Center for Functional Nanomaterials Seminar

"Biofunctionalization and Detection of Magentic Nanoparticles"

Presented by Glenn Held, IBM Watson Research Center

Wednesday, November 29, 2006, 10:30 am — Room 300, Bldg. 555 Chemistry

Methods of synthesizing monodisperse, strongly magnetic ferrite nanoparticles have been well documented. However, encapsulation of these particles within an overlayer of biologically active molecules has remained problematic. Such bio-functionalized magnetic nanoparticles would provide the crucial component in ultra-sensitive magnetic detection of both proteins and nucleic acids. In addition, such particles could be used to bind and transport proteins and, following introduction into a living organism, they could provide a means of monitoring and influencing cellular processes. In this talk, I will present a method for bio-funtionalizatizing manganese ferrite nanoparticles. Following biofunctionalization with DNA or biotin, these particles can be site selectively bound to appropriately patterned silicon oxide substrates. Imaging these substrates with scanning squid microscopy provides evidence that these particles retain their magnetic properties. Finally, a novel method of detecting the hybridization of these magnetic nanoparticles to a substrate at room temperature using a biosensor comprised of a protein patterned magnetic tunnel junction situated in orthogonal magnetic fields will be discussed.

Hosted by: Oleg Gang

3327  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.