VAPOUR–TO–LIQUID NUCLEATION: NUCLEATION THEOREMS FOR NONISOTHERMAL–NONIDEAL CASE

Malila, Jussi1, Napari, Ismo2, McGraw, Robert3, and Laaksonen, Ari1,4

1Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
2Department of Physics, University of Helsinki, P.O. Box 64, 00014 University of Helsinki, Finland
3Environmental Sciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
4Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland

April 2010

For presentation at the
International Aerosol Conference 2010
Helsinki, Finland
Aug. 29-Sept. 3, 2010

Environmental Sciences Department/Atmospheric Sciences Division
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
DISCLAIMER

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

Malila, Jussi¹, Napari, Ismo², McGraw, Robert¹, and Laaksonen, Ari¹,⁴

¹Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
²Department of Physics, University of Helsinki, P.O. Box 64, 00014 University of Helsinki, Finland
³Environmental Sciences Department, Brookhaven National Laboratory, Upton, New York 11973, USA
⁴Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland

Keywords: homogeneous nucleation, nucleation theorems, nonideality, nonisothermality.

Homogeneous vapour–to–liquid nucleation, a basic process of aerosol formation, is often considered as a type of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy…). During last decades, nucleation theories have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theories are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theories that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.

Nonideal gas is described by a virial equation of state, \(P = p_v + p_g = \rho kT (1 + B \rho) \), where the total pressure \(P \) is given by partial pressures of carrier gas (g) and vapour (v), \(\rho \) is density and \(B = y_1 B_c + 2 y_1 y_2 B_g + y_2^2 B_v \) is the total second virial coefficient with pure component and cross virial coefficients \(B_c \), \(B_g \), and \(B_v \), respectively, and \(y_i = p_i/P \). For the nonisothermality correction, we follow zeroth-order approximation of Barrett et al. (1993, 2008), but instead of the capillarity approximation, we identify surface free energy contributions in terms of excess enthalpy \(H_g \), i.e. difference between enthalpies of similar clusters immersed in supersaturated vapour and bulk liquid that can be obtained using the second nucleation theorem (cf. Ford, 1997). Resulting equations for number of molecules in the cluster \(n \), \(H_g \), and mean molecular volume \(v \) inside critical nucleus (after neglecting minor dependencies of specific isochoric heat capacities on partial pressures \(p_i \) in terms of experimental nucleation rate \(J = \lambda T p_v p_g \)) and equilibrium properties of carrier gas, condensing vapour and bulk condensed phase are

\[
\begin{align*}
\frac{d}{dt} \ln S &= \frac{kT}{p_v} + \frac{4T(Q + \tilde{c}_v)}{S} + \frac{\partial \ln \nu}{\partial T} \left[\frac{kT}{p_v} - \nu + \frac{(p_v + p_g) \tilde{B}_c + p_v (B_g - 2 B_v)}{p^2} \right] - 1 / (1 - vp) \\
H_g &= kT \left[1 - \frac{L}{p_v \Delta \nu} + T \left(\frac{\partial \ln J}{\partial T} \right)_{p_v, p_g} - \frac{n - 1}{1 - vp} \left[\frac{y_1^2 B_c + y_1 y_2 B_g + y_2^2 B_v}{2 \frac{d B_v}{dT}} \right] + \frac{B_L}{\Delta \nu} - \frac{\partial \tilde{c}_v(1 + \lambda)}{\partial T} - \frac{\partial (Q + \tilde{c}_v^2)}{\partial T} \right] \\
&- \frac{B_L}{\Delta \nu} - \frac{\partial \tilde{c}_v(1 + \lambda)}{\partial T} - \frac{\partial (Q + \tilde{c}_v^2)}{\partial T} \left[\frac{\partial \tilde{c}_v(1 + \lambda)}{\partial T} \right] \\
\nu &= \frac{kT(1 - vp)}{1 - n} \left(\frac{\partial \ln J}{\partial T} \right)_{p_v, p_g} + \frac{p_v^2 B_c + 2 p_v (p_g + 2 p_v) B_g - 2 p_v p_g B_v}{p^2} - \frac{\tilde{c}_v(1 + \lambda)}{\tilde{c}_v(1 + \lambda) + (Q + \tilde{c}_v^2)} \frac{\partial (Q + \tilde{c}_v^2)}{\partial \rho} \\
&+ \frac{\tilde{c}_v(1 + \lambda)}{\tilde{c}_v(1 + \lambda) + (Q + \tilde{c}_v^2)} \frac{\partial (Q + \tilde{c}_v^2)}{\partial \rho}
\end{align*}
\]

Here \(S = p_v/p_g \), \(p_v \) is the equilibrium vapour pressure, \(L \) is the molecular enthalpy of condensation, and \(Q \) is the net energy released to gas phase due to condensation of a vapour molecule, and \(\lambda \) and \(\tilde{c}_v \) are as given by Barrett (2008). By applying Eqs. (1)–(3), it is possible to extract properties of critical nuclei without assumptions concerning their physical state. Under ideal–isothermal conditions with \(\Delta \nu = 1/\rho - v \approx kT p_v \), Eqs. (1) and (2) simplify to “standard” forms of first and second nucleation theorems, while when \(y_g \to 1 \), Eq. (3) recovers form obtained first by Oxtoby & Laaksonen (1995).

J. M. acknowledges support from the Graduate School “Atmospheric Composition and Climate Change: From Molecules Processes to Global Observations and Models” and the Magnus Ehrnrooth Foundation.