Condensed-Matter Physics & Materials Science Seminar

"The first-principles study of structural, electronic, and magnetic properties of strongly correlated materials: DFT+DMFT approach."

Presented by Hyowon Park, University of Illinois

Thursday, August 25, 2016, 3:00 pm — Bldg. 734, ISB Conference Room 201 (upstairs)

Strongly correlated materials including transitional metal oxides and heavy fermion materials exhibit novel structural, electronic, and magnetic properties. The first-principles study of these unusual properties requires a theoretical description that goes beyond density functional theory to treat strong correlation effects properly. In this talk, I will show that the density functional theory plus dynamical mean field theory (DFT+DMFT) method enables realistic and quantitative calculations of those properties in good agreement with experimental spectroscopic measurements. First, I will clarify the nature of the insulating phase in bulk rare-earth nickelates using DFT+DMFT and determine the structural and metal-insulator phase diagram. I will also present DFT+DMFT results of structural and electronic properties in artificially structured LaNiO3/LaAlO3 superlattices under strains. Calculation results of layer-resolved orbital polarization will be compared to recent X-ray absorption spectroscopy data and analyzed in terms of structural and quantum confinement effects. Finally, I will show the momentum and frequency dependent magnetic excitation spectra in CePd3 computed using DFT+DMFT and explain that the calculated spectra based on realistic band excitations are in good agreement with the inelastic neutron scattering data measured in this material.

Hosted by: Neil Robinson

11746  |  INT/EXT  |  Events Calendar


Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.