The critical point, fluctuations, and Hydro+

M. Stephanov

with Y. Yin (MIT), 1712.10305;
with X. An, G. Basar and H.-U. Yee, 1902.09517;
with M. Pradeep, 1905.13247.

Critical point: intriguing hints

Where on the QCD phase boundary is the CP?
Equilibrium κ_{4} vs T and μ_{B} :

"intriguing hint" (2015 LRPNS)
Motivation for phase II of BES at RHIC and BEST topical collaboration.

Universality and mapping of QCD to Ising model

- The EOS is an essential input for hydro.

Near CP universality means

$$
P_{\mathrm{QCD}}(\mu, T)=-G_{\text {Ising }}(h, r)+\text { less singular terms }
$$

$G_{\text {Ising }}(h, r)$ is universal and known, but the mapping given by $h=h(\mu, T)$ and $r=r(\mu, T)$ is not.

Universality and mapping of QCD to Ising model

- The EOS is an essential input for hydro.

Near CP universality means

$$
P_{\mathrm{QCD}}(\mu, T)=-G_{\text {Ising }}(h, r)+\text { less singular terms }
$$

$G_{\text {Ising }}(h, r)$ is universal and known, but the mapping given by $h=h(\mu, T)$ and $r=r(\mu, T)$ is not.

- While $h=0$ is the transition line, what is $r=0$?

Slope of $r=0 \Leftrightarrow$ asymmetry of EOS around transition line:

The skewness, or χ_{3}, can be $0,+$ or - depending on $r=0$ slope.

Universality of mapping for small m_{q}

- In the limit of $m_{q} \rightarrow 0$ the critical point is close to a tricritical point.

- The $(\mu, T) /(h, r)$ mapping becomes singular in a universal way: the slope difference vanishes as $\sim m_{q}^{2 / 5}$. Pradeep, MS, 1905.13247 Consequences:
- The $r=0$ axis is almost horizontal. Not \perp to $h=0$.
- $r=0$ slope is possibly negative (it is in RMM). Then skewness is negative on the crossover line $(h=0)$ and below, at freezeout.

Theory/experiment gap: predictions assume equilibrium, but

Non-equilibrium physics is essential near the critical point.

Challenge: develop hydrodynamics with fluctuations capable of describing non-equilibrium effects on critical-point signatures.

Stochastic hydrodynamics

- Hydrodynamics eqs. are conservation equations:

$$
\partial_{t} \psi=-\nabla \cdot \operatorname{Flux}[\psi] ;
$$

Stochastic hydrodynamics

- Hydrodynamics eqs. are conservation equations:

$$
\partial_{t} \psi=-\nabla \cdot \operatorname{Flux}[\psi] ;
$$

- Stochastic variables $\breve{\psi}=\left(\breve{T}^{i 0}, \breve{J}^{0}\right)$ are local operators coarse-grained (over scale $b \gg \ell_{\text {mic }} \sim 1 / T$):

$$
\partial_{t} \breve{\psi}=-\nabla \cdot(\text { Flux }[\breve{\psi}]+\text { Noise })
$$

Stochastic hydrodynamics

- Hydrodynamics eqs. are conservation equations:

$$
\partial_{t} \psi=-\nabla \cdot \operatorname{Flux}[\psi] ;
$$

- Stochastic variables $\breve{\psi}=\left(\breve{T}^{i 0}, \breve{J}^{0}\right)$ are local operators coarse-grained (over scale $b \gg \ell_{\text {mic }} \sim 1 / T$):

$$
\partial_{t} \breve{\psi}=-\nabla \cdot(\text { Flux }[\breve{\psi}]+\text { Noise })
$$

- Linearized version has been considered and applied to heavyion collisions (Kapusta-Muller-MS, Kapusta-Torres-Rincon, ...)
- Non-linearities + point-like noise \Rightarrow UV divergences. In numerical simulations - cutoff dependence.

Deterministic approach

- Variables are one- and two-point functions: $\psi=\langle\breve{\psi}\rangle$ and $G=\langle\breve{\psi} \breve{\psi}\rangle-\langle\breve{\psi}\rangle\langle\breve{\psi}\rangle$ - equal-time correlator

$$
\begin{gathered}
\partial_{t} \psi=-\nabla \cdot \operatorname{Flux}[\psi, G] ; \quad \text { (conservation) } \\
\partial_{t} G=\mathrm{L}[G ; \psi] . \quad \text { (relaxation) }
\end{gathered}
$$

- Recently - in Bjorken flow by Akamatsu et al. For arbitrary relativistic flow - by An et al (this talk). Earlier, in nonrelativistic context, - by Andreev in 1970s.

