Relativistic Heavy Ion Collider

1 of 2 ion colliders (other is LHC), only polarized p-p collider

2 superconducting 3.8 km rings
2 large experiments
100 GeV/nucleon ions up to U
255 GeV polarized protons

Performance defined by
1. Luminosity L
2. Proton polarization P
3. Versatility (species, E)
Content

Run-12 overview

• Polarized protons, $\sqrt{s} = 200, 510$ GeV
• Uranium-uranium $\sqrt{s_{NN}} = 193$ GeV, copper-gold $\sqrt{s_{NN}} = 200$ GeV

Heavy upgrades and projections

• Luminosity with stochastic cooling & 56 MHz SRF
• Energy scan and low energy cooling

Polarized proton upgrades and projections

• Polarization and luminosity with source upgrade
• Luminosity with RHIC electron lenses
• R&D for polarized 3He
2012 RHIC Run (23 weeks of cryo ops) – most varied to date

100 GeV polarized protons
new records for $L_{\text{peak}}, L_{\text{avg}}, P$

255 GeV polarized protons
highest energy polarized proton beam
new records for $L_{\text{peak}}, L_{\text{avg}}, P$

96.4 GeV/nucleon uranium-uranium
heaviest element in collider, shape stochastic cooling: $L_{\text{max}} > L_0$
all ions lost through burn-off
1st time in hadron collider!

100 GeV/nucleon copper-gold
new species combination

possibly 2.5 GeV/nucleon gold-gold test (2 days)
lowest energy to date, 20% of nominal injection E

Wolfram Fischer
Run-12 – Polarized protons 100 GeV

Run Coordinator: V. Schoeffer

- $P_{\text{avg,B}} = 61.8\%$ (2009: 56%)
- $P_{\text{avg,Y}} = 56.6\%$ (2009: 57%)

P_{avg} – average over intensity and time, as measured by H-jet

New: 2 new Landau cavities installed in RHIC; AGS horizontal alignment; 9 MHz system upgraded; AGS horizontal tune jump timing improved; operation from new Main Control Room; down ramp does not stop at injection any more, ramp from park to injection with 2x ramp speed compared to previous runs (saves 2.9 min per ramp)

Polarization details at www.phy.bnl.gov/cnipol (D. Smirnov)
Run-12 – Polarized protons 255 GeV

Run Coordinator: V. Schoeffer

$P_{\text{avg}, B} = 50.3\%$ (2011: 48%)

$P_{\text{avg}, Y} = 53.5\%$ (2011: 48%)

$[P_{\text{avg}}$ – average over intensity and time, as measured by H-jet]

New: same as for 100 GeV; increased store energy to increase polarization lifetime; snakes ramp between 100 GeV and 255 GeV; scan of snake spin rotation axis angle and spin rotation angle; test of longitudinal injection damper; test of Landau phase error compensation (phase error from Booster) compensation

Polarization details at www.phy.bnl.gov/cnipol (D. Smirnov)
Polarization profiles and quantities of interest

- Polarization can be characterized by
 \[P_0 \quad R = \frac{\sigma_l^2}{\sigma_P^2} \]
 \(P_0 \) center profile value parameter
 (no profile with \(R=0 \), can have \(R_x, R_y, R_s \))

- Polarization \(P_{\text{avg}} \) measured by H-jet is averaged over intensity and time
 \[P_{\text{avg}} = \frac{P_0}{(1+R_x)(1+R_y)(1+R_s)} \]

- Luminosity-averaged quantities of interest for experiments:
 \[\langle P_B \rangle, FOM_B = L \langle P_B^2 \rangle \quad \text{single-spin experiments} \]
 \[\langle P_B \cdot P_Y \rangle, FOM = L \langle P_B^2 \cdot P_Y^2 \rangle \quad \text{double-spin experiments} \]
RHIC Polarization status

2 types of depolarizing resonances
- Imperfection resonances (from vertical closed orbit errors):
 \[G \gamma = k \]
- Intrinsic resonances (from vertical betatron motion):
 \[G \gamma = kP \pm Q_v \]
- \(G \) – anomalous magnetic moment (+1.79 for p, −4.18 for \(^3\)He)

Recent improvements (2011-2012)
- 80 horizontal tune jumps in AGS (weak horizontal resonances)
- AGS and RHIC re-alignment
- Operation with 9 MHz rf system (low \(\delta p/p \))
- Acceleration near 2/3 (only 0.006 off; need orbit, tune, coupling feedback on every ramp)
- pC-polarimeter upgrade (rate dependence)

Future improvements
- Polarized source upgrade
- Possibly more RHIC snakes (also for \(^3\)He\(\overline{\text{He}}\))
Beam control improvement – feedbacks on ramp

M. Minty, A. Marusic et al.

Orbit feedback on every ramp allows for
- Smaller y_{rms} (smaller imperfection resonance strength)
- Ramp reproducibility (have 24 h orbit variation)

Tune/coupling feedback on every ramp allows for
- Acceleration near $Q_y = 2/3$ (better P transmission compared to higher tune)

$x, y_{\text{rms}} \approx 20 \, \mu m (\dagger) \approx 3\% \text{ of rms size}$
Polarization tests during Run-13 (M. Bai et al.)

