Nuclear Physics Seminar

"Elliptic flow from anisotropic escape"

Presented by Denes Molnar, Purdue University

Tuesday, June 2, 2015, 11:00 am — Small Seminar Room, Bldg. 510

While hydrodynamics is regarded as the dominant paradigm for describing heavy-ion collisions at RHIC and LHC energies, its applicability to nuclear reactions is not very well understood. Open question remain about the mechanism of rapid thermalization, initial conditions, treatment of decoupling (conversion of the fluid to particles), finite system effects, and quantum corrections in very small systems, for example. In a recent work (arXiv:1502.05572) we showed that in the AMPT transport model elliptic flow is generated quite differently from hydrodynamics, mainly through anisotropic escape from the collision zone. I will demonstrate that this is, in fact, a general feature of kinetic theory, originating in the modest opacities <Ncoll> \sim 4-5 in AMPT calculations. Implications of the escape effect will be discussed together with connections to other hydro related problems such as proper particle distributions (arXiv:1404.8750) and anisotropic flow from quantum mechanics (arXiv:1404.4119).

Hosted by: Jin Huang

10807  |  INT/EXT  |  Events Calendar