Deterministic approach

- Variables are one- and two-point functions:
$\psi=\langle\breve{\psi}\rangle$ and $G=\langle\breve{\psi} \breve{\psi}\rangle-\langle\breve{\psi}\rangle\langle\breve{\psi}\rangle$ - equal-time correlator

$$
\begin{gathered}
\partial_{t} \psi=-\nabla \cdot \operatorname{Flux}[\psi, G] ; \quad \text { (conservation) } \\
\partial_{t} G=\mathrm{L}[G ; \psi] . \quad \text { (relaxation) }
\end{gathered}
$$

- Recently - in Bjorken flow by Akamatsu et al.

For arbitrary relativistic flow - by An et al (this talk). Earlier, in nonrelativistic context, - by Andreev in 1970s.

- Advantage: deterministic equations.
"Infinite noise" causes UV renormalization of EOS and transport coefficients - can be taken care of analytically (1902.09517)

Fluctuation dynamics near CP: Hydro+

- Fluctuation dynamics near CP requires two main ingredients:
- Critical fluctuations $(\xi \rightarrow \infty)$
- Slow relaxation mode with $\tau_{\text {relax }} \sim \xi^{3}$ (leading to $\zeta \rightarrow \infty$)

Fluctuation dynamics near CP: Hydro+

- Fluctuation dynamics near CP requires two main ingredients:
- Critical fluctuations ($\xi \rightarrow \infty$)
- Slow relaxation mode with $\tau_{\text {relax }} \sim \xi^{3}$ (leading to $\zeta \rightarrow \infty$)
- Both described by the same object: the two-point function of the slowest hydrodynamic mode $\breve{m}=\delta(s / n)$, i.e., $\left\langle\breve{m}\left(x_{1}\right) \breve{m}\left(x_{2}\right)\right\rangle$.
- Without this mode, hydrodynamics would break down near CP when $\tau_{\text {expansion }} \sim \tau_{\text {relax }} \sim \xi^{3}$.

Additional variables in Hydro+

- At the CP the slowest new variable is the 2-pt function $\langle\breve{m} \breve{m}\rangle$ of the slowest hydro variable $\breve{m}=\delta(s / n)$:

$$
\phi_{\boldsymbol{Q}}(\boldsymbol{x})=\int_{\Delta \boldsymbol{x}}\left\langle\breve{m}\left(\boldsymbol{x}_{+}\right) \breve{m}\left(\boldsymbol{x}_{-}\right)\right\rangle e^{i \boldsymbol{Q} \cdot \Delta \boldsymbol{x}}
$$

where $\boldsymbol{x}=\left(\boldsymbol{x}_{+}+\boldsymbol{x}_{-}\right) / 2$ and $\Delta \boldsymbol{x}=\boldsymbol{x}_{+}-\boldsymbol{x}_{-}$.

- Wigner transformed b/c dependence on $\boldsymbol{x}(\sim L)$ is much slower than on Δx. Scale separation similar to kinetic theory.

Relaxation of fluctuations towards equilibrium

- As usual, equilibration maximizes entropy $S=\sum_{i} p_{i} \log \left(1 / p_{i}\right)$:

$$
s_{(+)}\left(\epsilon, n, \phi_{\boldsymbol{Q}}\right)=s(\epsilon, n)+\frac{1}{2} \int_{\boldsymbol{Q}}\left(\log \frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}}-\frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}}+1\right)
$$

Relaxation of fluctuations towards equilibrium

- As usual, equilibration maximizes entropy $S=\sum_{i} p_{i} \log \left(1 / p_{i}\right)$:

$$
s_{(+)}\left(\epsilon, n, \phi_{\boldsymbol{Q}}\right)=s(\epsilon, n)+\frac{1}{2} \int_{\boldsymbol{Q}}\left(\log \frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}}-\frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}}+1\right)
$$

- Entropy $=\log$ \# of states, which depends on the width of $P\left(m_{\boldsymbol{Q}}\right)$, i.e., $\phi_{\boldsymbol{Q}}$:
- Wider distribution - more microstates - more entropy: $\log (\phi / \bar{\phi})^{1 / 2}$;
vs
- Penalty for larger deviations from peak entropy (at $\delta m=0):-(1 / 2) \phi / \bar{\phi}$.

--- equilibrium (variance $\bar{\phi}$)
- actual (variance ϕ)

Maximum of $s_{(+)}$is achieved at $\phi=\bar{\phi}$.

