The critical point, fluctuations, and Hydro+

M. Stephanov

with Y. Yin (MIT), <u>1712.10305;</u> with X. An, G. Basar and H.-U. Yee, <u>1902.09517;</u> with M. Pradeep, <u>1905.13247</u>.

Students:

M. Stephanov

Critical point: intriguing hints

Equilibrium κ_4 vs *T* and μ_B :

"intriguing hint" (2015 LRPNS)

Motivation for phase II of BES at RHIC and BEST topical collaboration.

Universality and mapping of QCD to Ising model

The EOS is an essential input for hydro.

Near CP universality means

 $P_{\text{QCD}}(\mu, T) = -G_{\text{Ising}}(h, r) + \text{less singular terms}$

 $G_{\text{Ising}}(h,r)$ is universal and known,

but the mapping given by $h = h(\mu, T)$ and $r = r(\mu, T)$ is not.

Universality and mapping of QCD to Ising model

The EOS is an essential input for hydro. Near CP universality means

 $P_{\rm QCD}(\mu,T)=-G_{\rm Ising}(h,r)+{\rm less\ singular\ terms}$ $G_{\rm Ising}(h,r)$ is universal and known, but the mapping given by $h=h(\mu,T)$ and $r=r(\mu,T)$ is not.

• While h = 0 is the transition line, what is r = 0?

Slope of $r = 0 \Leftrightarrow$ asymmetry of EOS around transition line:

The skewness, or χ_3 , can be 0, + or - depending on r = 0 slope.

Universality of mapping for small m_q

● In the limit of $m_q \rightarrow 0$ the critical point is close to a tricritical point.

● The (µ, T)/(h, r) mapping becomes singular in a *universal* way: the slope difference vanishes as ~ $m_q^{2/5}$. Pradeep, MS, <u>1905.13247</u> Consequences:

• The r = 0 axis is almost horizontal. Not \perp to h = 0.

• r = 0 slope is possibly negative (it is in RMM). Then skewness is negative on the crossover line (h = 0) and below, at freezeout.

Theory/experiment gap: predictions assume equilibrium, but

Non-equilibrium physics is essential near the critical point.

Challenge: develop hydrodynamics *with fluctuations* capable of describing *non-equilibrium* effects on critical-point signatures.

Hydrodynamics eqs. are conservation equations:

 $\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$

Hydrodynamics eqs. are conservation equations:

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

Stochastic variables $\breve{\psi} = (\breve{T}^{i0}, \breve{J}^0)$ are local operators coarse-grained (over scale $b \gg \ell_{\rm mic} \sim 1/T$):

$$\partial_t \breve{\psi} = -\nabla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right)$$
 (Landau-Lifshitz)

Hydrodynamics eqs. are conservation equations:

$$\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi];$$

Stochastic variables $\check{\psi} = (\check{T}^{i0}, \check{J}^0)$ are local operators coarse-grained (over scale $b \gg \ell_{\rm mic} \sim 1/T$):

$$\partial_t \breve{\psi} = -\nabla \cdot \left(\mathsf{Flux}[\breve{\psi}] + \mathsf{Noise} \right)$$
 (Landau-Lifshitz)

- Linearized version has been considered and applied to heavyion collisions (Kapusta-Muller-MS, Kapusta-Torres-Rincon, ...)
- Non-linearities + point-like noise ⇒ UV divergences. In numerical simulations – cutoff dependence.

Deterministic approach

Variables are one- and two-point functions: $\psi = \langle \breve{\psi} \rangle \text{ and } G = \langle \breve{\psi} \breve{\psi} \rangle - \langle \breve{\psi} \rangle \langle \breve{\psi} \rangle - \text{equal-time correlator}$

 $\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi, G];$ (conservation)

 $\partial_t G = \mathsf{L}[G; \psi].$ (relaxation)

Recently – in Bjorken flow by Akamatsu *et al*. For arbitrary relativistic flow – by An *et al* (this talk). Earlier, in nonrelativistic context, – by Andreev in 1970s.

