Physics Colloquium

"The Equation of State of Matter at Extreme Densities from Observations of Neutron Stars"

Presented by Jim Lattimer, Stony Brook University

Tuesday, December 6, 2005, 3:30 pm — Large Seminar Room, Bldg. 510

Neutron stars are laboratories for dense matter physics. New
observations of neutron stars from sources such as radio pulsars, X-ray binaries, quasi-periodic oscillators, X-ray bursters and thermally-emitting isolated neutron stars are setting bounds to neutron star masses, radii, rotation rates, radiation radii, redshifts, moments of inertia, temperatures and ages. Mass (M) measurements constrain the equation of state at the highest densities and set firm bounds to the highest possible density of cold matter.
Radii (R) constrain the equation of state in the vicinity of the nuclear saturation density and yield information about the density dependence of the nuclear symmetry energy. Laboratory measurements of the neutron skin thickness of Pb and other experiments can extend this
knowledge to lower densities. The most reliable radiation radius estimates currently are achieved through observations of thermal emission from neutron stars, and if supplemented by redshift information from the same source, could yield precision radii. A moment of inertia measurement from a binary pulsar could ultimately yield precise radius estimates since their component masses are known. The largest pulsar rotation rates set upper bounds to the ratio R**3/M, and quasi-periodic oscillations, if associated with the innermost stable orbit, set upper limits to both M and R. Observations of cooling neutron stars up to a million years old shed light on the internal compositions, including their superfluid properties, by constraining the neutrino emission rates.

2620  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.