Hydro+ mode kinetics

- The equation for $\phi_{\boldsymbol{Q}}$ is a relaxation equation:

$$
(u \cdot \partial) \phi_{\boldsymbol{Q}}=-\gamma_{\pi}(\boldsymbol{Q}) \pi_{\boldsymbol{Q}}, \quad \pi_{\boldsymbol{Q}}=-\left(\frac{\partial s_{(+)}}{\partial \phi_{\boldsymbol{Q}}}\right)_{\epsilon, n}
$$

$\gamma_{\pi}(\boldsymbol{Q})$ is known from mode-coupling calculation in 'model H '.
It is universal (Kawasaki function).
$\gamma_{\pi}(\boldsymbol{Q}) \sim 2 D Q^{2}$ for $Q<\xi^{-1}$ and $\sim Q^{3}$ for $Q>\xi^{-1}$.

- Characteristic rate: $\Gamma(Q) \sim \gamma_{\pi}(Q) \sim \xi^{-3}$ at $Q \sim \xi^{-1}$.
- Slowness of this relaxation process is behind the divergence of $\zeta \sim 1 / \Gamma \sim \xi^{3}$ and the breakdown of ordinary hydro near CP.

Towards a general deterministic formalism

An, Basar, Yee, MS, 1902.09517

- To embed Hydro+ into a unified theory for critical as well as noncritical fluctuations we develop a general (deterministic, correlation function) hydrodynamic fluctuation formalism.

Towards a general deterministic formalism

An, Basar, Yee, MS, 1902.09517

- To embed Hydro+ into a unified theory for critical as well as noncritical fluctuations we develop a general (deterministic, correlation function) hydrodynamic fluctuation formalism.
- Important issue in relativistic hydro -"equal-time" in the definition of
$G(x, y)=\langle\phi(x+y / 2) \phi(x-y / 2)\rangle$.
Addressed by constructing "confluent"
 derivative.
- Renormalization can be done analytically, and resulting renormalized equations are finite (cutoff-independent).

Equal time

We want evolution equation for equal time correlator $G=\left\langle\phi\left(t, \boldsymbol{x}_{+}\right) \phi\left(t, \boldsymbol{x}_{-}\right)\right\rangle$. But what does "equal time" mean?
"Equal time" in $\left\langle\phi\left(x_{+}\right) \phi\left(x_{-}\right)\right\rangle$depends on the choice of frame.
The most natural choice is local $u(x)$ (with $x=\left(x_{+}+x_{-}\right) / 2$).
Derivatives wrt x at " y-fixed" should take this into account:

$$
\begin{aligned}
& \text { using } \Lambda(\Delta x) u(x+\Delta x)=u(x) \\
& \begin{aligned}
\Delta x \cdot \bar{\nabla} G(x, y) & \equiv \\
G\left(x+\Delta x, \Lambda(\Delta x)^{-1} y\right) & -G(x, y)
\end{aligned}
\end{aligned}
$$

$$
\text { not } G(x+\Delta x, y)-G(x, y)
$$

Confluent correlator, derivative and connection

Confluent two-point correlator:

$$
\bar{G}(x, y)=\Lambda(y / 2) G(x, y) \Lambda(-y / 2)^{T}
$$

and its derivative

$$
\bar{\nabla}_{\mu} \bar{G}_{A B}=\partial_{\mu} \bar{G}_{A B}-\bar{\omega}_{\mu A}^{C} \bar{G}_{C B}-\bar{\omega}_{\mu B}^{C} \bar{G}_{A C}-\stackrel{\circ}{\mu a}_{b} y^{a} \frac{\partial}{\partial y^{b}} \bar{G}_{A B} .
$$

Connection $\bar{\omega}$ makes sure that only the change of ϕ_{A} with relative to local rest frame u is counted.

Connection $\stackrel{\omega}{\omega}$ corrects for a possible rotation of the local basis triad e_{a} defining coordinates y^{a}. The derivative is independent of e_{a}.

We then define the Wigner transform $W_{A B}(x, q)$ of $\bar{G}_{A B}(x, y)$.