Deterministic approach

Variables are one- and two-point functions: $\psi = \langle \breve{\psi} \rangle \text{ and } G = \langle \breve{\psi} \breve{\psi} \rangle - \langle \breve{\psi} \rangle \langle \breve{\psi} \rangle - \text{equal-time correlator}$

 $\partial_t \psi = -\nabla \cdot \mathsf{Flux}[\psi, G];$ (conservation)

 $\partial_t G = \mathsf{L}[G; \psi].$ (relaxation)

- Recently in Bjorken flow by Akamatsu *et al*. For arbitrary relativistic flow – by An *et al* (this talk). Earlier, in nonrelativistic context, – by Andreev in 1970s.
- Advantage: deterministic equations.

"Infinite noise" causes UV renormalization of EOS and transport coefficients – can be taken care of *analytically* (<u>1902.09517</u>)

Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305

Fluctuation dynamics near CP requires two main ingredients:

• Critical fluctuations $(\xi \to \infty)$

Slow relaxation mode with $\tau_{relax} \sim \xi^3$ (leading to $\zeta \to \infty$)

Fluctuation dynamics near CP: Hydro+

Yin, MS, 1712.10305

- Fluctuation dynamics near CP requires two main ingredients:
 - **•** Critical fluctuations $(\xi \to \infty)$
 - Slow relaxation mode with $au_{
 m relax} \sim \xi^3$ (leading to $\zeta \to \infty$)
- Both described by the same object: the two-point function of the slowest hydrodynamic mode m
 m = δ(s/n), i.e., (m(x₁) m(x₂)).
- Without this mode, hydrodynamics would break down near CP when $\tau_{expansion} \sim \tau_{relax} \sim \xi^3$.

Additional variables in Hydro+

■ At the CP the *slowest* new variable is the 2-pt function $\langle \breve{m}\breve{m} \rangle$ of the slowest hydro variable $\breve{m} = \delta(s/n)$:

$$\phi_{\boldsymbol{Q}}(\boldsymbol{x}) = \int_{\Delta \boldsymbol{x}} \langle \breve{m} \left(\boldsymbol{x}_{+}
ight) \breve{m} \left(\boldsymbol{x}_{-}
ight)
angle \ e^{i \boldsymbol{Q} \cdot \Delta \boldsymbol{x}}$$

where
$$oldsymbol{x} = (oldsymbol{x}_+ + oldsymbol{x}_-)/2$$
 and $\Delta oldsymbol{x} = oldsymbol{x}_+ - oldsymbol{x}_-.$

■ Wigner transformed b/c dependence on x (~ L) is much slower than on ∆x. Scale separation similar to kinetic theory.

$$\begin{array}{c} \Delta x \\ L \\ \end{array}$$

Relaxation of fluctuations towards equilibrium

● As usual, equilibration maximizes entropy $S = \sum_i p_i \log(1/p_i)$:

$$s_{(+)}(\epsilon, n, \phi_{\mathbf{Q}}) = s(\epsilon, n) + \frac{1}{2} \int_{\mathbf{Q}} \left(\log \frac{\phi_{\mathbf{Q}}}{\bar{\phi}_{\mathbf{Q}}} - \frac{\phi_{\mathbf{Q}}}{\bar{\phi}_{\mathbf{Q}}} + 1 \right)$$

Relaxation of fluctuations towards equilibrium

● As usual, equilibration maximizes entropy $S = \sum_i p_i \log(1/p_i)$:

$$s_{(+)}(\epsilon, n, \phi_{\boldsymbol{Q}}) = s(\epsilon, n) + \frac{1}{2} \int_{\boldsymbol{Q}} \left(\log \frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}} - \frac{\phi_{\boldsymbol{Q}}}{\bar{\phi}_{\boldsymbol{Q}}} + 1 \right)$$

Entropy = log # of states, which depends on the width of P(m_Q), i.e., \(\phi_Q\):

Wider distribution – more microstates
– more entropy:
$$\log(\phi/\bar{\phi})^{1/2}$$
;

vs

● Penalty for larger deviations from peak entropy (at $\delta m = 0$): $-(1/2)\phi/\bar{\phi}$.

Maximum of $s_{(+)}$ is achieved at $\phi = \overline{\phi}$.

