Condensed-Matter Physics & Materials Science Seminar

"Creation and Control of Low Dimensional Electron System in Transition Metal Oxides"

Presented by Milan Radovic, Paul Scherer Institut, Switzerland

Monday, January 23, 2017, 11:00 am — Building 734, conference room 201

Transition Metal Oxides (TMOs) exhibit unique and multifunctional electronic properties (such as high-temperature superconductivity, colossal magnetoresistance, metal-insulator transitions, etc.) directly related to the spin and orbital degrees of freedom of the transition metal d-states. Furthermore, their iso-structural nature permits realization of heterostructures where novel unexpected electronic properties take place. Engineering transition metal oxide surfaces and interfaces carries the potential for achieving new physical properties that radically differ from those of the constituent bulk materials. This is the case of oxide-lowDEGs, which recently showed extraordinary occurrences, including interfacial superconductivity, magnetism, large tuneable spin-orbit coupling and indications of topological states. In my talk, I will present recent spin resolved Angle Resolved Photoemission Spectroscopy (ARPES) measurements of the low dimensional electron gas at SrTiO3 [1, 2, 3], TiO2-anatase and Sr1-xBaxTiO3 showing that these materials have capability for the realization of TMO based electronic device.



References:
[1] N. C. Plumb, M. Salluzzo, E. Razzoli, M. Månsson, M. Falub, J. Krempasky, C. E. Matt, J. Chang, J. Minár, J. Braun, H. Ebert, B. Delley, K.-J. Zhou, C. Monney, T. Schmitt, M. Shi, J. Mesot1, C. Quitmann, L. Patthey, M. Radovic, Phys. Rev. Lett. 113, 086801 (2014).
[2] A. F. Santander-Syro, F. Fortuna, C. Bareille, T. C. Rodel, G. Landolt, N. C. Plumb, J. H. Dil, and M. Radovic, Nature Materials, 13, 1085–1090 doi:10.1038/nmat4107 (2014).
[3] Z. Wang, S. McKeown Walker, A. Tamai, Z. Ristic, F.Y. Bruno, A. de la Torre, S. Ricco, N.C. Plumb, M. Shi, P. Hlawenka, J. Sanchez-Barriga, A. Varykhalov, T.K. Kim, M. Hoesch, P.D.C. King, W. Meevasana, U. Diebold, J. Mesot, M. Radovic, and F. Baumberger, Nature Materials 15, 835–839 (2016) doi:10.1038/nmat4623 (2016).

Hosted by: Cedomir Petrovic

11934  |  INT/EXT  |  Events Calendar

 

Not all computers/devices will add this event to your calendar automatically.

A calendar event file named "calendar.ics" will be placed in your downloads location. Depending on how your device/computer is configured, you may have to locate this file and double click on it to add the event to your calendar.

Event dates, times, and locations are subject to change. Event details will not be updated automatically once you add this event to your own calendar. Check the Lab's Events Calendar to ensure that you have the latest event information.