Matrix equation and diagonalization

After many nontrivial cancellations we find evolution eq.:

$$
u \cdot \bar{\nabla} W=-i\left[\mathbb{L}^{(q)}, W\right]-\frac{1}{2}\{\overline{\mathbb{L}}, W\}+2 T w \mathbb{Q}^{(q)}+\mathcal{K} \circ W+\mathcal{K}^{\prime} \circ q \circ \frac{\partial W}{\partial q}
$$

where

$$
\begin{aligned}
& \mathbb{L}^{(q)} \equiv c_{s}\left(\begin{array}{cc}
0 & q_{\nu} \\
q_{\mu} & 0
\end{array}\right), \quad \overline{\mathbb{L}} \equiv c_{s}\left(\begin{array}{cc}
0 & \bar{\nabla}_{\perp \nu} \\
\bar{\nabla}_{\perp \mu} & 0
\end{array}\right), \\
& \mathbb{Q} \sim \gamma q^{2}, \text { and } \quad \mathcal{K} \sim \mathcal{K}^{\prime} \sim \partial_{\mu} u_{\nu} .
\end{aligned}
$$

Matrix equation and diagonalization

After many nontrivial cancellations we find evolution eq.:

$$
u \cdot \bar{\nabla} W=-i\left[\mathbb{L}^{(q)}, W\right]-\frac{1}{2}\{\overline{\mathbb{L}}, W\}+2 T w \mathbb{Q}^{(q)}+\mathcal{K} \circ W+\mathcal{K}^{\prime} \circ q \circ \frac{\partial W}{\partial q}
$$

where

$$
\begin{gathered}
\mathbb{L}^{(q)} \equiv c_{s}\left(\begin{array}{cc}
0 & q_{\nu} \\
q_{\mu} & 0
\end{array}\right), \quad \overline{\mathbb{L}} \equiv c_{s}\left(\begin{array}{cc}
0 & \bar{\nabla}_{\perp \nu} \\
\bar{\nabla}_{\perp \mu} & 0
\end{array}\right), \\
\mathbb{Q} \sim \gamma q^{2}, \quad \text { and } \quad \mathcal{K} \sim \mathcal{K}^{\prime} \sim \partial_{\mu} u_{\nu} .
\end{gathered}
$$

The leading term $\mathbb{L}^{(q)}$ is oscillatory: $\left[\mathbb{L}^{(q)}, W\right]_{\mathbf{A B}}=\left(\lambda_{\mathbf{A}}-\lambda_{\mathbf{B}}\right) W_{\mathbf{A B}}$, where $\lambda_{\mathbf{A}}= \pm c_{s}|q|, 0,0,0$, eigenvalues of $\mathbb{L}^{(q)}$ - linear ideal hydro.

Averaging over times shorter than $\left(c_{s}|q|\right)^{-1}$ leaves only 5 modes in W : 2 sound-sound W_{++}, W_{--}and 2×2 transverse ${ }^{2} \widehat{W}_{i j}$.

Sound-sound correlation and phonon kinetic equation

$$
\underbrace{\left[(u+v) \cdot \bar{\nabla}+f \cdot \frac{\partial}{\partial q}\right] W_{+}}_{\mathcal{L}_{+}\left[W_{+}\right]}=-\gamma_{L} q^{2}(W_{+}-\underbrace{T w}_{W^{(0)}})+\underbrace{\mathcal{K}^{\prime \prime}}_{\sim \partial_{\mu} u_{\nu}, a_{\mu}} W_{+}
$$

Sound-sound correlation and phonon kinetic equation

$$
\underbrace{\left[(u+v) \cdot \bar{\nabla}+f \cdot \frac{\partial}{\partial q}\right] W_{+}}_{\mathcal{L}_{+}\left[W_{+}\right]}=-\gamma_{L} q^{2}(W_{+}-\underbrace{T w}_{W^{(0)}})+\underbrace{\mathcal{K}^{\prime \prime}}_{\substack{\partial_{\mu} u_{\nu} \\ \mathcal{K}^{\prime \prime}}} W_{\mu}
$$

Three nontrivial observations:

- For a phonon $q \cdot u(x)=E\left(q_{\perp}\right)$, where $E=c_{s}(x)\left|q_{\perp}\right|$:

$$
\begin{aligned}
& v=c_{s} \hat{q}_{\perp}, \\
& f_{\mu}=\underbrace{-E\left(a_{\mu}+2 v^{\nu} \omega_{\nu \mu}\right)}_{\text {inertial + Coriolis }} \underbrace{-q_{\perp \nu} \partial_{\perp \mu} u^{\nu}}_{\text {"Hubble" }}-\bar{\nabla}_{\perp \mu} E .
\end{aligned}
$$

Sound-sound correlation and phonon kinetic equation

Three nontrivial observations:

