Condensed-Matter Physics & Materials Science Seminar

"Pixelated detection in Differential Phase Contrast Interesting properties of pixelated STEM"

Presented by Matus Krajnak, University of Glasgow, United Kingdom

Thursday, November 5, 2015, 11:00 am — Bldg.480 Conf. Rm

The application of differential phase contrast (DPC) imaging to the study of polycrystalline magnetic thin films and nanostructures in scanning transmission electron microscopy (STEM) has been hampered by the strong diffraction contrast resulting from the granular structure of the materials. In my talk I will demonstrate how a pixelated detector has been used to detect the bright field disk in aberration corrected STEM. I will explain subsequent processing of the acquired data, which allows efficient enhancement of the magnetic contrast in the resulting images. Initial results from a charged coupled device (CCD) camera demonstrate the highly efficient nature of this improvement over previous methods. Further hardware development with the use of a direct radiation detector, the Medipix3, also shows the possibilities where the reduction in collection time is more than an order of magnitude compared to the CCD. This allows subpixel measurement of the beam deflection due to the magnetic induction. Whilst the detection and processing is data intensive we have demonstrated highly efficient DPC imaging whereby pixel by pixel interpretation of the induction variation is realised with great potential for nanomagnetic imaging. In my talk I will also show advantages of using pixelated DPC in imaging of magnetic skyrmion structures in single crystal FeGe helimagnet which can provide their inner structure. I will advocate for pixelated STEM and explain how advantageous it can be in standard experiments and point to some new developments which it can provide.

Hosted by: Yimei Zhu

11139  |  INT/EXT  |  Events Calendar