Physics Colloquium

"Experimental study of chiral and matter-antimatter symmetries at RHIC"

Presented by Aihong Tang, BNL

Tuesday, December 15, 2015, 3:30 pm — Large Seminar Room, Bldg. 510

Symmetries and the physics laws that they dictate are fundamental in describing the physical world. In this talk I discuss two fundamental symmetries that are well suited to be studied at RHIC, namely, the chiral symmetry and the matter-antimatter symmetry. Under the hot and dense condition at RHIC, quarks and gluons are set free from protons and neutrons, making it feasible for the chiral symmetry to be restored. A restored chiral symmetry is a necessary requirement for the Chiral Magnetic Wave (CMW), a novel QCD phenomena, to propagate. The CMW has experimental consequences — it leads to the separation of elliptic flow between charged pions, which will be discussed in this talk. On the other hand, the abundantly produced antimatter at RHIC offers a unique opportunity to study the matter-antimatter symmetry. In particular the nuclear force between two antinucleons has not been measured previously, although the corresponding force for nucleons or nuclei has been well studied for decades. In this talk I will discuss the measurement of the nuclear force between two antiprotons and compare to that between protons. As direct information on the interaction between two antiprotons, one of the simplest systems of antinucleons, this result provides an elemental ingredient for understanding the structure of more complex antinuclear and their properties.

Hosted by: Peter Petreczky

11185  |  INT/EXT  |  Events Calendar