⁻⁻⁻ equilibrium (variance $\overline{\phi}$)

—- actual (variance ϕ)

Hydro+ mode kinetics

9 The equation for ϕ_{Q} is a relaxation equation:

$$(u \cdot \partial)\phi_{\boldsymbol{Q}} = -\gamma_{\pi}(\boldsymbol{Q})\pi_{\boldsymbol{Q}}, \quad \pi_{\boldsymbol{Q}} = -\left(\frac{\partial s_{(+)}}{\partial\phi_{\boldsymbol{Q}}}\right)_{\epsilon,n}$$

 $\gamma_{\pi}(Q)$ is known from mode-coupling calculation in 'model H'. It is universal (Kawasaki function).

$$\gamma_{\pi}(oldsymbol{Q})\sim 2DQ^2$$
 for $Q<\xi^{-1}$ and $\sim Q^3$ for $Q>\xi^{-1}.$ (more

- Characteristic rate: $\Gamma(Q) \sim \gamma_{\pi}(Q) \sim \xi^{-3}$ at $Q \sim \xi^{-1}$.
- Slowness of this relaxation process is behind the divergence of $\zeta \sim 1/\Gamma \sim \xi^3$ and the breakdown of *ordinary* hydro near CP.

Towards a general deterministic formalism

An, Basar, Yee, MS, <u>1902.09517</u>

To embed Hydro+ into a unified theory for critical as well as noncritical fluctuations we develop a general (deterministic, correlation function) hydrodynamic fluctuation formalism.

Towards a general deterministic formalism

An, Basar, Yee, MS, <u>1902.09517</u>

- To embed Hydro+ into a unified theory for critical as well as noncritical fluctuations we develop a general (deterministic, correlation function) hydrodynamic fluctuation formalism.
- Important issue in *relativistic* hydro "equal-time" in the definition of

$$G(x,y) = \langle \phi(x+y/2) \phi(x-y/2) \rangle.$$

Addressed by constructing "confluent" derivative.

Renormalization can be done *analytically*, and resulting renormalized equations are finite (cutoff-independent).

Equal time

We want evolution equation for equal time correlator $G = \langle \phi(t, \boldsymbol{x}_+) \phi(t, \boldsymbol{x}_-) \rangle$. But what does "equal time" mean?

"Equal time" in $\langle \phi(x_+)\phi(x_-) \rangle$ depends on the choice of frame.

The most natural choice is local u(x) (with $x = (x_+ + x_-)/2$).

Derivatives wrt x at "y-fixed" should take this into account:

Confluent correlator, derivative and connection

$$\bar{\nabla}_{\mu}\bar{G}_{AB} = \partial_{\mu}\bar{G}_{AB} - \bar{\omega}^{C}_{\mu A}\bar{G}_{CB} - \bar{\omega}^{C}_{\mu B}\bar{G}_{AC} - \overset{\circ}{\omega}^{b}_{\mu a}y^{a}\frac{\partial}{\partial y^{b}}\bar{G}_{AB}.$$

Connection $\bar{\omega}$ makes sure that only the change of ϕ_A with *relative* to local rest frame u is counted.

Connection $\mathring{\omega}$ corrects for a possible rotation of the local basis triad e_a defining coordinates y^a . The derivative is independent of e_a .

We then define the Wigner transform $W_{AB}(x,q)$ of $\bar{G}_{AB}(x,y)$.

Matrix equation and diagonalization

After many nontrivial cancellations we find evolution eq.:

$$u \cdot \bar{\nabla}W = -i[\mathbb{L}^{(q)}, W] - \frac{1}{2}\{\bar{\mathbb{L}}, W\} + 2Tw\mathbb{Q}^{(q)} + \mathcal{K} \circ W + \mathcal{K}' \circ q \circ \frac{\partial W}{\partial q}$$

where

$$\begin{split} \mathbb{L}^{(q)} &\equiv c_s \begin{pmatrix} 0 & q_\nu \\ q_\mu & 0 \end{pmatrix}, \quad \bar{\mathbb{L}} \equiv c_s \begin{pmatrix} 0 & \bar{\nabla}_{\perp\nu} \\ \bar{\nabla}_{\perp\mu} & 0 \end{pmatrix}, \\ &\mathbb{Q} \sim \gamma q^2, \quad \text{and} \quad \mathcal{K} \sim \mathcal{K}' \sim \partial_\mu u_\nu \,. \end{split}$$

