Physics Colloquium

"Quarkonium with Effective field theories"

Presented by Nora Brambilla, Munich Technical University

Tuesday, June 2, 2015, 3:30 pm — Large Seminar Room, Bldg. 510

Quantum Chromodynamics (QCD) is the sector of the Standard Model of particle physics that describes the strong interaction, deceptively simple to formulate but notoriously difficult to solve. Heavy quarkonium is a multiscale system that probes the different energy regimes of QCD, from the high-energy region, where an expansion in the coupling constant is possible and precision studies may be done, to the low-energy region, dominated by confinement and the many manifestations of the nonperturbative strong dynamics. Properties of production and absorption of quarkonium in a medium are also crucial for the study of QCD at high density and temperature. On the theoretical side, the construction of new nonrelativistic effective field theories for quarkonium has recently revolutionized the field providing both a conceptual framework and a powerful calculational tool. On the experimental side, the diversity, quantity and accuracy of the data collected in the last few years at B and tau-charm factories and at RHIC and LHC experiments is impressive, featuring the observation of new states and new unexpected processes. I will discuss these theoretical and experimental advancements and their implications for our understanding of strong interactions.

Hosted by: Peter Petreczky

10818  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.