The Structure of BaFeO$_{2.8-\delta}$ Prepared by Thermal Decomposition of BaFe[(CN)$_5$NO].3H$_2$O

S. Pagola (SUNY, Stony Brook), R.E. Carbonio (U. Nac. Córdoba, Argentina) and P.W. Stephens (SUNY, Stony Brook)

Abstract No. pago5343

Beamline(s): X3B1

Introduction: BaFeO$_{2.8-\delta}$ was prepared by a low temperature method of synthesis, based on the oxidative thermal decomposition of BaFe[(CN)$_5$NO].3H$_2$O. For catalytic purposes, low temperatures of synthesis are needed in order to produce a high surface area catalyst with a high content of Fe$^{+4}$.

Methods and Materials: The high resolution X-ray diffraction pattern of BaFeO$_{2.8-\delta}$ was collected at the X3B1 beamline, N.S.L.S.. The crystal structure was solved with the program EXPO.

Results: The structure is shown in Figure 1. The material belongs to the space group P6$_3$/mmc, cell parameters $a=b=5.77944(1)$ Å, $c=24.60871(6)$ Å, $\alpha=90^\circ$, $\beta=90^\circ$, $\gamma=120^\circ$, $Z=10$.

The structure consists of 10H close packed (hchch)$_2$ stacking of BaO$_n$ layers (8 BaO$_3$ layers and 2 oxygen deficient BaO$_2$ layers). Additional oxygen deficiencies are randomly distributed on the h BaO$_3$ layers.

This new polytype in the system BaFeO$_y$ is believed to be stabilized only at this low temperature of synthesis (850°C) and atmospheric oxygen pressure, since it has not been described for samples prepared with other methods.

Acknowledgments: Research performed at the N.S.L.S., Brookhaven National Laboratory, which is supported by the US D.O.E., Division of Chemical Sciences and Division of Materials Sciences. The SUNY X3 beamline at the National Synchrotron Light Source is supported by the Division of Basic Energy Sciences of the US D.O.E. (DE-FG02-86ER45231).

Figure 1. The structure of BaFeO$_{2.8-\delta}$