Matrix equation and diagonalization

After many nontrivial cancellations we find evolution eq.:

$$u \cdot \bar{\nabla}W = -i[\mathbb{L}^{(q)}, W] - \frac{1}{2}\{\bar{\mathbb{L}}, W\} + 2Tw\mathbb{Q}^{(q)} + \mathcal{K} \circ W + \mathcal{K}' \circ q \circ \frac{\partial W}{\partial q}$$

where

$$\mathbb{L}^{(q)} \equiv c_s \begin{pmatrix} 0 & q_\nu \\ q_\mu & 0 \end{pmatrix}, \quad \bar{\mathbb{L}} \equiv c_s \begin{pmatrix} 0 & \bar{\nabla}_{\perp\nu} \\ \bar{\nabla}_{\perp\mu} & 0 \end{pmatrix},$$
$$\mathbb{Q} \sim \gamma q^2, \quad \text{and} \quad \mathcal{K} \sim \mathcal{K}' \sim \partial_\mu u_\nu.$$

The leading term $\mathbb{L}^{(q)}$ is oscillatory: $[\mathbb{L}^{(q)}, W]_{AB} = (\lambda_A - \lambda_B) W_{AB}$, where $\lambda_A = \pm c_s |q|, 0, 0, 0$, eigenvalues of $\mathbb{L}^{(q)}$ – linear ideal hydro.

Averaging over times shorter than $(c_s|q|)^{-1}$ leaves only 5 modes in W: 2 sound-sound W_{++} , W_{--} and 2x2 transverse² \widehat{W}_{ij} . See equations

Sound-sound correlation and phonon kinetic equation

$$\underbrace{\left[(u+v) \cdot \bar{\nabla} + f \cdot \frac{\partial}{\partial q} \right] W_+}_{\mathcal{L}_+[W_+]} = -\gamma_L q^2 (W_+ - \underbrace{Tw}_{W^{(0)}}) + \underbrace{\mathcal{K}''}_{\substack{\sim \partial_\mu u_\nu, \ a_\mu}} W_+ \underbrace{\mathcal{K}''_\mu W_+}_{\substack{\sim \partial_\mu u_\nu, \ a_\mu}} W_+ \underbrace{\mathcal{K}''_\mu W_+}_{\substack{\otimes \mathcal{K}''_\mu W_+}} W_+ \underbrace{\mathcal{K}''_\mu W_+} W_+$$

Sound-sound correlation and phonon kinetic equation

$$\underbrace{\left[(u+v) \cdot \bar{\nabla} + f \cdot \frac{\partial}{\partial q} \right] W_+}_{\mathcal{L}_+[W_+]} = -\gamma_L q^2 (W_+ - \underbrace{Tw}_{W^{(0)}}) + \underbrace{\mathcal{K}''}_{\substack{\sim \partial_\mu u_\nu, \ a_\mu}} W_+ \underbrace{\mathcal{K}''_\mu W_+}_{\substack{\sim \partial_\mu u_\nu, \ a_\mu}} W_+ \underbrace{\mathcal{K}''_\mu W_+}_{\substack{\otimes \mathcal{K}''_\mu W_+}} W_+ \underbrace{\mathcal{K}''_\mu W_+} W_+ \underbrace{\mathcal{K}''_\mu W_+}_{\substack{\otimes \mathcal{K}''_\mu W_+}} W_+ \underbrace{\mathcal{K}''_\mu W_+} W_+ \underbrace{\mathcal{K}''_\mu W_+}$$

Three nontrivial observations:

● For a phonon $q \cdot u(x) = E(q_{\perp})$, where $E = c_s(x)|q_{\perp}|$:

$$\begin{split} v &= c_s \hat{q}_{\perp}, \\ f_{\mu} &= \underbrace{-E(a_{\mu} + 2v^{\nu}\omega_{\nu\mu})}_{\text{inertial + Coriolis}} \underbrace{-q_{\perp\nu}\partial_{\perp\mu}u^{\nu}}_{\text{"Hubble"}} - \bar{\nabla}_{\perp\mu}E \,. \end{split}$$