Polarization lifetime at store (0.5-1.0%/h loss at 100 and 250 GeV)
- Energy change from 250 to 255 GeV => no difference
- Depolarization of non-colliding beam on/off the strongest snake resonance (=11/16) => no difference
- Spin tune change ±0.01 => no difference
- Snake spin rotation angle scan ±10 deg => small effect for –10 deg

Depolarization during energy and rotator ramps
- Orbit effect of last 2 strong intrinsic resonances => small effect for large orbit error
- Contribution of final β^*-squeeze => no difference
- Snake spin rotation angle => 5% (absolute) gain in Yellow
- Spin tune change ±0.01 => no difference

Absolute polarization at injection with H-jet
- 10 h for measurement in Yellow only (background minimization)
- $P_{\text{avg}} = (63\pm4.4)\%$

=> Unlikely that large polarization gains can be made by further parameter changes (depolarization due to many small effects)
Run-12 – Uranium-uranium 96.4 GeV/nucleon

Run Coordinator: Y. Luo

New: first use of EBIS for RHIC operation; first U-U operation in a collider; used standard lattice to increase off-momentum dynamic aperture; first use of Blue and Yellow horizontal stochastic cooling (resulting in 3D cooling in both rings); due to small beam size need micro-vernier scan every 1/2 h
Electron Beam Ion Source (EBIS)

- Inject single charge ion from primary source (e.g. hollow cathode source)
- 10 A electron beam creates desired charge state in trap (5 T sc solenoid)
- Source for high-charge state, high brightness ion beams
- Accelerated through RFQ and linac, injected into AGS Booster
- All ion species including noble gas, \textit{uranium} and polarized ^3He

Operated for NASA Space Radiation Laboratory in 2011-12 with
- $\text{He}^+, \text{He}^{2+}, \text{Ne}^{5+}, \text{Ne}^{8+}, \text{Ar}^{10+}, \text{Kr}^{18+}, \text{Ti}^{18+}, \text{Fe}^{20+}, \text{Ta}^{33+}, \text{Ta}^{38+}$

Operated for RHIC in 2012 with
- U^{39+} (not possible previously), $\text{Cu}^{11+}, \text{Au}^{31+}$
Preparation of U beams for RHIC

EBIS out: $^{39+}$U

- **AGS-to-RHIC transfer line**
 - Stripping foil: Al_2O_3 (5.2 mg/cm2)
 - $E_{\text{kin}} = 8.51$ GeV/nucleon
 - ^{90+}U γ ^{92+}U (99.9% of intensity)

- **Booster-to-AGS transfer line**
 - Stripping foil: Ni (4.4 mg/cm2) + Al (9.0 mg/cm2)
 - $E_{\text{kin}} = 107$ MeV/nucleon
 - ^{39+}U γ ^{90+}U (35% of intensity)
 (had expected >50% based on GLOBAL)

Wolfram Fischer

P. Thieberger, K. Zeno
Now have full 3D stochastic cooling for heavy ions

- Longitudinal kickers (closed)
- Transverse kickers
- Fibre-optic links
- Microwave links
- Vertical kickers (closed)
- Horizontal kickers (open)
- Horizontal and vertical pickups

5-9 GHz, cooling times ~1 h

M. Brennan, M. Blaskiewicz, F. Severino, PRL 100 174803 (2008); PRSTAB, PAC, EPAC
U-U store – new mode in 2012

All beam loss though luminosity (burn-off)!

