forms a solid solution within the 50 nm thick nickel layer before recrystallizing as graphene on the surface of the nickel. Graphene is well known to have superior electrical conductivity and tensile strength, and may well prove to be an ideal material for the next generation of micro-ribbon targets for RHIC during its next proton polarimetry experiments in 2015. As a result of this summer, I have added electron microscopy to my repertoire of materials characterization techniques. Additionally, I am now familiar with microfabrication processes and several software programs including DesignCAD, NPGS, MathCAD, and Scandium.
Accomplishments

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory requires a highly polarized proton beam for spin-polarization studies. During each experimental run, 250 GeV protons are elastically scattered from a carbon micro-ribbon target 10 µm wide and 50 nm thick to monitor the degree of proton beam polarization. Experiments have shown that the amorphous carbon targets have poor electrical conductivity, limiting their lifetime. Since RHIC operates continuously for several months at a time under ultra-high vacuum, it is costly and inefficient to use carbon targets with short lifetimes. Our study has examined the few micro-ribbons that serendipitously survived a recent RHIC experimental run. Transmission electron microscopy diffraction pattern analysis of the micro-ribbons shows that heating from the RHIC beam has crystallized the amorphous carbon into graphite. In addition to examining micro-ribbons fabricated by Collider-Accelerator Department staff, we are exploring new methods of micro-ribbon fabrication that will have superior material properties.

One possible approach consists of depositing thin films of nickel and carbon on a silicon wafer through an anisotropically-etched silicon wafer mask. By annealing amorphous carbon micro-ribbons, we consistently achieve conductivity and crystallinity results similar to those found in the surviving RHIC micro-ribbons. When annealed at 700 °C, a 10 nm thick amorphous carbon layer forms a solid solution within the 50 nm thick nickel layer before recrystallizing as graphene on the surface of the nickel. Graphene is well known to have superior electrical conductivity and tensile strength, and may well prove to be an ideal material for the next generation of micro-ribbon targets for RHIC during its next proton polarimetry experiments in 2015. As a result of this summer, I have added electron microscopy to my repertoire of materials characterization techniques. Additionally, I am now familiar with microfabrication processes and several software programs including DesignCAD, NPGS, MathCAD, and Scandium.
Impact on BNL research

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory requires a highly polarized proton beam for spin-polarization studies. During each experimental run, 250 GeV protons are elastically scattered from a carbon micro-ribbon target 10 µm wide and 50 nm thick to monitor the degree of proton beam polarization. Experiments have shown that the amorphous carbon targets have poor electrical conductivity, limiting their lifetime. Since RHIC operates continuously for several months at a time under ultra-high vacuum, it is costly and inefficient to use carbon targets with short lifetimes. Our study has examined the few micro-ribbons that serendipitously survived a recent RHIC experimental run. Transmission electron microscopy diffraction pattern analysis of the micro-ribbons shows that heating from the RHIC beam has crystallized the amorphous carbon into graphite. In addition to examining micro-ribbons fabricated by Collider-Accelerator Department staff, we are exploring new methods of micro-ribbon fabrication that will have superior material properties. One possible approach consists of depositing thin films of nickel and carbon on a silicon wafer through an anisotropically-etched silicon wafer mask. By annealing amorphous carbon micro-ribbons, we consistently achieve conductivity and crystallinity results similar to those found in the surviving RHIC micro-ribbons. When annealed at 700 °C, a 10 nm thick amorphous carbon layer forms a solid solution within the 50 nm thick nickel layer before recrystallizing as graphene on the surface of the nickel. Graphene is well known to have superior electrical conductivity and tensile strength, and may well prove to be an ideal material for the next generation of micro-ribbon targets for RHIC during its next proton polarimetry experiments in 2015. As a result of this summer, I have added electron microscopy to my repertoire of materials characterization techniques. Additionally, I am now familiar with microfabrication processes and several software programs including DesignCAD, NPGS, MathCAD, and Scandium.
Relevance (e. g., emerging technologies)