Sound-sound correlation and phonon kinetic equation

$$\underbrace{\left[(u+v) \cdot \bar{\nabla} + f \cdot \frac{\partial}{\partial q} \right] W_+}_{\mathcal{L}_+[W_+]} = -\gamma_L q^2 (W_+ - \underbrace{Tw}_{W^{(0)}}) + \underbrace{\mathcal{K}''}_{\substack{\sim \partial_\mu u_\nu, \ a_\mu}} W_+ \underbrace{\mathcal{K}''_\mu W_+}_{\substack{\sim \partial_\mu u_\nu, \ a_\mu}} W_+ \underbrace{\mathcal{K}''_\mu W_+}_{\substack{\otimes \mathcal{K}''_\mu W_+}} W_+ \underbrace{\mathcal{K}''_\mu W_+} W_+ \underbrace{\mathcal{K}''_\mu W_+}_{\substack{\otimes \mathcal{K}''_\mu W_+}} W_+ \underbrace{\mathcal{K}''_\mu W_+} W_+ \underbrace{\mathcal{K}''_\mu W_+}$$

Three nontrivial observations:

● For a phonon $q \cdot u(x) = E(q_{\perp})$, where $E = c_s(x)|q_{\perp}|$:

$$\begin{split} v &= c_s \hat{q}_{\perp}, \\ f_{\mu} &= \underbrace{-E(a_{\mu} + 2v^{\nu}\omega_{\nu\mu})}_{\text{inertial + Coriolis}} \underbrace{-q_{\perp\nu}\partial_{\perp\mu}u^{\nu}}_{\text{"Hubble"}} - \bar{\nabla}_{\perp\mu}E \,. \end{split}$$

• Rescaling $N = W/(wc_s|q|)$ eliminates \mathcal{K}'' terms:

$$\mathcal{L}_+[N_+] = -\gamma_L q^2 (N_+ - \underbrace{T/E}_{E \to 0})$$
 of eqlbm. BE dist.

Contribution of W_+ to $T^{\mu\nu}$ matches phonon gas with d.f. N_+ .

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} W(x,q).$

This integral is divergent (equilibrium $G^{(0)}(x,y) \sim \delta^3(y)$).

Renormalization

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} W(x,q)$.

This integral is divergent (equilibrium $G^{(0)}(x,y) \sim \delta^3(y)$).

Renormalization

Expansion of $\langle T^{\mu\nu} \rangle$ contains $\langle \phi(x)\phi(x) \rangle = G(x,0) = \int \frac{d^3q}{(2\pi)^3} W(x,q)$.

This integral is divergent (equilibrium $G^{(0)}(x,y) \sim \delta^3(y)$).

Local cutoff-dependent terms absorbed into EOS and visc. coeffs.:

$$T_{R}^{\mu\nu}(x) = (\epsilon u^{\mu}u^{\nu} + p(\epsilon)\Delta^{\mu\nu} + \Pi^{\mu\nu})_{R} + \frac{1}{w} \underbrace{\left[\left(\dot{c}_{s}\tilde{G}_{ee}(x) - c_{s}^{2}\tilde{G}_{\lambda}^{\lambda}(x) \right) \Delta^{\mu\nu} + \tilde{G}^{\mu\nu}(x) \right]}_{\text{local in }\tilde{G}, \text{ but not in } u, \epsilon}$$

And we obtain finite (cutoff independent) system of equations:

$$\begin{cases}
\partial_{\mu} T_{R}^{\mu\nu} = 0; \\
u \cdot \overline{\nabla} \widetilde{W} = \dots.
\end{cases}$$

describing evolution of hydrodynamic variables and their fluctuations.

Outlook

- Add baryon charge.
- Merge with Hydro+. Unify critical and non-critical fluctuations.
- Add higher-order correlators for non-gaussian fluctuations.
- Connect *fluctuating* hydro with freezeout kinetics and implement in full hydrodynamic code and event generator.
- First-order transition in fluctuating hydrodynamics?
- Connection to action principle (SK) formulation.

