Wednesday, November 30, 2016, 2:00 pm — Small Seminar Room, Bldg. 510

Lattice QCD calculations of electroweak decays with single, strong-interaction-stable hadrons in the initial and final state have recently reached a high level of precision. Many phenomenologically important decays, however, involve hadronic resonances, and their naive analysis on the lattice leads to uncontrolled systematic errors. Recent theoretical developments in the finite-volume treatment of $1 \to 2$ transition matrix elements now enable us to perform rigorous lattice calculations of electroweak decays to light resonances such as the $\rho$. After presenting the Briceno-Hansen-Walker-Loud formalism, I will discuss our numerical implementation for the $D\to\rho \ell \nu$ and $B\to\rho \ell \nu$ decays, where we aim to quantify the effect of the unstable nature of the $\rho$. Our calculations are performed on a gauge ensemble with 2+1 flavors of clover fermions with a pion mass of ~320 MeV and a lattice size of ~3.6 fm.

Hosted by: Mattia Bruno

11804 | INT/EXT | Events Calendar