Acceleration of electrons with the racetrack non-scaling FFAG for e-RHIC

Presented at the 22nd Particle Accelerator Conference (PAC)
Albuquerque, New Mexico
June 25 – 29, 2007

Collider-Accelerator Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
ACCELERATION OF ELECTRONS WITH THE RACETRACK NON-SCALING FFAG FOR E-RHIC*

D. Trbojevic, S. J. Berg, I. Ben-Zvi, M. Blaskiewicz, V. Litvinenko, W. MacKay, V. Piitsyn, T. Roser, and A. G. Ruggiero, Brookhaven National Laboratory, NY, Upton, 11973, USA

Abstract
The future relativistic electron hadron collider: e-RHIC requires acceleration of electrons to 10 GeV. In the case that the super conducting linac is selected for acceleration, an energy recovery scheme is required. We propose to study a possibility of using the non-scaling Fixed-Field Gradient-Accelerator (NS-FFAG) for different energies. The beam will be accelerated by the superconducting linac at the top of the sine function, brought back to the front of the linac by the non-scaling FFAG and repeating this few times until the total energy of 20 GeV is reached. After collisions the beam is brought back by the non-scaling FFAG and decelerated (on the lower RF phase) in the same sequence but in the reverse order. Conventional and non-conventional beam dynamic issues will be discussed, like the transit time matching effect and the time of flight adjustments.

1. INTRODUCTION
A development of the NS-FFAG started from the very same problem in muon acceleration – a high cost of the superconducting linac. The NS-FFAG is made of two kinds of combined function magnets with the fixed linear variation of the magnetic field along the transverse aperture. Two smaller opposite bends with the focusing gradient surround large major bending magnet. The most important property of the NS-FFAG is a small aperture requirement for the large energy acceptance. It comes from extreme focusing and a use of opposite bending. Small beam offsets in a large energy range are due to a very small dispersion function of few cm. In addition the amplitude functions are also small due to small magnet size. The e-RHIC is electron-hadron collider. The present e-RHIC proposal assumes the maximum electron energy of 10 GeV. If the energy recovery superconducting linac is selected for acceleration this energy could be doubled in future with larger linac and limited number of more passes could be through the same linac. This report is a study of possible use of the single NS-FFAG ring inside of the RHIC tunnel with ability to accept electrons with momentum (energy) range of $\delta p/p = +/-60\%$. Five passes of electrons are presently assumed through the linac and the NS-FFAG ring, with the last one used for collisions. Reusing the cavities during acceleration reduces the cost of the superconducting Energy Recovery Linac (ERL). In addition, after the collision, a removal of enormous power of very large energy electrons represents a very serious problem. This is eliminated by de-acceleration, using the lower crest of the sine RF wave in the cavities. This report, on a first design of the NS-FFAG ring inside of the RHIC tunnel represents just a first step in exploring use of ERL in e-RHIC with possible cost reduction. The magnet properties and a lattice design of the NS-FFAG inside of existing RHIC tunnel are reported. This report contains only a NS-FFAG design through the RHIC tunnel. It is just the first step towards a complete solution with additional chicanes to allow time of flight adjustments and to avoid the interaction regions with large detectors. The lattice with momentum acceptance of $\delta p/p = +/-60\%$ in the RHIC tunnel represents an energy range between 5 to 20 GeV, or 2.5 to 10 GeV, or from 1 to 4 GeV. This could also be considered as a staging process where the superconducting linac could start with energy up to 1 GeV in one pass with getting up to 4 GeV using multi-pass through the NS-FFAG.

2. RHIC GEOMETRY
Two RHIC superconducting rings accelerate proton and heavy ions up to the 250 GeV/u. Along the 3833.845 m circumference there are six ~313 m long straight sections the six fold symmetry layout as presented in Fig.1. At 6th and 8th o'clock two large detectors “STAR” and PHENIX™ are placed. An additional detector at 12 o'clock interaction region (IR) is being developed for the electron-proton/heavy ion collisions. Positions of the NS-FFAG magnets are selected to be between the existing cryostats of the present two superconducting ring. This is represented in Fig. 1 by the “magenta” ring a radius of $R_1 = 380.4943$ m.

Design Procedure:
There are only two types of NS-FFAG rings in the RHIC tunnel: The smaller radius one creates six arcs to follow the existing tunnel conditions. An arc in the middle of the IR with a very large radius connects the two neighboring arcs. The smaller NS-FFAG ring has already defined radius R_1 while its length is defined by $L_{arc} = 2\alpha R_1$. The arcs follow the circle between “blue” and “yellow” existing superconducting rings. The very large radius NS-FFAG ring provides six arcs like a straight line. The angle α has to be smaller than $\pi/6$ to allow crossing with the line connecting the center of the ring with the IR. A relationship between the angles as $\alpha + \beta = \pi/6$ a consequence of the RHIC six fold symmetry and its way of the straight sections layout. The radius of the larger ring R_2 is defined in equation (1).

