RIKEN Lunch Seminar

"Kosterlitz-Thouless transition and chiral rotation in external electromagnetic field"

Presented by Gaoqing Cao, Fudan University

Thursday, May 19, 2016, 12:30 pm — Building 510, Room 2-160

In 2+1 dimensional system, the most important phase transition should be of the Kosterlitz-Thouless (KT) type. We determined the KT transition temperature T_KT as well as the mass melting temperature T^* as a function of the magnetic field. It is found that the pseudogap domain T_KT < T < T^* is enlarged with increasing strength of the magnetic field. The influence of a chiral imbalanceμ_5 was also studied. We found that even a constant axial chemical potential μ_5 can lead to inverse magnetic catalysis of the KT transition temperature in 2+1 dimensions. This is actually the de Haas—van Alphen oscillation.
Furthermore, we studied the QCD vacuum structure under the influence of an electromagnetic field with a nonzero second Lorentz invariant I_2=E·B. We showed that the presence of I_2 can induce neutral pion (π_0) condensation in the QCD vacuum through the electromagnetic triangle anomaly. Within the frameworks of chiral perturbation theory at leading small-momenta expansion as well as the Nambu—Jona-Lasinio model at leading 1/Nc expansion, a universal dependence of the π_0 condensate on I_2 was found. The stability of the π_0-condensed vacuum is also discussed.

Hosted by: Daniel Pitonyak

11517  |  INT/EXT  |  Events Calendar