- For a phonon $q \cdot u(x)=E\left(q_{\perp}\right)$, where $E=c_{s}(x)\left|q_{\perp}\right|$:

$$
\begin{aligned}
& v=c_{s} \hat{q}_{\perp}, \\
& f_{\mu}=\underbrace{-E\left(a_{\mu}+2 v^{\nu} \omega_{\nu \mu}\right)}_{\text {inertial + Coriolis }} \underbrace{-q_{\perp \nu} \partial_{\perp \mu} u^{\nu}}_{\text {"Hubble" }}-\bar{\nabla}_{\perp \mu} E .
\end{aligned}
$$

- Rescaling $N=W /\left(w c_{s}|q|\right)$ eliminates $\mathcal{K}^{\prime \prime}$ terms:

$$
\mathcal{L}_{+}\left[N_{+}\right]=-\gamma_{L} q^{2}(N_{+}-\underbrace{T / E}_{E \rightarrow 0 \text { of eqlbm. BE dist. }})
$$

- Contribution of W_{+}to $T^{\mu \nu}$ matches phonon gas with d.f. N_{+}.

Renormalization

Expansion of $\left\langle T^{\mu \nu}\right\rangle$ contains $\langle\phi(x) \phi(x)\rangle=G(x, 0)=\int \frac{d^{3} q}{(2 \pi)^{3}} W(x, q)$.
This integral is divergent (equilibrium $G^{(0)}(x, y) \sim \delta^{3}(y)$).

Renormalization

Expansion of $\left\langle T^{\mu \nu}\right\rangle$ contains $\langle\phi(x) \phi(x)\rangle=G(x, 0)=\int \frac{d^{3} q}{(2 \pi)^{3}} W(x, q)$.
This integral is divergent (equilibrium $G^{(0)}(x, y) \sim \delta^{3}(y)$).

Renormalization

Expansion of $\left\langle T^{\mu \nu}\right\rangle$ contains $\langle\phi(x) \phi(x)\rangle=G(x, 0)=\int \frac{d^{3} q}{(2 \pi)^{3}} W(x, q)$.
This integral is divergent (equilibrium $G^{(0)}(x, y) \sim \delta^{3}(y)$).

Renormalized equations

Local cutoff-dependent terms absorbed into EOS and visc. coeffs.:

$$
T_{R}^{\mu \nu}(x)=\left(\epsilon u^{\mu} u^{\nu}+p(\epsilon) \Delta^{\mu \nu}+\Pi^{\mu \nu}\right)_{R}+\frac{1}{w} \underbrace{\left[\left(\dot{c}_{s} \widetilde{G}_{e e}(x)-c_{s}^{2} \widetilde{G}_{\lambda}^{\lambda}(x)\right) \Delta^{\mu \nu}+\widetilde{G}^{\mu \nu}(x)\right]}_{\text {local in } \tilde{G}, \text { but not in } u, \epsilon} .
$$

And we obtain finite (cutoff independent) system of equations:

$$
\left\{\begin{aligned}
\partial_{\mu} T_{R}^{\mu \nu} & =0 \\
u \cdot \bar{\nabla} \widetilde{W} & =\ldots
\end{aligned}\right.
$$

describing evolution of hydrodynamic variables and their fluctuations.

Outlook

- Add baryon charge.
- Merge with Hydro+. Unify critical and non-critical fluctuations.
- Add higher-order correlators for non-gaussian fluctuations.
- Connect fluctuating hydro with freezeout kinetics and implement in full hydrodynamic code and event generator.
- First-order transition in fluctuating hydrodynamics?
- Connection to action principle (SK) formulation.

More

Scales

- Hydro cell size b : To obtain classical stochastic variables $\breve{\psi}=$ ($\breve{T}^{i 0}, \breve{J}^{0}$), coarse-grain quantum operators over scale $b \gg \ell_{\text {mic }}$ to leave only slow modes for which quantum fluctuatuations are negligible compared to thermal, i.e., $\hbar \omega \ll k T$.
$\ell_{\text {mic }} \sim \ell_{\text {mpp }}, c_{s} / T$.
- Hydrodynamic size L. Must be $L \gg b$.
- Size of local equlibrium cell $\ell_{\mathrm{eq}} \equiv \ell_{*}$. Depends on evolution scale, typically $\tau_{\text {ev }} \sim L / c_{s}$. The diffusion length over this scale is

$$
\ell_{*} \sim \sqrt{\gamma \tau_{\mathrm{ev}}} \sim \sqrt{\gamma L / c_{s}} .
$$

- Since $\ell_{*} \sim \sqrt{L}, b \ll L$ implies the hierarchy:

$$
\ell_{\text {mic }} \ll b<\ell_{*} \ll L \quad \text { or } \quad T \gg \Lambda>q_{*} \gg k \quad\left(\gamma q_{*}^{2}=c_{s} k\right)
$$

Separation of scales

$$
G(x, y)=\langle\phi(x+y / 2) \phi(x-y / 2)\rangle
$$

depends on x slowly (L), but on y - fast $\left(\ell_{\text {eq }} \sim \sqrt{L} \ll L\right)$.

