Hydrothermal Synthesis and Structural Determination of NaMnPO₄

W. Tong (U. Conn.), J. Hanson (BNL), J. Liu, J. Cai, and S. Suib (U. Conn.)
Abstract No. Tong4109
Beamline(s): X7B

Introduction: As a part of design of structures built up from octahedra and tetrahedra building units, the relationship between the structures of manganese phosphates and the synthetic conditions was investigated.

Methods and Materials: Manganese Phosphates can be obtained from mixed solutions of Mn²⁺, PO₄³⁻, and MnO₄⁻ by hydrothermal methods. The mole ratios between reagents, with or without additives such as 2-butanol and tetraalkyl-ammonium ions, and autoclaving temperature have strong influence upon the products obtained. Single crystals of sodium manganese phosphate NaMnPO₄ are prepared when very small amounts of 2-butanol and MnO₄⁻ are added with autoclaving at 180 °C. The structure of this NaMnPO₄ was resolved from X-ray diffraction data collected at NSLS beamline X7B with a 50 X 50 X 30 μm crystal.

J. Moring et al., have also synthesized NaMnPO₄ with conventional solid state methods at 420 °C.

Results: Sodium manganese phosphate NaMnPO₄ prepared by two different methods has the same structure. All manganese ions have an elongated octahedral environment. As shown in Figure 1 and Figure 2, MnO₆ octahedra share two edges to form a single chain along the [010] direction. The chains are connected by PO₄ tetrahedra via corner-sharing in both [100] and [001] directions to form a 3-dimensional network.

Conclusions: Depending on the synthetic conditions, manganese phosphates with various manganese oxidation states can be prepared via hydrothermal methods.

Acknowledgments: Work supported by contracts DE-FG02-86ER13622 and DE-AC02-98Ch100886 with the US DOE Office of Basic Energy Sciences Chemical and Material Science Divisions.