Cross sections [b]:

<table>
<thead>
<tr>
<th></th>
<th>Au-Au</th>
<th>U-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFPP</td>
<td>117</td>
<td>329</td>
</tr>
<tr>
<td>EMD</td>
<td>99</td>
<td>160</td>
</tr>
</tbody>
</table>

3D stochastic cooling leads to new feature in hadron collider:

\[L_{\text{max}} > L_{\text{initial}} \]
New: first Cu-Au operation in a collider; used standard lattice to increase off-momentum dynamic aperture; first use of Blue and Yellow horizontal stochastic cooling (resulting in 3D cooling in both rings)
Cu-Au store – new mode in 2012

- Intrabeam scattering growth rates ($\sim Z^4 N_b / A^2$)

 \[r_{\text{IBS,Au}} \approx 2x \ r_{\text{IBS,Cu}} \]

- Cooling rates ($\sim 1/N_b$)

 \[r_{\text{SC,Au}} \approx 3x \ r_{\text{SC,Cu}} \]

Optimization of Cu/Au cooling rates:
Overcooling of one beam creates large loss rate in other beam

14 h store length
Time-in-store as fraction of calendar time

- Run-12 with low failure rates in all systems
- Highest time-in-store ratios to date
 (even with increased APEX time during 255 GeV protons compared to Run-11)
RHIC ions – 6 species and 15 energies to date

\[^{238}\text{U}^{92+} - ^{238}\text{U}^{92+} \]
\[\gamma \text{ first time in 2012, 3 weeks physics, complete} \]
\[96.4 \text{ GeV/nucleon} \]

\[^{197}\text{Au}^{79+} - ^{197}\text{Au}^{79+} \]
\[3.85, 4.6, 5.75, 9.8, 13.5, 19.5, 27.9, 31.2, 65.2, 100.0 \text{ GeV/nucleon} \]
\[^{63}\text{Cu}^{29+} - ^{197}\text{Au}^{79+} \gamma \text{ first time in 2012, 5 weeks, under way} \]
\[99.9/100.0 \text{ GeV/nucleon} \]

\[^{63}\text{Cu}^{29+} - ^{63}\text{Cu}^{29+} \]
\[11.2, 31.2, 100.0 \text{ GeV/nucleon} \]

\[d - ^{197}\text{Au}^{79+} \]
\[100.7/100.0 \text{ GeV/nucleon} \]

\[p - p \]
\[31.2, 100.2, 204.9, 249.9, 254.9 \text{ GeV} \]

Can collide any species from protons (polarized) to uranium – with each other or with another species
RHIC ions – 6 species and 15 energies to date

2 isotopes: d, p (polarized)

planned: He-3 (polarized)
RHIC heavy ions – luminosity evolution to date

\[L_{NN} = L N_1 N_2 \] (= luminosity for beam of nucleons, not ions)

\[<L> = 15x \text{ design in 2011} \]

About 2x increase in \(L_{\text{int}}/\text{week} \) each
- Run-4 to Run-7
- Run-7 to Run10
- Run-10 to Run-11

Rate of progress will slow down – burn off 50% of Au beam in collisions already
• \(\lambda/4 \) Ni resonator common to both beams

• Beam driven

• 56 MHz, 2 MV

Average luminosity vs. vertex size

Calculations by M. Blaskiewicz

56 MHz SRF for heavy ions – under construction (I. Ben-Zvi et al.)

Wolfram Fischer

40 ns Longitudinal profile at end of store

• Even with cooling ions migrate into neighboring buckets

• Can be reduced with increased longitudinal focusing

Demonstrated 2011

Long. + ver. cooling

Full 3D cooling + 56 MHz SRF

Commissioning planned for 2014

40 ns
RHIC – Au-Au energy scan

Energy scan – extends below nominal injection energy in search of critical point in QCD phase diagram

Effects to contend with (#s for 20% nominal (B₀):

- **Large beam sizes** (longitudinal and transverse) controlling losses becomes critical
- **Large magnetic field errors** (b₃ ~ 10, b₅ ~ 6 units from persistent currents in superconducting magnets)
- **Intrabeam scattering** (debunching ~min)
- **Space charge** (ΔQₖaslett ~ 0.1 – new regime for collider)
- **Beam-beam** (ξ/IP ~ 0.003)
- **Low event rates** (~ 1 Hz)

Full energy injection allows for short stores
- At 38% of nominal injection (B₀)
- May operate at 20% of nominal injection (B₀)
Peak and average luminosities fall faster than $1/\gamma^2$ at lowest energies.
Need cooling at low energies to significantly increase luminosities.
e-cooling for low energy collider operation (A. Fedotov et al.)

Fermilab Pelletron (cooled 8 GeV pbar for Tevatron use) usable – scheduled for decommissioning in 3/2012, so far have not requested transfer

Alternative option with e- beam from 112 MHz SRF gun

Cooling into space charge limit
\(\Delta Q_{sc} \sim 0.05 \) (new collider regime)

Expect up to factor 5 more integrated luminosity (depending on energy and \(\Delta Q_{sc} \))

Figure 4. Simulation of luminosity with (blue line) and without (black dots) electron cooling at \(\gamma = 2.7 \).