Similar to separation of scales in QFT in kinetic regime. $(q \gg k)$

Critical fluctuations

- Near CP there is parametric separation of relaxation time scales.

The slowest and thus most out-of-equilibrium mode is charge diffusion at const $p: \delta(s / n) \equiv m$.

Critical fluctuations

- Near CP there is parametric separation of relaxation time scales.

The slowest and thus most out-of-equilibrium mode is charge diffusion at const $p: \delta(s / n) \equiv m$.

- Rate of m at scale $k \sim \xi^{-1}$,

$$
\Gamma \sim D \xi^{-2} \sim \xi^{-3},
$$

is of order of that for sound at much smaller $k \sim \xi^{-3}$.

Critical fluctuations

- Near CP there is parametric separation of relaxation time scales.

The slowest and thus most out-of-equilibrium mode is charge diffusion at const $p: \delta(s / n) \equiv m$.
back

- Rate of m at scale $k \sim \xi^{-1}$,

$$
\Gamma \sim D \xi^{-2} \sim \xi^{-3},
$$

is of order of that for sound at much smaller $k \sim \xi^{-3}$.

- The effect of m fluctuations, $1 / \sqrt{V}$, is $(k \xi)^{3 / 2}=\mathcal{O}(1)$!

Critical fluctuations

- Near CP there is parametric separation of relaxation time scales.

The slowest and thus most out-of-equilibrium mode is charge diffusion at const $p: \delta(s / n) \equiv m$.

- Rate of m at scale $k \sim \xi^{-1}$,

$$
\Gamma \sim D \xi^{-2} \sim \xi^{-3},
$$

is of order of that for sound at much smaller $k \sim \xi^{-3}$.

- The effect of m fluctuations, $1 / \sqrt{V}$, is $(k \xi)^{3 / 2}=\mathcal{O}(1)$!

- Thus we need $\langle\mathrm{mm}\rangle$ as the independent variable(s) in hydro+ equations.

Hydro+ vs Hydro: real-time bulk response

Hydrodynamics breaks down for processes faster than $\Gamma_{\xi} \sim \xi^{-3} \rightarrow$ Hydro+

- Stiffness of eos (sound speed) is underestimated in hydro (---): $c_{s} \rightarrow 0$ at CP, but only modes with $\omega \ll \Gamma_{\xi}$ are critically soft.

- Dissipation during expansion is overestimated in hydro (---): $\zeta \rightarrow \infty$ at CP, but only modes with $\omega \ll \Gamma_{\xi}$ experience large ζ.

Linearized fluctuation equations

$$
u \cdot \partial \phi_{A}=-(\mathbb{L}+\mathbb{Q}+\mathbb{K})_{A B} \phi^{B}-\xi_{A}
$$

where

$$
\begin{gathered}
\mathbb{L} \equiv\left(\begin{array}{cc}
0 & c_{s} \partial_{\perp \nu} \\
c_{s} \partial_{\perp \mu} & 0
\end{array}\right), \quad \mathbb{Q} \equiv\left(\begin{array}{cc}
0 & 0 \\
0 & -\gamma_{\eta} \Delta_{\mu \nu} \partial_{\perp}^{2}-\left(\gamma_{\zeta}+\frac{1}{3} \gamma_{\eta}\right) \partial_{\perp \mu} \partial_{\perp \nu}
\end{array}\right) \\
\mathbb{K} \equiv\left(\begin{array}{cc}
\left(1+c_{s}^{2}+\dot{c}_{s}\right) \theta & 2 c_{s} a_{\nu} \\
\frac{1+c_{s}^{2}-\dot{c}_{s}}{c_{s}} a_{\mu} & -u_{\mu} a_{\nu}+\partial_{\perp \nu} u_{\mu}+\Delta_{\mu \nu} \theta
\end{array}\right), \quad \xi \equiv\left(0, \Delta_{\mu \kappa} \partial_{\lambda} \breve{S}^{\lambda \kappa}\right) \\
\left\langle\xi_{A}\left(x_{+}\right) \xi_{B}\left(x_{-}\right)\right\rangle=2 T w \mathbb{Q}_{A B}^{(y)} \delta^{3}\left(y_{\perp}\right) . \\
\begin{aligned}
u \cdot \partial G_{A B}(x, y)= & -\left(\mathbb{L}^{(y)}+\frac{1}{2} \mathbb{L}+\mathbb{Q}^{(y)}+\mathbb{K}+\mathbb{Y}\right)_{A C} G_{B}^{C}(x, y) \\
& -\left(-\mathbb{Q}^{(y)}+\frac{1}{2} \mathbb{L}+\mathbb{Q}^{(y)}+\mathbb{K}+\mathbb{Y}\right)_{B C} G_{A}^{C}(x, y) \\
& +2 T w \mathbb{Q}_{A B}^{(y)} \delta^{3}\left(y_{\perp}\right),
\end{aligned}
\end{gathered}
$$