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory requires a highly polarized proton beam for spin-polarization studies. During each experimental run, 250 GeV protons are elastically scattered from a carbon micro-ribbon target 10 µm wide and 50 nm thick to monitor the degree of proton beam polarization. Experiments have shown that the amorphous carbon targets have poor electrical conductivity, limiting their lifetime. Since RHIC operates continuously for several months at a time under ultra-high vacuum, it is costly and inefficient to use carbon targets with short lifetimes. Our study has examined the few micro-ribbons that serendipitously survived a recent RHIC experimental run. Transmission electron microscopy diffraction pattern analysis of the micro-ribbons shows that heating from the RHIC beam has crystallized the amorphous carbon into graphite. In addition to examining micro-ribbons fabricated by Collider-Accelerator Department staff, we are exploring new methods of micro-ribbon fabrication that will have superior material properties. One possible approach consists of depositing thin films of nickel and carbon on a silicon wafer through an anisotropically-etched silicon wafer mask. By annealing amorphous carbon micro-ribbons, we consistently achieve conductivity and crystallinity results similar to those found in the surviving RHIC micro-ribbons. When annealed at 700 °C, a 10 nm thick amorphous carbon layer forms a solid solution within the 50 nm thick nickel layer before recrystallizing as graphene on the surface of the nickel. Graphene is well known to have superior electrical conductivity and tensile strength, and may well prove to be an ideal material for the next generation of micro-ribbon targets for RHIC during its next proton polarimetry experiments in 2015. As a result of this summer, I have added electron microscopy to my repertoire of materials characterization techniques. Additionally, I am now familiar with microfabrication processes and several software programs including DesignCAD, NPGS, MathCAD, and Scandium.
Lessons learned

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory requires a highly polarized proton beam for spin-polarization studies. During each experimental run, 250 GeV protons are elastically scattered from a carbon micro-ribbon target 10 µm wide and 50 nm thick to monitor the degree of proton beam polarization. Experiments have shown that the amorphous carbon targets have poor electrical conductivity, limiting their lifetime. Since RHIC operates continuously for several months at a time under ultra-high vacuum, it is costly and inefficient to use carbon targets with short lifetimes. Our study has examined the few micro-ribbons that serendipitously survived a recent RHIC experimental run. Transmission electron microscopy diffraction pattern analysis of the micro-ribbons shows that heating from the RHIC beam has crystallized the amorphous carbon into graphite. In addition to examining micro-ribbons fabricated by Collider-Accelerator Department staff, we are exploring new methods of micro-ribbon fabrication that will have superior material properties. One possible approach consists of depositing thin films of nickel and carbon on a silicon wafer through an anisotropically-etched silicon wafer mask. By annealing amorphous carbon micro-ribbons, we consistently achieve conductivity and crystallinity results similar to those found in the surviving RHIC micro-ribbons. When annealed at 700 °C, a 10 nm thick amorphous carbon layer forms a solid solution within the 50 nm thick nickel layer before recrystallizing as graphene on the surface of the nickel. Graphene is well known to have superior electrical conductivity and tensile strength, and may well prove to be an ideal material for the next generation of micro-ribbon targets for RHIC during its next proton polarimetry experiments in 2015. As a result of this summer, I have added electron microscopy to my repertoire of materials characterization techniques. Additionally, I am now familiar with microfabrication processes and several software programs including DesignCAD, NPGS, MathCAD, and Scandium.
Professional development

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory requires a highly polarized proton beam for spin-polarization studies. During each experimental run, 250 GeV protons are elastically scattered from a carbon micro-ribbon target 10 µm wide and 50 nm thick to monitor the degree of proton beam polarization. Experiments have shown that the amorphous carbon targets have poor electrical conductivity, limiting their lifetime. Since RHIC operates continuously for several months at a time under ultra-high vacuum, it is costly and inefficient to use carbon targets with short lifetimes. Our study has examined the few micro-ribbons that serendipitously survived a recent RHIC experimental run. Transmission electron microscopy diffraction pattern analysis of the micro-ribbons shows that heating from the RHIC beam has crystallized the amorphous carbon into graphite. In addition to examining micro-ribbons fabricated by Collider-Accelerator Department staff, we are exploring new methods of micro-ribbon fabrication that will have superior material properties. One possible approach consists of depositing thin films of nickel and carbon on a silicon wafer through an anisotropically-etched silicon wafer mask. By annealing amorphous carbon micro-ribbons, we consistently achieve conductivity and crystallinity results similar to those found in the surviving RHIC micro-ribbons. When annealed at 700 °C, a 10 nm thick amorphous carbon layer forms a solid solution within the 50 nm thick nickel layer before recrystallizing as graphene on the surface of the nickel. Graphene is well known to have superior electrical conductivity and tensile strength, and may well prove to be an ideal material for the next generation of micro-ribbon targets for RHIC during its next proton polarimetry experiments in 2015.

