Nuclear Physics Seminar

"Exploring the Neutron Spin Structure"

Presented by Matt Posik, Temple University

Tuesday, May 24, 2016, 11:00 am — Small Seminar Room, Bldg. 510

Jefferson Lab experiment E06-014, performed in Hall A, made measurements of the double-spin asymmetries and absolute cross sections in both the DIS and resonance regions by scattering longitudinally polarized electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target. Through these measurements various aspects of the neutron spin structure were investigated. The g2 nucleon spin-dependent structure function contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d2, a measure of this local color force, has its information encoded in an x2 weighted integral of a linear combination of spin structure functions g1 and g2 and thus is dominated by the valence-quark region at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d2 differ by about two standard deviations. Therefore E06-014 made a precision measurement of this quantity. The polarized quark distributions were also investigated through measurements of the virtual photon-nucleon asymmetry A1^n, the structure function ratio g1/F1, and quark ratio (delta d+delta d_bar)/(d+d_bar). The E06-014 results for the spin structure functions (g1,g2) on 3He, dn2, An1, (delta d+delta d_bar)/(d+d_bar), and our extractions of the neutron color electric and magnetic forces will be presented.

Hosted by: Oleg Eyser

11583  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.