Correlation matrix evolution equation

$$
\begin{aligned}
u \cdot \bar{\nabla} W(x ; q)= & -\left[i \mathbb{L}^{(q)}+\mathbb{K}^{(a)}, W\right]-\left\{\frac{1}{2} \overline{\mathbb{L}}+\mathbb{Q}^{(q)}+\mathbb{K}^{(s)}, W\right\}+\theta W+2 T w \mathbb{Q}^{(q)}+\left(\partial \perp \lambda u_{\mu}\right) q^{\mu} \frac{\partial W}{\partial q_{\lambda}} \\
& +\frac{1}{2} a_{\lambda}\left\{\left(1-\frac{\dot{c}_{s}}{c_{s}^{2}}\right) \mathbb{L}^{(q)}, \frac{\partial W}{\partial q_{\lambda}}\right\}+\frac{\partial}{\partial q_{\lambda}}\left(\left\{\Omega_{\lambda}^{(s)}, W\right\}+\left[\Omega_{\lambda}^{(a)}, W\right]-\frac{1}{4}\left[\mathbb{H}_{\lambda},\left[\mathbb{L}^{(q)}, W\right]\right]\right)
\end{aligned}
$$

where

$$
\left.\begin{array}{c}
\mathbb{L}^{(q)} \equiv c_{s}\left(\begin{array}{cc}
0 & q_{\nu} \\
q_{\mu} & 0
\end{array}\right), \quad \overline{\mathbb{L}} \equiv c_{s}\left(\begin{array}{cc}
0 & \bar{\nabla}_{\perp \nu} \\
\bar{\nabla}_{\perp \mu} & 0
\end{array}\right), \quad \mathbb{Q}^{(q)} \equiv\left(\begin{array}{cc}
0 & 0 \\
0 & \gamma_{\eta} \Delta_{\mu \nu} q^{2}+\left(\gamma_{\zeta}+\frac{1}{3} \gamma_{\eta}\right.
\end{array}\right) q_{\mu} q_{\nu}
\end{array}\right), ~ \begin{array}{cc}
\mathbb{K}^{(s)} \equiv\left(\begin{array}{cc}
\left(1+c_{s}^{2}+\dot{c}_{s}\right) \theta & \frac{1}{2 c_{s}}\left(1+2 c_{s}^{2}\right) a_{\nu} \\
\frac{1}{2 c_{s}}\left(1+2 c_{s}^{2}\right) a_{\mu} & \Delta_{\mu \nu} \theta+\theta_{\mu \nu}
\end{array}\right), \quad \mathbb{K}^{(a)} \equiv\left(\begin{array}{cc}
0 & -\frac{1-c_{s}^{2}-\dot{c}_{s}}{2 c_{s}} a_{\nu} \\
\frac{1-c_{s}^{2}-\dot{c}_{s}}{2 c_{s}} a_{\mu} & -\omega_{\mu \nu}
\end{array}\right), \\
\mathbb{\Omega}_{\lambda}^{(s)} \equiv \frac{c_{s}^{2}}{2}\left(\begin{array}{cc}
2 \omega_{\kappa \lambda \lambda} q^{\kappa} & 0 \\
0 & \omega_{\mu \lambda} q_{\nu}+\omega_{\nu \lambda} q_{\mu}
\end{array}\right), \quad \mathbb{\Omega}_{\lambda}^{(a)} \equiv \frac{c_{s}^{2}}{2}\left(\begin{array}{cc}
0 & 0 \\
0 & \omega_{\mu \lambda} q_{\nu}-\omega_{\nu \lambda} q_{\mu}
\end{array}\right), \\
\mathbb{H}_{\lambda} \equiv c_{s}\left(\begin{array}{cc}
0 & \partial_{\nu} u_{\lambda} \\
\partial_{\mu} u_{\lambda} & 0
\end{array}\right), \\
\theta^{\mu \nu}=\frac{1}{2}\left(\partial_{\perp}^{\mu} u^{\nu}+\partial_{\perp}^{\nu} u^{\mu}\right), \quad \theta=\theta_{\mu}^{\mu}, \quad \omega_{\mu \nu}=\frac{1}{2}\left(\partial_{\perp \mu} u_{\nu}-\partial_{\perp \nu} u_{\mu}\right)
\end{array}
$$