As a result of this summer, I have added electron microscopy to my repertoire of materials characterization techniques. Additionally, I am now familiar with microfabrication processes and several software programs including DesignCAD, NPGS, MathCAD, and Scandium.
Abstract for a General Audience
A summary of your BNL experience OR a research paper abstract

Alternate format for Abstract for a General Audience using a scientific research paper outline

• An **introduction** that succinctly describes and appropriately connects the subject and context/background to the purpose of the investigation;
• A **methods** section that succinctly identifies the methods used to study the subject of the investigation;
• A **results** section that provides a succinct and specific explanation of what was discovered, accomplished, collected or produced;
• A **discussion** that provides a succinct interpretation of the results and evaluates what the results mean to the investigation, or when results were not obtained evaluates what the completion of the investigation could mean within a larger field.
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory requires a highly polarized proton beam for spin-polarization studies. During each experimental run, 250 GeV protons are elastically scattered from a carbon micro-ribbon target 10 µm wide and 50 nm thick to monitor the degree of proton beam polarization. Experiments have shown that the amorphous carbon targets have poor electrical conductivity, limiting their lifetime. Since RHIC operates continuously for several months at a time under ultra-high vacuum, it is costly and inefficient to use carbon targets with short lifetimes. Our study has examined the few micro-ribbons that serendipitously survived a recent RHIC experimental run. Transmission electron microscopy diffraction pattern analysis of the micro-ribbons shows that heating from the RHIC beam has crystallized graphite. In addition to examining micro-ribbons fabricated by Collider-Accelerator Department methods of micro-ribbon fabrication that will have superior material properties. One possible approach consists of depositing thin films of nickel and carbon on a silicon wafer through an anisotropically-etched silicon wafer mask. By annealing amorphous carbon micro-ribbons, we consistently achieve conductivity and crystallinity results similar to those found in the surviving RHIC micro-ribbons. When annealed at 700 °C, a 10 nm thick amorphous carbon layer forms a solid solution within the 50 nm thick nickel layer before recrystallizing as graphene on the surface of the nickel. Graphene is well known to have superior electrical conductivity and tensile strength, and may well prove to be an ideal material for the next generation of micro-ribbon targets for RHIC during its next proton polarimetry experiments in 2015. As a result of this summer, I have added electron microscopy to my materials characterization techniques. Additionally, I am now familiar with microfabrication processes including DesignCAD, NPGS, MathCAD, and Scandium.
Format for the Abstract for a General Audience

TITLE

• Include your title, even if it is not the final version. Be sure to capitalize ONLY the first word; no acronyms.

AUTHORS

• On a new line begin with yourself as the first author; include your school information. You mentor is the last author; include his/her BNL information.

TEXT

• Skip a line. Indent paragraph, double-space, 12 point Times Roman, flush left. Define all acronyms used more than once in this abstract. ONE paragraph only. 300 word limit, excluding title and authors.
Title/Author format example

Drag on an axially symmetric body in the Stokes flow of micropolar fluids
John J. Doe and Jane G. Smith, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02193

Author information template:

You, Your School’s Department, Your College, City, State ZIP
Your mentor, BNL Department, Brookhaven National Laboratory, Upton, NY 11973
Format for the Abstract for a General Audience

Your title goes here with only the first word capitalized.

Your Name, Your Department, Your School, City, State ZIP

Your Mentor, Department, Brookhaven National Laboratory, Upton, NY 11973

Bene curos tempus condimentum.