More

Scales

- Hydro cell size *b*: To obtain *classical* stochastic variables $\breve{\psi} = (\breve{T}^{i0}, \breve{J}^0)$, coarse-grain quantum operators over scale $b \gg \ell_{\rm mic}$ to leave only slow modes for which quantum fluctuatuations are negligible compared to thermal, i.e., $\hbar\omega \ll kT$. $\ell_{\rm mic} \sim \ell_{\rm mfp}, c_s/T$.
- **9** Hydrodynamic size L. Must be $L \gg b$.
- Size of local equibrium cell $\ell_{eq} \equiv \ell_*$. Depends on evolution scale, typically $\tau_{ev} \sim L/c_s$. The diffusion length over this scale is

$$\ell_* \sim \sqrt{\gamma \tau_{\rm ev}} \sim \sqrt{\gamma L/c_s}.$$

9 Since $\ell_* \sim \sqrt{L}$, $b \ll L$ implies the hierarchy:

 $\ell_{\rm mic} \ll b < \ell_* \ll L \quad {\rm or} \quad T \gg \Lambda > q_* \gg k \quad (\gamma q_*^2 = c_s k)$

Separation of scales

$$G(x,y) = \langle \phi(x+y/2) \phi(x-y/2) \rangle$$

depends on x slowly (L), but on y – fast ($\ell_{eq} \sim \sqrt{L} \ll L$).

Similar to separation of scales in QFT in kinetic regime. $(q \gg k)$

■ Near CP there is *parametric* separation of relaxation time scales. The slowest and thus most out-of-equilibrium mode is charge diffusion at const *p*: $\delta(s/n) \equiv m$.

■ Near CP there is *parametric* separation of relaxation time scales. The slowest and thus most out-of-equilibrium mode is charge diffusion at const *p*: $\delta(s/n) \equiv m$.

- Near CP there is *parametric* separation of relaxation time scales. The slowest and thus most out-of-equilibrium mode is charge diffusion at const $p: \delta(s/n) \equiv m$.
- Pate of m at scale k ~ ξ⁻¹, Γ ~ Dξ⁻² ~ ξ⁻³, is of order of that for sound at much smaller k ~ ξ⁻³.
 The effect of m fluctuations, 1/√V, is (kξ)^{3/2} = O(1)!

- Near CP there is *parametric* separation of relaxation time scales. The slowest and thus most out-of-equilibrium mode is charge diffusion at const *p*: $\delta(s/n) \equiv m$.
- Rate of *m* at scale $k \sim \xi^{-1}$, $\Gamma \sim D\xi^{-2} \sim \xi^{-3}$,
 - is of order of that for sound at much smaller $k \sim \xi^{-3}$.
- The effect of *m* fluctuations, $1/\sqrt{V}$, is $(k\xi)^{3/2} = \mathcal{O}(1)!$
- Thus we need (mm) as the independent variable(s) in hydro+ equations.

Hydro+ vs Hydro: real-time bulk response

Hydrodynamics breaks down for processes faster than $\Gamma_{\xi} \sim \xi^{-3} \rightarrow \text{Hydro+}$

Linearized fluctuation equations

 $\boldsymbol{u}\cdot\partial\phi_{A}=-\left(\mathbb{L}+\mathbb{Q}+\mathbb{K}\right)_{AB}\boldsymbol{\phi}^{B}-\xi_{A}\,,$

where

$$\begin{split} \mathbb{L} &\equiv \begin{pmatrix} 0 & c_s \partial_{\perp \nu} \\ c_s \partial_{\perp \mu} & 0 \end{pmatrix}, \quad \mathbb{Q} \equiv \begin{pmatrix} 0 & 0 \\ 0 & -\gamma_\eta \Delta_{\mu\nu} \partial_{\perp}^2 - (\gamma_\zeta + \frac{1}{3}\gamma_\eta) \partial_{\perp \mu} \partial_{\perp \nu} \end{pmatrix} \\ \mathbb{K} &\equiv \begin{pmatrix} (1 + c_s^2 + \dot{c}_s) \theta & 2c_s a_\nu \\ \frac{1 + c_s^2 - \dot{c}_s}{c_s} a_\mu & -u_\mu a_\nu + \partial_{\perp \nu} u_\mu + \Delta_{\mu\nu} \theta \end{pmatrix}, \quad \xi \equiv (0, \Delta_{\mu\kappa} \partial_\lambda \breve{S}^{\lambda\kappa}) \\ &\quad \langle \xi_A(x_+) \xi_B(x_-) \rangle = 2T w \mathbb{Q}_{AB}^{(y)} \delta^3(y_\perp) \,. \end{split}$$