A. Fedotov, M. Blaskiewicz, BNL C-A/AP/449 (2012)
Low energy operation with cooling AND long bunches

Additional gain by operating with long bunches (at space charge limit)

A. Fedotov, M. Blaskiewicz, BNL C-A/AP/449 (2012)
At 255 GeV in 2012:

- L$_{avg}$ = 105x1030cm$^{-2}$s$^{-1}$
- P$_{avg}$ = 52%

L$_{avg}$ +15% relative to 2011
P$_{avg}$ +8% relative to 2011

FOM = LP^2
(single spin experiments)

FOM = LP^4
(double spin experiments)
Optically Pumped Polarized H⁻ source (OPPIS) – A. Zelenski

Upgraded OPPIS (2013)

Test setup on 10 May 2012

Goals:

1. H⁻ beam current increase to 10mA (order of magnitude)
2. Polarization to 85-90% (~5% increase)

Upgrade components:

1. Atomic hydrogen injector (collaboration with BINP Novosibirsk)
2. Superconducting solenoid (3 T)
3. Beam diagnostics and polarimetry

Source (H⁺) Neutralizer (H₀) Ionizer Rb-cell Sona Na-jet (H⁻)

New Atomic Beam Source (ABS)

New superconducting solenoid

=> 10x intensity from ABS was accelerated through Linac
Motivation

Bunch intensity in 2012 polarized proton physics store

Goal:

Compensate for 1 of 2 beam-beam interactions with electron lenses

Then increase bunch intensity \Rightarrow up to $2\times$ luminosity

Need new polarized proton source – under construction, A. Zelenski

$L \propto N_b^2$
Electron lenses – partial head-on beam-beam compensation

Basic idea:
• 2 beam-beam collisions with **positively** charged beam
• Add collision with a **negatively** charged beam – with matched intensity and same amplitude dependence

Compensation of nonlinear effects:
• e-beam current and shape
 => reduces tune spread
• $\Delta \psi_{x,y} = k\pi$ between p-p and p-e collision
 => reduces resonance driving terms

Installation in 2012
Expect up to 2x more luminosity
Workshop program

- $^3\text{He}^{\uparrow}$ source, $^3\text{He}^{\uparrow}$ beams from EBIS
- $^3\text{He}^{\uparrow}$ in Booster/AGS
- $^3\text{He}^{\uparrow}$ in RHIC and EIC
- Polarimetry (low and high energy)
- Physics with $^3\text{He}^{\uparrow}$ beams (theory and experiments)
Development of Polarized 3He Ion Source for RHIC
BNL-MIT Collaboration http://he3.xvm.mit.edu/

R. Milner, C. Epstein, MIT

- Spec.: deliver 3He$^{++}$ at \(\approx 3 \times 10^{12} \) atoms/sec with 70% polarization
- Concept: polarize 3He gas in glass cell using MEOP in fringe field of \(\approx 5 \) Tesla EBIS solenoid and feed into EBIS
- MEOP technology under development at MIT
 - two Keopsys 10 Watt lasers operational
 - data acquisition system operational
 - 20 liters of 3He gas ordered
 - glass systems under construction
- Goal: to test principle of source using spare EBIS solenoid within the next year

Funded by DOE Office of Nuclear Physics
R&D Program for Next Generation Nuclear Physics Accelerator Facilities
Polarized 3He in RHIC – plan under development

- Polarized 3He source developed at MIT (R. Milner)
- Polarized 3He beams from EBIS
- Polarimeter after EBIS linac at 2 MeV/nucleon
- Un-polarized 3He from EBIS:
 - Injection into Booster at low rigidity
 - Acceleration in Booster, AGS, RHIC?
 - Test carbon polarimeters
- Acceleration of polarized 3He in Booster and transfer to AGS
 - Vertical tune in Booster < 4.19 !!
- Measure polarization at AGS injection energy, no depolarization?
- Accelerate 3He in AGS and measure polarization on ramp and extraction
- Calibrate A_N of carbon polarimeter at extraction energy with up/down ramp?
- Transfer to RHIC and calibrate carbon polarimeter in RHIC (which ring?)
- Absolute polarization measurement at RHIC injection with pol. 3He jet/cell
- Accelerate in RHIC and measure polarization on ramp and at store energy
 - May need 4 more snakes in Blue ring
- Calibrate A_N of carbon polarimeter at store energy with up/down ramp
- Absolute polarization measurement at RHIC store with pol. 3He jet/cell
Possible running modes Run-13 and Run-14 (BUPs)

