"Fluid dynamics for the anisotropically expanding quark-gluon plasma"

Presented by Dennis Bazow, The Ohio State University

Friday, May 6, 2016, 2:00 pm — Small Seminar Room, Bldg. 510

Local momentum anisotropies become large in the early stages of the quark-gluon plasma created in relativistic heavy-ion collisions, due to the extreme difference in the longitudinal and transverse expansion rates. In such situations, fluid dynamics derived from an expansion around an isotropic local equilibrium state is bound to break down. Instead, we subsume the slowest nonhydrodynamic degree of freedom (associated with the deviation from momentum isotropy) at leading order defining a local anisoptropic quasi-equilibrium state, thereby treating the longitudinal/transverse pressure anisotropy nonperturbatively. Perturbative transport equations are then derived to deal with the remaining residual momentum anisotropies creating a complete transient effective theory called viscous anisotropic hydrodynamics. This approach has been shown to dramatically outperform viscous hydrodynamics in several simplified situations for which exact solutions exits but which share with realistic expansion scenarios the problem of large dissipative currents. We will discuss the present status of applying viscous anisotropic hydrodynamics to the phenomenological description of the quark-gluon plasma in realistic expansion scenarios.