$$\begin{aligned} u \cdot \partial G_{AB}(x,y) &= -\left(\mathbb{L}^{(y)} + \frac{1}{2}\mathbb{L} + \mathbb{Q}^{(y)} + \mathbb{K} + \mathbb{Y}\right)_{AC} G^C_{\ B}(x,y) \\ &- \left(-\mathbb{L}^{(y)} + \frac{1}{2}\mathbb{L} + \mathbb{Q}^{(y)} + \mathbb{K} + \mathbb{Y}\right)_{BC} G^{\ C}_A(x,y) \\ &+ 2Tw \mathbb{Q}^{(y)}_{AB} \delta^3(y_\perp), \end{aligned}$$

Correlation matrix evolution equation

back

$$\begin{split} u \cdot \bar{\nabla} W(x;q) &= -\left[i\mathbb{L}^{(q)} + \mathbb{K}^{(a)}, W\right] - \left\{\frac{1}{2}\bar{\mathbb{L}} + \mathbb{Q}^{(q)} + \mathbb{K}^{(s)}, W\right\} + \theta W + 2Tw\mathbb{Q}^{(q)} + (\partial_{\perp\lambda}u_{\mu})q^{\mu}\frac{\partial W}{\partial q_{\lambda}} \\ &+ \frac{1}{2}a_{\lambda}\left\{\left(1 - \frac{\dot{c}_{s}}{c_{s}^{2}}\right)\mathbb{L}^{(q)}, \frac{\partial W}{\partial q_{\lambda}}\right\} + \frac{\partial}{\partial q_{\lambda}}\left(\{\mathbb{n}_{\lambda}^{(s)}, W\} + [\mathbb{n}_{\lambda}^{(a)}, W] - \frac{1}{4}[\mathbb{H}_{\lambda}, [\mathbb{L}^{(q)}, W]]\right), \end{split}$$

where

$$\begin{split} \mathbb{L}^{(q)} &\equiv c_s \begin{pmatrix} 0 & q_\nu \\ q_\mu & 0 \end{pmatrix}, \quad \bar{\mathbb{L}} \equiv c_s \begin{pmatrix} 0 & \bar{\nabla}_{\perp \mu} \\ \bar{\nabla}_{\perp \mu} & 0 \end{pmatrix}, \quad \mathbb{Q}^{(q)} \equiv \begin{pmatrix} 0 & 0 \\ 0 & \gamma_\eta \Delta_{\mu\nu} q^2 + \begin{pmatrix} \gamma_\zeta + \frac{1}{3} \gamma_\eta \end{pmatrix} q_\mu q_\nu \end{pmatrix}, \\ \mathbb{K}^{(s)} &\equiv \begin{pmatrix} (1+c_s^2 + \dot{c}_s) \theta & \frac{1}{2c_s} (1+2c_s^2) a_\nu \\ \frac{1}{2c_s} (1+2c_s^2) a_\mu & \Delta_{\mu\nu} \theta + \theta_{\mu\nu} \end{pmatrix}, \quad \mathbb{K}^{(a)} \equiv \begin{pmatrix} 0 & -\frac{1-c_s^2 - \dot{c}_s}{2c_s} a_\nu \\ \frac{1-c_s^2 - \dot{c}_s}{2c_s} a_\mu & -\omega_{\mu\nu} \end{pmatrix}, \\ \Omega^{(s)}_{\lambda} &\equiv \frac{c_s^2}{2} \begin{pmatrix} 2\omega_{\kappa\lambda} q^\kappa & 0 \\ 0 & \omega_{\mu\lambda} q_\nu + \omega_{\nu\lambda} q_\mu \end{pmatrix}, \quad \Omega^{(a)}_{\lambda} \equiv \frac{c_s^2}{2} \begin{pmatrix} 0 & 0 \\ 0 & \omega_{\mu\lambda} q_\nu - \omega_{\nu\lambda} q_\mu \end{pmatrix}, \\ \mathbb{H}_{\lambda} \equiv c_s \begin{pmatrix} 0 & \partial_\nu u_\lambda \\ \partial_\mu u_\lambda & 0 \end{pmatrix}, \end{split}$$