Run-13

- 500 GeV p-p (STAR, PHENIX) ~10 weeks
- 200 GeV p-p (PHENIX) ~3-4 weeks
- 30 GeV p-p (PHENIX) ~1.5 weeks
- 200 GeV Au-Au (STAR) ~4 weeks

Run-14

- 200 GeV Au-Au (STAR, PHENIX) ~6-8 weeks
- 200 GeV p-p (STAR, PHENIX) ~4 weeks
- 200 GeV d-Au (PHENIX) ~6 weeks
RHIC luminosity and polarization goals

<table>
<thead>
<tr>
<th>parameter</th>
<th>unit</th>
<th>achieved</th>
<th>goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au-Au operation</td>
<td></td>
<td>2011</td>
<td>≥ 2014</td>
</tr>
<tr>
<td>energy</td>
<td>GeV/nucleon</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>no colliding bunches</td>
<td>...</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>bunch intensity</td>
<td>10^9</td>
<td>1.3</td>
<td>≥ 1.1</td>
</tr>
<tr>
<td>avg. luminosity</td>
<td>10^{26} cm$^{-2}$s$^{-1}$</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>p↑-p↑ operation</td>
<td></td>
<td>2012</td>
<td>≥ 2013</td>
</tr>
<tr>
<td>energy</td>
<td>GeV</td>
<td>100 255</td>
<td>100 250</td>
</tr>
<tr>
<td>no colliding bunches</td>
<td>...</td>
<td>– 107 –</td>
<td>– 107 –</td>
</tr>
<tr>
<td>bunch intensity</td>
<td>10^{11}</td>
<td>1.6 1.7</td>
<td>1.6 2.0</td>
</tr>
<tr>
<td>avg. luminosity</td>
<td>10^{30} cm$^{-2}$s$^{-1}$</td>
<td>33 105</td>
<td>30 150</td>
</tr>
<tr>
<td>avg. polarization*</td>
<td>%</td>
<td>58 52</td>
<td>– 60 –</td>
</tr>
</tbody>
</table>

*Intensity and time-averaged polarization as measured by the H-jet. Luminosity-averaged polarizations, relevant in single-spin colliding beam experiments, are higher. For example, for intensity-averaged $P = 48\%$ and $R_x = R_y = 0.2$ (250 GeV, 2011), the luminosity-averaged polarization is $P = 52\%$.

3D stochastic cooling + 56 MHz SRF

Source + e-lenses
Projections projection for Au-Au

[Note: assume 12 weeks of physics, 8 weeks of ramp-up, start at ¼ of max]

[Note 2: last projections from 14 October 2011 still valid – close to peak performance goals for both polarized protons and heavy ions, will update after Run-12]
Polarized proton projection for Run-13

Polarization (as measured by H-jet): 50-60%

New: lattice (for e-lens, new phase shifter ps), partial or full source upgrade, e-lens (largely commissioning in Run-13)
Projections for polarized protons

[p-p luminosity projections 100 GeV and 250 GeV]

incremental changes
($\varepsilon_{x,y}$, ε_s, $\delta\beta/\beta$, ...)

56 MHz SRF

polarized source upgrade
electron lenses (+ new lattice)

250 GeV

100 GeV

Fiscal year

Integrated luminosity [fb$^{-1}$]

[Note 1: assume 12 weeks of physics, 8 weeks of ramp-up, start at ¼ of max]
[Note 2: last projections from 14 October 2011 still valid – close to peak performance goals for both polarized protons and heavy ions, will update after Run-12]
Run-12
- Polarized protons at $\sqrt{s} = 200, 510$ GeV
 new records for $\sqrt{s}, L_{\text{peak}}, L_{\text{avg}}, P$
- First U-U collisions at $\sqrt{s_{NN}} = 193$
 3D stochastic cooling \Rightarrow 5x L_{avg} 5x, only burn-off losses
- First Cu-Au collisions $\sqrt{s_{NN}} = 200$ GeV

Run-13 – upgrades mainly for polarized protons
- Polarized source upgrade (partial or full)
 10x intensity, +5% P
- Electron lenses
 requires new lattice, commissioning in Run-13

Run-14 – upgrades mainly for heavy ions
- 56 MHz SRF, +30-50% L
- Long. stochastic cooling hardware (pickup, kickers)

Low-energy cooling possible for Au-Au
 up to $\sqrt{s_{NN}} = 20$ GeV with Pelletron; up to $\sim 10x$ L;
 ≥ 2017 – limited by funding, technical resources, personnel