Wigner function equations

Sound-sound

$$
\begin{aligned}
& \left(u \pm c_{s} \hat{q}\right) \cdot \bar{\nabla} W_{ \pm}-\left(\pm\left(c_{s}-\frac{\dot{c}_{s}}{c_{s}}\right)|q| a_{\mu}+\left(\partial_{\perp \mu} u_{\nu}\right) q^{\nu}+2 c_{s}^{2} q^{\lambda} \omega_{\lambda \mu}\right) \frac{\partial W_{ \pm}}{\partial q_{\mu}} \\
& =-\gamma_{L} q^{2}\left(W_{ \pm}-T w\right)-\left(\left(1+c_{s}^{2}+\dot{c}_{s}\right) \theta+\theta_{\mu \nu} \hat{q}^{\mu} \hat{q}^{\nu} \pm \frac{1+2 c_{s}^{2}}{c_{s}} \hat{q} \cdot a\right) W_{ \pm}
\end{aligned}
$$

Wigner function equations

Sound-sound

$\left(u \pm c_{s} \hat{q}\right) \cdot \bar{\nabla} W_{ \pm}-\left(\pm\left(c_{s}-\frac{\dot{c}_{s}}{c_{s}}\right)|q| a_{\mu}+\left(\partial_{\perp \mu} u_{\nu}\right) q^{\nu}+2 c_{s}^{2} q^{\lambda} \omega_{\lambda \mu}\right) \frac{\partial W_{ \pm}}{\partial q_{\mu}}$
$=-\gamma_{L} q^{2}\left(W_{ \pm}-T w\right)-\left(\left(1+c_{s}^{2}+\dot{c}_{s}\right) \theta+\theta_{\mu \nu} \hat{q}^{\mu} \hat{q}^{\nu} \pm \frac{1+2 c_{s}^{2}}{c_{s}} \hat{q} \cdot a\right) W_{ \pm}$,
Shear-shear
$u \cdot \bar{\nabla} \widehat{W}=-2 q^{2} \gamma_{\eta}(\widehat{W}-T w \widehat{\mathbb{1}})+\left(\partial_{\perp \mu} u_{\nu}\right) q^{\nu} \nabla_{(q)}^{\mu} \widehat{W}-\{\widehat{K}, \widehat{W}\}+[\widehat{\Omega}, \widehat{W}]$,
where

$$
\widehat{K}^{i j} \equiv \frac{1}{2} \theta \delta^{i j}+\theta^{\mu \nu} t_{\mu}^{(i)} t_{\nu}^{(j)}, \quad \text { and } \quad \widehat{\Omega}^{i j} \equiv \omega^{\mu \nu} t_{\mu}^{(i)} t_{\nu}^{(j)}, \quad i=1,2 ;
$$

Large q behavior of W

The part which does not lead to UV divergences:

$$
\widetilde{W}=W-W^{(0)}-W^{(1)}
$$

The equilibrium part (the divergent integral renormalizes EOS):

$$
W_{ \pm}^{(0)}=T w \quad \text { and } \quad W_{T_{i}, T_{j}}^{(0)}=T w \delta_{i j}
$$

The first background gradient correction (integral renormalizes viscosities):

$$
\begin{aligned}
W_{ \pm}^{(1)}(x, q) & =\frac{T w}{\gamma_{L} q^{2}}\left(\left(c_{s}^{2}-\dot{c}_{s}\right) \theta-\theta_{\mu \nu} \hat{q}^{\mu} \hat{q}^{\nu}\right) \\
W_{T_{i} T_{j}}^{(1)}(x, q) & =\frac{T w}{\gamma_{\eta} q^{2}}\left(c_{s}^{2} \theta \delta^{i j}-\theta^{\mu \nu} t_{\mu}^{(i)} t_{\nu}^{(j)}\right)
\end{aligned}
$$