Maecenas eleifend mauris purus, eget aliquet nunc dapibus in. Vivamus non nibh nisl. Cras condimentum gravida dui, a imperdiet nisl consequat eget.
An Abstract in only 4 Weeks? Really?!

• How can I write a complete abstract after only 4 weeks?
• One idea: wireframe (an outline)
• Another: Sketch in all of the components
• Indicate missing info using placeholders
• Be speculative if necessary
• Get real by the end of the summer
Submitting abstracts and scheduling a conference

- Collaborative Projects: Submit ONLY ONE copy of each draft
- Save drafts as Word docs; save FINAL as PDF.
- Upload it to your SharePoint folder
- Drop-dead Deadlines: 5pm on 7/1, 7/22, 8/5
- Writing Teleconference sign-up: WAIT
- I’ll indicate if I wish you to schedule a conference.
Project Presentation
Before you start

• Download the BNL presentation template with OEP notes and suggestions from the OEP resources page at bnl.gov.
• Open the PowerPoint doc and use “Save as…” to rename the doc with the OEP document naming convention.
• Using the prompts provided, complete the presentation’s TITLE page with the following information:
 • Title (Use AIP Style Manual format only)
 • Your name, Your school, BNL Department, Mentor’s name
 • Date of presentation
Available slides you can use

Title slide:

Content slide:

Optional slides:

Blank slide (no logo):

Section break slide:
General suggestions

• Employ the default font (Arial) and its default sizes.
• Bullet points are better than blocks of text.
• Avoid crowding the page with text.
• Use consistent image formats.
Presentation outline

• Introduce project/issue context and define the issue to be explored
 • Define the background or context of your project.
 • What is the specific issue your project addressed?

• Project methodology
 • What procedures did you follow to address your project’s primary issue?

• Project results
 • Provide any results or explain the lack of them.

• Project summary
 • Explore the interpretation, evaluation, projection, etc. of results.

• Acknowledgements
 • Thank those whose help assisted you and include the OEP acknowledgement text for your program (SULI, CCI, SURP, et al.) located on OEP resources page.
Checkpoint Presentation

• Upload a draft of the presentation during week 4.
• Present a draft of your slides to your team during your week 5 team meeting.
• Incorporate any feedback and continue to refine the presentation.
• Participate in rehearsal(s) for the end-of-semester Project Presentations session.
• Participate in the final Project Presentation and upload your presentation to your SharePoint’s FINAL DELIVERABLES folder.
“I,” “we,” and impersonal constructions
The old taboo against using the first person in formal prose has long been deplored by the best authorities and ignored by some of the best writers. "We" may be used naturally by two or more authors in referring to themselves; "we" may also be used to refer to a single author and the author's associates. A single author should also use "we" in the common construction that politely includes the reader: "We have already seen "But never use "we" as a mere substitute for "I," as in, for example, "In our opinion ... ," which attempts modesty and achieves the reverse; either write "my" or resort to a genuinely impersonal construction.
“I,” “we,” and impersonal constructions (2)

The passive is often the most natural way to give prominence to the essential facts:

Air was admitted to the chamber.

(Who cares who turned the valve?) But avoid the passive if it makes the syntax inelegant or obscure. A long sentence with the structure

The values of ... have been calculated.

is clumsy and anticlimactic; begin instead with I [We] have calculated ...
“I,” “we,” and impersonal constructions (3)

The author(s)” may be used as a substitute for "I [we]," but use another construction if you have mentioned any other authors very recently, or write "the present author(s)."
“I,” “we,” and impersonal constructions (4)

Special standards for usage apply in two sections of a paper: (i) Since the abstract may appear in abstract journals in the company of abstracts by many different authors, avoid the use of "I" or "we" in the abstract; use "the author(s)" or passives instead, if that can be done without sacrificing clarity and brevity. (ii) Even those who prefer impersonal language in the main text may well switch to "I" or "we" in the acknowledgments, which are, by nature, personal.
Questions
Questions?

• A version of this presentation is posted at https://www.bnl.gov/education/resources.php under the Writing Guidelines heading.