*Work performed under the United States Department of Energy
Contract No DE-AC02-98CH1-886
\[R_2 = R_1 \frac{\sin(5\pi/6)}{\sin \beta} \]

(1)

The number of cells in the two arcs has to fulfill the geometrical constraints and a relation:

\[N_1 L_{\text{arc-cell}} = 2\alpha R_1, \quad \text{and} \quad N_2 L_{\text{IR-cell}} = 2\beta R_2 \]

(2)

A circumference of the first ring is \(C_1 = 2\pi R_1 \). If the total number of cells in the “arc” NS-FFAG ring is \(N_{\text{arc}} = 648 \) and in the IR ring \(N_{\text{IR}} = 2232 \) everything becomes very simple: the circumference of the “arc” ring is \(C_{\text{arc}} = 2\pi R_1 = 648 \times L_{\text{arc-cell}} \), while of the “IR” ring is \(C_{\text{IR}} = 2\pi R_2 = 2232 \times L_{\text{IR-cell}} \). The “arc” ring length cells is \(L_{\text{arc-cell}} = 3.6894 \) m. Number of cells in the arcs are \(N_1 = 81 \) and \(N_2 = 93 \), for “arc” and “IR”, respectively. The relationships between the number of cells in the arcs \((N_1, N_2) \) with respect to the total number of cells in the rings \((N_{\text{arc}}, N_{\text{IR}}) \) are: \(N_1/N_{\text{arc}} = 81/648 = 1/8 = 2\alpha/2\pi \) for the “arc” ring \(\alpha = \pi/8 \), while for the “IR” ring \(N_2/N_{\text{IR}} = 93/2232 = 1/24 = 2\beta/2\pi \), the angle \(\beta = \pi/24 \). Then the sum of two angles is \(\alpha + \beta = \pi/8 + \pi/24 = \pi/6 \) and the first condition for the RHIC geometry is fulfilled.

Fig. 1 RHIC geometry with additional NS-FFAG arcs: one in the arc region presented by a part of the “magenta” circle and the other green colored within the IR region.

3. LATTICE DESIGN

The lattice properties of the “arc” cell are described first: The magnets and the electron beam orbits at different energies are shown in Fig. 2. The larger 1.2 meter long magnet, labeled as \(BD \), is divided in figure into two parts as shown at the left and right end of the picture. The minimum of the orbit offsets are shown in the middle of this defocusing combined function magnet. The largest offsets are in the middle of the cell between the two focusing smaller 0.6 meter long opposite bend magnets labeled as \(BF \).

Fig. 2. Magnets and orbit offsets in the “arc” cell.

The minima of the \(\beta_x \) and \(D_x \) dispersion functions in the NS-FFAG triplet lattice are at the middle of the larger defocusing magnet. The square root of the horizontal betatron function \(\beta_x^{1/2} \) with magnets is presented in Fig. 4.

Fig. 3. The horizontal betatron function in the “arc” cell.

Properties of the “IR” ring cells are shown next. The betatron \(\beta_x^{1/2} \) and the dispersion functions are shown in Fig. 4.

Fig. 4. The horizontal betatron function and dispersion in the “IR” cell together with 0.7 m long \(BD \) and 0.4 m \(BF \).
The betatron tunes dependence on momentum for “arc” and “IR” cells are shown in Fig. 5 and 6, correspondingly.

Fig. 5. Betatron tunes versus momentum in the “arc” cell.

Fig. 6. Betatron tunes versus momentum in the “IR” cell.

The six arcs are glued together at the point of minimum betatron and dispersion function as previously described [2]. The end of the row of each “arc” or “IR” cells is always the middle of the large bending magnet BD.

Magnet properties
The magnet sizes and magnetic fields are presented in Table 1.

<table>
<thead>
<tr>
<th>Mag</th>
<th>L(m)</th>
<th>B_d(T)</th>
<th>G (T/m)</th>
<th>A_s (mm)</th>
<th>B_m (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD</td>
<td>1.2</td>
<td>0.937</td>
<td>-18.94</td>
<td>-0.1</td>
<td>0.04</td>
</tr>
<tr>
<td>BF</td>
<td>0.6</td>
<td>-0.600</td>
<td>19.56</td>
<td>-0.4</td>
<td>-0.7</td>
</tr>
<tr>
<td>BD2</td>
<td>0.7</td>
<td>0.1677</td>
<td>-27.83</td>
<td>0.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>BF2</td>
<td>0.4</td>
<td>0.0001</td>
<td>25.1</td>
<td>-0.01</td>
<td>0.0</td>
</tr>
</tbody>
</table>

SUMMARY
An attempt to design of the NS-FFAG inside of the present RHIC tunnels has been presented. The ring has an energy acceptance of 5-20 GeV or 2.5-10 GeV or 1-4 GeV or in 6p/p = ±60%. It was constructed from two different radii FFAG ring matched at the central energy and placed between the two existing superconducting “blue” and “yellow” RHIC rings. Stable orbits in the whole energy range where found. Betatron and dispersion functions of two rings are presented. Future work on designing matching chicanes for each energy pass for the time of flight adjustment and to avoid the large detector areas, as well as matching to the superconducting linac is necessary.

REFERENCES