$$\theta^{\mu\nu} = \frac{1}{2} \left(\partial^{\mu}_{\perp} u^{\nu} + \partial^{\nu}_{\perp} u^{\mu} \right), \quad \theta = \theta^{\mu}_{\mu}, \quad \omega_{\mu\nu} = \frac{1}{2} \left(\partial_{\perp\mu} u_{\nu} - \partial_{\perp\nu} u_{\mu} \right).$$

M. Stephanov

Wigner function equations

Sound-sound

$$(u \pm c_s \hat{q}) \cdot \bar{\nabla} W_{\pm} - \left(\pm \left(c_s - \frac{\dot{c}_s}{c_s} \right) |q| a_{\mu} + (\partial_{\perp \mu} u_{\nu}) q^{\nu} + 2c_s^2 q^{\lambda} \omega_{\lambda \mu} \right) \frac{\partial W_{\pm}}{\partial q_{\mu}}$$
$$= -\gamma_L q^2 (W_{\pm} - Tw) - \left((1 + c_s^2 + \dot{c}_s) \theta + \theta_{\mu\nu} \hat{q}^{\mu} \hat{q}^{\nu} \pm \frac{1 + 2c_s^2}{c_s} \hat{q} \cdot a \right) W_{\pm} ,$$

Wigner function equations

Sound-sound

$$(u \pm c_s \hat{q}) \cdot \bar{\nabla} W_{\pm} - \left(\pm \left(c_s - \frac{\dot{c}_s}{c_s} \right) |q| a_\mu + (\partial_{\perp\mu} u_\nu) q^\nu + 2c_s^2 q^\lambda \omega_{\lambda\mu} \right) \frac{\partial W_{\pm}}{\partial q_\mu} \\ = -\gamma_L q^2 (W_{\pm} - Tw) - \left((1 + c_s^2 + \dot{c}_s) \theta + \theta_{\mu\nu} \hat{q}^\mu \hat{q}^\nu \pm \frac{1 + 2c_s^2}{c_s} \hat{q} \cdot a \right) W_{\pm} ,$$

Shear-shear

$$u \cdot \bar{\nabla}\widehat{W} = -2q^2 \gamma_{\eta}(\widehat{W} - Tw\widehat{1}) + (\partial_{\perp\mu}u_{\nu})q^{\nu}\nabla^{\mu}_{(q)}\widehat{W} - \left\{\widehat{K},\widehat{W}\right\} + \left[\widehat{\Omega},\widehat{W}\right],$$

where

$$\widehat{K}^{ij} \equiv \frac{1}{2} \theta \, \delta^{ij} + \theta^{\mu\nu} t^{(i)}_{\mu} t^{(j)}_{\nu}, \quad \text{and} \quad \widehat{\Omega}^{ij} \equiv \omega^{\mu\nu} t^{(i)}_{\mu} t^{(j)}_{\nu}, \quad i = 1, 2;$$

go back

Large q behavior of W

The part which does not lead to UV divergences:

$$\widetilde{W} = W - W^{(0)} - W^{(1)}$$

The equilibrium part (the divergent integral renormalizes EOS):

$$W^{(0)}_{\pm} = Tw$$
 and $W^{(0)}_{T_i,T_j} = Tw\delta_{ij}$.

The first background gradient correction (integral renormalizes viscosities):

$$W_{\pm}^{(1)}(x,q) = \frac{Tw}{\gamma_L q^2} \left((c_s^2 - \dot{c}_s)\theta - \theta_{\mu\nu} \hat{q}^{\mu} \hat{q}^{\nu} \right) ,$$

$$W_{T_i T_j}^{(1)}(x,q) = \frac{Tw}{\gamma_\eta q^2} \left(c_s^2 \theta \, \delta^{ij} - \theta^{\mu\nu} t_{\mu}^{(i)} t_{\nu}^{(j)} \right) .$$